aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp645
1 files changed, 645 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
new file mode 100644
index 000000000000..6e92e679f999
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
@@ -0,0 +1,645 @@
+//===----------------- LoopRotationUtils.cpp -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides utilities to convert a loop into a loop with bottom test.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/LoopRotationUtils.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-rotate"
+
+STATISTIC(NumRotated, "Number of loops rotated");
+
+namespace {
+/// A simple loop rotation transformation.
+class LoopRotate {
+ const unsigned MaxHeaderSize;
+ LoopInfo *LI;
+ const TargetTransformInfo *TTI;
+ AssumptionCache *AC;
+ DominatorTree *DT;
+ ScalarEvolution *SE;
+ const SimplifyQuery &SQ;
+ bool RotationOnly;
+ bool IsUtilMode;
+
+public:
+ LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
+ const TargetTransformInfo *TTI, AssumptionCache *AC,
+ DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ,
+ bool RotationOnly, bool IsUtilMode)
+ : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
+ SQ(SQ), RotationOnly(RotationOnly), IsUtilMode(IsUtilMode) {}
+ bool processLoop(Loop *L);
+
+private:
+ bool rotateLoop(Loop *L, bool SimplifiedLatch);
+ bool simplifyLoopLatch(Loop *L);
+};
+} // end anonymous namespace
+
+/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
+/// old header into the preheader. If there were uses of the values produced by
+/// these instruction that were outside of the loop, we have to insert PHI nodes
+/// to merge the two values. Do this now.
+static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
+ BasicBlock *OrigPreheader,
+ ValueToValueMapTy &ValueMap,
+ SmallVectorImpl<PHINode*> *InsertedPHIs) {
+ // Remove PHI node entries that are no longer live.
+ BasicBlock::iterator I, E = OrigHeader->end();
+ for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
+
+ // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
+ // as necessary.
+ SSAUpdater SSA(InsertedPHIs);
+ for (I = OrigHeader->begin(); I != E; ++I) {
+ Value *OrigHeaderVal = &*I;
+
+ // If there are no uses of the value (e.g. because it returns void), there
+ // is nothing to rewrite.
+ if (OrigHeaderVal->use_empty())
+ continue;
+
+ Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
+
+ // The value now exits in two versions: the initial value in the preheader
+ // and the loop "next" value in the original header.
+ SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
+ SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
+ SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
+
+ // Visit each use of the OrigHeader instruction.
+ for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
+ UE = OrigHeaderVal->use_end();
+ UI != UE;) {
+ // Grab the use before incrementing the iterator.
+ Use &U = *UI;
+
+ // Increment the iterator before removing the use from the list.
+ ++UI;
+
+ // SSAUpdater can't handle a non-PHI use in the same block as an
+ // earlier def. We can easily handle those cases manually.
+ Instruction *UserInst = cast<Instruction>(U.getUser());
+ if (!isa<PHINode>(UserInst)) {
+ BasicBlock *UserBB = UserInst->getParent();
+
+ // The original users in the OrigHeader are already using the
+ // original definitions.
+ if (UserBB == OrigHeader)
+ continue;
+
+ // Users in the OrigPreHeader need to use the value to which the
+ // original definitions are mapped.
+ if (UserBB == OrigPreheader) {
+ U = OrigPreHeaderVal;
+ continue;
+ }
+ }
+
+ // Anything else can be handled by SSAUpdater.
+ SSA.RewriteUse(U);
+ }
+
+ // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
+ // intrinsics.
+ SmallVector<DbgValueInst *, 1> DbgValues;
+ llvm::findDbgValues(DbgValues, OrigHeaderVal);
+ for (auto &DbgValue : DbgValues) {
+ // The original users in the OrigHeader are already using the original
+ // definitions.
+ BasicBlock *UserBB = DbgValue->getParent();
+ if (UserBB == OrigHeader)
+ continue;
+
+ // Users in the OrigPreHeader need to use the value to which the
+ // original definitions are mapped and anything else can be handled by
+ // the SSAUpdater. To avoid adding PHINodes, check if the value is
+ // available in UserBB, if not substitute undef.
+ Value *NewVal;
+ if (UserBB == OrigPreheader)
+ NewVal = OrigPreHeaderVal;
+ else if (SSA.HasValueForBlock(UserBB))
+ NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
+ else
+ NewVal = UndefValue::get(OrigHeaderVal->getType());
+ DbgValue->setOperand(0,
+ MetadataAsValue::get(OrigHeaderVal->getContext(),
+ ValueAsMetadata::get(NewVal)));
+ }
+ }
+}
+
+// Look for a phi which is only used outside the loop (via a LCSSA phi)
+// in the exit from the header. This means that rotating the loop can
+// remove the phi.
+static bool shouldRotateLoopExitingLatch(Loop *L) {
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
+ if (L->contains(HeaderExit))
+ HeaderExit = Header->getTerminator()->getSuccessor(1);
+
+ for (auto &Phi : Header->phis()) {
+ // Look for uses of this phi in the loop/via exits other than the header.
+ if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
+ return cast<Instruction>(U)->getParent() != HeaderExit;
+ }))
+ continue;
+ return true;
+ }
+
+ return false;
+}
+
+/// Rotate loop LP. Return true if the loop is rotated.
+///
+/// \param SimplifiedLatch is true if the latch was just folded into the final
+/// loop exit. In this case we may want to rotate even though the new latch is
+/// now an exiting branch. This rotation would have happened had the latch not
+/// been simplified. However, if SimplifiedLatch is false, then we avoid
+/// rotating loops in which the latch exits to avoid excessive or endless
+/// rotation. LoopRotate should be repeatable and converge to a canonical
+/// form. This property is satisfied because simplifying the loop latch can only
+/// happen once across multiple invocations of the LoopRotate pass.
+bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
+ // If the loop has only one block then there is not much to rotate.
+ if (L->getBlocks().size() == 1)
+ return false;
+
+ BasicBlock *OrigHeader = L->getHeader();
+ BasicBlock *OrigLatch = L->getLoopLatch();
+
+ BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
+ if (!BI || BI->isUnconditional())
+ return false;
+
+ // If the loop header is not one of the loop exiting blocks then
+ // either this loop is already rotated or it is not
+ // suitable for loop rotation transformations.
+ if (!L->isLoopExiting(OrigHeader))
+ return false;
+
+ // If the loop latch already contains a branch that leaves the loop then the
+ // loop is already rotated.
+ if (!OrigLatch)
+ return false;
+
+ // Rotate if either the loop latch does *not* exit the loop, or if the loop
+ // latch was just simplified. Or if we think it will be profitable.
+ if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
+ !shouldRotateLoopExitingLatch(L))
+ return false;
+
+ // Check size of original header and reject loop if it is very big or we can't
+ // duplicate blocks inside it.
+ {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
+ CodeMetrics Metrics;
+ Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
+ if (Metrics.notDuplicatable) {
+ LLVM_DEBUG(
+ dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
+ << " instructions: ";
+ L->dump());
+ return false;
+ }
+ if (Metrics.convergent) {
+ LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
+ "instructions: ";
+ L->dump());
+ return false;
+ }
+ if (Metrics.NumInsts > MaxHeaderSize)
+ return false;
+ }
+
+ // Now, this loop is suitable for rotation.
+ BasicBlock *OrigPreheader = L->getLoopPreheader();
+
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!OrigPreheader || !L->hasDedicatedExits())
+ return false;
+
+ // Anything ScalarEvolution may know about this loop or the PHI nodes
+ // in its header will soon be invalidated. We should also invalidate
+ // all outer loops because insertion and deletion of blocks that happens
+ // during the rotation may violate invariants related to backedge taken
+ // infos in them.
+ if (SE)
+ SE->forgetTopmostLoop(L);
+
+ LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
+
+ // Find new Loop header. NewHeader is a Header's one and only successor
+ // that is inside loop. Header's other successor is outside the
+ // loop. Otherwise loop is not suitable for rotation.
+ BasicBlock *Exit = BI->getSuccessor(0);
+ BasicBlock *NewHeader = BI->getSuccessor(1);
+ if (L->contains(Exit))
+ std::swap(Exit, NewHeader);
+ assert(NewHeader && "Unable to determine new loop header");
+ assert(L->contains(NewHeader) && !L->contains(Exit) &&
+ "Unable to determine loop header and exit blocks");
+
+ // This code assumes that the new header has exactly one predecessor.
+ // Remove any single-entry PHI nodes in it.
+ assert(NewHeader->getSinglePredecessor() &&
+ "New header doesn't have one pred!");
+ FoldSingleEntryPHINodes(NewHeader);
+
+ // Begin by walking OrigHeader and populating ValueMap with an entry for
+ // each Instruction.
+ BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
+ ValueToValueMapTy ValueMap;
+
+ // For PHI nodes, the value available in OldPreHeader is just the
+ // incoming value from OldPreHeader.
+ for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
+
+ // For the rest of the instructions, either hoist to the OrigPreheader if
+ // possible or create a clone in the OldPreHeader if not.
+ TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
+
+ // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
+ using DbgIntrinsicHash =
+ std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
+ auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash {
+ return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
+ };
+ SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
+ for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
+ I != E; ++I) {
+ if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I))
+ DbgIntrinsics.insert(makeHash(DII));
+ else
+ break;
+ }
+
+ while (I != E) {
+ Instruction *Inst = &*I++;
+
+ // If the instruction's operands are invariant and it doesn't read or write
+ // memory, then it is safe to hoist. Doing this doesn't change the order of
+ // execution in the preheader, but does prevent the instruction from
+ // executing in each iteration of the loop. This means it is safe to hoist
+ // something that might trap, but isn't safe to hoist something that reads
+ // memory (without proving that the loop doesn't write).
+ if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
+ !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
+ !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
+ Inst->moveBefore(LoopEntryBranch);
+ continue;
+ }
+
+ // Otherwise, create a duplicate of the instruction.
+ Instruction *C = Inst->clone();
+
+ // Eagerly remap the operands of the instruction.
+ RemapInstruction(C, ValueMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+
+ // Avoid inserting the same intrinsic twice.
+ if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C))
+ if (DbgIntrinsics.count(makeHash(DII))) {
+ C->deleteValue();
+ continue;
+ }
+
+ // With the operands remapped, see if the instruction constant folds or is
+ // otherwise simplifyable. This commonly occurs because the entry from PHI
+ // nodes allows icmps and other instructions to fold.
+ Value *V = SimplifyInstruction(C, SQ);
+ if (V && LI->replacementPreservesLCSSAForm(C, V)) {
+ // If so, then delete the temporary instruction and stick the folded value
+ // in the map.
+ ValueMap[Inst] = V;
+ if (!C->mayHaveSideEffects()) {
+ C->deleteValue();
+ C = nullptr;
+ }
+ } else {
+ ValueMap[Inst] = C;
+ }
+ if (C) {
+ // Otherwise, stick the new instruction into the new block!
+ C->setName(Inst->getName());
+ C->insertBefore(LoopEntryBranch);
+
+ if (auto *II = dyn_cast<IntrinsicInst>(C))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+ }
+
+ // Along with all the other instructions, we just cloned OrigHeader's
+ // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
+ // successors by duplicating their incoming values for OrigHeader.
+ TerminatorInst *TI = OrigHeader->getTerminator();
+ for (BasicBlock *SuccBB : TI->successors())
+ for (BasicBlock::iterator BI = SuccBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
+
+ // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
+ // OrigPreHeader's old terminator (the original branch into the loop), and
+ // remove the corresponding incoming values from the PHI nodes in OrigHeader.
+ LoopEntryBranch->eraseFromParent();
+
+
+ SmallVector<PHINode*, 2> InsertedPHIs;
+ // If there were any uses of instructions in the duplicated block outside the
+ // loop, update them, inserting PHI nodes as required
+ RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
+ &InsertedPHIs);
+
+ // Attach dbg.value intrinsics to the new phis if that phi uses a value that
+ // previously had debug metadata attached. This keeps the debug info
+ // up-to-date in the loop body.
+ if (!InsertedPHIs.empty())
+ insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
+
+ // NewHeader is now the header of the loop.
+ L->moveToHeader(NewHeader);
+ assert(L->getHeader() == NewHeader && "Latch block is our new header");
+
+ // Inform DT about changes to the CFG.
+ if (DT) {
+ // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
+ // the DT about the removed edge to the OrigHeader (that got removed).
+ SmallVector<DominatorTree::UpdateType, 3> Updates;
+ Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
+ Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
+ Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
+ DT->applyUpdates(Updates);
+ }
+
+ // At this point, we've finished our major CFG changes. As part of cloning
+ // the loop into the preheader we've simplified instructions and the
+ // duplicated conditional branch may now be branching on a constant. If it is
+ // branching on a constant and if that constant means that we enter the loop,
+ // then we fold away the cond branch to an uncond branch. This simplifies the
+ // loop in cases important for nested loops, and it also means we don't have
+ // to split as many edges.
+ BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
+ assert(PHBI->isConditional() && "Should be clone of BI condbr!");
+ if (!isa<ConstantInt>(PHBI->getCondition()) ||
+ PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
+ NewHeader) {
+ // The conditional branch can't be folded, handle the general case.
+ // Split edges as necessary to preserve LoopSimplify form.
+
+ // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
+ // thus is not a preheader anymore.
+ // Split the edge to form a real preheader.
+ BasicBlock *NewPH = SplitCriticalEdge(
+ OrigPreheader, NewHeader,
+ CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
+ NewPH->setName(NewHeader->getName() + ".lr.ph");
+
+ // Preserve canonical loop form, which means that 'Exit' should have only
+ // one predecessor. Note that Exit could be an exit block for multiple
+ // nested loops, causing both of the edges to now be critical and need to
+ // be split.
+ SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
+ bool SplitLatchEdge = false;
+ for (BasicBlock *ExitPred : ExitPreds) {
+ // We only need to split loop exit edges.
+ Loop *PredLoop = LI->getLoopFor(ExitPred);
+ if (!PredLoop || PredLoop->contains(Exit))
+ continue;
+ if (isa<IndirectBrInst>(ExitPred->getTerminator()))
+ continue;
+ SplitLatchEdge |= L->getLoopLatch() == ExitPred;
+ BasicBlock *ExitSplit = SplitCriticalEdge(
+ ExitPred, Exit,
+ CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
+ ExitSplit->moveBefore(Exit);
+ }
+ assert(SplitLatchEdge &&
+ "Despite splitting all preds, failed to split latch exit?");
+ } else {
+ // We can fold the conditional branch in the preheader, this makes things
+ // simpler. The first step is to remove the extra edge to the Exit block.
+ Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
+ BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
+ NewBI->setDebugLoc(PHBI->getDebugLoc());
+ PHBI->eraseFromParent();
+
+ // With our CFG finalized, update DomTree if it is available.
+ if (DT) DT->deleteEdge(OrigPreheader, Exit);
+ }
+
+ assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
+ assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
+
+ // Now that the CFG and DomTree are in a consistent state again, try to merge
+ // the OrigHeader block into OrigLatch. This will succeed if they are
+ // connected by an unconditional branch. This is just a cleanup so the
+ // emitted code isn't too gross in this common case.
+ MergeBlockIntoPredecessor(OrigHeader, DT, LI);
+
+ LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
+
+ ++NumRotated;
+ return true;
+}
+
+/// Determine whether the instructions in this range may be safely and cheaply
+/// speculated. This is not an important enough situation to develop complex
+/// heuristics. We handle a single arithmetic instruction along with any type
+/// conversions.
+static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
+ BasicBlock::iterator End, Loop *L) {
+ bool seenIncrement = false;
+ bool MultiExitLoop = false;
+
+ if (!L->getExitingBlock())
+ MultiExitLoop = true;
+
+ for (BasicBlock::iterator I = Begin; I != End; ++I) {
+
+ if (!isSafeToSpeculativelyExecute(&*I))
+ return false;
+
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ switch (I->getOpcode()) {
+ default:
+ return false;
+ case Instruction::GetElementPtr:
+ // GEPs are cheap if all indices are constant.
+ if (!cast<GEPOperator>(I)->hasAllConstantIndices())
+ return false;
+ // fall-thru to increment case
+ LLVM_FALLTHROUGH;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr: {
+ Value *IVOpnd =
+ !isa<Constant>(I->getOperand(0))
+ ? I->getOperand(0)
+ : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
+ if (!IVOpnd)
+ return false;
+
+ // If increment operand is used outside of the loop, this speculation
+ // could cause extra live range interference.
+ if (MultiExitLoop) {
+ for (User *UseI : IVOpnd->users()) {
+ auto *UserInst = cast<Instruction>(UseI);
+ if (!L->contains(UserInst))
+ return false;
+ }
+ }
+
+ if (seenIncrement)
+ return false;
+ seenIncrement = true;
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // ignore type conversions
+ break;
+ }
+ }
+ return true;
+}
+
+/// Fold the loop tail into the loop exit by speculating the loop tail
+/// instructions. Typically, this is a single post-increment. In the case of a
+/// simple 2-block loop, hoisting the increment can be much better than
+/// duplicating the entire loop header. In the case of loops with early exits,
+/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
+/// canonical form so downstream passes can handle it.
+///
+/// I don't believe this invalidates SCEV.
+bool LoopRotate::simplifyLoopLatch(Loop *L) {
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch || Latch->hasAddressTaken())
+ return false;
+
+ BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!Jmp || !Jmp->isUnconditional())
+ return false;
+
+ BasicBlock *LastExit = Latch->getSinglePredecessor();
+ if (!LastExit || !L->isLoopExiting(LastExit))
+ return false;
+
+ BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
+ if (!BI)
+ return false;
+
+ if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
+ << LastExit->getName() << "\n");
+
+ // Hoist the instructions from Latch into LastExit.
+ LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
+ Latch->begin(), Jmp->getIterator());
+
+ unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
+ BasicBlock *Header = Jmp->getSuccessor(0);
+ assert(Header == L->getHeader() && "expected a backward branch");
+
+ // Remove Latch from the CFG so that LastExit becomes the new Latch.
+ BI->setSuccessor(FallThruPath, Header);
+ Latch->replaceSuccessorsPhiUsesWith(LastExit);
+ Jmp->eraseFromParent();
+
+ // Nuke the Latch block.
+ assert(Latch->empty() && "unable to evacuate Latch");
+ LI->removeBlock(Latch);
+ if (DT)
+ DT->eraseNode(Latch);
+ Latch->eraseFromParent();
+ return true;
+}
+
+/// Rotate \c L, and return true if any modification was made.
+bool LoopRotate::processLoop(Loop *L) {
+ // Save the loop metadata.
+ MDNode *LoopMD = L->getLoopID();
+
+ bool SimplifiedLatch = false;
+
+ // Simplify the loop latch before attempting to rotate the header
+ // upward. Rotation may not be needed if the loop tail can be folded into the
+ // loop exit.
+ if (!RotationOnly)
+ SimplifiedLatch = simplifyLoopLatch(L);
+
+ bool MadeChange = rotateLoop(L, SimplifiedLatch);
+ assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
+ "Loop latch should be exiting after loop-rotate.");
+
+ // Restore the loop metadata.
+ // NB! We presume LoopRotation DOESN'T ADD its own metadata.
+ if ((MadeChange || SimplifiedLatch) && LoopMD)
+ L->setLoopID(LoopMD);
+
+ return MadeChange || SimplifiedLatch;
+}
+
+
+/// The utility to convert a loop into a loop with bottom test.
+bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
+ AssumptionCache *AC, DominatorTree *DT,
+ ScalarEvolution *SE, const SimplifyQuery &SQ,
+ bool RotationOnly = true,
+ unsigned Threshold = unsigned(-1),
+ bool IsUtilMode = true) {
+ LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, SQ, RotationOnly, IsUtilMode);
+
+ return LR.processLoop(L);
+}