aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp1761
1 files changed, 1761 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
new file mode 100644
index 000000000000..fc0216e76a5b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
@@ -0,0 +1,1761 @@
+//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a simple loop reroller.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-reroll"
+
+STATISTIC(NumRerolledLoops, "Number of rerolled loops");
+
+static cl::opt<unsigned>
+MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
+ cl::desc("The maximum increment for loop rerolling"));
+
+static cl::opt<unsigned>
+NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
+ cl::Hidden,
+ cl::desc("The maximum number of failures to tolerate"
+ " during fuzzy matching. (default: 400)"));
+
+// This loop re-rolling transformation aims to transform loops like this:
+//
+// int foo(int a);
+// void bar(int *x) {
+// for (int i = 0; i < 500; i += 3) {
+// foo(i);
+// foo(i+1);
+// foo(i+2);
+// }
+// }
+//
+// into a loop like this:
+//
+// void bar(int *x) {
+// for (int i = 0; i < 500; ++i)
+// foo(i);
+// }
+//
+// It does this by looking for loops that, besides the latch code, are composed
+// of isomorphic DAGs of instructions, with each DAG rooted at some increment
+// to the induction variable, and where each DAG is isomorphic to the DAG
+// rooted at the induction variable (excepting the sub-DAGs which root the
+// other induction-variable increments). In other words, we're looking for loop
+// bodies of the form:
+//
+// %iv = phi [ (preheader, ...), (body, %iv.next) ]
+// f(%iv)
+// %iv.1 = add %iv, 1 <-- a root increment
+// f(%iv.1)
+// %iv.2 = add %iv, 2 <-- a root increment
+// f(%iv.2)
+// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
+// f(%iv.scale_m_1)
+// ...
+// %iv.next = add %iv, scale
+// %cmp = icmp(%iv, ...)
+// br %cmp, header, exit
+//
+// where each f(i) is a set of instructions that, collectively, are a function
+// only of i (and other loop-invariant values).
+//
+// As a special case, we can also reroll loops like this:
+//
+// int foo(int);
+// void bar(int *x) {
+// for (int i = 0; i < 500; ++i) {
+// x[3*i] = foo(0);
+// x[3*i+1] = foo(0);
+// x[3*i+2] = foo(0);
+// }
+// }
+//
+// into this:
+//
+// void bar(int *x) {
+// for (int i = 0; i < 1500; ++i)
+// x[i] = foo(0);
+// }
+//
+// in which case, we're looking for inputs like this:
+//
+// %iv = phi [ (preheader, ...), (body, %iv.next) ]
+// %scaled.iv = mul %iv, scale
+// f(%scaled.iv)
+// %scaled.iv.1 = add %scaled.iv, 1
+// f(%scaled.iv.1)
+// %scaled.iv.2 = add %scaled.iv, 2
+// f(%scaled.iv.2)
+// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
+// f(%scaled.iv.scale_m_1)
+// ...
+// %iv.next = add %iv, 1
+// %cmp = icmp(%iv, ...)
+// br %cmp, header, exit
+
+namespace {
+ enum IterationLimits {
+ /// The maximum number of iterations that we'll try and reroll.
+ IL_MaxRerollIterations = 32,
+ /// The bitvector index used by loop induction variables and other
+ /// instructions that belong to all iterations.
+ IL_All,
+ IL_End
+ };
+
+ class LoopReroll : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopReroll() : LoopPass(ID) {
+ initializeLoopRerollPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+
+ protected:
+ AliasAnalysis *AA;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ TargetLibraryInfo *TLI;
+ DominatorTree *DT;
+ bool PreserveLCSSA;
+
+ typedef SmallVector<Instruction *, 16> SmallInstructionVector;
+ typedef SmallSet<Instruction *, 16> SmallInstructionSet;
+
+ // Map between induction variable and its increment
+ DenseMap<Instruction *, int64_t> IVToIncMap;
+ // For loop with multiple induction variable, remember the one used only to
+ // control the loop.
+ Instruction *LoopControlIV;
+
+ // A chain of isomorphic instructions, identified by a single-use PHI
+ // representing a reduction. Only the last value may be used outside the
+ // loop.
+ struct SimpleLoopReduction {
+ SimpleLoopReduction(Instruction *P, Loop *L)
+ : Valid(false), Instructions(1, P) {
+ assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
+ add(L);
+ }
+
+ bool valid() const {
+ return Valid;
+ }
+
+ Instruction *getPHI() const {
+ assert(Valid && "Using invalid reduction");
+ return Instructions.front();
+ }
+
+ Instruction *getReducedValue() const {
+ assert(Valid && "Using invalid reduction");
+ return Instructions.back();
+ }
+
+ Instruction *get(size_t i) const {
+ assert(Valid && "Using invalid reduction");
+ return Instructions[i+1];
+ }
+
+ Instruction *operator [] (size_t i) const { return get(i); }
+
+ // The size, ignoring the initial PHI.
+ size_t size() const {
+ assert(Valid && "Using invalid reduction");
+ return Instructions.size()-1;
+ }
+
+ typedef SmallInstructionVector::iterator iterator;
+ typedef SmallInstructionVector::const_iterator const_iterator;
+
+ iterator begin() {
+ assert(Valid && "Using invalid reduction");
+ return std::next(Instructions.begin());
+ }
+
+ const_iterator begin() const {
+ assert(Valid && "Using invalid reduction");
+ return std::next(Instructions.begin());
+ }
+
+ iterator end() { return Instructions.end(); }
+ const_iterator end() const { return Instructions.end(); }
+
+ protected:
+ bool Valid;
+ SmallInstructionVector Instructions;
+
+ void add(Loop *L);
+ };
+
+ // The set of all reductions, and state tracking of possible reductions
+ // during loop instruction processing.
+ struct ReductionTracker {
+ typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
+
+ // Add a new possible reduction.
+ void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
+
+ // Setup to track possible reductions corresponding to the provided
+ // rerolling scale. Only reductions with a number of non-PHI instructions
+ // that is divisible by the scale are considered. Three instructions sets
+ // are filled in:
+ // - A set of all possible instructions in eligible reductions.
+ // - A set of all PHIs in eligible reductions
+ // - A set of all reduced values (last instructions) in eligible
+ // reductions.
+ void restrictToScale(uint64_t Scale,
+ SmallInstructionSet &PossibleRedSet,
+ SmallInstructionSet &PossibleRedPHISet,
+ SmallInstructionSet &PossibleRedLastSet) {
+ PossibleRedIdx.clear();
+ PossibleRedIter.clear();
+ Reds.clear();
+
+ for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
+ if (PossibleReds[i].size() % Scale == 0) {
+ PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
+ PossibleRedPHISet.insert(PossibleReds[i].getPHI());
+
+ PossibleRedSet.insert(PossibleReds[i].getPHI());
+ PossibleRedIdx[PossibleReds[i].getPHI()] = i;
+ for (Instruction *J : PossibleReds[i]) {
+ PossibleRedSet.insert(J);
+ PossibleRedIdx[J] = i;
+ }
+ }
+ }
+
+ // The functions below are used while processing the loop instructions.
+
+ // Are the two instructions both from reductions, and furthermore, from
+ // the same reduction?
+ bool isPairInSame(Instruction *J1, Instruction *J2) {
+ DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
+ if (J1I != PossibleRedIdx.end()) {
+ DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
+ if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
+ return true;
+ }
+
+ return false;
+ }
+
+ // The two provided instructions, the first from the base iteration, and
+ // the second from iteration i, form a matched pair. If these are part of
+ // a reduction, record that fact.
+ void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
+ if (PossibleRedIdx.count(J1)) {
+ assert(PossibleRedIdx.count(J2) &&
+ "Recording reduction vs. non-reduction instruction?");
+
+ PossibleRedIter[J1] = 0;
+ PossibleRedIter[J2] = i;
+
+ int Idx = PossibleRedIdx[J1];
+ assert(Idx == PossibleRedIdx[J2] &&
+ "Recording pair from different reductions?");
+ Reds.insert(Idx);
+ }
+ }
+
+ // The functions below can be called after we've finished processing all
+ // instructions in the loop, and we know which reductions were selected.
+
+ bool validateSelected();
+ void replaceSelected();
+
+ protected:
+ // The vector of all possible reductions (for any scale).
+ SmallReductionVector PossibleReds;
+
+ DenseMap<Instruction *, int> PossibleRedIdx;
+ DenseMap<Instruction *, int> PossibleRedIter;
+ DenseSet<int> Reds;
+ };
+
+ // A DAGRootSet models an induction variable being used in a rerollable
+ // loop. For example,
+ //
+ // x[i*3+0] = y1
+ // x[i*3+1] = y2
+ // x[i*3+2] = y3
+ //
+ // Base instruction -> i*3
+ // +---+----+
+ // / | \
+ // ST[y1] +1 +2 <-- Roots
+ // | |
+ // ST[y2] ST[y3]
+ //
+ // There may be multiple DAGRoots, for example:
+ //
+ // x[i*2+0] = ... (1)
+ // x[i*2+1] = ... (1)
+ // x[i*2+4] = ... (2)
+ // x[i*2+5] = ... (2)
+ // x[(i+1234)*2+5678] = ... (3)
+ // x[(i+1234)*2+5679] = ... (3)
+ //
+ // The loop will be rerolled by adding a new loop induction variable,
+ // one for the Base instruction in each DAGRootSet.
+ //
+ struct DAGRootSet {
+ Instruction *BaseInst;
+ SmallInstructionVector Roots;
+ // The instructions between IV and BaseInst (but not including BaseInst).
+ SmallInstructionSet SubsumedInsts;
+ };
+
+ // The set of all DAG roots, and state tracking of all roots
+ // for a particular induction variable.
+ struct DAGRootTracker {
+ DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
+ ScalarEvolution *SE, AliasAnalysis *AA,
+ TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
+ bool PreserveLCSSA,
+ DenseMap<Instruction *, int64_t> &IncrMap,
+ Instruction *LoopCtrlIV)
+ : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
+ PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
+ LoopControlIV(LoopCtrlIV) {}
+
+ /// Stage 1: Find all the DAG roots for the induction variable.
+ bool findRoots();
+ /// Stage 2: Validate if the found roots are valid.
+ bool validate(ReductionTracker &Reductions);
+ /// Stage 3: Assuming validate() returned true, perform the
+ /// replacement.
+ /// @param IterCount The maximum iteration count of L.
+ void replace(const SCEV *IterCount);
+
+ protected:
+ typedef MapVector<Instruction*, BitVector> UsesTy;
+
+ void findRootsRecursive(Instruction *IVU,
+ SmallInstructionSet SubsumedInsts);
+ bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
+ bool collectPossibleRoots(Instruction *Base,
+ std::map<int64_t,Instruction*> &Roots);
+ bool validateRootSet(DAGRootSet &DRS);
+
+ bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
+ void collectInLoopUserSet(const SmallInstructionVector &Roots,
+ const SmallInstructionSet &Exclude,
+ const SmallInstructionSet &Final,
+ DenseSet<Instruction *> &Users);
+ void collectInLoopUserSet(Instruction *Root,
+ const SmallInstructionSet &Exclude,
+ const SmallInstructionSet &Final,
+ DenseSet<Instruction *> &Users);
+
+ UsesTy::iterator nextInstr(int Val, UsesTy &In,
+ const SmallInstructionSet &Exclude,
+ UsesTy::iterator *StartI=nullptr);
+ bool isBaseInst(Instruction *I);
+ bool isRootInst(Instruction *I);
+ bool instrDependsOn(Instruction *I,
+ UsesTy::iterator Start,
+ UsesTy::iterator End);
+ void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount);
+ void updateNonLoopCtrlIncr();
+
+ LoopReroll *Parent;
+
+ // Members of Parent, replicated here for brevity.
+ Loop *L;
+ ScalarEvolution *SE;
+ AliasAnalysis *AA;
+ TargetLibraryInfo *TLI;
+ DominatorTree *DT;
+ LoopInfo *LI;
+ bool PreserveLCSSA;
+
+ // The loop induction variable.
+ Instruction *IV;
+ // Loop step amount.
+ int64_t Inc;
+ // Loop reroll count; if Inc == 1, this records the scaling applied
+ // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
+ // If Inc is not 1, Scale = Inc.
+ uint64_t Scale;
+ // The roots themselves.
+ SmallVector<DAGRootSet,16> RootSets;
+ // All increment instructions for IV.
+ SmallInstructionVector LoopIncs;
+ // Map of all instructions in the loop (in order) to the iterations
+ // they are used in (or specially, IL_All for instructions
+ // used in the loop increment mechanism).
+ UsesTy Uses;
+ // Map between induction variable and its increment
+ DenseMap<Instruction *, int64_t> &IVToIncMap;
+ Instruction *LoopControlIV;
+ };
+
+ // Check if it is a compare-like instruction whose user is a branch
+ bool isCompareUsedByBranch(Instruction *I) {
+ auto *TI = I->getParent()->getTerminator();
+ if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
+ return false;
+ return I->hasOneUse() && TI->getOperand(0) == I;
+ };
+
+ bool isLoopControlIV(Loop *L, Instruction *IV);
+ void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
+ void collectPossibleReductions(Loop *L,
+ ReductionTracker &Reductions);
+ bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
+ ReductionTracker &Reductions);
+ };
+}
+
+char LoopReroll::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
+
+Pass *llvm::createLoopRerollPass() {
+ return new LoopReroll;
+}
+
+// Returns true if the provided instruction is used outside the given loop.
+// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
+// non-loop blocks to be outside the loop.
+static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
+ for (User *U : I->users()) {
+ if (!L->contains(cast<Instruction>(U)))
+ return true;
+ }
+ return false;
+}
+
+static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE,
+ const SCEV *SCEVExpr,
+ Instruction &IV) {
+ const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr);
+
+ // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)),
+ // Return c1.
+ if (!MulSCEV && IV.getType()->isPointerTy())
+ if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) {
+ const PointerType *PTy = cast<PointerType>(IV.getType());
+ Type *ElTy = PTy->getElementType();
+ const SCEV *SizeOfExpr =
+ SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy);
+ if (IncSCEV->getValue()->getValue().isNegative()) {
+ const SCEV *NewSCEV =
+ SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr);
+ return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV));
+ } else {
+ return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr));
+ }
+ }
+
+ if (!MulSCEV)
+ return nullptr;
+
+ // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant,
+ // Return c.
+ const SCEVConstant *CIncSCEV = nullptr;
+ for (const SCEV *Operand : MulSCEV->operands()) {
+ if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) {
+ CIncSCEV = Constant;
+ } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) {
+ Type *AllocTy;
+ if (!Unknown->isSizeOf(AllocTy))
+ break;
+ } else {
+ return nullptr;
+ }
+ }
+ return CIncSCEV;
+}
+
+// Check if an IV is only used to control the loop. There are two cases:
+// 1. It only has one use which is loop increment, and the increment is only
+// used by comparison and the PHI (could has sext with nsw in between), and the
+// comparison is only used by branch.
+// 2. It is used by loop increment and the comparison, the loop increment is
+// only used by the PHI, and the comparison is used only by the branch.
+bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
+ unsigned IVUses = IV->getNumUses();
+ if (IVUses != 2 && IVUses != 1)
+ return false;
+
+ for (auto *User : IV->users()) {
+ int32_t IncOrCmpUses = User->getNumUses();
+ bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
+
+ // User can only have one or two uses.
+ if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
+ return false;
+
+ // Case 1
+ if (IVUses == 1) {
+ // The only user must be the loop increment.
+ // The loop increment must have two uses.
+ if (IsCompInst || IncOrCmpUses != 2)
+ return false;
+ }
+
+ // Case 2
+ if (IVUses == 2 && IncOrCmpUses != 1)
+ return false;
+
+ // The users of the IV must be a binary operation or a comparison
+ if (auto *BO = dyn_cast<BinaryOperator>(User)) {
+ if (BO->getOpcode() == Instruction::Add) {
+ // Loop Increment
+ // User of Loop Increment should be either PHI or CMP
+ for (auto *UU : User->users()) {
+ if (PHINode *PN = dyn_cast<PHINode>(UU)) {
+ if (PN != IV)
+ return false;
+ }
+ // Must be a CMP or an ext (of a value with nsw) then CMP
+ else {
+ Instruction *UUser = dyn_cast<Instruction>(UU);
+ // Skip SExt if we are extending an nsw value
+ // TODO: Allow ZExt too
+ if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
+ isa<SExtInst>(UUser))
+ UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
+ if (!isCompareUsedByBranch(UUser))
+ return false;
+ }
+ }
+ } else
+ return false;
+ // Compare : can only have one use, and must be branch
+ } else if (!IsCompInst)
+ return false;
+ }
+ return true;
+}
+
+// Collect the list of loop induction variables with respect to which it might
+// be possible to reroll the loop.
+void LoopReroll::collectPossibleIVs(Loop *L,
+ SmallInstructionVector &PossibleIVs) {
+ BasicBlock *Header = L->getHeader();
+ for (BasicBlock::iterator I = Header->begin(),
+ IE = Header->getFirstInsertionPt(); I != IE; ++I) {
+ if (!isa<PHINode>(I))
+ continue;
+ if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
+ continue;
+
+ if (const SCEVAddRecExpr *PHISCEV =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
+ if (PHISCEV->getLoop() != L)
+ continue;
+ if (!PHISCEV->isAffine())
+ continue;
+ const SCEVConstant *IncSCEV = nullptr;
+ if (I->getType()->isPointerTy())
+ IncSCEV =
+ getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I);
+ else
+ IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
+ if (IncSCEV) {
+ const APInt &AInt = IncSCEV->getValue()->getValue().abs();
+ if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc))
+ continue;
+ IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
+ DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
+ << "\n");
+
+ if (isLoopControlIV(L, &*I)) {
+ assert(!LoopControlIV && "Found two loop control only IV");
+ LoopControlIV = &(*I);
+ DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = "
+ << *PHISCEV << "\n");
+ } else
+ PossibleIVs.push_back(&*I);
+ }
+ }
+ }
+}
+
+// Add the remainder of the reduction-variable chain to the instruction vector
+// (the initial PHINode has already been added). If successful, the object is
+// marked as valid.
+void LoopReroll::SimpleLoopReduction::add(Loop *L) {
+ assert(!Valid && "Cannot add to an already-valid chain");
+
+ // The reduction variable must be a chain of single-use instructions
+ // (including the PHI), except for the last value (which is used by the PHI
+ // and also outside the loop).
+ Instruction *C = Instructions.front();
+ if (C->user_empty())
+ return;
+
+ do {
+ C = cast<Instruction>(*C->user_begin());
+ if (C->hasOneUse()) {
+ if (!C->isBinaryOp())
+ return;
+
+ if (!(isa<PHINode>(Instructions.back()) ||
+ C->isSameOperationAs(Instructions.back())))
+ return;
+
+ Instructions.push_back(C);
+ }
+ } while (C->hasOneUse());
+
+ if (Instructions.size() < 2 ||
+ !C->isSameOperationAs(Instructions.back()) ||
+ C->use_empty())
+ return;
+
+ // C is now the (potential) last instruction in the reduction chain.
+ for (User *U : C->users()) {
+ // The only in-loop user can be the initial PHI.
+ if (L->contains(cast<Instruction>(U)))
+ if (cast<Instruction>(U) != Instructions.front())
+ return;
+ }
+
+ Instructions.push_back(C);
+ Valid = true;
+}
+
+// Collect the vector of possible reduction variables.
+void LoopReroll::collectPossibleReductions(Loop *L,
+ ReductionTracker &Reductions) {
+ BasicBlock *Header = L->getHeader();
+ for (BasicBlock::iterator I = Header->begin(),
+ IE = Header->getFirstInsertionPt(); I != IE; ++I) {
+ if (!isa<PHINode>(I))
+ continue;
+ if (!I->getType()->isSingleValueType())
+ continue;
+
+ SimpleLoopReduction SLR(&*I, L);
+ if (!SLR.valid())
+ continue;
+
+ DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
+ SLR.size() << " chained instructions)\n");
+ Reductions.addSLR(SLR);
+ }
+}
+
+// Collect the set of all users of the provided root instruction. This set of
+// users contains not only the direct users of the root instruction, but also
+// all users of those users, and so on. There are two exceptions:
+//
+// 1. Instructions in the set of excluded instructions are never added to the
+// use set (even if they are users). This is used, for example, to exclude
+// including root increments in the use set of the primary IV.
+//
+// 2. Instructions in the set of final instructions are added to the use set
+// if they are users, but their users are not added. This is used, for
+// example, to prevent a reduction update from forcing all later reduction
+// updates into the use set.
+void LoopReroll::DAGRootTracker::collectInLoopUserSet(
+ Instruction *Root, const SmallInstructionSet &Exclude,
+ const SmallInstructionSet &Final,
+ DenseSet<Instruction *> &Users) {
+ SmallInstructionVector Queue(1, Root);
+ while (!Queue.empty()) {
+ Instruction *I = Queue.pop_back_val();
+ if (!Users.insert(I).second)
+ continue;
+
+ if (!Final.count(I))
+ for (Use &U : I->uses()) {
+ Instruction *User = cast<Instruction>(U.getUser());
+ if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ // Ignore "wrap-around" uses to PHIs of this loop's header.
+ if (PN->getIncomingBlock(U) == L->getHeader())
+ continue;
+ }
+
+ if (L->contains(User) && !Exclude.count(User)) {
+ Queue.push_back(User);
+ }
+ }
+
+ // We also want to collect single-user "feeder" values.
+ for (User::op_iterator OI = I->op_begin(),
+ OIE = I->op_end(); OI != OIE; ++OI) {
+ if (Instruction *Op = dyn_cast<Instruction>(*OI))
+ if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
+ !Final.count(Op))
+ Queue.push_back(Op);
+ }
+ }
+}
+
+// Collect all of the users of all of the provided root instructions (combined
+// into a single set).
+void LoopReroll::DAGRootTracker::collectInLoopUserSet(
+ const SmallInstructionVector &Roots,
+ const SmallInstructionSet &Exclude,
+ const SmallInstructionSet &Final,
+ DenseSet<Instruction *> &Users) {
+ for (Instruction *Root : Roots)
+ collectInLoopUserSet(Root, Exclude, Final, Users);
+}
+
+static bool isUnorderedLoadStore(Instruction *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->isUnordered();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->isUnordered();
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
+ return !MI->isVolatile();
+ return false;
+}
+
+/// Return true if IVU is a "simple" arithmetic operation.
+/// This is used for narrowing the search space for DAGRoots; only arithmetic
+/// and GEPs can be part of a DAGRoot.
+static bool isSimpleArithmeticOp(User *IVU) {
+ if (Instruction *I = dyn_cast<Instruction>(IVU)) {
+ switch (I->getOpcode()) {
+ default: return false;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Shl:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ case Instruction::GetElementPtr:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool isLoopIncrement(User *U, Instruction *IV) {
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
+
+ if ((BO && BO->getOpcode() != Instruction::Add) ||
+ (!BO && !isa<GetElementPtrInst>(U)))
+ return false;
+
+ for (auto *UU : U->users()) {
+ PHINode *PN = dyn_cast<PHINode>(UU);
+ if (PN && PN == IV)
+ return true;
+ }
+ return false;
+}
+
+bool LoopReroll::DAGRootTracker::
+collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
+ SmallInstructionVector BaseUsers;
+
+ for (auto *I : Base->users()) {
+ ConstantInt *CI = nullptr;
+
+ if (isLoopIncrement(I, IV)) {
+ LoopIncs.push_back(cast<Instruction>(I));
+ continue;
+ }
+
+ // The root nodes must be either GEPs, ORs or ADDs.
+ if (auto *BO = dyn_cast<BinaryOperator>(I)) {
+ if (BO->getOpcode() == Instruction::Add ||
+ BO->getOpcode() == Instruction::Or)
+ CI = dyn_cast<ConstantInt>(BO->getOperand(1));
+ } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
+ CI = dyn_cast<ConstantInt>(LastOperand);
+ }
+
+ if (!CI) {
+ if (Instruction *II = dyn_cast<Instruction>(I)) {
+ BaseUsers.push_back(II);
+ continue;
+ } else {
+ DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
+ return false;
+ }
+ }
+
+ int64_t V = std::abs(CI->getValue().getSExtValue());
+ if (Roots.find(V) != Roots.end())
+ // No duplicates, please.
+ return false;
+
+ Roots[V] = cast<Instruction>(I);
+ }
+
+ // Make sure we have at least two roots.
+ if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
+ return false;
+
+ // If we found non-loop-inc, non-root users of Base, assume they are
+ // for the zeroth root index. This is because "add %a, 0" gets optimized
+ // away.
+ if (BaseUsers.size()) {
+ if (Roots.find(0) != Roots.end()) {
+ DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
+ return false;
+ }
+ Roots[0] = Base;
+ }
+
+ // Calculate the number of users of the base, or lowest indexed, iteration.
+ unsigned NumBaseUses = BaseUsers.size();
+ if (NumBaseUses == 0)
+ NumBaseUses = Roots.begin()->second->getNumUses();
+
+ // Check that every node has the same number of users.
+ for (auto &KV : Roots) {
+ if (KV.first == 0)
+ continue;
+ if (!KV.second->hasNUses(NumBaseUses)) {
+ DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
+ << "#Base=" << NumBaseUses << ", #Root=" <<
+ KV.second->getNumUses() << "\n");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void LoopReroll::DAGRootTracker::
+findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
+ // Does the user look like it could be part of a root set?
+ // All its users must be simple arithmetic ops.
+ if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
+ return;
+
+ if (I != IV && findRootsBase(I, SubsumedInsts))
+ return;
+
+ SubsumedInsts.insert(I);
+
+ for (User *V : I->users()) {
+ Instruction *I = cast<Instruction>(V);
+ if (is_contained(LoopIncs, I))
+ continue;
+
+ if (!isSimpleArithmeticOp(I))
+ continue;
+
+ // The recursive call makes a copy of SubsumedInsts.
+ findRootsRecursive(I, SubsumedInsts);
+ }
+}
+
+bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
+ if (DRS.Roots.empty())
+ return false;
+
+ // Consider a DAGRootSet with N-1 roots (so N different values including
+ // BaseInst).
+ // Define d = Roots[0] - BaseInst, which should be the same as
+ // Roots[I] - Roots[I-1] for all I in [1..N).
+ // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
+ // loop iteration J.
+ //
+ // Now, For the loop iterations to be consecutive:
+ // D = d * N
+ const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
+ if (!ADR)
+ return false;
+ unsigned N = DRS.Roots.size() + 1;
+ const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
+ const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
+ if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
+ return false;
+
+ return true;
+}
+
+bool LoopReroll::DAGRootTracker::
+findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
+ // The base of a RootSet must be an AddRec, so it can be erased.
+ const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
+ if (!IVU_ADR || IVU_ADR->getLoop() != L)
+ return false;
+
+ std::map<int64_t, Instruction*> V;
+ if (!collectPossibleRoots(IVU, V))
+ return false;
+
+ // If we didn't get a root for index zero, then IVU must be
+ // subsumed.
+ if (V.find(0) == V.end())
+ SubsumedInsts.insert(IVU);
+
+ // Partition the vector into monotonically increasing indexes.
+ DAGRootSet DRS;
+ DRS.BaseInst = nullptr;
+
+ SmallVector<DAGRootSet, 16> PotentialRootSets;
+
+ for (auto &KV : V) {
+ if (!DRS.BaseInst) {
+ DRS.BaseInst = KV.second;
+ DRS.SubsumedInsts = SubsumedInsts;
+ } else if (DRS.Roots.empty()) {
+ DRS.Roots.push_back(KV.second);
+ } else if (V.find(KV.first - 1) != V.end()) {
+ DRS.Roots.push_back(KV.second);
+ } else {
+ // Linear sequence terminated.
+ if (!validateRootSet(DRS))
+ return false;
+
+ // Construct a new DAGRootSet with the next sequence.
+ PotentialRootSets.push_back(DRS);
+ DRS.BaseInst = KV.second;
+ DRS.Roots.clear();
+ }
+ }
+
+ if (!validateRootSet(DRS))
+ return false;
+
+ PotentialRootSets.push_back(DRS);
+
+ RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
+
+ return true;
+}
+
+bool LoopReroll::DAGRootTracker::findRoots() {
+ Inc = IVToIncMap[IV];
+
+ assert(RootSets.empty() && "Unclean state!");
+ if (std::abs(Inc) == 1) {
+ for (auto *IVU : IV->users()) {
+ if (isLoopIncrement(IVU, IV))
+ LoopIncs.push_back(cast<Instruction>(IVU));
+ }
+ findRootsRecursive(IV, SmallInstructionSet());
+ LoopIncs.push_back(IV);
+ } else {
+ if (!findRootsBase(IV, SmallInstructionSet()))
+ return false;
+ }
+
+ // Ensure all sets have the same size.
+ if (RootSets.empty()) {
+ DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
+ return false;
+ }
+ for (auto &V : RootSets) {
+ if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
+ DEBUG(dbgs()
+ << "LRR: Aborting because not all root sets have the same size\n");
+ return false;
+ }
+ }
+
+ Scale = RootSets[0].Roots.size() + 1;
+
+ if (Scale > IL_MaxRerollIterations) {
+ DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
+ << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
+ << "\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
+
+ return true;
+}
+
+bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
+ // Populate the MapVector with all instructions in the block, in order first,
+ // so we can iterate over the contents later in perfect order.
+ for (auto &I : *L->getHeader()) {
+ Uses[&I].resize(IL_End);
+ }
+
+ SmallInstructionSet Exclude;
+ for (auto &DRS : RootSets) {
+ Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
+ Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
+ Exclude.insert(DRS.BaseInst);
+ }
+ Exclude.insert(LoopIncs.begin(), LoopIncs.end());
+
+ for (auto &DRS : RootSets) {
+ DenseSet<Instruction*> VBase;
+ collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
+ for (auto *I : VBase) {
+ Uses[I].set(0);
+ }
+
+ unsigned Idx = 1;
+ for (auto *Root : DRS.Roots) {
+ DenseSet<Instruction*> V;
+ collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
+
+ // While we're here, check the use sets are the same size.
+ if (V.size() != VBase.size()) {
+ DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
+ return false;
+ }
+
+ for (auto *I : V) {
+ Uses[I].set(Idx);
+ }
+ ++Idx;
+ }
+
+ // Make sure our subsumed instructions are remembered too.
+ for (auto *I : DRS.SubsumedInsts) {
+ Uses[I].set(IL_All);
+ }
+ }
+
+ // Make sure the loop increments are also accounted for.
+
+ Exclude.clear();
+ for (auto &DRS : RootSets) {
+ Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
+ Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
+ Exclude.insert(DRS.BaseInst);
+ }
+
+ DenseSet<Instruction*> V;
+ collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
+ for (auto *I : V) {
+ Uses[I].set(IL_All);
+ }
+
+ return true;
+
+}
+
+/// Get the next instruction in "In" that is a member of set Val.
+/// Start searching from StartI, and do not return anything in Exclude.
+/// If StartI is not given, start from In.begin().
+LoopReroll::DAGRootTracker::UsesTy::iterator
+LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
+ const SmallInstructionSet &Exclude,
+ UsesTy::iterator *StartI) {
+ UsesTy::iterator I = StartI ? *StartI : In.begin();
+ while (I != In.end() && (I->second.test(Val) == 0 ||
+ Exclude.count(I->first) != 0))
+ ++I;
+ return I;
+}
+
+bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
+ for (auto &DRS : RootSets) {
+ if (DRS.BaseInst == I)
+ return true;
+ }
+ return false;
+}
+
+bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
+ for (auto &DRS : RootSets) {
+ if (is_contained(DRS.Roots, I))
+ return true;
+ }
+ return false;
+}
+
+/// Return true if instruction I depends on any instruction between
+/// Start and End.
+bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
+ UsesTy::iterator Start,
+ UsesTy::iterator End) {
+ for (auto *U : I->users()) {
+ for (auto It = Start; It != End; ++It)
+ if (U == It->first)
+ return true;
+ }
+ return false;
+}
+
+static bool isIgnorableInst(const Instruction *I) {
+ if (isa<DbgInfoIntrinsic>(I))
+ return true;
+ const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
+ if (!II)
+ return false;
+ switch (II->getIntrinsicID()) {
+ default:
+ return false;
+ case llvm::Intrinsic::annotation:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ // TODO: the following intrinsics may also be whitelisted:
+ // lifetime_start, lifetime_end, invariant_start, invariant_end
+ return true;
+ }
+ return false;
+}
+
+bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
+ // We now need to check for equivalence of the use graph of each root with
+ // that of the primary induction variable (excluding the roots). Our goal
+ // here is not to solve the full graph isomorphism problem, but rather to
+ // catch common cases without a lot of work. As a result, we will assume
+ // that the relative order of the instructions in each unrolled iteration
+ // is the same (although we will not make an assumption about how the
+ // different iterations are intermixed). Note that while the order must be
+ // the same, the instructions may not be in the same basic block.
+
+ // An array of just the possible reductions for this scale factor. When we
+ // collect the set of all users of some root instructions, these reduction
+ // instructions are treated as 'final' (their uses are not considered).
+ // This is important because we don't want the root use set to search down
+ // the reduction chain.
+ SmallInstructionSet PossibleRedSet;
+ SmallInstructionSet PossibleRedLastSet;
+ SmallInstructionSet PossibleRedPHISet;
+ Reductions.restrictToScale(Scale, PossibleRedSet,
+ PossibleRedPHISet, PossibleRedLastSet);
+
+ // Populate "Uses" with where each instruction is used.
+ if (!collectUsedInstructions(PossibleRedSet))
+ return false;
+
+ // Make sure we mark the reduction PHIs as used in all iterations.
+ for (auto *I : PossibleRedPHISet) {
+ Uses[I].set(IL_All);
+ }
+
+ // Make sure we mark loop-control-only PHIs as used in all iterations. See
+ // comment above LoopReroll::isLoopControlIV for more information.
+ BasicBlock *Header = L->getHeader();
+ if (LoopControlIV && LoopControlIV != IV) {
+ for (auto *U : LoopControlIV->users()) {
+ Instruction *IVUser = dyn_cast<Instruction>(U);
+ // IVUser could be loop increment or compare
+ Uses[IVUser].set(IL_All);
+ for (auto *UU : IVUser->users()) {
+ Instruction *UUser = dyn_cast<Instruction>(UU);
+ // UUser could be compare, PHI or branch
+ Uses[UUser].set(IL_All);
+ // Skip SExt
+ if (isa<SExtInst>(UUser)) {
+ UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
+ Uses[UUser].set(IL_All);
+ }
+ // Is UUser a compare instruction?
+ if (UU->hasOneUse()) {
+ Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
+ if (BI == cast<BranchInst>(Header->getTerminator()))
+ Uses[BI].set(IL_All);
+ }
+ }
+ }
+ }
+
+ // Make sure all instructions in the loop are in one and only one
+ // set.
+ for (auto &KV : Uses) {
+ if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
+ DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
+ << *KV.first << " (#uses=" << KV.second.count() << ")\n");
+ return false;
+ }
+ }
+
+ DEBUG(
+ for (auto &KV : Uses) {
+ dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
+ }
+ );
+
+ for (unsigned Iter = 1; Iter < Scale; ++Iter) {
+ // In addition to regular aliasing information, we need to look for
+ // instructions from later (future) iterations that have side effects
+ // preventing us from reordering them past other instructions with side
+ // effects.
+ bool FutureSideEffects = false;
+ AliasSetTracker AST(*AA);
+ // The map between instructions in f(%iv.(i+1)) and f(%iv).
+ DenseMap<Value *, Value *> BaseMap;
+
+ // Compare iteration Iter to the base.
+ SmallInstructionSet Visited;
+ auto BaseIt = nextInstr(0, Uses, Visited);
+ auto RootIt = nextInstr(Iter, Uses, Visited);
+ auto LastRootIt = Uses.begin();
+
+ while (BaseIt != Uses.end() && RootIt != Uses.end()) {
+ Instruction *BaseInst = BaseIt->first;
+ Instruction *RootInst = RootIt->first;
+
+ // Skip over the IV or root instructions; only match their users.
+ bool Continue = false;
+ if (isBaseInst(BaseInst)) {
+ Visited.insert(BaseInst);
+ BaseIt = nextInstr(0, Uses, Visited);
+ Continue = true;
+ }
+ if (isRootInst(RootInst)) {
+ LastRootIt = RootIt;
+ Visited.insert(RootInst);
+ RootIt = nextInstr(Iter, Uses, Visited);
+ Continue = true;
+ }
+ if (Continue) continue;
+
+ if (!BaseInst->isSameOperationAs(RootInst)) {
+ // Last chance saloon. We don't try and solve the full isomorphism
+ // problem, but try and at least catch the case where two instructions
+ // *of different types* are round the wrong way. We won't be able to
+ // efficiently tell, given two ADD instructions, which way around we
+ // should match them, but given an ADD and a SUB, we can at least infer
+ // which one is which.
+ //
+ // This should allow us to deal with a greater subset of the isomorphism
+ // problem. It does however change a linear algorithm into a quadratic
+ // one, so limit the number of probes we do.
+ auto TryIt = RootIt;
+ unsigned N = NumToleratedFailedMatches;
+ while (TryIt != Uses.end() &&
+ !BaseInst->isSameOperationAs(TryIt->first) &&
+ N--) {
+ ++TryIt;
+ TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
+ }
+
+ if (TryIt == Uses.end() || TryIt == RootIt ||
+ instrDependsOn(TryIt->first, RootIt, TryIt)) {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
+ " vs. " << *RootInst << "\n");
+ return false;
+ }
+
+ RootIt = TryIt;
+ RootInst = TryIt->first;
+ }
+
+ // All instructions between the last root and this root
+ // may belong to some other iteration. If they belong to a
+ // future iteration, then they're dangerous to alias with.
+ //
+ // Note that because we allow a limited amount of flexibility in the order
+ // that we visit nodes, LastRootIt might be *before* RootIt, in which
+ // case we've already checked this set of instructions so we shouldn't
+ // do anything.
+ for (; LastRootIt < RootIt; ++LastRootIt) {
+ Instruction *I = LastRootIt->first;
+ if (LastRootIt->second.find_first() < (int)Iter)
+ continue;
+ if (I->mayWriteToMemory())
+ AST.add(I);
+ // Note: This is specifically guarded by a check on isa<PHINode>,
+ // which while a valid (somewhat arbitrary) micro-optimization, is
+ // needed because otherwise isSafeToSpeculativelyExecute returns
+ // false on PHI nodes.
+ if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
+ !isSafeToSpeculativelyExecute(I))
+ // Intervening instructions cause side effects.
+ FutureSideEffects = true;
+ }
+
+ // Make sure that this instruction, which is in the use set of this
+ // root instruction, does not also belong to the base set or the set of
+ // some other root instruction.
+ if (RootIt->second.count() > 1) {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
+ " vs. " << *RootInst << " (prev. case overlap)\n");
+ return false;
+ }
+
+ // Make sure that we don't alias with any instruction in the alias set
+ // tracker. If we do, then we depend on a future iteration, and we
+ // can't reroll.
+ if (RootInst->mayReadFromMemory())
+ for (auto &K : AST) {
+ if (K.aliasesUnknownInst(RootInst, *AA)) {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
+ " vs. " << *RootInst << " (depends on future store)\n");
+ return false;
+ }
+ }
+
+ // If we've past an instruction from a future iteration that may have
+ // side effects, and this instruction might also, then we can't reorder
+ // them, and this matching fails. As an exception, we allow the alias
+ // set tracker to handle regular (unordered) load/store dependencies.
+ if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
+ !isSafeToSpeculativelyExecute(BaseInst)) ||
+ (!isUnorderedLoadStore(RootInst) &&
+ !isSafeToSpeculativelyExecute(RootInst)))) {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
+ " vs. " << *RootInst <<
+ " (side effects prevent reordering)\n");
+ return false;
+ }
+
+ // For instructions that are part of a reduction, if the operation is
+ // associative, then don't bother matching the operands (because we
+ // already know that the instructions are isomorphic, and the order
+ // within the iteration does not matter). For non-associative reductions,
+ // we do need to match the operands, because we need to reject
+ // out-of-order instructions within an iteration!
+ // For example (assume floating-point addition), we need to reject this:
+ // x += a[i]; x += b[i];
+ // x += a[i+1]; x += b[i+1];
+ // x += b[i+2]; x += a[i+2];
+ bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
+
+ if (!(InReduction && BaseInst->isAssociative())) {
+ bool Swapped = false, SomeOpMatched = false;
+ for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
+ Value *Op2 = RootInst->getOperand(j);
+
+ // If this is part of a reduction (and the operation is not
+ // associatve), then we match all operands, but not those that are
+ // part of the reduction.
+ if (InReduction)
+ if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
+ if (Reductions.isPairInSame(RootInst, Op2I))
+ continue;
+
+ DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
+ if (BMI != BaseMap.end()) {
+ Op2 = BMI->second;
+ } else {
+ for (auto &DRS : RootSets) {
+ if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
+ Op2 = DRS.BaseInst;
+ break;
+ }
+ }
+ }
+
+ if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
+ // If we've not already decided to swap the matched operands, and
+ // we've not already matched our first operand (note that we could
+ // have skipped matching the first operand because it is part of a
+ // reduction above), and the instruction is commutative, then try
+ // the swapped match.
+ if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
+ BaseInst->getOperand(!j) == Op2) {
+ Swapped = true;
+ } else {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
+ << " vs. " << *RootInst << " (operand " << j << ")\n");
+ return false;
+ }
+ }
+
+ SomeOpMatched = true;
+ }
+ }
+
+ if ((!PossibleRedLastSet.count(BaseInst) &&
+ hasUsesOutsideLoop(BaseInst, L)) ||
+ (!PossibleRedLastSet.count(RootInst) &&
+ hasUsesOutsideLoop(RootInst, L))) {
+ DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
+ " vs. " << *RootInst << " (uses outside loop)\n");
+ return false;
+ }
+
+ Reductions.recordPair(BaseInst, RootInst, Iter);
+ BaseMap.insert(std::make_pair(RootInst, BaseInst));
+
+ LastRootIt = RootIt;
+ Visited.insert(BaseInst);
+ Visited.insert(RootInst);
+ BaseIt = nextInstr(0, Uses, Visited);
+ RootIt = nextInstr(Iter, Uses, Visited);
+ }
+ assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
+ "Mismatched set sizes!");
+ }
+
+ DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
+ *IV << "\n");
+
+ return true;
+}
+
+void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
+ BasicBlock *Header = L->getHeader();
+ // Remove instructions associated with non-base iterations.
+ for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
+ J != JE;) {
+ unsigned I = Uses[&*J].find_first();
+ if (I > 0 && I < IL_All) {
+ DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
+ J++->eraseFromParent();
+ continue;
+ }
+
+ ++J;
+ }
+
+ bool HasTwoIVs = LoopControlIV && LoopControlIV != IV;
+
+ if (HasTwoIVs) {
+ updateNonLoopCtrlIncr();
+ replaceIV(LoopControlIV, LoopControlIV, IterCount);
+ } else
+ // We need to create a new induction variable for each different BaseInst.
+ for (auto &DRS : RootSets)
+ // Insert the new induction variable.
+ replaceIV(DRS.BaseInst, IV, IterCount);
+
+ SimplifyInstructionsInBlock(Header, TLI);
+ DeleteDeadPHIs(Header, TLI);
+}
+
+// For non-loop-control IVs, we only need to update the last increment
+// with right amount, then we are done.
+void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() {
+ const SCEV *NewInc = nullptr;
+ for (auto *LoopInc : LoopIncs) {
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc);
+ const SCEVConstant *COp = nullptr;
+ if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) {
+ COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
+ } else {
+ COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0)));
+ if (!COp)
+ COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
+ }
+
+ assert(COp && "Didn't find constant operand of LoopInc!\n");
+
+ const APInt &AInt = COp->getValue()->getValue();
+ const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale);
+ if (AInt.isNegative()) {
+ NewInc = SE->getNegativeSCEV(COp);
+ NewInc = SE->getUDivExpr(NewInc, ScaleSCEV);
+ NewInc = SE->getNegativeSCEV(NewInc);
+ } else
+ NewInc = SE->getUDivExpr(COp, ScaleSCEV);
+
+ LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue());
+ }
+}
+
+void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst,
+ Instruction *InstIV,
+ const SCEV *IterCount) {
+ BasicBlock *Header = L->getHeader();
+ int64_t Inc = IVToIncMap[InstIV];
+ bool NeedNewIV = InstIV == LoopControlIV;
+ bool Negative = !NeedNewIV && Inc < 0;
+
+ const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst));
+ const SCEV *Start = RealIVSCEV->getStart();
+
+ if (NeedNewIV)
+ Start = SE->getConstant(Start->getType(), 0);
+
+ const SCEV *SizeOfExpr = nullptr;
+ const SCEV *IncrExpr =
+ SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1);
+ if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) {
+ Type *ElTy = PTy->getElementType();
+ SizeOfExpr =
+ SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy);
+ IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr);
+ }
+ const SCEV *NewIVSCEV =
+ SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
+
+ { // Limit the lifetime of SCEVExpander.
+ const DataLayout &DL = Header->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "reroll");
+ Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
+ Header->getFirstNonPHIOrDbg());
+
+ for (auto &KV : Uses)
+ if (KV.second.find_first() == 0)
+ KV.first->replaceUsesOfWith(Inst, NewIV);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
+ // FIXME: Why do we need this check?
+ if (Uses[BI].find_first() == IL_All) {
+ const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
+
+ if (NeedNewIV)
+ ICSCEV = SE->getMulExpr(IterCount,
+ SE->getConstant(IterCount->getType(), Scale));
+
+ // Iteration count SCEV minus or plus 1
+ const SCEV *MinusPlus1SCEV =
+ SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1);
+ if (Inst->getType()->isPointerTy()) {
+ assert(SizeOfExpr && "SizeOfExpr is not initialized");
+ MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr);
+ }
+
+ const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV);
+ // Iteration count minus 1
+ Instruction *InsertPtr = nullptr;
+ if (isa<SCEVConstant>(ICMinusPlus1SCEV)) {
+ InsertPtr = BI;
+ } else {
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader)
+ Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
+ InsertPtr = Preheader->getTerminator();
+ }
+
+ if (!isa<PointerType>(NewIV->getType()) && NeedNewIV &&
+ (SE->getTypeSizeInBits(NewIV->getType()) <
+ SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) {
+ IRBuilder<> Builder(BI);
+ Builder.SetCurrentDebugLocation(BI->getDebugLoc());
+ NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType());
+ }
+ Value *ICMinusPlus1 = Expander.expandCodeFor(
+ ICMinusPlus1SCEV, NewIV->getType(), InsertPtr);
+
+ Value *Cond =
+ new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond");
+ BI->setCondition(Cond);
+
+ if (BI->getSuccessor(1) != Header)
+ BI->swapSuccessors();
+ }
+ }
+ }
+}
+
+// Validate the selected reductions. All iterations must have an isomorphic
+// part of the reduction chain and, for non-associative reductions, the chain
+// entries must appear in order.
+bool LoopReroll::ReductionTracker::validateSelected() {
+ // For a non-associative reduction, the chain entries must appear in order.
+ for (int i : Reds) {
+ int PrevIter = 0, BaseCount = 0, Count = 0;
+ for (Instruction *J : PossibleReds[i]) {
+ // Note that all instructions in the chain must have been found because
+ // all instructions in the function must have been assigned to some
+ // iteration.
+ int Iter = PossibleRedIter[J];
+ if (Iter != PrevIter && Iter != PrevIter + 1 &&
+ !PossibleReds[i].getReducedValue()->isAssociative()) {
+ DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
+ J << "\n");
+ return false;
+ }
+
+ if (Iter != PrevIter) {
+ if (Count != BaseCount) {
+ DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
+ " reduction use count " << Count <<
+ " is not equal to the base use count " <<
+ BaseCount << "\n");
+ return false;
+ }
+
+ Count = 0;
+ }
+
+ ++Count;
+ if (Iter == 0)
+ ++BaseCount;
+
+ PrevIter = Iter;
+ }
+ }
+
+ return true;
+}
+
+// For all selected reductions, remove all parts except those in the first
+// iteration (and the PHI). Replace outside uses of the reduced value with uses
+// of the first-iteration reduced value (in other words, reroll the selected
+// reductions).
+void LoopReroll::ReductionTracker::replaceSelected() {
+ // Fixup reductions to refer to the last instruction associated with the
+ // first iteration (not the last).
+ for (int i : Reds) {
+ int j = 0;
+ for (int e = PossibleReds[i].size(); j != e; ++j)
+ if (PossibleRedIter[PossibleReds[i][j]] != 0) {
+ --j;
+ break;
+ }
+
+ // Replace users with the new end-of-chain value.
+ SmallInstructionVector Users;
+ for (User *U : PossibleReds[i].getReducedValue()->users()) {
+ Users.push_back(cast<Instruction>(U));
+ }
+
+ for (Instruction *User : Users)
+ User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
+ PossibleReds[i][j]);
+ }
+}
+
+// Reroll the provided loop with respect to the provided induction variable.
+// Generally, we're looking for a loop like this:
+//
+// %iv = phi [ (preheader, ...), (body, %iv.next) ]
+// f(%iv)
+// %iv.1 = add %iv, 1 <-- a root increment
+// f(%iv.1)
+// %iv.2 = add %iv, 2 <-- a root increment
+// f(%iv.2)
+// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
+// f(%iv.scale_m_1)
+// ...
+// %iv.next = add %iv, scale
+// %cmp = icmp(%iv, ...)
+// br %cmp, header, exit
+//
+// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
+// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
+// be intermixed with eachother. The restriction imposed by this algorithm is
+// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
+// etc. be the same.
+//
+// First, we collect the use set of %iv, excluding the other increment roots.
+// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
+// times, having collected the use set of f(%iv.(i+1)), during which we:
+// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
+// the next unmatched instruction in f(%iv.(i+1)).
+// - Ensure that both matched instructions don't have any external users
+// (with the exception of last-in-chain reduction instructions).
+// - Track the (aliasing) write set, and other side effects, of all
+// instructions that belong to future iterations that come before the matched
+// instructions. If the matched instructions read from that write set, then
+// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
+// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
+// if any of these future instructions had side effects (could not be
+// speculatively executed), and so do the matched instructions, when we
+// cannot reorder those side-effect-producing instructions, and rerolling
+// fails.
+//
+// Finally, we make sure that all loop instructions are either loop increment
+// roots, belong to simple latch code, parts of validated reductions, part of
+// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
+// have been validated), then we reroll the loop.
+bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
+ const SCEV *IterCount,
+ ReductionTracker &Reductions) {
+ DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
+ IVToIncMap, LoopControlIV);
+
+ if (!DAGRoots.findRoots())
+ return false;
+ DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
+ *IV << "\n");
+
+ if (!DAGRoots.validate(Reductions))
+ return false;
+ if (!Reductions.validateSelected())
+ return false;
+ // At this point, we've validated the rerolling, and we're committed to
+ // making changes!
+
+ Reductions.replaceSelected();
+ DAGRoots.replace(IterCount);
+
+ ++NumRerolledLoops;
+ return true;
+}
+
+bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipLoop(L))
+ return false;
+
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+
+ BasicBlock *Header = L->getHeader();
+ DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
+ "] Loop %" << Header->getName() << " (" <<
+ L->getNumBlocks() << " block(s))\n");
+
+ // For now, we'll handle only single BB loops.
+ if (L->getNumBlocks() > 1)
+ return false;
+
+ if (!SE->hasLoopInvariantBackedgeTakenCount(L))
+ return false;
+
+ const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
+ const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType()));
+ DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
+ DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
+
+ // First, we need to find the induction variable with respect to which we can
+ // reroll (there may be several possible options).
+ SmallInstructionVector PossibleIVs;
+ IVToIncMap.clear();
+ LoopControlIV = nullptr;
+ collectPossibleIVs(L, PossibleIVs);
+
+ if (PossibleIVs.empty()) {
+ DEBUG(dbgs() << "LRR: No possible IVs found\n");
+ return false;
+ }
+
+ ReductionTracker Reductions;
+ collectPossibleReductions(L, Reductions);
+ bool Changed = false;
+
+ // For each possible IV, collect the associated possible set of 'root' nodes
+ // (i+1, i+2, etc.).
+ for (Instruction *PossibleIV : PossibleIVs)
+ if (reroll(PossibleIV, L, Header, IterCount, Reductions)) {
+ Changed = true;
+ break;
+ }
+ DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
+
+ // Trip count of L has changed so SE must be re-evaluated.
+ if (Changed)
+ SE->forgetLoop(L);
+
+ return Changed;
+}