diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp | 1029 |
1 files changed, 1029 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp new file mode 100644 index 000000000000..9912d3dafed3 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -0,0 +1,1029 @@ +//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs various transformations related to eliminating memcpy +// calls, or transforming sets of stores into memset's. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "memcpyopt" +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include <list> +using namespace llvm; + +STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); +STATISTIC(NumMemSetInfer, "Number of memsets inferred"); +STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); +STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); + +static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, + bool &VariableIdxFound, const DataLayout &TD){ + // Skip over the first indices. + gep_type_iterator GTI = gep_type_begin(GEP); + for (unsigned i = 1; i != Idx; ++i, ++GTI) + /*skip along*/; + + // Compute the offset implied by the rest of the indices. + int64_t Offset = 0; + for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { + ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (OpC == 0) + return VariableIdxFound = true; + if (OpC->isZero()) continue; // No offset. + + // Handle struct indices, which add their field offset to the pointer. + if (StructType *STy = dyn_cast<StructType>(*GTI)) { + Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); + continue; + } + + // Otherwise, we have a sequential type like an array or vector. Multiply + // the index by the ElementSize. + uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*OpC->getSExtValue(); + } + + return Offset; +} + +/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a +/// constant offset, and return that constant offset. For example, Ptr1 might +/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. +static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, + const DataLayout &TD) { + Ptr1 = Ptr1->stripPointerCasts(); + Ptr2 = Ptr2->stripPointerCasts(); + GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); + GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); + + bool VariableIdxFound = false; + + // If one pointer is a GEP and the other isn't, then see if the GEP is a + // constant offset from the base, as in "P" and "gep P, 1". + if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { + Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD); + return !VariableIdxFound; + } + + if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { + Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD); + return !VariableIdxFound; + } + + // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical + // base. After that base, they may have some number of common (and + // potentially variable) indices. After that they handle some constant + // offset, which determines their offset from each other. At this point, we + // handle no other case. + if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) + return false; + + // Skip any common indices and track the GEP types. + unsigned Idx = 1; + for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) + if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) + break; + + int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); + int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); + if (VariableIdxFound) return false; + + Offset = Offset2-Offset1; + return true; +} + + +/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. +/// This allows us to analyze stores like: +/// store 0 -> P+1 +/// store 0 -> P+0 +/// store 0 -> P+3 +/// store 0 -> P+2 +/// which sometimes happens with stores to arrays of structs etc. When we see +/// the first store, we make a range [1, 2). The second store extends the range +/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the +/// two ranges into [0, 3) which is memset'able. +namespace { +struct MemsetRange { + // Start/End - A semi range that describes the span that this range covers. + // The range is closed at the start and open at the end: [Start, End). + int64_t Start, End; + + /// StartPtr - The getelementptr instruction that points to the start of the + /// range. + Value *StartPtr; + + /// Alignment - The known alignment of the first store. + unsigned Alignment; + + /// TheStores - The actual stores that make up this range. + SmallVector<Instruction*, 16> TheStores; + + bool isProfitableToUseMemset(const DataLayout &TD) const; + +}; +} // end anon namespace + +bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const { + // If we found more than 4 stores to merge or 16 bytes, use memset. + if (TheStores.size() >= 4 || End-Start >= 16) return true; + + // If there is nothing to merge, don't do anything. + if (TheStores.size() < 2) return false; + + // If any of the stores are a memset, then it is always good to extend the + // memset. + for (unsigned i = 0, e = TheStores.size(); i != e; ++i) + if (!isa<StoreInst>(TheStores[i])) + return true; + + // Assume that the code generator is capable of merging pairs of stores + // together if it wants to. + if (TheStores.size() == 2) return false; + + // If we have fewer than 8 stores, it can still be worthwhile to do this. + // For example, merging 4 i8 stores into an i32 store is useful almost always. + // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the + // memset will be split into 2 32-bit stores anyway) and doing so can + // pessimize the llvm optimizer. + // + // Since we don't have perfect knowledge here, make some assumptions: assume + // the maximum GPR width is the same size as the largest legal integer + // size. If so, check to see whether we will end up actually reducing the + // number of stores used. + unsigned Bytes = unsigned(End-Start); + unsigned MaxIntSize = TD.getLargestLegalIntTypeSize(); + if (MaxIntSize == 0) + MaxIntSize = 1; + unsigned NumPointerStores = Bytes / MaxIntSize; + + // Assume the remaining bytes if any are done a byte at a time. + unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize; + + // If we will reduce the # stores (according to this heuristic), do the + // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 + // etc. + return TheStores.size() > NumPointerStores+NumByteStores; +} + + +namespace { +class MemsetRanges { + /// Ranges - A sorted list of the memset ranges. We use std::list here + /// because each element is relatively large and expensive to copy. + std::list<MemsetRange> Ranges; + typedef std::list<MemsetRange>::iterator range_iterator; + const DataLayout &TD; +public: + MemsetRanges(const DataLayout &td) : TD(td) {} + + typedef std::list<MemsetRange>::const_iterator const_iterator; + const_iterator begin() const { return Ranges.begin(); } + const_iterator end() const { return Ranges.end(); } + bool empty() const { return Ranges.empty(); } + + void addInst(int64_t OffsetFromFirst, Instruction *Inst) { + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) + addStore(OffsetFromFirst, SI); + else + addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); + } + + void addStore(int64_t OffsetFromFirst, StoreInst *SI) { + int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType()); + + addRange(OffsetFromFirst, StoreSize, + SI->getPointerOperand(), SI->getAlignment(), SI); + } + + void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { + int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); + addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); + } + + void addRange(int64_t Start, int64_t Size, Value *Ptr, + unsigned Alignment, Instruction *Inst); + +}; + +} // end anon namespace + + +/// addRange - Add a new store to the MemsetRanges data structure. This adds a +/// new range for the specified store at the specified offset, merging into +/// existing ranges as appropriate. +/// +/// Do a linear search of the ranges to see if this can be joined and/or to +/// find the insertion point in the list. We keep the ranges sorted for +/// simplicity here. This is a linear search of a linked list, which is ugly, +/// however the number of ranges is limited, so this won't get crazy slow. +void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, + unsigned Alignment, Instruction *Inst) { + int64_t End = Start+Size; + range_iterator I = Ranges.begin(), E = Ranges.end(); + + while (I != E && Start > I->End) + ++I; + + // We now know that I == E, in which case we didn't find anything to merge + // with, or that Start <= I->End. If End < I->Start or I == E, then we need + // to insert a new range. Handle this now. + if (I == E || End < I->Start) { + MemsetRange &R = *Ranges.insert(I, MemsetRange()); + R.Start = Start; + R.End = End; + R.StartPtr = Ptr; + R.Alignment = Alignment; + R.TheStores.push_back(Inst); + return; + } + + // This store overlaps with I, add it. + I->TheStores.push_back(Inst); + + // At this point, we may have an interval that completely contains our store. + // If so, just add it to the interval and return. + if (I->Start <= Start && I->End >= End) + return; + + // Now we know that Start <= I->End and End >= I->Start so the range overlaps + // but is not entirely contained within the range. + + // See if the range extends the start of the range. In this case, it couldn't + // possibly cause it to join the prior range, because otherwise we would have + // stopped on *it*. + if (Start < I->Start) { + I->Start = Start; + I->StartPtr = Ptr; + I->Alignment = Alignment; + } + + // Now we know that Start <= I->End and Start >= I->Start (so the startpoint + // is in or right at the end of I), and that End >= I->Start. Extend I out to + // End. + if (End > I->End) { + I->End = End; + range_iterator NextI = I; + while (++NextI != E && End >= NextI->Start) { + // Merge the range in. + I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); + if (NextI->End > I->End) + I->End = NextI->End; + Ranges.erase(NextI); + NextI = I; + } + } +} + +//===----------------------------------------------------------------------===// +// MemCpyOpt Pass +//===----------------------------------------------------------------------===// + +namespace { + class MemCpyOpt : public FunctionPass { + MemoryDependenceAnalysis *MD; + TargetLibraryInfo *TLI; + const DataLayout *TD; + public: + static char ID; // Pass identification, replacement for typeid + MemCpyOpt() : FunctionPass(ID) { + initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); + MD = 0; + TLI = 0; + TD = 0; + } + + bool runOnFunction(Function &F); + + private: + // This transformation requires dominator postdominator info + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<DominatorTree>(); + AU.addRequired<MemoryDependenceAnalysis>(); + AU.addRequired<AliasAnalysis>(); + AU.addRequired<TargetLibraryInfo>(); + AU.addPreserved<AliasAnalysis>(); + AU.addPreserved<MemoryDependenceAnalysis>(); + } + + // Helper fuctions + bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); + bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); + bool processMemCpy(MemCpyInst *M); + bool processMemMove(MemMoveInst *M); + bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, + uint64_t cpyLen, unsigned cpyAlign, CallInst *C); + bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, + uint64_t MSize); + bool processByValArgument(CallSite CS, unsigned ArgNo); + Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, + Value *ByteVal); + + bool iterateOnFunction(Function &F); + }; + + char MemCpyOpt::ID = 0; +} + +// createMemCpyOptPass - The public interface to this file... +FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } + +INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", + false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", + false, false) + +/// tryMergingIntoMemset - When scanning forward over instructions, we look for +/// some other patterns to fold away. In particular, this looks for stores to +/// neighboring locations of memory. If it sees enough consecutive ones, it +/// attempts to merge them together into a memcpy/memset. +Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, + Value *StartPtr, Value *ByteVal) { + if (TD == 0) return 0; + + // Okay, so we now have a single store that can be splatable. Scan to find + // all subsequent stores of the same value to offset from the same pointer. + // Join these together into ranges, so we can decide whether contiguous blocks + // are stored. + MemsetRanges Ranges(*TD); + + BasicBlock::iterator BI = StartInst; + for (++BI; !isa<TerminatorInst>(BI); ++BI) { + if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { + // If the instruction is readnone, ignore it, otherwise bail out. We + // don't even allow readonly here because we don't want something like: + // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). + if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) + break; + continue; + } + + if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { + // If this is a store, see if we can merge it in. + if (!NextStore->isSimple()) break; + + // Check to see if this stored value is of the same byte-splattable value. + if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) + break; + + // Check to see if this store is to a constant offset from the start ptr. + int64_t Offset; + if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), + Offset, *TD)) + break; + + Ranges.addStore(Offset, NextStore); + } else { + MemSetInst *MSI = cast<MemSetInst>(BI); + + if (MSI->isVolatile() || ByteVal != MSI->getValue() || + !isa<ConstantInt>(MSI->getLength())) + break; + + // Check to see if this store is to a constant offset from the start ptr. + int64_t Offset; + if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD)) + break; + + Ranges.addMemSet(Offset, MSI); + } + } + + // If we have no ranges, then we just had a single store with nothing that + // could be merged in. This is a very common case of course. + if (Ranges.empty()) + return 0; + + // If we had at least one store that could be merged in, add the starting + // store as well. We try to avoid this unless there is at least something + // interesting as a small compile-time optimization. + Ranges.addInst(0, StartInst); + + // If we create any memsets, we put it right before the first instruction that + // isn't part of the memset block. This ensure that the memset is dominated + // by any addressing instruction needed by the start of the block. + IRBuilder<> Builder(BI); + + // Now that we have full information about ranges, loop over the ranges and + // emit memset's for anything big enough to be worthwhile. + Instruction *AMemSet = 0; + for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); + I != E; ++I) { + const MemsetRange &Range = *I; + + if (Range.TheStores.size() == 1) continue; + + // If it is profitable to lower this range to memset, do so now. + if (!Range.isProfitableToUseMemset(*TD)) + continue; + + // Otherwise, we do want to transform this! Create a new memset. + // Get the starting pointer of the block. + StartPtr = Range.StartPtr; + + // Determine alignment + unsigned Alignment = Range.Alignment; + if (Alignment == 0) { + Type *EltType = + cast<PointerType>(StartPtr->getType())->getElementType(); + Alignment = TD->getABITypeAlignment(EltType); + } + + AMemSet = + Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); + + DEBUG(dbgs() << "Replace stores:\n"; + for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) + dbgs() << *Range.TheStores[i] << '\n'; + dbgs() << "With: " << *AMemSet << '\n'); + + if (!Range.TheStores.empty()) + AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); + + // Zap all the stores. + for (SmallVectorImpl<Instruction *>::const_iterator + SI = Range.TheStores.begin(), + SE = Range.TheStores.end(); SI != SE; ++SI) { + MD->removeInstruction(*SI); + (*SI)->eraseFromParent(); + } + ++NumMemSetInfer; + } + + return AMemSet; +} + + +bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { + if (!SI->isSimple()) return false; + + if (TD == 0) return false; + + // Detect cases where we're performing call slot forwarding, but + // happen to be using a load-store pair to implement it, rather than + // a memcpy. + if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { + if (LI->isSimple() && LI->hasOneUse() && + LI->getParent() == SI->getParent()) { + MemDepResult ldep = MD->getDependency(LI); + CallInst *C = 0; + if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) + C = dyn_cast<CallInst>(ldep.getInst()); + + if (C) { + // Check that nothing touches the dest of the "copy" between + // the call and the store. + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + AliasAnalysis::Location StoreLoc = AA.getLocation(SI); + for (BasicBlock::iterator I = --BasicBlock::iterator(SI), + E = C; I != E; --I) { + if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) { + C = 0; + break; + } + } + } + + if (C) { + unsigned storeAlign = SI->getAlignment(); + if (!storeAlign) + storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType()); + unsigned loadAlign = LI->getAlignment(); + if (!loadAlign) + loadAlign = TD->getABITypeAlignment(LI->getType()); + + bool changed = performCallSlotOptzn(LI, + SI->getPointerOperand()->stripPointerCasts(), + LI->getPointerOperand()->stripPointerCasts(), + TD->getTypeStoreSize(SI->getOperand(0)->getType()), + std::min(storeAlign, loadAlign), C); + if (changed) { + MD->removeInstruction(SI); + SI->eraseFromParent(); + MD->removeInstruction(LI); + LI->eraseFromParent(); + ++NumMemCpyInstr; + return true; + } + } + } + } + + // There are two cases that are interesting for this code to handle: memcpy + // and memset. Right now we only handle memset. + + // Ensure that the value being stored is something that can be memset'able a + // byte at a time like "0" or "-1" or any width, as well as things like + // 0xA0A0A0A0 and 0.0. + if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) + if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), + ByteVal)) { + BBI = I; // Don't invalidate iterator. + return true; + } + + return false; +} + +bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { + // See if there is another memset or store neighboring this memset which + // allows us to widen out the memset to do a single larger store. + if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) + if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), + MSI->getValue())) { + BBI = I; // Don't invalidate iterator. + return true; + } + return false; +} + + +/// performCallSlotOptzn - takes a memcpy and a call that it depends on, +/// and checks for the possibility of a call slot optimization by having +/// the call write its result directly into the destination of the memcpy. +bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, + Value *cpyDest, Value *cpySrc, + uint64_t cpyLen, unsigned cpyAlign, + CallInst *C) { + // The general transformation to keep in mind is + // + // call @func(..., src, ...) + // memcpy(dest, src, ...) + // + // -> + // + // memcpy(dest, src, ...) + // call @func(..., dest, ...) + // + // Since moving the memcpy is technically awkward, we additionally check that + // src only holds uninitialized values at the moment of the call, meaning that + // the memcpy can be discarded rather than moved. + + // Deliberately get the source and destination with bitcasts stripped away, + // because we'll need to do type comparisons based on the underlying type. + CallSite CS(C); + + // Require that src be an alloca. This simplifies the reasoning considerably. + AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); + if (!srcAlloca) + return false; + + // Check that all of src is copied to dest. + if (TD == 0) return false; + + ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); + if (!srcArraySize) + return false; + + uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) * + srcArraySize->getZExtValue(); + + if (cpyLen < srcSize) + return false; + + // Check that accessing the first srcSize bytes of dest will not cause a + // trap. Otherwise the transform is invalid since it might cause a trap + // to occur earlier than it otherwise would. + if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { + // The destination is an alloca. Check it is larger than srcSize. + ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); + if (!destArraySize) + return false; + + uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) * + destArraySize->getZExtValue(); + + if (destSize < srcSize) + return false; + } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { + // If the destination is an sret parameter then only accesses that are + // outside of the returned struct type can trap. + if (!A->hasStructRetAttr()) + return false; + + Type *StructTy = cast<PointerType>(A->getType())->getElementType(); + if (!StructTy->isSized()) { + // The call may never return and hence the copy-instruction may never + // be executed, and therefore it's not safe to say "the destination + // has at least <cpyLen> bytes, as implied by the copy-instruction", + return false; + } + + uint64_t destSize = TD->getTypeAllocSize(StructTy); + if (destSize < srcSize) + return false; + } else { + return false; + } + + // Check that dest points to memory that is at least as aligned as src. + unsigned srcAlign = srcAlloca->getAlignment(); + if (!srcAlign) + srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType()); + bool isDestSufficientlyAligned = srcAlign <= cpyAlign; + // If dest is not aligned enough and we can't increase its alignment then + // bail out. + if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) + return false; + + // Check that src is not accessed except via the call and the memcpy. This + // guarantees that it holds only undefined values when passed in (so the final + // memcpy can be dropped), that it is not read or written between the call and + // the memcpy, and that writing beyond the end of it is undefined. + SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(), + srcAlloca->use_end()); + while (!srcUseList.empty()) { + User *UI = srcUseList.pop_back_val(); + + if (isa<BitCastInst>(UI)) { + for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); + I != E; ++I) + srcUseList.push_back(*I); + } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) { + if (G->hasAllZeroIndices()) + for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); + I != E; ++I) + srcUseList.push_back(*I); + else + return false; + } else if (UI != C && UI != cpy) { + return false; + } + } + + // Since we're changing the parameter to the callsite, we need to make sure + // that what would be the new parameter dominates the callsite. + DominatorTree &DT = getAnalysis<DominatorTree>(); + if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) + if (!DT.dominates(cpyDestInst, C)) + return false; + + // In addition to knowing that the call does not access src in some + // unexpected manner, for example via a global, which we deduce from + // the use analysis, we also need to know that it does not sneakily + // access dest. We rely on AA to figure this out for us. + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize); + // If necessary, perform additional analysis. + if (MR != AliasAnalysis::NoModRef) + MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); + if (MR != AliasAnalysis::NoModRef) + return false; + + // All the checks have passed, so do the transformation. + bool changedArgument = false; + for (unsigned i = 0; i < CS.arg_size(); ++i) + if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { + Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest + : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), + cpyDest->getName(), C); + changedArgument = true; + if (CS.getArgument(i)->getType() == Dest->getType()) + CS.setArgument(i, Dest); + else + CS.setArgument(i, CastInst::CreatePointerCast(Dest, + CS.getArgument(i)->getType(), Dest->getName(), C)); + } + + if (!changedArgument) + return false; + + // If the destination wasn't sufficiently aligned then increase its alignment. + if (!isDestSufficientlyAligned) { + assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); + cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); + } + + // Drop any cached information about the call, because we may have changed + // its dependence information by changing its parameter. + MD->removeInstruction(C); + + // Remove the memcpy. + MD->removeInstruction(cpy); + ++NumMemCpyInstr; + + return true; +} + +/// processMemCpyMemCpyDependence - We've found that the (upward scanning) +/// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to +/// copy from MDep's input if we can. MSize is the size of M's copy. +/// +bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, + uint64_t MSize) { + // We can only transforms memcpy's where the dest of one is the source of the + // other. + if (M->getSource() != MDep->getDest() || MDep->isVolatile()) + return false; + + // If dep instruction is reading from our current input, then it is a noop + // transfer and substituting the input won't change this instruction. Just + // ignore the input and let someone else zap MDep. This handles cases like: + // memcpy(a <- a) + // memcpy(b <- a) + if (M->getSource() == MDep->getSource()) + return false; + + // Second, the length of the memcpy's must be the same, or the preceding one + // must be larger than the following one. + ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); + ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); + if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) + return false; + + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + + // Verify that the copied-from memory doesn't change in between the two + // transfers. For example, in: + // memcpy(a <- b) + // *b = 42; + // memcpy(c <- a) + // It would be invalid to transform the second memcpy into memcpy(c <- b). + // + // TODO: If the code between M and MDep is transparent to the destination "c", + // then we could still perform the xform by moving M up to the first memcpy. + // + // NOTE: This is conservative, it will stop on any read from the source loc, + // not just the defining memcpy. + MemDepResult SourceDep = + MD->getPointerDependencyFrom(AA.getLocationForSource(MDep), + false, M, M->getParent()); + if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) + return false; + + // If the dest of the second might alias the source of the first, then the + // source and dest might overlap. We still want to eliminate the intermediate + // value, but we have to generate a memmove instead of memcpy. + bool UseMemMove = false; + if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep))) + UseMemMove = true; + + // If all checks passed, then we can transform M. + + // Make sure to use the lesser of the alignment of the source and the dest + // since we're changing where we're reading from, but don't want to increase + // the alignment past what can be read from or written to. + // TODO: Is this worth it if we're creating a less aligned memcpy? For + // example we could be moving from movaps -> movq on x86. + unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); + + IRBuilder<> Builder(M); + if (UseMemMove) + Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), + Align, M->isVolatile()); + else + Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), + Align, M->isVolatile()); + + // Remove the instruction we're replacing. + MD->removeInstruction(M); + M->eraseFromParent(); + ++NumMemCpyInstr; + return true; +} + + +/// processMemCpy - perform simplification of memcpy's. If we have memcpy A +/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite +/// B to be a memcpy from X to Z (or potentially a memmove, depending on +/// circumstances). This allows later passes to remove the first memcpy +/// altogether. +bool MemCpyOpt::processMemCpy(MemCpyInst *M) { + // We can only optimize statically-sized memcpy's that are non-volatile. + ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); + if (CopySize == 0 || M->isVolatile()) return false; + + // If the source and destination of the memcpy are the same, then zap it. + if (M->getSource() == M->getDest()) { + MD->removeInstruction(M); + M->eraseFromParent(); + return false; + } + + // If copying from a constant, try to turn the memcpy into a memset. + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) + if (GV->isConstant() && GV->hasDefinitiveInitializer()) + if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { + IRBuilder<> Builder(M); + Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize, + M->getAlignment(), false); + MD->removeInstruction(M); + M->eraseFromParent(); + ++NumCpyToSet; + return true; + } + + // The are two possible optimizations we can do for memcpy: + // a) memcpy-memcpy xform which exposes redundance for DSE. + // b) call-memcpy xform for return slot optimization. + MemDepResult DepInfo = MD->getDependency(M); + if (DepInfo.isClobber()) { + if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { + if (performCallSlotOptzn(M, M->getDest(), M->getSource(), + CopySize->getZExtValue(), M->getAlignment(), + C)) { + MD->removeInstruction(M); + M->eraseFromParent(); + return true; + } + } + } + + AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M); + MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true, + M, M->getParent()); + if (SrcDepInfo.isClobber()) { + if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) + return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue()); + } + + return false; +} + +/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst +/// are guaranteed not to alias. +bool MemCpyOpt::processMemMove(MemMoveInst *M) { + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + + if (!TLI->has(LibFunc::memmove)) + return false; + + // See if the pointers alias. + if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M))) + return false; + + DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); + + // If not, then we know we can transform this. + Module *Mod = M->getParent()->getParent()->getParent(); + Type *ArgTys[3] = { M->getRawDest()->getType(), + M->getRawSource()->getType(), + M->getLength()->getType() }; + M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, + ArgTys)); + + // MemDep may have over conservative information about this instruction, just + // conservatively flush it from the cache. + MD->removeInstruction(M); + + ++NumMoveToCpy; + return true; +} + +/// processByValArgument - This is called on every byval argument in call sites. +bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { + if (TD == 0) return false; + + // Find out what feeds this byval argument. + Value *ByValArg = CS.getArgument(ArgNo); + Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); + uint64_t ByValSize = TD->getTypeAllocSize(ByValTy); + MemDepResult DepInfo = + MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize), + true, CS.getInstruction(), + CS.getInstruction()->getParent()); + if (!DepInfo.isClobber()) + return false; + + // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by + // a memcpy, see if we can byval from the source of the memcpy instead of the + // result. + MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); + if (MDep == 0 || MDep->isVolatile() || + ByValArg->stripPointerCasts() != MDep->getDest()) + return false; + + // The length of the memcpy must be larger or equal to the size of the byval. + ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); + if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize) + return false; + + // Get the alignment of the byval. If the call doesn't specify the alignment, + // then it is some target specific value that we can't know. + unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); + if (ByValAlign == 0) return false; + + // If it is greater than the memcpy, then we check to see if we can force the + // source of the memcpy to the alignment we need. If we fail, we bail out. + if (MDep->getAlignment() < ByValAlign && + getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign) + return false; + + // Verify that the copied-from memory doesn't change in between the memcpy and + // the byval call. + // memcpy(a <- b) + // *b = 42; + // foo(*a) + // It would be invalid to transform the second memcpy into foo(*b). + // + // NOTE: This is conservative, it will stop on any read from the source loc, + // not just the defining memcpy. + MemDepResult SourceDep = + MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep), + false, CS.getInstruction(), MDep->getParent()); + if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) + return false; + + Value *TmpCast = MDep->getSource(); + if (MDep->getSource()->getType() != ByValArg->getType()) + TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), + "tmpcast", CS.getInstruction()); + + DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" + << " " << *MDep << "\n" + << " " << *CS.getInstruction() << "\n"); + + // Otherwise we're good! Update the byval argument. + CS.setArgument(ArgNo, TmpCast); + ++NumMemCpyInstr; + return true; +} + +/// iterateOnFunction - Executes one iteration of MemCpyOpt. +bool MemCpyOpt::iterateOnFunction(Function &F) { + bool MadeChange = false; + + // Walk all instruction in the function. + for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { + // Avoid invalidating the iterator. + Instruction *I = BI++; + + bool RepeatInstruction = false; + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + MadeChange |= processStore(SI, BI); + else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) + RepeatInstruction = processMemSet(M, BI); + else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) + RepeatInstruction = processMemCpy(M); + else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) + RepeatInstruction = processMemMove(M); + else if (CallSite CS = (Value*)I) { + for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) + if (CS.isByValArgument(i)) + MadeChange |= processByValArgument(CS, i); + } + + // Reprocess the instruction if desired. + if (RepeatInstruction) { + if (BI != BB->begin()) --BI; + MadeChange = true; + } + } + } + + return MadeChange; +} + +// MemCpyOpt::runOnFunction - This is the main transformation entry point for a +// function. +// +bool MemCpyOpt::runOnFunction(Function &F) { + bool MadeChange = false; + MD = &getAnalysis<MemoryDependenceAnalysis>(); + TD = getAnalysisIfAvailable<DataLayout>(); + TLI = &getAnalysis<TargetLibraryInfo>(); + + // If we don't have at least memset and memcpy, there is little point of doing + // anything here. These are required by a freestanding implementation, so if + // even they are disabled, there is no point in trying hard. + if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) + return false; + + while (1) { + if (!iterateOnFunction(F)) + break; + MadeChange = true; + } + + MD = 0; + return MadeChange; +} |