aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp574
1 files changed, 574 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
new file mode 100644
index 000000000000..d105f5e24a2b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -0,0 +1,574 @@
+//===- CloneFunction.cpp - Clone a function into another function ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CloneFunctionInto interface, which is used as the
+// low-level function cloner. This is used by the CloneFunction and function
+// inliner to do the dirty work of copying the body of a function around.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <map>
+using namespace llvm;
+
+// CloneBasicBlock - See comments in Cloning.h
+BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
+ ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, Function *F,
+ ClonedCodeInfo *CodeInfo) {
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
+ if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
+
+ // Loop over all instructions, and copy them over.
+ for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
+ II != IE; ++II) {
+ Instruction *NewInst = II->clone();
+ if (II->hasName())
+ NewInst->setName(II->getName()+NameSuffix);
+ NewBB->getInstList().push_back(NewInst);
+ VMap[II] = NewInst; // Add instruction map to value.
+
+ hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ if (isa<ConstantInt>(AI->getArraySize()))
+ hasStaticAllocas = true;
+ else
+ hasDynamicAllocas = true;
+ }
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
+ BB != &BB->getParent()->getEntryBlock();
+ }
+ return NewBB;
+}
+
+// Clone OldFunc into NewFunc, transforming the old arguments into references to
+// VMap values.
+//
+void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst*> &Returns,
+ const char *NameSuffix, ClonedCodeInfo *CodeInfo,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+#ifndef NDEBUG
+ for (Function::const_arg_iterator I = OldFunc->arg_begin(),
+ E = OldFunc->arg_end(); I != E; ++I)
+ assert(VMap.count(I) && "No mapping from source argument specified!");
+#endif
+
+ AttributeSet OldAttrs = OldFunc->getAttributes();
+ // Clone any argument attributes that are present in the VMap.
+ for (Function::const_arg_iterator I = OldFunc->arg_begin(),
+ E = OldFunc->arg_end();
+ I != E; ++I)
+ if (Argument *Anew = dyn_cast<Argument>(VMap[I])) {
+ AttributeSet attrs =
+ OldAttrs.getParamAttributes(I->getArgNo() + 1);
+ if (attrs.getNumSlots() > 0)
+ Anew->addAttr(attrs);
+ }
+
+ NewFunc->setAttributes(NewFunc->getAttributes()
+ .addAttributes(NewFunc->getContext(),
+ AttributeSet::ReturnIndex,
+ OldAttrs.getRetAttributes()));
+ NewFunc->setAttributes(NewFunc->getAttributes()
+ .addAttributes(NewFunc->getContext(),
+ AttributeSet::FunctionIndex,
+ OldAttrs.getFnAttributes()));
+
+ // Loop over all of the basic blocks in the function, cloning them as
+ // appropriate. Note that we save BE this way in order to handle cloning of
+ // recursive functions into themselves.
+ //
+ for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
+ BI != BE; ++BI) {
+ const BasicBlock &BB = *BI;
+
+ // Create a new basic block and copy instructions into it!
+ BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
+
+ // Add basic block mapping.
+ VMap[&BB] = CBB;
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ if (BB.hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
+ const_cast<BasicBlock*>(&BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
+ }
+
+ // Note return instructions for the caller.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
+ Returns.push_back(RI);
+ }
+
+ // Loop over all of the instructions in the function, fixing up operand
+ // references as we go. This uses VMap to do all the hard work.
+ for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
+ BE = NewFunc->end(); BB != BE; ++BB)
+ // Loop over all instructions, fixing each one as we find it...
+ for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
+ RemapInstruction(II, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
+}
+
+/// CloneFunction - Return a copy of the specified function, but without
+/// embedding the function into another module. Also, any references specified
+/// in the VMap are changed to refer to their mapped value instead of the
+/// original one. If any of the arguments to the function are in the VMap,
+/// the arguments are deleted from the resultant function. The VMap is
+/// updated to include mappings from all of the instructions and basicblocks in
+/// the function from their old to new values.
+///
+Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ ClonedCodeInfo *CodeInfo) {
+ std::vector<Type*> ArgTypes;
+
+ // The user might be deleting arguments to the function by specifying them in
+ // the VMap. If so, we need to not add the arguments to the arg ty vector
+ //
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
+ ArgTypes.push_back(I->getType());
+
+ // Create a new function type...
+ FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
+ ArgTypes, F->getFunctionType()->isVarArg());
+
+ // Create the new function...
+ Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
+
+ // Loop over the arguments, copying the names of the mapped arguments over...
+ Function::arg_iterator DestI = NewF->arg_begin();
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ if (VMap.count(I) == 0) { // Is this argument preserved?
+ DestI->setName(I->getName()); // Copy the name over...
+ VMap[I] = DestI++; // Add mapping to VMap
+ }
+
+ SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
+ CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
+ return NewF;
+}
+
+
+
+namespace {
+ /// PruningFunctionCloner - This class is a private class used to implement
+ /// the CloneAndPruneFunctionInto method.
+ struct PruningFunctionCloner {
+ Function *NewFunc;
+ const Function *OldFunc;
+ ValueToValueMapTy &VMap;
+ bool ModuleLevelChanges;
+ const char *NameSuffix;
+ ClonedCodeInfo *CodeInfo;
+ const DataLayout *TD;
+ public:
+ PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
+ ValueToValueMapTy &valueMap,
+ bool moduleLevelChanges,
+ const char *nameSuffix,
+ ClonedCodeInfo *codeInfo,
+ const DataLayout *td)
+ : NewFunc(newFunc), OldFunc(oldFunc),
+ VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
+ NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
+ }
+
+ /// CloneBlock - The specified block is found to be reachable, clone it and
+ /// anything that it can reach.
+ void CloneBlock(const BasicBlock *BB,
+ std::vector<const BasicBlock*> &ToClone);
+ };
+}
+
+/// CloneBlock - The specified block is found to be reachable, clone it and
+/// anything that it can reach.
+void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
+ std::vector<const BasicBlock*> &ToClone){
+ WeakVH &BBEntry = VMap[BB];
+
+ // Have we already cloned this block?
+ if (BBEntry) return;
+
+ // Nope, clone it now.
+ BasicBlock *NewBB;
+ BBEntry = NewBB = BasicBlock::Create(BB->getContext());
+ if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ //
+ // Note that we don't need to fix the mapping for unreachable blocks;
+ // the default mapping there is safe.
+ if (BB->hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
+ const_cast<BasicBlock*>(BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
+ }
+
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
+
+ // Loop over all instructions, and copy them over, DCE'ing as we go. This
+ // loop doesn't include the terminator.
+ for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
+ II != IE; ++II) {
+ Instruction *NewInst = II->clone();
+
+ // Eagerly remap operands to the newly cloned instruction, except for PHI
+ // nodes for which we defer processing until we update the CFG.
+ if (!isa<PHINode>(NewInst)) {
+ RemapInstruction(NewInst, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+
+ // If we can simplify this instruction to some other value, simply add
+ // a mapping to that value rather than inserting a new instruction into
+ // the basic block.
+ if (Value *V = SimplifyInstruction(NewInst, TD)) {
+ // On the off-chance that this simplifies to an instruction in the old
+ // function, map it back into the new function.
+ if (Value *MappedV = VMap.lookup(V))
+ V = MappedV;
+
+ VMap[II] = V;
+ delete NewInst;
+ continue;
+ }
+ }
+
+ if (II->hasName())
+ NewInst->setName(II->getName()+NameSuffix);
+ VMap[II] = NewInst; // Add instruction map to value.
+ NewBB->getInstList().push_back(NewInst);
+ hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ if (isa<ConstantInt>(AI->getArraySize()))
+ hasStaticAllocas = true;
+ else
+ hasDynamicAllocas = true;
+ }
+ }
+
+ // Finally, clone over the terminator.
+ const TerminatorInst *OldTI = BB->getTerminator();
+ bool TerminatorDone = false;
+ if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
+ if (BI->isConditional()) {
+ // If the condition was a known constant in the callee...
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ // Or is a known constant in the caller...
+ if (Cond == 0) {
+ Value *V = VMap[BI->getCondition()];
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+
+ // Constant fold to uncond branch!
+ if (Cond) {
+ BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+ } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
+ // If switching on a value known constant in the caller.
+ ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
+ if (Cond == 0) { // Or known constant after constant prop in the callee...
+ Value *V = VMap[SI->getCondition()];
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+ if (Cond) { // Constant fold to uncond branch!
+ SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
+ BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+
+ if (!TerminatorDone) {
+ Instruction *NewInst = OldTI->clone();
+ if (OldTI->hasName())
+ NewInst->setName(OldTI->getName()+NameSuffix);
+ NewBB->getInstList().push_back(NewInst);
+ VMap[OldTI] = NewInst; // Add instruction map to value.
+
+ // Recursively clone any reachable successor blocks.
+ const TerminatorInst *TI = BB->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ ToClone.push_back(TI->getSuccessor(i));
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
+ BB != &BB->getParent()->front();
+ }
+}
+
+/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
+/// except that it does some simple constant prop and DCE on the fly. The
+/// effect of this is to copy significantly less code in cases where (for
+/// example) a function call with constant arguments is inlined, and those
+/// constant arguments cause a significant amount of code in the callee to be
+/// dead. Since this doesn't produce an exact copy of the input, it can't be
+/// used for things like CloneFunction or CloneModule.
+void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst*> &Returns,
+ const char *NameSuffix,
+ ClonedCodeInfo *CodeInfo,
+ const DataLayout *TD,
+ Instruction *TheCall) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+#ifndef NDEBUG
+ for (Function::const_arg_iterator II = OldFunc->arg_begin(),
+ E = OldFunc->arg_end(); II != E; ++II)
+ assert(VMap.count(II) && "No mapping from source argument specified!");
+#endif
+
+ PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
+ NameSuffix, CodeInfo, TD);
+
+ // Clone the entry block, and anything recursively reachable from it.
+ std::vector<const BasicBlock*> CloneWorklist;
+ CloneWorklist.push_back(&OldFunc->getEntryBlock());
+ while (!CloneWorklist.empty()) {
+ const BasicBlock *BB = CloneWorklist.back();
+ CloneWorklist.pop_back();
+ PFC.CloneBlock(BB, CloneWorklist);
+ }
+
+ // Loop over all of the basic blocks in the old function. If the block was
+ // reachable, we have cloned it and the old block is now in the value map:
+ // insert it into the new function in the right order. If not, ignore it.
+ //
+ // Defer PHI resolution until rest of function is resolved.
+ SmallVector<const PHINode*, 16> PHIToResolve;
+ for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
+ BI != BE; ++BI) {
+ Value *V = VMap[BI];
+ BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
+ if (NewBB == 0) continue; // Dead block.
+
+ // Add the new block to the new function.
+ NewFunc->getBasicBlockList().push_back(NewBB);
+
+ // Handle PHI nodes specially, as we have to remove references to dead
+ // blocks.
+ for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
+ if (const PHINode *PN = dyn_cast<PHINode>(I))
+ PHIToResolve.push_back(PN);
+ else
+ break;
+
+ // Finally, remap the terminator instructions, as those can't be remapped
+ // until all BBs are mapped.
+ RemapInstruction(NewBB->getTerminator(), VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ }
+
+ // Defer PHI resolution until rest of function is resolved, PHI resolution
+ // requires the CFG to be up-to-date.
+ for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
+ const PHINode *OPN = PHIToResolve[phino];
+ unsigned NumPreds = OPN->getNumIncomingValues();
+ const BasicBlock *OldBB = OPN->getParent();
+ BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
+
+ // Map operands for blocks that are live and remove operands for blocks
+ // that are dead.
+ for (; phino != PHIToResolve.size() &&
+ PHIToResolve[phino]->getParent() == OldBB; ++phino) {
+ OPN = PHIToResolve[phino];
+ PHINode *PN = cast<PHINode>(VMap[OPN]);
+ for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
+ Value *V = VMap[PN->getIncomingBlock(pred)];
+ if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
+ Value *InVal = MapValue(PN->getIncomingValue(pred),
+ VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ assert(InVal && "Unknown input value?");
+ PN->setIncomingValue(pred, InVal);
+ PN->setIncomingBlock(pred, MappedBlock);
+ } else {
+ PN->removeIncomingValue(pred, false);
+ --pred, --e; // Revisit the next entry.
+ }
+ }
+ }
+
+ // The loop above has removed PHI entries for those blocks that are dead
+ // and has updated others. However, if a block is live (i.e. copied over)
+ // but its terminator has been changed to not go to this block, then our
+ // phi nodes will have invalid entries. Update the PHI nodes in this
+ // case.
+ PHINode *PN = cast<PHINode>(NewBB->begin());
+ NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
+ if (NumPreds != PN->getNumIncomingValues()) {
+ assert(NumPreds < PN->getNumIncomingValues());
+ // Count how many times each predecessor comes to this block.
+ std::map<BasicBlock*, unsigned> PredCount;
+ for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
+ PI != E; ++PI)
+ --PredCount[*PI];
+
+ // Figure out how many entries to remove from each PHI.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ ++PredCount[PN->getIncomingBlock(i)];
+
+ // At this point, the excess predecessor entries are positive in the
+ // map. Loop over all of the PHIs and remove excess predecessor
+ // entries.
+ BasicBlock::iterator I = NewBB->begin();
+ for (; (PN = dyn_cast<PHINode>(I)); ++I) {
+ for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
+ E = PredCount.end(); PCI != E; ++PCI) {
+ BasicBlock *Pred = PCI->first;
+ for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
+ PN->removeIncomingValue(Pred, false);
+ }
+ }
+ }
+
+ // If the loops above have made these phi nodes have 0 or 1 operand,
+ // replace them with undef or the input value. We must do this for
+ // correctness, because 0-operand phis are not valid.
+ PN = cast<PHINode>(NewBB->begin());
+ if (PN->getNumIncomingValues() == 0) {
+ BasicBlock::iterator I = NewBB->begin();
+ BasicBlock::const_iterator OldI = OldBB->begin();
+ while ((PN = dyn_cast<PHINode>(I++))) {
+ Value *NV = UndefValue::get(PN->getType());
+ PN->replaceAllUsesWith(NV);
+ assert(VMap[OldI] == PN && "VMap mismatch");
+ VMap[OldI] = NV;
+ PN->eraseFromParent();
+ ++OldI;
+ }
+ }
+ }
+
+ // Make a second pass over the PHINodes now that all of them have been
+ // remapped into the new function, simplifying the PHINode and performing any
+ // recursive simplifications exposed. This will transparently update the
+ // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
+ // two PHINodes, the iteration over the old PHIs remains valid, and the
+ // mapping will just map us to the new node (which may not even be a PHI
+ // node).
+ for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
+ if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
+ recursivelySimplifyInstruction(PN, TD);
+
+ // Now that the inlined function body has been fully constructed, go through
+ // and zap unconditional fall-through branches. This happen all the time when
+ // specializing code: code specialization turns conditional branches into
+ // uncond branches, and this code folds them.
+ Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
+ Function::iterator I = Begin;
+ while (I != NewFunc->end()) {
+ // Check if this block has become dead during inlining or other
+ // simplifications. Note that the first block will appear dead, as it has
+ // not yet been wired up properly.
+ if (I != Begin && (pred_begin(I) == pred_end(I) ||
+ I->getSinglePredecessor() == I)) {
+ BasicBlock *DeadBB = I++;
+ DeleteDeadBlock(DeadBB);
+ continue;
+ }
+
+ // We need to simplify conditional branches and switches with a constant
+ // operand. We try to prune these out when cloning, but if the
+ // simplification required looking through PHI nodes, those are only
+ // available after forming the full basic block. That may leave some here,
+ // and we still want to prune the dead code as early as possible.
+ ConstantFoldTerminator(I);
+
+ BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
+ if (!BI || BI->isConditional()) { ++I; continue; }
+
+ BasicBlock *Dest = BI->getSuccessor(0);
+ if (!Dest->getSinglePredecessor()) {
+ ++I; continue;
+ }
+
+ // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
+ // above should have zapped all of them..
+ assert(!isa<PHINode>(Dest->begin()));
+
+ // We know all single-entry PHI nodes in the inlined function have been
+ // removed, so we just need to splice the blocks.
+ BI->eraseFromParent();
+
+ // Make all PHI nodes that referred to Dest now refer to I as their source.
+ Dest->replaceAllUsesWith(I);
+
+ // Move all the instructions in the succ to the pred.
+ I->getInstList().splice(I->end(), Dest->getInstList());
+
+ // Remove the dest block.
+ Dest->eraseFromParent();
+
+ // Do not increment I, iteratively merge all things this block branches to.
+ }
+
+ // Make a final pass over the basic blocks from theh old function to gather
+ // any return instructions which survived folding. We have to do this here
+ // because we can iteratively remove and merge returns above.
+ for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
+ E = NewFunc->end();
+ I != E; ++I)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
+ Returns.push_back(RI);
+}