aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp779
1 files changed, 779 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
new file mode 100644
index 000000000000..6f0086443693
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
@@ -0,0 +1,779 @@
+//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interface to tear out a code region, such as an
+// individual loop or a parallel section, into a new function, replacing it with
+// a call to the new function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/CodeExtractor.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/RegionInfo.h"
+#include "llvm/Analysis/RegionIterator.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <algorithm>
+#include <set>
+using namespace llvm;
+
+// Provide a command-line option to aggregate function arguments into a struct
+// for functions produced by the code extractor. This is useful when converting
+// extracted functions to pthread-based code, as only one argument (void*) can
+// be passed in to pthread_create().
+static cl::opt<bool>
+AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
+ cl::desc("Aggregate arguments to code-extracted functions"));
+
+/// \brief Test whether a block is valid for extraction.
+static bool isBlockValidForExtraction(const BasicBlock &BB) {
+ // Landing pads must be in the function where they were inserted for cleanup.
+ if (BB.isLandingPad())
+ return false;
+
+ // Don't hoist code containing allocas, invokes, or vastarts.
+ for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
+ if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
+ return false;
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (const Function *F = CI->getCalledFunction())
+ if (F->getIntrinsicID() == Intrinsic::vastart)
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Build a set of blocks to extract if the input blocks are viable.
+template <typename IteratorT>
+static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
+ IteratorT BBEnd) {
+ SetVector<BasicBlock *> Result;
+
+ assert(BBBegin != BBEnd);
+
+ // Loop over the blocks, adding them to our set-vector, and aborting with an
+ // empty set if we encounter invalid blocks.
+ for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
+ if (!Result.insert(*I))
+ llvm_unreachable("Repeated basic blocks in extraction input");
+
+ if (!isBlockValidForExtraction(**I)) {
+ Result.clear();
+ return Result;
+ }
+ }
+
+#ifndef NDEBUG
+ for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()),
+ E = Result.end();
+ I != E; ++I)
+ for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
+ PI != PE; ++PI)
+ assert(Result.count(*PI) &&
+ "No blocks in this region may have entries from outside the region"
+ " except for the first block!");
+#endif
+
+ return Result;
+}
+
+/// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
+static SetVector<BasicBlock *>
+buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
+ return buildExtractionBlockSet(BBs.begin(), BBs.end());
+}
+
+/// \brief Helper to call buildExtractionBlockSet with a RegionNode.
+static SetVector<BasicBlock *>
+buildExtractionBlockSet(const RegionNode &RN) {
+ if (!RN.isSubRegion())
+ // Just a single BasicBlock.
+ return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
+
+ const Region &R = *RN.getNodeAs<Region>();
+
+ return buildExtractionBlockSet(R.block_begin(), R.block_end());
+}
+
+CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
+ : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt),
+ Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
+
+CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
+ bool AggregateArgs)
+ : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
+ Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
+
+CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
+ : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
+ Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
+
+CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
+ bool AggregateArgs)
+ : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
+ Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
+
+/// definedInRegion - Return true if the specified value is defined in the
+/// extracted region.
+static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (Blocks.count(I->getParent()))
+ return true;
+ return false;
+}
+
+/// definedInCaller - Return true if the specified value is defined in the
+/// function being code extracted, but not in the region being extracted.
+/// These values must be passed in as live-ins to the function.
+static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
+ if (isa<Argument>(V)) return true;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (!Blocks.count(I->getParent()))
+ return true;
+ return false;
+}
+
+void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
+ ValueSet &Outputs) const {
+ for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
+ E = Blocks.end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+
+ // If a used value is defined outside the region, it's an input. If an
+ // instruction is used outside the region, it's an output.
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
+ II != IE; ++II) {
+ for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
+ OI != OE; ++OI)
+ if (definedInCaller(Blocks, *OI))
+ Inputs.insert(*OI);
+
+ for (Value::use_iterator UI = II->use_begin(), UE = II->use_end();
+ UI != UE; ++UI)
+ if (!definedInRegion(Blocks, *UI)) {
+ Outputs.insert(II);
+ break;
+ }
+ }
+ }
+}
+
+/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
+/// region, we need to split the entry block of the region so that the PHI node
+/// is easier to deal with.
+void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
+ unsigned NumPredsFromRegion = 0;
+ unsigned NumPredsOutsideRegion = 0;
+
+ if (Header != &Header->getParent()->getEntryBlock()) {
+ PHINode *PN = dyn_cast<PHINode>(Header->begin());
+ if (!PN) return; // No PHI nodes.
+
+ // If the header node contains any PHI nodes, check to see if there is more
+ // than one entry from outside the region. If so, we need to sever the
+ // header block into two.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (Blocks.count(PN->getIncomingBlock(i)))
+ ++NumPredsFromRegion;
+ else
+ ++NumPredsOutsideRegion;
+
+ // If there is one (or fewer) predecessor from outside the region, we don't
+ // need to do anything special.
+ if (NumPredsOutsideRegion <= 1) return;
+ }
+
+ // Otherwise, we need to split the header block into two pieces: one
+ // containing PHI nodes merging values from outside of the region, and a
+ // second that contains all of the code for the block and merges back any
+ // incoming values from inside of the region.
+ BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
+ BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
+ Header->getName()+".ce");
+
+ // We only want to code extract the second block now, and it becomes the new
+ // header of the region.
+ BasicBlock *OldPred = Header;
+ Blocks.remove(OldPred);
+ Blocks.insert(NewBB);
+ Header = NewBB;
+
+ // Okay, update dominator sets. The blocks that dominate the new one are the
+ // blocks that dominate TIBB plus the new block itself.
+ if (DT)
+ DT->splitBlock(NewBB);
+
+ // Okay, now we need to adjust the PHI nodes and any branches from within the
+ // region to go to the new header block instead of the old header block.
+ if (NumPredsFromRegion) {
+ PHINode *PN = cast<PHINode>(OldPred->begin());
+ // Loop over all of the predecessors of OldPred that are in the region,
+ // changing them to branch to NewBB instead.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (Blocks.count(PN->getIncomingBlock(i))) {
+ TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
+ TI->replaceUsesOfWith(OldPred, NewBB);
+ }
+
+ // Okay, everything within the region is now branching to the right block, we
+ // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
+ for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
+ PHINode *PN = cast<PHINode>(AfterPHIs);
+ // Create a new PHI node in the new region, which has an incoming value
+ // from OldPred of PN.
+ PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
+ PN->getName()+".ce", NewBB->begin());
+ NewPN->addIncoming(PN, OldPred);
+
+ // Loop over all of the incoming value in PN, moving them to NewPN if they
+ // are from the extracted region.
+ for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
+ if (Blocks.count(PN->getIncomingBlock(i))) {
+ NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
+ PN->removeIncomingValue(i);
+ --i;
+ }
+ }
+ }
+ }
+}
+
+void CodeExtractor::splitReturnBlocks() {
+ for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
+ I != E; ++I)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
+ BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
+ if (DT) {
+ // Old dominates New. New node dominates all other nodes dominated
+ // by Old.
+ DomTreeNode *OldNode = DT->getNode(*I);
+ SmallVector<DomTreeNode*, 8> Children;
+ for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
+ DI != DE; ++DI)
+ Children.push_back(*DI);
+
+ DomTreeNode *NewNode = DT->addNewBlock(New, *I);
+
+ for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
+ E = Children.end(); I != E; ++I)
+ DT->changeImmediateDominator(*I, NewNode);
+ }
+ }
+}
+
+/// constructFunction - make a function based on inputs and outputs, as follows:
+/// f(in0, ..., inN, out0, ..., outN)
+///
+Function *CodeExtractor::constructFunction(const ValueSet &inputs,
+ const ValueSet &outputs,
+ BasicBlock *header,
+ BasicBlock *newRootNode,
+ BasicBlock *newHeader,
+ Function *oldFunction,
+ Module *M) {
+ DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
+ DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
+
+ // This function returns unsigned, outputs will go back by reference.
+ switch (NumExitBlocks) {
+ case 0:
+ case 1: RetTy = Type::getVoidTy(header->getContext()); break;
+ case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
+ default: RetTy = Type::getInt16Ty(header->getContext()); break;
+ }
+
+ std::vector<Type*> paramTy;
+
+ // Add the types of the input values to the function's argument list
+ for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
+ i != e; ++i) {
+ const Value *value = *i;
+ DEBUG(dbgs() << "value used in func: " << *value << "\n");
+ paramTy.push_back(value->getType());
+ }
+
+ // Add the types of the output values to the function's argument list.
+ for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
+ I != E; ++I) {
+ DEBUG(dbgs() << "instr used in func: " << **I << "\n");
+ if (AggregateArgs)
+ paramTy.push_back((*I)->getType());
+ else
+ paramTy.push_back(PointerType::getUnqual((*I)->getType()));
+ }
+
+ DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
+ for (std::vector<Type*>::iterator i = paramTy.begin(),
+ e = paramTy.end(); i != e; ++i)
+ DEBUG(dbgs() << **i << ", ");
+ DEBUG(dbgs() << ")\n");
+
+ if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
+ PointerType *StructPtr =
+ PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
+ paramTy.clear();
+ paramTy.push_back(StructPtr);
+ }
+ FunctionType *funcType =
+ FunctionType::get(RetTy, paramTy, false);
+
+ // Create the new function
+ Function *newFunction = Function::Create(funcType,
+ GlobalValue::InternalLinkage,
+ oldFunction->getName() + "_" +
+ header->getName(), M);
+ // If the old function is no-throw, so is the new one.
+ if (oldFunction->doesNotThrow())
+ newFunction->setDoesNotThrow();
+
+ newFunction->getBasicBlockList().push_back(newRootNode);
+
+ // Create an iterator to name all of the arguments we inserted.
+ Function::arg_iterator AI = newFunction->arg_begin();
+
+ // Rewrite all users of the inputs in the extracted region to use the
+ // arguments (or appropriate addressing into struct) instead.
+ for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
+ Value *RewriteVal;
+ if (AggregateArgs) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
+ TerminatorInst *TI = newFunction->begin()->getTerminator();
+ GetElementPtrInst *GEP =
+ GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
+ RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
+ } else
+ RewriteVal = AI++;
+
+ std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
+ for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
+ use != useE; ++use)
+ if (Instruction* inst = dyn_cast<Instruction>(*use))
+ if (Blocks.count(inst->getParent()))
+ inst->replaceUsesOfWith(inputs[i], RewriteVal);
+ }
+
+ // Set names for input and output arguments.
+ if (!AggregateArgs) {
+ AI = newFunction->arg_begin();
+ for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
+ AI->setName(inputs[i]->getName());
+ for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
+ AI->setName(outputs[i]->getName()+".out");
+ }
+
+ // Rewrite branches to basic blocks outside of the loop to new dummy blocks
+ // within the new function. This must be done before we lose track of which
+ // blocks were originally in the code region.
+ std::vector<User*> Users(header->use_begin(), header->use_end());
+ for (unsigned i = 0, e = Users.size(); i != e; ++i)
+ // The BasicBlock which contains the branch is not in the region
+ // modify the branch target to a new block
+ if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
+ if (!Blocks.count(TI->getParent()) &&
+ TI->getParent()->getParent() == oldFunction)
+ TI->replaceUsesOfWith(header, newHeader);
+
+ return newFunction;
+}
+
+/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
+/// that uses the value within the basic block, and return the predecessor
+/// block associated with that use, or return 0 if none is found.
+static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
+ for (Value::use_iterator UI = Used->use_begin(),
+ UE = Used->use_end(); UI != UE; ++UI) {
+ PHINode *P = dyn_cast<PHINode>(*UI);
+ if (P && P->getParent() == BB)
+ return P->getIncomingBlock(UI);
+ }
+
+ return 0;
+}
+
+/// emitCallAndSwitchStatement - This method sets up the caller side by adding
+/// the call instruction, splitting any PHI nodes in the header block as
+/// necessary.
+void CodeExtractor::
+emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
+ ValueSet &inputs, ValueSet &outputs) {
+ // Emit a call to the new function, passing in: *pointer to struct (if
+ // aggregating parameters), or plan inputs and allocated memory for outputs
+ std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
+
+ LLVMContext &Context = newFunction->getContext();
+
+ // Add inputs as params, or to be filled into the struct
+ for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
+ if (AggregateArgs)
+ StructValues.push_back(*i);
+ else
+ params.push_back(*i);
+
+ // Create allocas for the outputs
+ for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
+ if (AggregateArgs) {
+ StructValues.push_back(*i);
+ } else {
+ AllocaInst *alloca =
+ new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
+ codeReplacer->getParent()->begin()->begin());
+ ReloadOutputs.push_back(alloca);
+ params.push_back(alloca);
+ }
+ }
+
+ AllocaInst *Struct = 0;
+ if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
+ std::vector<Type*> ArgTypes;
+ for (ValueSet::iterator v = StructValues.begin(),
+ ve = StructValues.end(); v != ve; ++v)
+ ArgTypes.push_back((*v)->getType());
+
+ // Allocate a struct at the beginning of this function
+ Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
+ Struct =
+ new AllocaInst(StructArgTy, 0, "structArg",
+ codeReplacer->getParent()->begin()->begin());
+ params.push_back(Struct);
+
+ for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
+ GetElementPtrInst *GEP =
+ GetElementPtrInst::Create(Struct, Idx,
+ "gep_" + StructValues[i]->getName());
+ codeReplacer->getInstList().push_back(GEP);
+ StoreInst *SI = new StoreInst(StructValues[i], GEP);
+ codeReplacer->getInstList().push_back(SI);
+ }
+ }
+
+ // Emit the call to the function
+ CallInst *call = CallInst::Create(newFunction, params,
+ NumExitBlocks > 1 ? "targetBlock" : "");
+ codeReplacer->getInstList().push_back(call);
+
+ Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
+ unsigned FirstOut = inputs.size();
+ if (!AggregateArgs)
+ std::advance(OutputArgBegin, inputs.size());
+
+ // Reload the outputs passed in by reference
+ for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
+ Value *Output = 0;
+ if (AggregateArgs) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
+ GetElementPtrInst *GEP
+ = GetElementPtrInst::Create(Struct, Idx,
+ "gep_reload_" + outputs[i]->getName());
+ codeReplacer->getInstList().push_back(GEP);
+ Output = GEP;
+ } else {
+ Output = ReloadOutputs[i];
+ }
+ LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
+ Reloads.push_back(load);
+ codeReplacer->getInstList().push_back(load);
+ std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
+ for (unsigned u = 0, e = Users.size(); u != e; ++u) {
+ Instruction *inst = cast<Instruction>(Users[u]);
+ if (!Blocks.count(inst->getParent()))
+ inst->replaceUsesOfWith(outputs[i], load);
+ }
+ }
+
+ // Now we can emit a switch statement using the call as a value.
+ SwitchInst *TheSwitch =
+ SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
+ codeReplacer, 0, codeReplacer);
+
+ // Since there may be multiple exits from the original region, make the new
+ // function return an unsigned, switch on that number. This loop iterates
+ // over all of the blocks in the extracted region, updating any terminator
+ // instructions in the to-be-extracted region that branch to blocks that are
+ // not in the region to be extracted.
+ std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
+
+ unsigned switchVal = 0;
+ for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
+ e = Blocks.end(); i != e; ++i) {
+ TerminatorInst *TI = (*i)->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ if (!Blocks.count(TI->getSuccessor(i))) {
+ BasicBlock *OldTarget = TI->getSuccessor(i);
+ // add a new basic block which returns the appropriate value
+ BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
+ if (!NewTarget) {
+ // If we don't already have an exit stub for this non-extracted
+ // destination, create one now!
+ NewTarget = BasicBlock::Create(Context,
+ OldTarget->getName() + ".exitStub",
+ newFunction);
+ unsigned SuccNum = switchVal++;
+
+ Value *brVal = 0;
+ switch (NumExitBlocks) {
+ case 0:
+ case 1: break; // No value needed.
+ case 2: // Conditional branch, return a bool
+ brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
+ break;
+ default:
+ brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
+ break;
+ }
+
+ ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
+
+ // Update the switch instruction.
+ TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
+ SuccNum),
+ OldTarget);
+
+ // Restore values just before we exit
+ Function::arg_iterator OAI = OutputArgBegin;
+ for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
+ // For an invoke, the normal destination is the only one that is
+ // dominated by the result of the invocation
+ BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
+
+ bool DominatesDef = true;
+
+ if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
+ DefBlock = Invoke->getNormalDest();
+
+ // Make sure we are looking at the original successor block, not
+ // at a newly inserted exit block, which won't be in the dominator
+ // info.
+ for (std::map<BasicBlock*, BasicBlock*>::iterator I =
+ ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
+ if (DefBlock == I->second) {
+ DefBlock = I->first;
+ break;
+ }
+
+ // In the extract block case, if the block we are extracting ends
+ // with an invoke instruction, make sure that we don't emit a
+ // store of the invoke value for the unwind block.
+ if (!DT && DefBlock != OldTarget)
+ DominatesDef = false;
+ }
+
+ if (DT) {
+ DominatesDef = DT->dominates(DefBlock, OldTarget);
+
+ // If the output value is used by a phi in the target block,
+ // then we need to test for dominance of the phi's predecessor
+ // instead. Unfortunately, this a little complicated since we
+ // have already rewritten uses of the value to uses of the reload.
+ BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
+ OldTarget);
+ if (pred && DT && DT->dominates(DefBlock, pred))
+ DominatesDef = true;
+ }
+
+ if (DominatesDef) {
+ if (AggregateArgs) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
+ FirstOut+out);
+ GetElementPtrInst *GEP =
+ GetElementPtrInst::Create(OAI, Idx,
+ "gep_" + outputs[out]->getName(),
+ NTRet);
+ new StoreInst(outputs[out], GEP, NTRet);
+ } else {
+ new StoreInst(outputs[out], OAI, NTRet);
+ }
+ }
+ // Advance output iterator even if we don't emit a store
+ if (!AggregateArgs) ++OAI;
+ }
+ }
+
+ // rewrite the original branch instruction with this new target
+ TI->setSuccessor(i, NewTarget);
+ }
+ }
+
+ // Now that we've done the deed, simplify the switch instruction.
+ Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
+ switch (NumExitBlocks) {
+ case 0:
+ // There are no successors (the block containing the switch itself), which
+ // means that previously this was the last part of the function, and hence
+ // this should be rewritten as a `ret'
+
+ // Check if the function should return a value
+ if (OldFnRetTy->isVoidTy()) {
+ ReturnInst::Create(Context, 0, TheSwitch); // Return void
+ } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
+ // return what we have
+ ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
+ } else {
+ // Otherwise we must have code extracted an unwind or something, just
+ // return whatever we want.
+ ReturnInst::Create(Context,
+ Constant::getNullValue(OldFnRetTy), TheSwitch);
+ }
+
+ TheSwitch->eraseFromParent();
+ break;
+ case 1:
+ // Only a single destination, change the switch into an unconditional
+ // branch.
+ BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
+ TheSwitch->eraseFromParent();
+ break;
+ case 2:
+ BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
+ call, TheSwitch);
+ TheSwitch->eraseFromParent();
+ break;
+ default:
+ // Otherwise, make the default destination of the switch instruction be one
+ // of the other successors.
+ TheSwitch->setCondition(call);
+ TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
+ // Remove redundant case
+ TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
+ break;
+ }
+}
+
+void CodeExtractor::moveCodeToFunction(Function *newFunction) {
+ Function *oldFunc = (*Blocks.begin())->getParent();
+ Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
+ Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
+
+ for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
+ e = Blocks.end(); i != e; ++i) {
+ // Delete the basic block from the old function, and the list of blocks
+ oldBlocks.remove(*i);
+
+ // Insert this basic block into the new function
+ newBlocks.push_back(*i);
+ }
+}
+
+Function *CodeExtractor::extractCodeRegion() {
+ if (!isEligible())
+ return 0;
+
+ ValueSet inputs, outputs;
+
+ // Assumption: this is a single-entry code region, and the header is the first
+ // block in the region.
+ BasicBlock *header = *Blocks.begin();
+
+ // If we have to split PHI nodes or the entry block, do so now.
+ severSplitPHINodes(header);
+
+ // If we have any return instructions in the region, split those blocks so
+ // that the return is not in the region.
+ splitReturnBlocks();
+
+ Function *oldFunction = header->getParent();
+
+ // This takes place of the original loop
+ BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
+ "codeRepl", oldFunction,
+ header);
+
+ // The new function needs a root node because other nodes can branch to the
+ // head of the region, but the entry node of a function cannot have preds.
+ BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
+ "newFuncRoot");
+ newFuncRoot->getInstList().push_back(BranchInst::Create(header));
+
+ // Find inputs to, outputs from the code region.
+ findInputsOutputs(inputs, outputs);
+
+ SmallPtrSet<BasicBlock *, 1> ExitBlocks;
+ for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
+ I != E; ++I)
+ for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
+ if (!Blocks.count(*SI))
+ ExitBlocks.insert(*SI);
+ NumExitBlocks = ExitBlocks.size();
+
+ // Construct new function based on inputs/outputs & add allocas for all defs.
+ Function *newFunction = constructFunction(inputs, outputs, header,
+ newFuncRoot,
+ codeReplacer, oldFunction,
+ oldFunction->getParent());
+
+ emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
+
+ moveCodeToFunction(newFunction);
+
+ // Loop over all of the PHI nodes in the header block, and change any
+ // references to the old incoming edge to be the new incoming edge.
+ for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!Blocks.count(PN->getIncomingBlock(i)))
+ PN->setIncomingBlock(i, newFuncRoot);
+ }
+
+ // Look at all successors of the codeReplacer block. If any of these blocks
+ // had PHI nodes in them, we need to update the "from" block to be the code
+ // replacer, not the original block in the extracted region.
+ std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
+ succ_end(codeReplacer));
+ for (unsigned i = 0, e = Succs.size(); i != e; ++i)
+ for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ std::set<BasicBlock*> ProcessedPreds;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (Blocks.count(PN->getIncomingBlock(i))) {
+ if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
+ PN->setIncomingBlock(i, codeReplacer);
+ else {
+ // There were multiple entries in the PHI for this block, now there
+ // is only one, so remove the duplicated entries.
+ PN->removeIncomingValue(i, false);
+ --i; --e;
+ }
+ }
+ }
+
+ //cerr << "NEW FUNCTION: " << *newFunction;
+ // verifyFunction(*newFunction);
+
+ // cerr << "OLD FUNCTION: " << *oldFunction;
+ // verifyFunction(*oldFunction);
+
+ DEBUG(if (verifyFunction(*newFunction))
+ report_fatal_error("verifyFunction failed!"));
+ return newFunction;
+}