aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp771
1 files changed, 771 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
new file mode 100644
index 000000000000..12de9eed4b85
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -0,0 +1,771 @@
+//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform manipulations on basic blocks, and
+// instructions contained within basic blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+using namespace llvm;
+
+/// DeleteDeadBlock - Delete the specified block, which must have no
+/// predecessors.
+void llvm::DeleteDeadBlock(BasicBlock *BB) {
+ assert((pred_begin(BB) == pred_end(BB) ||
+ // Can delete self loop.
+ BB->getSinglePredecessor() == BB) && "Block is not dead!");
+ TerminatorInst *BBTerm = BB->getTerminator();
+
+ // Loop through all of our successors and make sure they know that one
+ // of their predecessors is going away.
+ for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
+ BBTerm->getSuccessor(i)->removePredecessor(BB);
+
+ // Zap all the instructions in the block.
+ while (!BB->empty()) {
+ Instruction &I = BB->back();
+ // If this instruction is used, replace uses with an arbitrary value.
+ // Because control flow can't get here, we don't care what we replace the
+ // value with. Note that since this block is unreachable, and all values
+ // contained within it must dominate their uses, that all uses will
+ // eventually be removed (they are themselves dead).
+ if (!I.use_empty())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ BB->getInstList().pop_back();
+ }
+
+ // Zap the block!
+ BB->eraseFromParent();
+}
+
+/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
+/// any single-entry PHI nodes in it, fold them away. This handles the case
+/// when all entries to the PHI nodes in a block are guaranteed equal, such as
+/// when the block has exactly one predecessor.
+void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
+ if (!isa<PHINode>(BB->begin())) return;
+
+ AliasAnalysis *AA = 0;
+ MemoryDependenceAnalysis *MemDep = 0;
+ if (P) {
+ AA = P->getAnalysisIfAvailable<AliasAnalysis>();
+ MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
+ }
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ if (PN->getIncomingValue(0) != PN)
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ else
+ PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+
+ if (MemDep)
+ MemDep->removeInstruction(PN); // Memdep updates AA itself.
+ else if (AA && isa<PointerType>(PN->getType()))
+ AA->deleteValue(PN);
+
+ PN->eraseFromParent();
+ }
+}
+
+
+/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
+/// is dead. Also recursively delete any operands that become dead as
+/// a result. This includes tracing the def-use list from the PHI to see if
+/// it is ultimately unused or if it reaches an unused cycle.
+bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
+ // Recursively deleting a PHI may cause multiple PHIs to be deleted
+ // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
+ SmallVector<WeakVH, 8> PHIs;
+ for (BasicBlock::iterator I = BB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ PHIs.push_back(PN);
+
+ bool Changed = false;
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+ if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
+ Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
+
+ return Changed;
+}
+
+/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
+/// if possible. The return value indicates success or failure.
+bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
+ // Don't merge away blocks who have their address taken.
+ if (BB->hasAddressTaken()) return false;
+
+ // Can't merge if there are multiple predecessors, or no predecessors.
+ BasicBlock *PredBB = BB->getUniquePredecessor();
+ if (!PredBB) return false;
+
+ // Don't break self-loops.
+ if (PredBB == BB) return false;
+ // Don't break invokes.
+ if (isa<InvokeInst>(PredBB->getTerminator())) return false;
+
+ succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
+ BasicBlock *OnlySucc = BB;
+ for (; SI != SE; ++SI)
+ if (*SI != OnlySucc) {
+ OnlySucc = 0; // There are multiple distinct successors!
+ break;
+ }
+
+ // Can't merge if there are multiple successors.
+ if (!OnlySucc) return false;
+
+ // Can't merge if there is PHI loop.
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BI)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == PN)
+ return false;
+ } else
+ break;
+ }
+
+ // Begin by getting rid of unneeded PHIs.
+ if (isa<PHINode>(BB->front()))
+ FoldSingleEntryPHINodes(BB, P);
+
+ // Delete the unconditional branch from the predecessor...
+ PredBB->getInstList().pop_back();
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source...
+ BB->replaceAllUsesWith(PredBB);
+
+ // Move all definitions in the successor to the predecessor...
+ PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
+
+ // Inherit predecessors name if it exists.
+ if (!PredBB->hasName())
+ PredBB->takeName(BB);
+
+ // Finally, erase the old block and update dominator info.
+ if (P) {
+ if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
+ if (DomTreeNode *DTN = DT->getNode(BB)) {
+ DomTreeNode *PredDTN = DT->getNode(PredBB);
+ SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
+ for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
+ DE = Children.end(); DI != DE; ++DI)
+ DT->changeImmediateDominator(*DI, PredDTN);
+
+ DT->eraseNode(BB);
+ }
+
+ if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
+ LI->removeBlock(BB);
+
+ if (MemoryDependenceAnalysis *MD =
+ P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
+ MD->invalidateCachedPredecessors();
+ }
+ }
+
+ BB->eraseFromParent();
+ return true;
+}
+
+/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
+/// with a value, then remove and delete the original instruction.
+///
+void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
+ BasicBlock::iterator &BI, Value *V) {
+ Instruction &I = *BI;
+ // Replaces all of the uses of the instruction with uses of the value
+ I.replaceAllUsesWith(V);
+
+ // Make sure to propagate a name if there is one already.
+ if (I.hasName() && !V->hasName())
+ V->takeName(&I);
+
+ // Delete the unnecessary instruction now...
+ BI = BIL.erase(BI);
+}
+
+
+/// ReplaceInstWithInst - Replace the instruction specified by BI with the
+/// instruction specified by I. The original instruction is deleted and BI is
+/// updated to point to the new instruction.
+///
+void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
+ BasicBlock::iterator &BI, Instruction *I) {
+ assert(I->getParent() == 0 &&
+ "ReplaceInstWithInst: Instruction already inserted into basic block!");
+
+ // Insert the new instruction into the basic block...
+ BasicBlock::iterator New = BIL.insert(BI, I);
+
+ // Replace all uses of the old instruction, and delete it.
+ ReplaceInstWithValue(BIL, BI, I);
+
+ // Move BI back to point to the newly inserted instruction
+ BI = New;
+}
+
+/// ReplaceInstWithInst - Replace the instruction specified by From with the
+/// instruction specified by To.
+///
+void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
+ BasicBlock::iterator BI(From);
+ ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
+}
+
+/// SplitEdge - Split the edge connecting specified block. Pass P must
+/// not be NULL.
+BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
+ unsigned SuccNum = GetSuccessorNumber(BB, Succ);
+
+ // If this is a critical edge, let SplitCriticalEdge do it.
+ TerminatorInst *LatchTerm = BB->getTerminator();
+ if (SplitCriticalEdge(LatchTerm, SuccNum, P))
+ return LatchTerm->getSuccessor(SuccNum);
+
+ // If the edge isn't critical, then BB has a single successor or Succ has a
+ // single pred. Split the block.
+ if (BasicBlock *SP = Succ->getSinglePredecessor()) {
+ // If the successor only has a single pred, split the top of the successor
+ // block.
+ assert(SP == BB && "CFG broken");
+ SP = NULL;
+ return SplitBlock(Succ, Succ->begin(), P);
+ }
+
+ // Otherwise, if BB has a single successor, split it at the bottom of the
+ // block.
+ assert(BB->getTerminator()->getNumSuccessors() == 1 &&
+ "Should have a single succ!");
+ return SplitBlock(BB, BB->getTerminator(), P);
+}
+
+/// SplitBlock - Split the specified block at the specified instruction - every
+/// thing before SplitPt stays in Old and everything starting with SplitPt moves
+/// to a new block. The two blocks are joined by an unconditional branch and
+/// the loop info is updated.
+///
+BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
+ BasicBlock::iterator SplitIt = SplitPt;
+ while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
+ ++SplitIt;
+ BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
+
+ // The new block lives in whichever loop the old one did. This preserves
+ // LCSSA as well, because we force the split point to be after any PHI nodes.
+ if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
+ if (Loop *L = LI->getLoopFor(Old))
+ L->addBasicBlockToLoop(New, LI->getBase());
+
+ if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
+ // Old dominates New. New node dominates all other nodes dominated by Old.
+ if (DomTreeNode *OldNode = DT->getNode(Old)) {
+ std::vector<DomTreeNode *> Children;
+ for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
+ I != E; ++I)
+ Children.push_back(*I);
+
+ DomTreeNode *NewNode = DT->addNewBlock(New,Old);
+ for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
+ E = Children.end(); I != E; ++I)
+ DT->changeImmediateDominator(*I, NewNode);
+ }
+ }
+
+ return New;
+}
+
+/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
+/// analysis information.
+static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
+ ArrayRef<BasicBlock *> Preds,
+ Pass *P, bool &HasLoopExit) {
+ if (!P) return;
+
+ LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
+ Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
+
+ // If we need to preserve loop analyses, collect some information about how
+ // this split will affect loops.
+ bool IsLoopEntry = !!L;
+ bool SplitMakesNewLoopHeader = false;
+ if (LI) {
+ bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
+ for (ArrayRef<BasicBlock*>::iterator
+ i = Preds.begin(), e = Preds.end(); i != e; ++i) {
+ BasicBlock *Pred = *i;
+
+ // If we need to preserve LCSSA, determine if any of the preds is a loop
+ // exit.
+ if (PreserveLCSSA)
+ if (Loop *PL = LI->getLoopFor(Pred))
+ if (!PL->contains(OldBB))
+ HasLoopExit = true;
+
+ // If we need to preserve LoopInfo, note whether any of the preds crosses
+ // an interesting loop boundary.
+ if (!L) continue;
+ if (L->contains(Pred))
+ IsLoopEntry = false;
+ else
+ SplitMakesNewLoopHeader = true;
+ }
+ }
+
+ // Update dominator tree if available.
+ DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
+ if (DT)
+ DT->splitBlock(NewBB);
+
+ if (!L) return;
+
+ if (IsLoopEntry) {
+ // Add the new block to the nearest enclosing loop (and not an adjacent
+ // loop). To find this, examine each of the predecessors and determine which
+ // loops enclose them, and select the most-nested loop which contains the
+ // loop containing the block being split.
+ Loop *InnermostPredLoop = 0;
+ for (ArrayRef<BasicBlock*>::iterator
+ i = Preds.begin(), e = Preds.end(); i != e; ++i) {
+ BasicBlock *Pred = *i;
+ if (Loop *PredLoop = LI->getLoopFor(Pred)) {
+ // Seek a loop which actually contains the block being split (to avoid
+ // adjacent loops).
+ while (PredLoop && !PredLoop->contains(OldBB))
+ PredLoop = PredLoop->getParentLoop();
+
+ // Select the most-nested of these loops which contains the block.
+ if (PredLoop && PredLoop->contains(OldBB) &&
+ (!InnermostPredLoop ||
+ InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
+ InnermostPredLoop = PredLoop;
+ }
+ }
+
+ if (InnermostPredLoop)
+ InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ } else {
+ L->addBasicBlockToLoop(NewBB, LI->getBase());
+ if (SplitMakesNewLoopHeader)
+ L->moveToHeader(NewBB);
+ }
+}
+
+/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
+/// from NewBB. This also updates AliasAnalysis, if available.
+static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
+ ArrayRef<BasicBlock*> Preds, BranchInst *BI,
+ Pass *P, bool HasLoopExit) {
+ // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
+ AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
+ for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I++);
+
+ // Check to see if all of the values coming in are the same. If so, we
+ // don't need to create a new PHI node, unless it's needed for LCSSA.
+ Value *InVal = 0;
+ if (!HasLoopExit) {
+ InVal = PN->getIncomingValueForBlock(Preds[0]);
+ for (unsigned i = 1, e = Preds.size(); i != e; ++i)
+ if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
+ InVal = 0;
+ break;
+ }
+ }
+
+ if (InVal) {
+ // If all incoming values for the new PHI would be the same, just don't
+ // make a new PHI. Instead, just remove the incoming values from the old
+ // PHI.
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ // Explicitly check the BB index here to handle duplicates in Preds.
+ int Idx = PN->getBasicBlockIndex(Preds[i]);
+ if (Idx >= 0)
+ PN->removeIncomingValue(Idx, false);
+ }
+ } else {
+ // If the values coming into the block are not the same, we need a PHI.
+ // Create the new PHI node, insert it into NewBB at the end of the block
+ PHINode *NewPHI =
+ PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
+ if (AA) AA->copyValue(PN, NewPHI);
+
+ // Move all of the PHI values for 'Preds' to the new PHI.
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ Value *V = PN->removeIncomingValue(Preds[i], false);
+ NewPHI->addIncoming(V, Preds[i]);
+ }
+
+ InVal = NewPHI;
+ }
+
+ // Add an incoming value to the PHI node in the loop for the preheader
+ // edge.
+ PN->addIncoming(InVal, NewBB);
+ }
+}
+
+/// SplitBlockPredecessors - This method transforms BB by introducing a new
+/// basic block into the function, and moving some of the predecessors of BB to
+/// be predecessors of the new block. The new predecessors are indicated by the
+/// Preds array, which has NumPreds elements in it. The new block is given a
+/// suffix of 'Suffix'.
+///
+/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
+/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
+/// preserve LoopSimplify (because it's complicated to handle the case where one
+/// of the edges being split is an exit of a loop with other exits).
+///
+BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
+ ArrayRef<BasicBlock*> Preds,
+ const char *Suffix, Pass *P) {
+ // Create new basic block, insert right before the original block.
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
+ BB->getParent(), BB);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI = BranchInst::Create(BB, NewBB);
+
+ // Move the edges from Preds to point to NewBB instead of BB.
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ // This is slightly more strict than necessary; the minimum requirement
+ // is that there be no more than one indirectbr branching to BB. And
+ // all BlockAddress uses would need to be updated.
+ assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
+ }
+
+ // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
+ // node becomes an incoming value for BB's phi node. However, if the Preds
+ // list is empty, we need to insert dummy entries into the PHI nodes in BB to
+ // account for the newly created predecessor.
+ if (Preds.size() == 0) {
+ // Insert dummy values as the incoming value.
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
+ cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
+ return NewBB;
+ }
+
+ // Update DominatorTree, LoopInfo, and LCCSA analysis information.
+ bool HasLoopExit = false;
+ UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
+
+ // Update the PHI nodes in BB with the values coming from NewBB.
+ UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
+ return NewBB;
+}
+
+/// SplitLandingPadPredecessors - This method transforms the landing pad,
+/// OrigBB, by introducing two new basic blocks into the function. One of those
+/// new basic blocks gets the predecessors listed in Preds. The other basic
+/// block gets the remaining predecessors of OrigBB. The landingpad instruction
+/// OrigBB is clone into both of the new basic blocks. The new blocks are given
+/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
+///
+/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
+/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
+/// it does not preserve LoopSimplify (because it's complicated to handle the
+/// case where one of the edges being split is an exit of a loop with other
+/// exits).
+///
+void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
+ ArrayRef<BasicBlock*> Preds,
+ const char *Suffix1, const char *Suffix2,
+ Pass *P,
+ SmallVectorImpl<BasicBlock*> &NewBBs) {
+ assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
+
+ // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
+ // it right before the original block.
+ BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
+ OrigBB->getName() + Suffix1,
+ OrigBB->getParent(), OrigBB);
+ NewBBs.push_back(NewBB1);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
+
+ // Move the edges from Preds to point to NewBB1 instead of OrigBB.
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ // This is slightly more strict than necessary; the minimum requirement
+ // is that there be no more than one indirectbr branching to BB. And
+ // all BlockAddress uses would need to be updated.
+ assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
+ }
+
+ // Update DominatorTree, LoopInfo, and LCCSA analysis information.
+ bool HasLoopExit = false;
+ UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
+
+ // Update the PHI nodes in OrigBB with the values coming from NewBB1.
+ UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
+
+ // Move the remaining edges from OrigBB to point to NewBB2.
+ SmallVector<BasicBlock*, 8> NewBB2Preds;
+ for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
+ i != e; ) {
+ BasicBlock *Pred = *i++;
+ if (Pred == NewBB1) continue;
+ assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ NewBB2Preds.push_back(Pred);
+ e = pred_end(OrigBB);
+ }
+
+ BasicBlock *NewBB2 = 0;
+ if (!NewBB2Preds.empty()) {
+ // Create another basic block for the rest of OrigBB's predecessors.
+ NewBB2 = BasicBlock::Create(OrigBB->getContext(),
+ OrigBB->getName() + Suffix2,
+ OrigBB->getParent(), OrigBB);
+ NewBBs.push_back(NewBB2);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
+
+ // Move the remaining edges from OrigBB to point to NewBB2.
+ for (SmallVectorImpl<BasicBlock*>::iterator
+ i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
+ (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
+
+ // Update DominatorTree, LoopInfo, and LCCSA analysis information.
+ HasLoopExit = false;
+ UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
+
+ // Update the PHI nodes in OrigBB with the values coming from NewBB2.
+ UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
+ }
+
+ LandingPadInst *LPad = OrigBB->getLandingPadInst();
+ Instruction *Clone1 = LPad->clone();
+ Clone1->setName(Twine("lpad") + Suffix1);
+ NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
+
+ if (NewBB2) {
+ Instruction *Clone2 = LPad->clone();
+ Clone2->setName(Twine("lpad") + Suffix2);
+ NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
+
+ // Create a PHI node for the two cloned landingpad instructions.
+ PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
+ PN->addIncoming(Clone1, NewBB1);
+ PN->addIncoming(Clone2, NewBB2);
+ LPad->replaceAllUsesWith(PN);
+ LPad->eraseFromParent();
+ } else {
+ // There is no second clone. Just replace the landing pad with the first
+ // clone.
+ LPad->replaceAllUsesWith(Clone1);
+ LPad->eraseFromParent();
+ }
+}
+
+/// FoldReturnIntoUncondBranch - This method duplicates the specified return
+/// instruction into a predecessor which ends in an unconditional branch. If
+/// the return instruction returns a value defined by a PHI, propagate the
+/// right value into the return. It returns the new return instruction in the
+/// predecessor.
+ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
+ BasicBlock *Pred) {
+ Instruction *UncondBranch = Pred->getTerminator();
+ // Clone the return and add it to the end of the predecessor.
+ Instruction *NewRet = RI->clone();
+ Pred->getInstList().push_back(NewRet);
+
+ // If the return instruction returns a value, and if the value was a
+ // PHI node in "BB", propagate the right value into the return.
+ for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
+ i != e; ++i) {
+ Value *V = *i;
+ Instruction *NewBC = 0;
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
+ // Return value might be bitcasted. Clone and insert it before the
+ // return instruction.
+ V = BCI->getOperand(0);
+ NewBC = BCI->clone();
+ Pred->getInstList().insert(NewRet, NewBC);
+ *i = NewBC;
+ }
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (PN->getParent() == BB) {
+ if (NewBC)
+ NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
+ else
+ *i = PN->getIncomingValueForBlock(Pred);
+ }
+ }
+ }
+
+ // Update any PHI nodes in the returning block to realize that we no
+ // longer branch to them.
+ BB->removePredecessor(Pred);
+ UncondBranch->eraseFromParent();
+ return cast<ReturnInst>(NewRet);
+}
+
+/// SplitBlockAndInsertIfThen - Split the containing block at the
+/// specified instruction - everything before and including Cmp stays
+/// in the old basic block, and everything after Cmp is moved to a
+/// new block. The two blocks are connected by a conditional branch
+/// (with value of Cmp being the condition).
+/// Before:
+/// Head
+/// Cmp
+/// Tail
+/// After:
+/// Head
+/// Cmp
+/// if (Cmp)
+/// ThenBlock
+/// Tail
+///
+/// If Unreachable is true, then ThenBlock ends with
+/// UnreachableInst, otherwise it branches to Tail.
+/// Returns the NewBasicBlock's terminator.
+
+TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
+ bool Unreachable, MDNode *BranchWeights) {
+ Instruction *SplitBefore = Cmp->getNextNode();
+ BasicBlock *Head = SplitBefore->getParent();
+ BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
+ TerminatorInst *HeadOldTerm = Head->getTerminator();
+ LLVMContext &C = Head->getContext();
+ BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
+ TerminatorInst *CheckTerm;
+ if (Unreachable)
+ CheckTerm = new UnreachableInst(C, ThenBlock);
+ else
+ CheckTerm = BranchInst::Create(Tail, ThenBlock);
+ BranchInst *HeadNewTerm =
+ BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
+ HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
+ ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
+ return CheckTerm;
+}
+
+/// GetIfCondition - Given a basic block (BB) with two predecessors,
+/// check to see if the merge at this block is due
+/// to an "if condition". If so, return the boolean condition that determines
+/// which entry into BB will be taken. Also, return by references the block
+/// that will be entered from if the condition is true, and the block that will
+/// be entered if the condition is false.
+///
+/// This does no checking to see if the true/false blocks have large or unsavory
+/// instructions in them.
+Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
+ BasicBlock *&IfFalse) {
+ PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
+ BasicBlock *Pred1 = NULL;
+ BasicBlock *Pred2 = NULL;
+
+ if (SomePHI) {
+ if (SomePHI->getNumIncomingValues() != 2)
+ return NULL;
+ Pred1 = SomePHI->getIncomingBlock(0);
+ Pred2 = SomePHI->getIncomingBlock(1);
+ } else {
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ if (PI == PE) // No predecessor
+ return NULL;
+ Pred1 = *PI++;
+ if (PI == PE) // Only one predecessor
+ return NULL;
+ Pred2 = *PI++;
+ if (PI != PE) // More than two predecessors
+ return NULL;
+ }
+
+ // We can only handle branches. Other control flow will be lowered to
+ // branches if possible anyway.
+ BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
+ BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
+ if (Pred1Br == 0 || Pred2Br == 0)
+ return 0;
+
+ // Eliminate code duplication by ensuring that Pred1Br is conditional if
+ // either are.
+ if (Pred2Br->isConditional()) {
+ // If both branches are conditional, we don't have an "if statement". In
+ // reality, we could transform this case, but since the condition will be
+ // required anyway, we stand no chance of eliminating it, so the xform is
+ // probably not profitable.
+ if (Pred1Br->isConditional())
+ return 0;
+
+ std::swap(Pred1, Pred2);
+ std::swap(Pred1Br, Pred2Br);
+ }
+
+ if (Pred1Br->isConditional()) {
+ // The only thing we have to watch out for here is to make sure that Pred2
+ // doesn't have incoming edges from other blocks. If it does, the condition
+ // doesn't dominate BB.
+ if (Pred2->getSinglePredecessor() == 0)
+ return 0;
+
+ // If we found a conditional branch predecessor, make sure that it branches
+ // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
+ if (Pred1Br->getSuccessor(0) == BB &&
+ Pred1Br->getSuccessor(1) == Pred2) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else if (Pred1Br->getSuccessor(0) == Pred2 &&
+ Pred1Br->getSuccessor(1) == BB) {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ } else {
+ // We know that one arm of the conditional goes to BB, so the other must
+ // go somewhere unrelated, and this must not be an "if statement".
+ return 0;
+ }
+
+ return Pred1Br->getCondition();
+ }
+
+ // Ok, if we got here, both predecessors end with an unconditional branch to
+ // BB. Don't panic! If both blocks only have a single (identical)
+ // predecessor, and THAT is a conditional branch, then we're all ok!
+ BasicBlock *CommonPred = Pred1->getSinglePredecessor();
+ if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
+ return 0;
+
+ // Otherwise, if this is a conditional branch, then we can use it!
+ BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
+ if (BI == 0) return 0;
+
+ assert(BI->isConditional() && "Two successors but not conditional?");
+ if (BI->getSuccessor(0) == Pred1) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ }
+ return BI->getCondition();
+}