aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp457
1 files changed, 457 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
new file mode 100644
index 000000000000..162807d03c62
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -0,0 +1,457 @@
+//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities. It does not define any
+// actual pass or policy, but provides a single function to perform loop
+// unrolling.
+//
+// The process of unrolling can produce extraneous basic blocks linked with
+// unconditional branches. This will be corrected in the future.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-unroll"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+using namespace llvm;
+
+// TODO: Should these be here or in LoopUnroll?
+STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+
+/// RemapInstruction - Convert the instruction operands from referencing the
+/// current values into those specified by VMap.
+static inline void RemapInstruction(Instruction *I,
+ ValueToValueMapTy &VMap) {
+ for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
+ Value *Op = I->getOperand(op);
+ ValueToValueMapTy::iterator It = VMap.find(Op);
+ if (It != VMap.end())
+ I->setOperand(op, It->second);
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
+ if (It != VMap.end())
+ PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
+ }
+ }
+}
+
+/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
+/// only has one predecessor, and that predecessor only has one successor.
+/// The LoopInfo Analysis that is passed will be kept consistent.
+/// Returns the new combined block.
+static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
+ LPPassManager *LPM) {
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ BasicBlock *OnlyPred = BB->getSinglePredecessor();
+ if (!OnlyPred) return 0;
+
+ if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
+ return 0;
+
+ DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
+
+ // Resolve any PHI nodes at the start of the block. They are all
+ // guaranteed to have exactly one entry if they exist, unless there are
+ // multiple duplicate (but guaranteed to be equal) entries for the
+ // incoming edges. This occurs when there are multiple edges from
+ // OnlyPred to OnlySucc.
+ FoldSingleEntryPHINodes(BB);
+
+ // Delete the unconditional branch from the predecessor...
+ OnlyPred->getInstList().pop_back();
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source...
+ BB->replaceAllUsesWith(OnlyPred);
+
+ // Move all definitions in the successor to the predecessor...
+ OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
+
+ // OldName will be valid until erased.
+ StringRef OldName = BB->getName();
+
+ // Erase basic block from the function...
+
+ // ScalarEvolution holds references to loop exit blocks.
+ if (LPM) {
+ if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
+ if (Loop *L = LI->getLoopFor(BB))
+ SE->forgetLoop(L);
+ }
+ }
+ LI->removeBlock(BB);
+
+ // Inherit predecessor's name if it exists...
+ if (!OldName.empty() && !OnlyPred->hasName())
+ OnlyPred->setName(OldName);
+
+ BB->eraseFromParent();
+
+ return OnlyPred;
+}
+
+/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
+/// if unrolling was successful, or false if the loop was unmodified. Unrolling
+/// can only fail when the loop's latch block is not terminated by a conditional
+/// branch instruction. However, if the trip count (and multiple) are not known,
+/// loop unrolling will mostly produce more code that is no faster.
+///
+/// TripCount is generally defined as the number of times the loop header
+/// executes. UnrollLoop relaxes the definition to permit early exits: here
+/// TripCount is the iteration on which control exits LatchBlock if no early
+/// exits were taken. Note that UnrollLoop assumes that the loop counter test
+/// terminates LatchBlock in order to remove unnecesssary instances of the
+/// test. In other words, control may exit the loop prior to TripCount
+/// iterations via an early branch, but control may not exit the loop from the
+/// LatchBlock's terminator prior to TripCount iterations.
+///
+/// Similarly, TripMultiple divides the number of times that the LatchBlock may
+/// execute without exiting the loop.
+///
+/// The LoopInfo Analysis that is passed will be kept consistent.
+///
+/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
+/// removed from the LoopPassManager as well. LPM can also be NULL.
+///
+/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
+/// available it must also preserve those analyses.
+bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
+ bool AllowRuntime, unsigned TripMultiple,
+ LoopInfo *LI, LPPassManager *LPM) {
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
+ return false;
+ }
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ if (!LatchBlock) {
+ DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
+ return false;
+ }
+
+ // Loops with indirectbr cannot be cloned.
+ if (!L->isSafeToClone()) {
+ DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
+ return false;
+ }
+
+ BasicBlock *Header = L->getHeader();
+ BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+
+ if (!BI || BI->isUnconditional()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(dbgs() <<
+ " Can't unroll; loop not terminated by a conditional branch.\n");
+ return false;
+ }
+
+ if (Header->hasAddressTaken()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(dbgs() <<
+ " Won't unroll loop: address of header block is taken.\n");
+ return false;
+ }
+
+ if (TripCount != 0)
+ DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
+ if (TripMultiple != 1)
+ DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
+
+ // Effectively "DCE" unrolled iterations that are beyond the tripcount
+ // and will never be executed.
+ if (TripCount != 0 && Count > TripCount)
+ Count = TripCount;
+
+ // Don't enter the unroll code if there is nothing to do. This way we don't
+ // need to support "partial unrolling by 1".
+ if (TripCount == 0 && Count < 2)
+ return false;
+
+ assert(Count > 0);
+ assert(TripMultiple > 0);
+ assert(TripCount == 0 || TripCount % TripMultiple == 0);
+
+ // Are we eliminating the loop control altogether?
+ bool CompletelyUnroll = Count == TripCount;
+
+ // We assume a run-time trip count if the compiler cannot
+ // figure out the loop trip count and the unroll-runtime
+ // flag is specified.
+ bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
+
+ if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
+ return false;
+
+ // Notify ScalarEvolution that the loop will be substantially changed,
+ // if not outright eliminated.
+ if (LPM) {
+ ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
+ if (SE)
+ SE->forgetLoop(L);
+ }
+
+ // If we know the trip count, we know the multiple...
+ unsigned BreakoutTrip = 0;
+ if (TripCount != 0) {
+ BreakoutTrip = TripCount % Count;
+ TripMultiple = 0;
+ } else {
+ // Figure out what multiple to use.
+ BreakoutTrip = TripMultiple =
+ (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
+ }
+
+ if (CompletelyUnroll) {
+ DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << TripCount << "!\n");
+ } else {
+ DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
+ << " by " << Count);
+ if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
+ DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
+ } else if (TripMultiple != 1) {
+ DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
+ } else if (RuntimeTripCount) {
+ DEBUG(dbgs() << " with run-time trip count");
+ }
+ DEBUG(dbgs() << "!\n");
+ }
+
+ bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
+ BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
+
+ // For the first iteration of the loop, we should use the precloned values for
+ // PHI nodes. Insert associations now.
+ ValueToValueMapTy LastValueMap;
+ std::vector<PHINode*> OrigPHINode;
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ OrigPHINode.push_back(cast<PHINode>(I));
+ }
+
+ std::vector<BasicBlock*> Headers;
+ std::vector<BasicBlock*> Latches;
+ Headers.push_back(Header);
+ Latches.push_back(LatchBlock);
+
+ // The current on-the-fly SSA update requires blocks to be processed in
+ // reverse postorder so that LastValueMap contains the correct value at each
+ // exit.
+ LoopBlocksDFS DFS(L);
+ DFS.perform(LI);
+
+ // Stash the DFS iterators before adding blocks to the loop.
+ LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
+
+ for (unsigned It = 1; It != Count; ++It) {
+ std::vector<BasicBlock*> NewBlocks;
+
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ ValueToValueMapTy VMap;
+ BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
+ Header->getParent()->getBasicBlockList().push_back(New);
+
+ // Loop over all of the PHI nodes in the block, changing them to use the
+ // incoming values from the previous block.
+ if (*BB == Header)
+ for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
+ PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
+ Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal))
+ if (It > 1 && L->contains(InValI))
+ InVal = LastValueMap[InValI];
+ VMap[OrigPHINode[i]] = InVal;
+ New->getInstList().erase(NewPHI);
+ }
+
+ // Update our running map of newest clones
+ LastValueMap[*BB] = New;
+ for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
+ VI != VE; ++VI)
+ LastValueMap[VI->first] = VI->second;
+
+ L->addBasicBlockToLoop(New, LI->getBase());
+
+ // Add phi entries for newly created values to all exit blocks.
+ for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
+ SI != SE; ++SI) {
+ if (L->contains(*SI))
+ continue;
+ for (BasicBlock::iterator BBI = (*SI)->begin();
+ PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
+ Value *Incoming = phi->getIncomingValueForBlock(*BB);
+ ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
+ if (It != LastValueMap.end())
+ Incoming = It->second;
+ phi->addIncoming(Incoming, New);
+ }
+ }
+ // Keep track of new headers and latches as we create them, so that
+ // we can insert the proper branches later.
+ if (*BB == Header)
+ Headers.push_back(New);
+ if (*BB == LatchBlock)
+ Latches.push_back(New);
+
+ NewBlocks.push_back(New);
+ }
+
+ // Remap all instructions in the most recent iteration
+ for (unsigned i = 0; i < NewBlocks.size(); ++i)
+ for (BasicBlock::iterator I = NewBlocks[i]->begin(),
+ E = NewBlocks[i]->end(); I != E; ++I)
+ ::RemapInstruction(I, LastValueMap);
+ }
+
+ // Loop over the PHI nodes in the original block, setting incoming values.
+ for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
+ PHINode *PN = OrigPHINode[i];
+ if (CompletelyUnroll) {
+ PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
+ Header->getInstList().erase(PN);
+ }
+ else if (Count > 1) {
+ Value *InVal = PN->removeIncomingValue(LatchBlock, false);
+ // If this value was defined in the loop, take the value defined by the
+ // last iteration of the loop.
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
+ if (L->contains(InValI))
+ InVal = LastValueMap[InVal];
+ }
+ assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
+ PN->addIncoming(InVal, Latches.back());
+ }
+ }
+
+ // Now that all the basic blocks for the unrolled iterations are in place,
+ // set up the branches to connect them.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ // The original branch was replicated in each unrolled iteration.
+ BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
+
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = Headers[j];
+ bool NeedConditional = true;
+
+ if (RuntimeTripCount && j != 0) {
+ NeedConditional = false;
+ }
+
+ // For a complete unroll, make the last iteration end with a branch
+ // to the exit block.
+ if (CompletelyUnroll && j == 0) {
+ Dest = LoopExit;
+ NeedConditional = false;
+ }
+
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
+ NeedConditional = false;
+ }
+
+ if (NeedConditional) {
+ // Update the conditional branch's successor for the following
+ // iteration.
+ Term->setSuccessor(!ContinueOnTrue, Dest);
+ } else {
+ // Remove phi operands at this loop exit
+ if (Dest != LoopExit) {
+ BasicBlock *BB = Latches[i];
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
+ SI != SE; ++SI) {
+ if (*SI == Headers[i])
+ continue;
+ for (BasicBlock::iterator BBI = (*SI)->begin();
+ PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
+ Phi->removeIncomingValue(BB, false);
+ }
+ }
+ }
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+ Term->eraseFromParent();
+ }
+ }
+
+ // Merge adjacent basic blocks, if possible.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
+ if (Term->isUnconditional()) {
+ BasicBlock *Dest = Term->getSuccessor(0);
+ if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
+ std::replace(Latches.begin(), Latches.end(), Dest, Fold);
+ }
+ }
+
+ if (LPM) {
+ // FIXME: Reconstruct dom info, because it is not preserved properly.
+ // Incrementally updating domtree after loop unrolling would be easy.
+ if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
+ DT->runOnFunction(*L->getHeader()->getParent());
+
+ // Simplify any new induction variables in the partially unrolled loop.
+ ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
+ if (SE && !CompletelyUnroll) {
+ SmallVector<WeakVH, 16> DeadInsts;
+ simplifyLoopIVs(L, SE, LPM, DeadInsts);
+
+ // Aggressively clean up dead instructions that simplifyLoopIVs already
+ // identified. Any remaining should be cleaned up below.
+ while (!DeadInsts.empty())
+ if (Instruction *Inst =
+ dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
+ RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+ }
+ // At this point, the code is well formed. We now do a quick sweep over the
+ // inserted code, doing constant propagation and dead code elimination as we
+ // go.
+ const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
+ for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
+ BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
+ for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
+ Instruction *Inst = I++;
+
+ if (isInstructionTriviallyDead(Inst))
+ (*BB)->getInstList().erase(Inst);
+ else if (Value *V = SimplifyInstruction(Inst))
+ if (LI->replacementPreservesLCSSAForm(Inst, V)) {
+ Inst->replaceAllUsesWith(V);
+ (*BB)->getInstList().erase(Inst);
+ }
+ }
+
+ NumCompletelyUnrolled += CompletelyUnroll;
+ ++NumUnrolled;
+ // Remove the loop from the LoopPassManager if it's completely removed.
+ if (CompletelyUnroll && LPM != NULL)
+ LPM->deleteLoopFromQueue(L);
+
+ return true;
+}