aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp834
1 files changed, 834 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp
new file mode 100644
index 000000000000..35f046406763
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Analysis/BodyFarm.cpp
@@ -0,0 +1,834 @@
+//== BodyFarm.cpp - Factory for conjuring up fake bodies ----------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BodyFarm is a factory for creating faux implementations for functions/methods
+// for analysis purposes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/BodyFarm.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/Analysis/CodeInjector.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "body-farm"
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Helper creation functions for constructing faux ASTs.
+//===----------------------------------------------------------------------===//
+
+static bool isDispatchBlock(QualType Ty) {
+ // Is it a block pointer?
+ const BlockPointerType *BPT = Ty->getAs<BlockPointerType>();
+ if (!BPT)
+ return false;
+
+ // Check if the block pointer type takes no arguments and
+ // returns void.
+ const FunctionProtoType *FT =
+ BPT->getPointeeType()->getAs<FunctionProtoType>();
+ return FT && FT->getReturnType()->isVoidType() && FT->getNumParams() == 0;
+}
+
+namespace {
+class ASTMaker {
+public:
+ ASTMaker(ASTContext &C) : C(C) {}
+
+ /// Create a new BinaryOperator representing a simple assignment.
+ BinaryOperator *makeAssignment(const Expr *LHS, const Expr *RHS, QualType Ty);
+
+ /// Create a new BinaryOperator representing a comparison.
+ BinaryOperator *makeComparison(const Expr *LHS, const Expr *RHS,
+ BinaryOperator::Opcode Op);
+
+ /// Create a new compound stmt using the provided statements.
+ CompoundStmt *makeCompound(ArrayRef<Stmt*>);
+
+ /// Create a new DeclRefExpr for the referenced variable.
+ DeclRefExpr *makeDeclRefExpr(const VarDecl *D,
+ bool RefersToEnclosingVariableOrCapture = false);
+
+ /// Create a new UnaryOperator representing a dereference.
+ UnaryOperator *makeDereference(const Expr *Arg, QualType Ty);
+
+ /// Create an implicit cast for an integer conversion.
+ Expr *makeIntegralCast(const Expr *Arg, QualType Ty);
+
+ /// Create an implicit cast to a builtin boolean type.
+ ImplicitCastExpr *makeIntegralCastToBoolean(const Expr *Arg);
+
+ /// Create an implicit cast for lvalue-to-rvaluate conversions.
+ ImplicitCastExpr *makeLvalueToRvalue(const Expr *Arg, QualType Ty);
+
+ /// Make RValue out of variable declaration, creating a temporary
+ /// DeclRefExpr in the process.
+ ImplicitCastExpr *
+ makeLvalueToRvalue(const VarDecl *Decl,
+ bool RefersToEnclosingVariableOrCapture = false);
+
+ /// Create an implicit cast of the given type.
+ ImplicitCastExpr *makeImplicitCast(const Expr *Arg, QualType Ty,
+ CastKind CK = CK_LValueToRValue);
+
+ /// Create an Objective-C bool literal.
+ ObjCBoolLiteralExpr *makeObjCBool(bool Val);
+
+ /// Create an Objective-C ivar reference.
+ ObjCIvarRefExpr *makeObjCIvarRef(const Expr *Base, const ObjCIvarDecl *IVar);
+
+ /// Create a Return statement.
+ ReturnStmt *makeReturn(const Expr *RetVal);
+
+ /// Create an integer literal expression of the given type.
+ IntegerLiteral *makeIntegerLiteral(uint64_t Value, QualType Ty);
+
+ /// Create a member expression.
+ MemberExpr *makeMemberExpression(Expr *base, ValueDecl *MemberDecl,
+ bool IsArrow = false,
+ ExprValueKind ValueKind = VK_LValue);
+
+ /// Returns a *first* member field of a record declaration with a given name.
+ /// \return an nullptr if no member with such a name exists.
+ ValueDecl *findMemberField(const RecordDecl *RD, StringRef Name);
+
+private:
+ ASTContext &C;
+};
+}
+
+BinaryOperator *ASTMaker::makeAssignment(const Expr *LHS, const Expr *RHS,
+ QualType Ty) {
+ return new (C) BinaryOperator(const_cast<Expr*>(LHS), const_cast<Expr*>(RHS),
+ BO_Assign, Ty, VK_RValue,
+ OK_Ordinary, SourceLocation(), FPOptions());
+}
+
+BinaryOperator *ASTMaker::makeComparison(const Expr *LHS, const Expr *RHS,
+ BinaryOperator::Opcode Op) {
+ assert(BinaryOperator::isLogicalOp(Op) ||
+ BinaryOperator::isComparisonOp(Op));
+ return new (C) BinaryOperator(const_cast<Expr*>(LHS),
+ const_cast<Expr*>(RHS),
+ Op,
+ C.getLogicalOperationType(),
+ VK_RValue,
+ OK_Ordinary, SourceLocation(), FPOptions());
+}
+
+CompoundStmt *ASTMaker::makeCompound(ArrayRef<Stmt *> Stmts) {
+ return CompoundStmt::Create(C, Stmts, SourceLocation(), SourceLocation());
+}
+
+DeclRefExpr *ASTMaker::makeDeclRefExpr(
+ const VarDecl *D,
+ bool RefersToEnclosingVariableOrCapture) {
+ QualType Type = D->getType().getNonReferenceType();
+
+ DeclRefExpr *DR = DeclRefExpr::Create(
+ C, NestedNameSpecifierLoc(), SourceLocation(), const_cast<VarDecl *>(D),
+ RefersToEnclosingVariableOrCapture, SourceLocation(), Type, VK_LValue);
+ return DR;
+}
+
+UnaryOperator *ASTMaker::makeDereference(const Expr *Arg, QualType Ty) {
+ return new (C) UnaryOperator(const_cast<Expr*>(Arg), UO_Deref, Ty,
+ VK_LValue, OK_Ordinary, SourceLocation(),
+ /*CanOverflow*/ false);
+}
+
+ImplicitCastExpr *ASTMaker::makeLvalueToRvalue(const Expr *Arg, QualType Ty) {
+ return makeImplicitCast(Arg, Ty, CK_LValueToRValue);
+}
+
+ImplicitCastExpr *
+ASTMaker::makeLvalueToRvalue(const VarDecl *Arg,
+ bool RefersToEnclosingVariableOrCapture) {
+ QualType Type = Arg->getType().getNonReferenceType();
+ return makeLvalueToRvalue(makeDeclRefExpr(Arg,
+ RefersToEnclosingVariableOrCapture),
+ Type);
+}
+
+ImplicitCastExpr *ASTMaker::makeImplicitCast(const Expr *Arg, QualType Ty,
+ CastKind CK) {
+ return ImplicitCastExpr::Create(C, Ty,
+ /* CastKind=*/ CK,
+ /* Expr=*/ const_cast<Expr *>(Arg),
+ /* CXXCastPath=*/ nullptr,
+ /* ExprValueKind=*/ VK_RValue);
+}
+
+Expr *ASTMaker::makeIntegralCast(const Expr *Arg, QualType Ty) {
+ if (Arg->getType() == Ty)
+ return const_cast<Expr*>(Arg);
+
+ return ImplicitCastExpr::Create(C, Ty, CK_IntegralCast,
+ const_cast<Expr*>(Arg), nullptr, VK_RValue);
+}
+
+ImplicitCastExpr *ASTMaker::makeIntegralCastToBoolean(const Expr *Arg) {
+ return ImplicitCastExpr::Create(C, C.BoolTy, CK_IntegralToBoolean,
+ const_cast<Expr*>(Arg), nullptr, VK_RValue);
+}
+
+ObjCBoolLiteralExpr *ASTMaker::makeObjCBool(bool Val) {
+ QualType Ty = C.getBOOLDecl() ? C.getBOOLType() : C.ObjCBuiltinBoolTy;
+ return new (C) ObjCBoolLiteralExpr(Val, Ty, SourceLocation());
+}
+
+ObjCIvarRefExpr *ASTMaker::makeObjCIvarRef(const Expr *Base,
+ const ObjCIvarDecl *IVar) {
+ return new (C) ObjCIvarRefExpr(const_cast<ObjCIvarDecl*>(IVar),
+ IVar->getType(), SourceLocation(),
+ SourceLocation(), const_cast<Expr*>(Base),
+ /*arrow=*/true, /*free=*/false);
+}
+
+ReturnStmt *ASTMaker::makeReturn(const Expr *RetVal) {
+ return ReturnStmt::Create(C, SourceLocation(), const_cast<Expr *>(RetVal),
+ /* NRVOCandidate=*/nullptr);
+}
+
+IntegerLiteral *ASTMaker::makeIntegerLiteral(uint64_t Value, QualType Ty) {
+ llvm::APInt APValue = llvm::APInt(C.getTypeSize(Ty), Value);
+ return IntegerLiteral::Create(C, APValue, Ty, SourceLocation());
+}
+
+MemberExpr *ASTMaker::makeMemberExpression(Expr *base, ValueDecl *MemberDecl,
+ bool IsArrow,
+ ExprValueKind ValueKind) {
+
+ DeclAccessPair FoundDecl = DeclAccessPair::make(MemberDecl, AS_public);
+ return MemberExpr::Create(
+ C, base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
+ SourceLocation(), MemberDecl, FoundDecl,
+ DeclarationNameInfo(MemberDecl->getDeclName(), SourceLocation()),
+ /* TemplateArgumentListInfo=*/ nullptr, MemberDecl->getType(), ValueKind,
+ OK_Ordinary);
+}
+
+ValueDecl *ASTMaker::findMemberField(const RecordDecl *RD, StringRef Name) {
+
+ CXXBasePaths Paths(
+ /* FindAmbiguities=*/false,
+ /* RecordPaths=*/false,
+ /* DetectVirtual=*/ false);
+ const IdentifierInfo &II = C.Idents.get(Name);
+ DeclarationName DeclName = C.DeclarationNames.getIdentifier(&II);
+
+ DeclContextLookupResult Decls = RD->lookup(DeclName);
+ for (NamedDecl *FoundDecl : Decls)
+ if (!FoundDecl->getDeclContext()->isFunctionOrMethod())
+ return cast<ValueDecl>(FoundDecl);
+
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Creation functions for faux ASTs.
+//===----------------------------------------------------------------------===//
+
+typedef Stmt *(*FunctionFarmer)(ASTContext &C, const FunctionDecl *D);
+
+static CallExpr *create_call_once_funcptr_call(ASTContext &C, ASTMaker M,
+ const ParmVarDecl *Callback,
+ ArrayRef<Expr *> CallArgs) {
+
+ QualType Ty = Callback->getType();
+ DeclRefExpr *Call = M.makeDeclRefExpr(Callback);
+ Expr *SubExpr;
+ if (Ty->isRValueReferenceType()) {
+ SubExpr = M.makeImplicitCast(
+ Call, Ty.getNonReferenceType(), CK_LValueToRValue);
+ } else if (Ty->isLValueReferenceType() &&
+ Call->getType()->isFunctionType()) {
+ Ty = C.getPointerType(Ty.getNonReferenceType());
+ SubExpr = M.makeImplicitCast(Call, Ty, CK_FunctionToPointerDecay);
+ } else if (Ty->isLValueReferenceType()
+ && Call->getType()->isPointerType()
+ && Call->getType()->getPointeeType()->isFunctionType()){
+ SubExpr = Call;
+ } else {
+ llvm_unreachable("Unexpected state");
+ }
+
+ return CallExpr::Create(C, SubExpr, CallArgs, C.VoidTy, VK_RValue,
+ SourceLocation());
+}
+
+static CallExpr *create_call_once_lambda_call(ASTContext &C, ASTMaker M,
+ const ParmVarDecl *Callback,
+ CXXRecordDecl *CallbackDecl,
+ ArrayRef<Expr *> CallArgs) {
+ assert(CallbackDecl != nullptr);
+ assert(CallbackDecl->isLambda());
+ FunctionDecl *callOperatorDecl = CallbackDecl->getLambdaCallOperator();
+ assert(callOperatorDecl != nullptr);
+
+ DeclRefExpr *callOperatorDeclRef =
+ DeclRefExpr::Create(/* Ctx =*/ C,
+ /* QualifierLoc =*/ NestedNameSpecifierLoc(),
+ /* TemplateKWLoc =*/ SourceLocation(),
+ const_cast<FunctionDecl *>(callOperatorDecl),
+ /* RefersToEnclosingVariableOrCapture=*/ false,
+ /* NameLoc =*/ SourceLocation(),
+ /* T =*/ callOperatorDecl->getType(),
+ /* VK =*/ VK_LValue);
+
+ return CXXOperatorCallExpr::Create(
+ /*AstContext=*/C, OO_Call, callOperatorDeclRef,
+ /*args=*/CallArgs,
+ /*QualType=*/C.VoidTy,
+ /*ExprValueType=*/VK_RValue,
+ /*SourceLocation=*/SourceLocation(), FPOptions());
+}
+
+/// Create a fake body for std::call_once.
+/// Emulates the following function body:
+///
+/// \code
+/// typedef struct once_flag_s {
+/// unsigned long __state = 0;
+/// } once_flag;
+/// template<class Callable>
+/// void call_once(once_flag& o, Callable func) {
+/// if (!o.__state) {
+/// func();
+/// }
+/// o.__state = 1;
+/// }
+/// \endcode
+static Stmt *create_call_once(ASTContext &C, const FunctionDecl *D) {
+ LLVM_DEBUG(llvm::dbgs() << "Generating body for call_once\n");
+
+ // We need at least two parameters.
+ if (D->param_size() < 2)
+ return nullptr;
+
+ ASTMaker M(C);
+
+ const ParmVarDecl *Flag = D->getParamDecl(0);
+ const ParmVarDecl *Callback = D->getParamDecl(1);
+
+ if (!Callback->getType()->isReferenceType()) {
+ llvm::dbgs() << "libcxx03 std::call_once implementation, skipping.\n";
+ return nullptr;
+ }
+ if (!Flag->getType()->isReferenceType()) {
+ llvm::dbgs() << "unknown std::call_once implementation, skipping.\n";
+ return nullptr;
+ }
+
+ QualType CallbackType = Callback->getType().getNonReferenceType();
+
+ // Nullable pointer, non-null iff function is a CXXRecordDecl.
+ CXXRecordDecl *CallbackRecordDecl = CallbackType->getAsCXXRecordDecl();
+ QualType FlagType = Flag->getType().getNonReferenceType();
+ auto *FlagRecordDecl = FlagType->getAsRecordDecl();
+
+ if (!FlagRecordDecl) {
+ LLVM_DEBUG(llvm::dbgs() << "Flag field is not a record: "
+ << "unknown std::call_once implementation, "
+ << "ignoring the call.\n");
+ return nullptr;
+ }
+
+ // We initially assume libc++ implementation of call_once,
+ // where the once_flag struct has a field `__state_`.
+ ValueDecl *FlagFieldDecl = M.findMemberField(FlagRecordDecl, "__state_");
+
+ // Otherwise, try libstdc++ implementation, with a field
+ // `_M_once`
+ if (!FlagFieldDecl) {
+ FlagFieldDecl = M.findMemberField(FlagRecordDecl, "_M_once");
+ }
+
+ if (!FlagFieldDecl) {
+ LLVM_DEBUG(llvm::dbgs() << "No field _M_once or __state_ found on "
+ << "std::once_flag struct: unknown std::call_once "
+ << "implementation, ignoring the call.");
+ return nullptr;
+ }
+
+ bool isLambdaCall = CallbackRecordDecl && CallbackRecordDecl->isLambda();
+ if (CallbackRecordDecl && !isLambdaCall) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "Not supported: synthesizing body for functors when "
+ << "body farming std::call_once, ignoring the call.");
+ return nullptr;
+ }
+
+ SmallVector<Expr *, 5> CallArgs;
+ const FunctionProtoType *CallbackFunctionType;
+ if (isLambdaCall) {
+
+ // Lambda requires callback itself inserted as a first parameter.
+ CallArgs.push_back(
+ M.makeDeclRefExpr(Callback,
+ /* RefersToEnclosingVariableOrCapture=*/ true));
+ CallbackFunctionType = CallbackRecordDecl->getLambdaCallOperator()
+ ->getType()
+ ->getAs<FunctionProtoType>();
+ } else if (!CallbackType->getPointeeType().isNull()) {
+ CallbackFunctionType =
+ CallbackType->getPointeeType()->getAs<FunctionProtoType>();
+ } else {
+ CallbackFunctionType = CallbackType->getAs<FunctionProtoType>();
+ }
+
+ if (!CallbackFunctionType)
+ return nullptr;
+
+ // First two arguments are used for the flag and for the callback.
+ if (D->getNumParams() != CallbackFunctionType->getNumParams() + 2) {
+ LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match "
+ << "params passed to std::call_once, "
+ << "ignoring the call\n");
+ return nullptr;
+ }
+
+ // All arguments past first two ones are passed to the callback,
+ // and we turn lvalues into rvalues if the argument is not passed by
+ // reference.
+ for (unsigned int ParamIdx = 2; ParamIdx < D->getNumParams(); ParamIdx++) {
+ const ParmVarDecl *PDecl = D->getParamDecl(ParamIdx);
+ if (PDecl &&
+ CallbackFunctionType->getParamType(ParamIdx - 2)
+ .getNonReferenceType()
+ .getCanonicalType() !=
+ PDecl->getType().getNonReferenceType().getCanonicalType()) {
+ LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match "
+ << "params passed to std::call_once, "
+ << "ignoring the call\n");
+ return nullptr;
+ }
+ Expr *ParamExpr = M.makeDeclRefExpr(PDecl);
+ if (!CallbackFunctionType->getParamType(ParamIdx - 2)->isReferenceType()) {
+ QualType PTy = PDecl->getType().getNonReferenceType();
+ ParamExpr = M.makeLvalueToRvalue(ParamExpr, PTy);
+ }
+ CallArgs.push_back(ParamExpr);
+ }
+
+ CallExpr *CallbackCall;
+ if (isLambdaCall) {
+
+ CallbackCall = create_call_once_lambda_call(C, M, Callback,
+ CallbackRecordDecl, CallArgs);
+ } else {
+
+ // Function pointer case.
+ CallbackCall = create_call_once_funcptr_call(C, M, Callback, CallArgs);
+ }
+
+ DeclRefExpr *FlagDecl =
+ M.makeDeclRefExpr(Flag,
+ /* RefersToEnclosingVariableOrCapture=*/true);
+
+
+ MemberExpr *Deref = M.makeMemberExpression(FlagDecl, FlagFieldDecl);
+ assert(Deref->isLValue());
+ QualType DerefType = Deref->getType();
+
+ // Negation predicate.
+ UnaryOperator *FlagCheck = new (C) UnaryOperator(
+ /* input=*/
+ M.makeImplicitCast(M.makeLvalueToRvalue(Deref, DerefType), DerefType,
+ CK_IntegralToBoolean),
+ /* opc=*/ UO_LNot,
+ /* QualType=*/ C.IntTy,
+ /* ExprValueKind=*/ VK_RValue,
+ /* ExprObjectKind=*/ OK_Ordinary, SourceLocation(),
+ /* CanOverflow*/ false);
+
+ // Create assignment.
+ BinaryOperator *FlagAssignment = M.makeAssignment(
+ Deref, M.makeIntegralCast(M.makeIntegerLiteral(1, C.IntTy), DerefType),
+ DerefType);
+
+ auto *Out =
+ IfStmt::Create(C, SourceLocation(),
+ /* IsConstexpr=*/false,
+ /* init=*/nullptr,
+ /* var=*/nullptr,
+ /* cond=*/FlagCheck,
+ /* then=*/M.makeCompound({CallbackCall, FlagAssignment}));
+
+ return Out;
+}
+
+/// Create a fake body for dispatch_once.
+static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) {
+ // Check if we have at least two parameters.
+ if (D->param_size() != 2)
+ return nullptr;
+
+ // Check if the first parameter is a pointer to integer type.
+ const ParmVarDecl *Predicate = D->getParamDecl(0);
+ QualType PredicateQPtrTy = Predicate->getType();
+ const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs<PointerType>();
+ if (!PredicatePtrTy)
+ return nullptr;
+ QualType PredicateTy = PredicatePtrTy->getPointeeType();
+ if (!PredicateTy->isIntegerType())
+ return nullptr;
+
+ // Check if the second parameter is the proper block type.
+ const ParmVarDecl *Block = D->getParamDecl(1);
+ QualType Ty = Block->getType();
+ if (!isDispatchBlock(Ty))
+ return nullptr;
+
+ // Everything checks out. Create a fakse body that checks the predicate,
+ // sets it, and calls the block. Basically, an AST dump of:
+ //
+ // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) {
+ // if (*predicate != ~0l) {
+ // *predicate = ~0l;
+ // block();
+ // }
+ // }
+
+ ASTMaker M(C);
+
+ // (1) Create the call.
+ CallExpr *CE = CallExpr::Create(
+ /*ASTContext=*/C,
+ /*StmtClass=*/M.makeLvalueToRvalue(/*Expr=*/Block),
+ /*args=*/None,
+ /*QualType=*/C.VoidTy,
+ /*ExprValueType=*/VK_RValue,
+ /*SourceLocation=*/SourceLocation());
+
+ // (2) Create the assignment to the predicate.
+ Expr *DoneValue =
+ new (C) UnaryOperator(M.makeIntegerLiteral(0, C.LongTy), UO_Not, C.LongTy,
+ VK_RValue, OK_Ordinary, SourceLocation(),
+ /*CanOverflow*/false);
+
+ BinaryOperator *B =
+ M.makeAssignment(
+ M.makeDereference(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(Predicate), PredicateQPtrTy),
+ PredicateTy),
+ M.makeIntegralCast(DoneValue, PredicateTy),
+ PredicateTy);
+
+ // (3) Create the compound statement.
+ Stmt *Stmts[] = { B, CE };
+ CompoundStmt *CS = M.makeCompound(Stmts);
+
+ // (4) Create the 'if' condition.
+ ImplicitCastExpr *LValToRval =
+ M.makeLvalueToRvalue(
+ M.makeDereference(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(Predicate),
+ PredicateQPtrTy),
+ PredicateTy),
+ PredicateTy);
+
+ Expr *GuardCondition = M.makeComparison(LValToRval, DoneValue, BO_NE);
+ // (5) Create the 'if' statement.
+ auto *If = IfStmt::Create(C, SourceLocation(),
+ /* IsConstexpr=*/false,
+ /* init=*/nullptr,
+ /* var=*/nullptr,
+ /* cond=*/GuardCondition,
+ /* then=*/CS);
+ return If;
+}
+
+/// Create a fake body for dispatch_sync.
+static Stmt *create_dispatch_sync(ASTContext &C, const FunctionDecl *D) {
+ // Check if we have at least two parameters.
+ if (D->param_size() != 2)
+ return nullptr;
+
+ // Check if the second parameter is a block.
+ const ParmVarDecl *PV = D->getParamDecl(1);
+ QualType Ty = PV->getType();
+ if (!isDispatchBlock(Ty))
+ return nullptr;
+
+ // Everything checks out. Create a fake body that just calls the block.
+ // This is basically just an AST dump of:
+ //
+ // void dispatch_sync(dispatch_queue_t queue, void (^block)(void)) {
+ // block();
+ // }
+ //
+ ASTMaker M(C);
+ DeclRefExpr *DR = M.makeDeclRefExpr(PV);
+ ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty);
+ CallExpr *CE =
+ CallExpr::Create(C, ICE, None, C.VoidTy, VK_RValue, SourceLocation());
+ return CE;
+}
+
+static Stmt *create_OSAtomicCompareAndSwap(ASTContext &C, const FunctionDecl *D)
+{
+ // There are exactly 3 arguments.
+ if (D->param_size() != 3)
+ return nullptr;
+
+ // Signature:
+ // _Bool OSAtomicCompareAndSwapPtr(void *__oldValue,
+ // void *__newValue,
+ // void * volatile *__theValue)
+ // Generate body:
+ // if (oldValue == *theValue) {
+ // *theValue = newValue;
+ // return YES;
+ // }
+ // else return NO;
+
+ QualType ResultTy = D->getReturnType();
+ bool isBoolean = ResultTy->isBooleanType();
+ if (!isBoolean && !ResultTy->isIntegralType(C))
+ return nullptr;
+
+ const ParmVarDecl *OldValue = D->getParamDecl(0);
+ QualType OldValueTy = OldValue->getType();
+
+ const ParmVarDecl *NewValue = D->getParamDecl(1);
+ QualType NewValueTy = NewValue->getType();
+
+ assert(OldValueTy == NewValueTy);
+
+ const ParmVarDecl *TheValue = D->getParamDecl(2);
+ QualType TheValueTy = TheValue->getType();
+ const PointerType *PT = TheValueTy->getAs<PointerType>();
+ if (!PT)
+ return nullptr;
+ QualType PointeeTy = PT->getPointeeType();
+
+ ASTMaker M(C);
+ // Construct the comparison.
+ Expr *Comparison =
+ M.makeComparison(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(OldValue), OldValueTy),
+ M.makeLvalueToRvalue(
+ M.makeDereference(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
+ PointeeTy),
+ PointeeTy),
+ BO_EQ);
+
+ // Construct the body of the IfStmt.
+ Stmt *Stmts[2];
+ Stmts[0] =
+ M.makeAssignment(
+ M.makeDereference(
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
+ PointeeTy),
+ M.makeLvalueToRvalue(M.makeDeclRefExpr(NewValue), NewValueTy),
+ NewValueTy);
+
+ Expr *BoolVal = M.makeObjCBool(true);
+ Expr *RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
+ : M.makeIntegralCast(BoolVal, ResultTy);
+ Stmts[1] = M.makeReturn(RetVal);
+ CompoundStmt *Body = M.makeCompound(Stmts);
+
+ // Construct the else clause.
+ BoolVal = M.makeObjCBool(false);
+ RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
+ : M.makeIntegralCast(BoolVal, ResultTy);
+ Stmt *Else = M.makeReturn(RetVal);
+
+ /// Construct the If.
+ auto *If = IfStmt::Create(C, SourceLocation(),
+ /* IsConstexpr=*/false,
+ /* init=*/nullptr,
+ /* var=*/nullptr, Comparison, Body,
+ SourceLocation(), Else);
+
+ return If;
+}
+
+Stmt *BodyFarm::getBody(const FunctionDecl *D) {
+ D = D->getCanonicalDecl();
+
+ Optional<Stmt *> &Val = Bodies[D];
+ if (Val.hasValue())
+ return Val.getValue();
+
+ Val = nullptr;
+
+ if (D->getIdentifier() == nullptr)
+ return nullptr;
+
+ StringRef Name = D->getName();
+ if (Name.empty())
+ return nullptr;
+
+ FunctionFarmer FF;
+
+ if (Name.startswith("OSAtomicCompareAndSwap") ||
+ Name.startswith("objc_atomicCompareAndSwap")) {
+ FF = create_OSAtomicCompareAndSwap;
+ } else if (Name == "call_once" && D->getDeclContext()->isStdNamespace()) {
+ FF = create_call_once;
+ } else {
+ FF = llvm::StringSwitch<FunctionFarmer>(Name)
+ .Case("dispatch_sync", create_dispatch_sync)
+ .Case("dispatch_once", create_dispatch_once)
+ .Default(nullptr);
+ }
+
+ if (FF) { Val = FF(C, D); }
+ else if (Injector) { Val = Injector->getBody(D); }
+ return Val.getValue();
+}
+
+static const ObjCIvarDecl *findBackingIvar(const ObjCPropertyDecl *Prop) {
+ const ObjCIvarDecl *IVar = Prop->getPropertyIvarDecl();
+
+ if (IVar)
+ return IVar;
+
+ // When a readonly property is shadowed in a class extensions with a
+ // a readwrite property, the instance variable belongs to the shadowing
+ // property rather than the shadowed property. If there is no instance
+ // variable on a readonly property, check to see whether the property is
+ // shadowed and if so try to get the instance variable from shadowing
+ // property.
+ if (!Prop->isReadOnly())
+ return nullptr;
+
+ auto *Container = cast<ObjCContainerDecl>(Prop->getDeclContext());
+ const ObjCInterfaceDecl *PrimaryInterface = nullptr;
+ if (auto *InterfaceDecl = dyn_cast<ObjCInterfaceDecl>(Container)) {
+ PrimaryInterface = InterfaceDecl;
+ } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Container)) {
+ PrimaryInterface = CategoryDecl->getClassInterface();
+ } else if (auto *ImplDecl = dyn_cast<ObjCImplDecl>(Container)) {
+ PrimaryInterface = ImplDecl->getClassInterface();
+ } else {
+ return nullptr;
+ }
+
+ // FindPropertyVisibleInPrimaryClass() looks first in class extensions, so it
+ // is guaranteed to find the shadowing property, if it exists, rather than
+ // the shadowed property.
+ auto *ShadowingProp = PrimaryInterface->FindPropertyVisibleInPrimaryClass(
+ Prop->getIdentifier(), Prop->getQueryKind());
+ if (ShadowingProp && ShadowingProp != Prop) {
+ IVar = ShadowingProp->getPropertyIvarDecl();
+ }
+
+ return IVar;
+}
+
+static Stmt *createObjCPropertyGetter(ASTContext &Ctx,
+ const ObjCPropertyDecl *Prop) {
+ // First, find the backing ivar.
+ const ObjCIvarDecl *IVar = findBackingIvar(Prop);
+ if (!IVar)
+ return nullptr;
+
+ // Ignore weak variables, which have special behavior.
+ if (Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
+ return nullptr;
+
+ // Look to see if Sema has synthesized a body for us. This happens in
+ // Objective-C++ because the return value may be a C++ class type with a
+ // non-trivial copy constructor. We can only do this if we can find the
+ // @synthesize for this property, though (or if we know it's been auto-
+ // synthesized).
+ const ObjCImplementationDecl *ImplDecl =
+ IVar->getContainingInterface()->getImplementation();
+ if (ImplDecl) {
+ for (const auto *I : ImplDecl->property_impls()) {
+ if (I->getPropertyDecl() != Prop)
+ continue;
+
+ if (I->getGetterCXXConstructor()) {
+ ASTMaker M(Ctx);
+ return M.makeReturn(I->getGetterCXXConstructor());
+ }
+ }
+ }
+
+ // Sanity check that the property is the same type as the ivar, or a
+ // reference to it, and that it is either an object pointer or trivially
+ // copyable.
+ if (!Ctx.hasSameUnqualifiedType(IVar->getType(),
+ Prop->getType().getNonReferenceType()))
+ return nullptr;
+ if (!IVar->getType()->isObjCLifetimeType() &&
+ !IVar->getType().isTriviallyCopyableType(Ctx))
+ return nullptr;
+
+ // Generate our body:
+ // return self->_ivar;
+ ASTMaker M(Ctx);
+
+ const VarDecl *selfVar = Prop->getGetterMethodDecl()->getSelfDecl();
+ if (!selfVar)
+ return nullptr;
+
+ Expr *loadedIVar =
+ M.makeObjCIvarRef(
+ M.makeLvalueToRvalue(
+ M.makeDeclRefExpr(selfVar),
+ selfVar->getType()),
+ IVar);
+
+ if (!Prop->getType()->isReferenceType())
+ loadedIVar = M.makeLvalueToRvalue(loadedIVar, IVar->getType());
+
+ return M.makeReturn(loadedIVar);
+}
+
+Stmt *BodyFarm::getBody(const ObjCMethodDecl *D) {
+ // We currently only know how to synthesize property accessors.
+ if (!D->isPropertyAccessor())
+ return nullptr;
+
+ D = D->getCanonicalDecl();
+
+ Optional<Stmt *> &Val = Bodies[D];
+ if (Val.hasValue())
+ return Val.getValue();
+ Val = nullptr;
+
+ const ObjCPropertyDecl *Prop = D->findPropertyDecl();
+ if (!Prop)
+ return nullptr;
+
+ // For now, we only synthesize getters.
+ // Synthesizing setters would cause false negatives in the
+ // RetainCountChecker because the method body would bind the parameter
+ // to an instance variable, causing it to escape. This would prevent
+ // warning in the following common scenario:
+ //
+ // id foo = [[NSObject alloc] init];
+ // self.foo = foo; // We should warn that foo leaks here.
+ //
+ if (D->param_size() != 0)
+ return nullptr;
+
+ Val = createObjCPropertyGetter(C, Prop);
+
+ return Val.getValue();
+}