aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp2350
1 files changed, 2350 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
new file mode 100644
index 000000000000..d547adc86e1b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -0,0 +1,2350 @@
+//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file is a part of MemorySanitizer, a detector of uninitialized
+/// reads.
+///
+/// Status: early prototype.
+///
+/// The algorithm of the tool is similar to Memcheck
+/// (http://goo.gl/QKbem). We associate a few shadow bits with every
+/// byte of the application memory, poison the shadow of the malloc-ed
+/// or alloca-ed memory, load the shadow bits on every memory read,
+/// propagate the shadow bits through some of the arithmetic
+/// instruction (including MOV), store the shadow bits on every memory
+/// write, report a bug on some other instructions (e.g. JMP) if the
+/// associated shadow is poisoned.
+///
+/// But there are differences too. The first and the major one:
+/// compiler instrumentation instead of binary instrumentation. This
+/// gives us much better register allocation, possible compiler
+/// optimizations and a fast start-up. But this brings the major issue
+/// as well: msan needs to see all program events, including system
+/// calls and reads/writes in system libraries, so we either need to
+/// compile *everything* with msan or use a binary translation
+/// component (e.g. DynamoRIO) to instrument pre-built libraries.
+/// Another difference from Memcheck is that we use 8 shadow bits per
+/// byte of application memory and use a direct shadow mapping. This
+/// greatly simplifies the instrumentation code and avoids races on
+/// shadow updates (Memcheck is single-threaded so races are not a
+/// concern there. Memcheck uses 2 shadow bits per byte with a slow
+/// path storage that uses 8 bits per byte).
+///
+/// The default value of shadow is 0, which means "clean" (not poisoned).
+///
+/// Every module initializer should call __msan_init to ensure that the
+/// shadow memory is ready. On error, __msan_warning is called. Since
+/// parameters and return values may be passed via registers, we have a
+/// specialized thread-local shadow for return values
+/// (__msan_retval_tls) and parameters (__msan_param_tls).
+///
+/// Origin tracking.
+///
+/// MemorySanitizer can track origins (allocation points) of all uninitialized
+/// values. This behavior is controlled with a flag (msan-track-origins) and is
+/// disabled by default.
+///
+/// Origins are 4-byte values created and interpreted by the runtime library.
+/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
+/// of application memory. Propagation of origins is basically a bunch of
+/// "select" instructions that pick the origin of a dirty argument, if an
+/// instruction has one.
+///
+/// Every 4 aligned, consecutive bytes of application memory have one origin
+/// value associated with them. If these bytes contain uninitialized data
+/// coming from 2 different allocations, the last store wins. Because of this,
+/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
+/// practice.
+///
+/// Origins are meaningless for fully initialized values, so MemorySanitizer
+/// avoids storing origin to memory when a fully initialized value is stored.
+/// This way it avoids needless overwritting origin of the 4-byte region on
+/// a short (i.e. 1 byte) clean store, and it is also good for performance.
+///
+/// Atomic handling.
+///
+/// Ideally, every atomic store of application value should update the
+/// corresponding shadow location in an atomic way. Unfortunately, atomic store
+/// of two disjoint locations can not be done without severe slowdown.
+///
+/// Therefore, we implement an approximation that may err on the safe side.
+/// In this implementation, every atomically accessed location in the program
+/// may only change from (partially) uninitialized to fully initialized, but
+/// not the other way around. We load the shadow _after_ the application load,
+/// and we store the shadow _before_ the app store. Also, we always store clean
+/// shadow (if the application store is atomic). This way, if the store-load
+/// pair constitutes a happens-before arc, shadow store and load are correctly
+/// ordered such that the load will get either the value that was stored, or
+/// some later value (which is always clean).
+///
+/// This does not work very well with Compare-And-Swap (CAS) and
+/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
+/// must store the new shadow before the app operation, and load the shadow
+/// after the app operation. Computers don't work this way. Current
+/// implementation ignores the load aspect of CAS/RMW, always returning a clean
+/// value. It implements the store part as a simple atomic store by storing a
+/// clean shadow.
+
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "msan"
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/ValueMap.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include "llvm/Transforms/Utils/SpecialCaseList.h"
+
+using namespace llvm;
+
+static const uint64_t kShadowMask32 = 1ULL << 31;
+static const uint64_t kShadowMask64 = 1ULL << 46;
+static const uint64_t kOriginOffset32 = 1ULL << 30;
+static const uint64_t kOriginOffset64 = 1ULL << 45;
+static const unsigned kMinOriginAlignment = 4;
+static const unsigned kShadowTLSAlignment = 8;
+
+/// \brief Track origins of uninitialized values.
+///
+/// Adds a section to MemorySanitizer report that points to the allocation
+/// (stack or heap) the uninitialized bits came from originally.
+static cl::opt<bool> ClTrackOrigins("msan-track-origins",
+ cl::desc("Track origins (allocation sites) of poisoned memory"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClKeepGoing("msan-keep-going",
+ cl::desc("keep going after reporting a UMR"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClPoisonStack("msan-poison-stack",
+ cl::desc("poison uninitialized stack variables"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
+ cl::desc("poison uninitialized stack variables with a call"),
+ cl::Hidden, cl::init(false));
+static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
+ cl::desc("poison uninitialized stack variables with the given patter"),
+ cl::Hidden, cl::init(0xff));
+static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
+ cl::desc("poison undef temps"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
+ cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
+ cl::desc("exact handling of relational integer ICmp"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
+ cl::desc("store origin for clean (fully initialized) values"),
+ cl::Hidden, cl::init(false));
+
+// This flag controls whether we check the shadow of the address
+// operand of load or store. Such bugs are very rare, since load from
+// a garbage address typically results in SEGV, but still happen
+// (e.g. only lower bits of address are garbage, or the access happens
+// early at program startup where malloc-ed memory is more likely to
+// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
+static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
+ cl::desc("report accesses through a pointer which has poisoned shadow"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
+ cl::desc("print out instructions with default strict semantics"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
+ cl::desc("File containing the list of functions where MemorySanitizer "
+ "should not report bugs"), cl::Hidden);
+
+// Experimental. Wraps all indirect calls in the instrumented code with
+// a call to the given function. This is needed to assist the dynamic
+// helper tool (MSanDR) to regain control on transition between instrumented and
+// non-instrumented code.
+static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
+ cl::desc("Wrap indirect calls with a given function"),
+ cl::Hidden);
+
+static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
+ cl::desc("Do not wrap indirect calls with target in the same module"),
+ cl::Hidden, cl::init(true));
+
+namespace {
+
+/// \brief An instrumentation pass implementing detection of uninitialized
+/// reads.
+///
+/// MemorySanitizer: instrument the code in module to find
+/// uninitialized reads.
+class MemorySanitizer : public FunctionPass {
+ public:
+ MemorySanitizer(bool TrackOrigins = false,
+ StringRef BlacklistFile = StringRef())
+ : FunctionPass(ID),
+ TrackOrigins(TrackOrigins || ClTrackOrigins),
+ TD(0),
+ WarningFn(0),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
+ WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
+ const char *getPassName() const { return "MemorySanitizer"; }
+ bool runOnFunction(Function &F);
+ bool doInitialization(Module &M);
+ static char ID; // Pass identification, replacement for typeid.
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ /// \brief Track origins (allocation points) of uninitialized values.
+ bool TrackOrigins;
+
+ DataLayout *TD;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *OriginTy;
+ /// \brief Thread-local shadow storage for function parameters.
+ GlobalVariable *ParamTLS;
+ /// \brief Thread-local origin storage for function parameters.
+ GlobalVariable *ParamOriginTLS;
+ /// \brief Thread-local shadow storage for function return value.
+ GlobalVariable *RetvalTLS;
+ /// \brief Thread-local origin storage for function return value.
+ GlobalVariable *RetvalOriginTLS;
+ /// \brief Thread-local shadow storage for in-register va_arg function
+ /// parameters (x86_64-specific).
+ GlobalVariable *VAArgTLS;
+ /// \brief Thread-local shadow storage for va_arg overflow area
+ /// (x86_64-specific).
+ GlobalVariable *VAArgOverflowSizeTLS;
+ /// \brief Thread-local space used to pass origin value to the UMR reporting
+ /// function.
+ GlobalVariable *OriginTLS;
+
+ GlobalVariable *MsandrModuleStart;
+ GlobalVariable *MsandrModuleEnd;
+
+ /// \brief The run-time callback to print a warning.
+ Value *WarningFn;
+ /// \brief Run-time helper that copies origin info for a memory range.
+ Value *MsanCopyOriginFn;
+ /// \brief Run-time helper that generates a new origin value for a stack
+ /// allocation.
+ Value *MsanSetAllocaOrigin4Fn;
+ /// \brief Run-time helper that poisons stack on function entry.
+ Value *MsanPoisonStackFn;
+ /// \brief MSan runtime replacements for memmove, memcpy and memset.
+ Value *MemmoveFn, *MemcpyFn, *MemsetFn;
+
+ /// \brief Address mask used in application-to-shadow address calculation.
+ /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
+ uint64_t ShadowMask;
+ /// \brief Offset of the origin shadow from the "normal" shadow.
+ /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
+ uint64_t OriginOffset;
+ /// \brief Branch weights for error reporting.
+ MDNode *ColdCallWeights;
+ /// \brief Branch weights for origin store.
+ MDNode *OriginStoreWeights;
+ /// \brief Path to blacklist file.
+ SmallString<64> BlacklistFile;
+ /// \brief The blacklist.
+ OwningPtr<SpecialCaseList> BL;
+ /// \brief An empty volatile inline asm that prevents callback merge.
+ InlineAsm *EmptyAsm;
+
+ bool WrapIndirectCalls;
+ /// \brief Run-time wrapper for indirect calls.
+ Value *IndirectCallWrapperFn;
+ // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
+ Type *AnyFunctionPtrTy;
+
+ friend struct MemorySanitizerVisitor;
+ friend struct VarArgAMD64Helper;
+};
+} // namespace
+
+char MemorySanitizer::ID = 0;
+INITIALIZE_PASS(MemorySanitizer, "msan",
+ "MemorySanitizer: detects uninitialized reads.",
+ false, false)
+
+FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
+ StringRef BlacklistFile) {
+ return new MemorySanitizer(TrackOrigins, BlacklistFile);
+}
+
+/// \brief Create a non-const global initialized with the given string.
+///
+/// Creates a writable global for Str so that we can pass it to the
+/// run-time lib. Runtime uses first 4 bytes of the string to store the
+/// frame ID, so the string needs to be mutable.
+static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
+ StringRef Str) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
+ GlobalValue::PrivateLinkage, StrConst, "");
+}
+
+
+/// \brief Insert extern declaration of runtime-provided functions and globals.
+void MemorySanitizer::initializeCallbacks(Module &M) {
+ // Only do this once.
+ if (WarningFn)
+ return;
+
+ IRBuilder<> IRB(*C);
+ // Create the callback.
+ // FIXME: this function should have "Cold" calling conv,
+ // which is not yet implemented.
+ StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
+ : "__msan_warning_noreturn";
+ WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
+
+ MsanCopyOriginFn = M.getOrInsertFunction(
+ "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
+ "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MsanPoisonStackFn = M.getOrInsertFunction(
+ "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemmoveFn = M.getOrInsertFunction(
+ "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy, NULL);
+ MemcpyFn = M.getOrInsertFunction(
+ "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IntptrTy, NULL);
+ MemsetFn = M.getOrInsertFunction(
+ "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+ IntptrTy, NULL);
+
+ // Create globals.
+ RetvalTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 8), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
+ GlobalVariable::InitialExecTLSModel);
+ RetvalOriginTLS = new GlobalVariable(
+ M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
+
+ ParamTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
+ GlobalVariable::InitialExecTLSModel);
+ ParamOriginTLS = new GlobalVariable(
+ M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
+ 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
+
+ VAArgTLS = new GlobalVariable(
+ M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
+ GlobalVariable::InitialExecTLSModel);
+ VAArgOverflowSizeTLS = new GlobalVariable(
+ M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_va_arg_overflow_size_tls", 0,
+ GlobalVariable::InitialExecTLSModel);
+ OriginTLS = new GlobalVariable(
+ M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
+ "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
+
+ // We insert an empty inline asm after __msan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+
+ if (WrapIndirectCalls) {
+ AnyFunctionPtrTy =
+ PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
+ IndirectCallWrapperFn = M.getOrInsertFunction(
+ ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
+ }
+
+ if (ClWrapIndirectCallsFast) {
+ MsandrModuleStart = new GlobalVariable(
+ M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
+ 0, "__executable_start");
+ MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
+ MsandrModuleEnd = new GlobalVariable(
+ M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
+ 0, "_end");
+ MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
+ }
+}
+
+/// \brief Module-level initialization.
+///
+/// inserts a call to __msan_init to the module's constructor list.
+bool MemorySanitizer::doInitialization(Module &M) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
+ C = &(M.getContext());
+ unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
+ switch (PtrSize) {
+ case 64:
+ ShadowMask = kShadowMask64;
+ OriginOffset = kOriginOffset64;
+ break;
+ case 32:
+ ShadowMask = kShadowMask32;
+ OriginOffset = kOriginOffset32;
+ break;
+ default:
+ report_fatal_error("unsupported pointer size");
+ break;
+ }
+
+ IRBuilder<> IRB(*C);
+ IntptrTy = IRB.getIntPtrTy(TD);
+ OriginTy = IRB.getInt32Ty();
+
+ ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+ OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+
+ // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
+ appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
+ "__msan_init", IRB.getVoidTy(), NULL)), 0);
+
+ if (TrackOrigins)
+ new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(TrackOrigins), "__msan_track_origins");
+
+ if (ClKeepGoing)
+ new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(ClKeepGoing), "__msan_keep_going");
+
+ return true;
+}
+
+namespace {
+
+/// \brief A helper class that handles instrumentation of VarArg
+/// functions on a particular platform.
+///
+/// Implementations are expected to insert the instrumentation
+/// necessary to propagate argument shadow through VarArg function
+/// calls. Visit* methods are called during an InstVisitor pass over
+/// the function, and should avoid creating new basic blocks. A new
+/// instance of this class is created for each instrumented function.
+struct VarArgHelper {
+ /// \brief Visit a CallSite.
+ virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
+
+ /// \brief Visit a va_start call.
+ virtual void visitVAStartInst(VAStartInst &I) = 0;
+
+ /// \brief Visit a va_copy call.
+ virtual void visitVACopyInst(VACopyInst &I) = 0;
+
+ /// \brief Finalize function instrumentation.
+ ///
+ /// This method is called after visiting all interesting (see above)
+ /// instructions in a function.
+ virtual void finalizeInstrumentation() = 0;
+
+ virtual ~VarArgHelper() {}
+};
+
+struct MemorySanitizerVisitor;
+
+VarArgHelper*
+CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor);
+
+/// This class does all the work for a given function. Store and Load
+/// instructions store and load corresponding shadow and origin
+/// values. Most instructions propagate shadow from arguments to their
+/// return values. Certain instructions (most importantly, BranchInst)
+/// test their argument shadow and print reports (with a runtime call) if it's
+/// non-zero.
+struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+ Function &F;
+ MemorySanitizer &MS;
+ SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
+ ValueMap<Value*, Value*> ShadowMap, OriginMap;
+ OwningPtr<VarArgHelper> VAHelper;
+
+ // The following flags disable parts of MSan instrumentation based on
+ // blacklist contents and command-line options.
+ bool InsertChecks;
+ bool LoadShadow;
+ bool PoisonStack;
+ bool PoisonUndef;
+ bool CheckReturnValue;
+
+ struct ShadowOriginAndInsertPoint {
+ Value *Shadow;
+ Value *Origin;
+ Instruction *OrigIns;
+ ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
+ : Shadow(S), Origin(O), OrigIns(I) { }
+ ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
+ };
+ SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
+ SmallVector<Instruction*, 16> StoreList;
+ SmallVector<CallSite, 16> IndirectCallList;
+
+ MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
+ : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
+ bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex,
+ Attribute::SanitizeMemory);
+ InsertChecks = SanitizeFunction;
+ LoadShadow = SanitizeFunction;
+ PoisonStack = SanitizeFunction && ClPoisonStack;
+ PoisonUndef = SanitizeFunction && ClPoisonUndef;
+ // FIXME: Consider using SpecialCaseList to specify a list of functions that
+ // must always return fully initialized values. For now, we hardcode "main".
+ CheckReturnValue = SanitizeFunction && (F.getName() == "main");
+
+ DEBUG(if (!InsertChecks)
+ dbgs() << "MemorySanitizer is not inserting checks into '"
+ << F.getName() << "'\n");
+ }
+
+ void materializeStores() {
+ for (size_t i = 0, n = StoreList.size(); i < n; i++) {
+ StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
+
+ IRBuilder<> IRB(&I);
+ Value *Val = I.getValueOperand();
+ Value *Addr = I.getPointerOperand();
+ Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ StoreInst *NewSI =
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
+ DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
+ (void)NewSI;
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ if (I.isAtomic())
+ I.setOrdering(addReleaseOrdering(I.getOrdering()));
+
+ if (MS.TrackOrigins) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
+ IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
+ Alignment);
+ } else {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+
+ // TODO(eugenis): handle non-zero constant shadow by inserting an
+ // unconditional check (can not simply fail compilation as this could
+ // be in the dead code).
+ if (isa<Constant>(ConvertedShadow))
+ continue;
+
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
+ MS.OriginStoreWeights);
+ IRBuilder<> IRBNew(CheckTerm);
+ IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
+ Alignment);
+ }
+ }
+ }
+ }
+
+ void materializeChecks() {
+ for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
+ Value *Shadow = InstrumentationList[i].Shadow;
+ Instruction *OrigIns = InstrumentationList[i].OrigIns;
+ IRBuilder<> IRB(OrigIns);
+ DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+ DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
+ // See the comment in materializeStores().
+ if (isa<Constant>(ConvertedShadow))
+ continue;
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
+ /* Unreachable */ !ClKeepGoing,
+ MS.ColdCallWeights);
+
+ IRB.SetInsertPoint(CheckTerm);
+ if (MS.TrackOrigins) {
+ Value *Origin = InstrumentationList[i].Origin;
+ IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
+ MS.OriginTLS);
+ }
+ CallInst *Call = IRB.CreateCall(MS.WarningFn);
+ Call->setDebugLoc(OrigIns->getDebugLoc());
+ IRB.CreateCall(MS.EmptyAsm);
+ DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
+ }
+ DEBUG(dbgs() << "DONE:\n" << F);
+ }
+
+ void materializeIndirectCalls() {
+ for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
+ CallSite CS = IndirectCallList[i];
+ Instruction *I = CS.getInstruction();
+ BasicBlock *B = I->getParent();
+ IRBuilder<> IRB(I);
+ Value *Fn0 = CS.getCalledValue();
+ Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
+
+ if (ClWrapIndirectCallsFast) {
+ // Check that call target is inside this module limits.
+ Value *Start =
+ IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
+ Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
+
+ Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
+ IRB.CreateICmpUGE(Fn, End));
+
+ PHINode *NewFnPhi =
+ IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
+
+ Instruction *CheckTerm = SplitBlockAndInsertIfThen(
+ cast<Instruction>(NotInThisModule),
+ /* Unreachable */ false, MS.ColdCallWeights);
+
+ IRB.SetInsertPoint(CheckTerm);
+ // Slow path: call wrapper function to possibly transform the call
+ // target.
+ Value *NewFn = IRB.CreateBitCast(
+ IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
+
+ NewFnPhi->addIncoming(Fn0, B);
+ NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
+ CS.setCalledFunction(NewFnPhi);
+ } else {
+ Value *NewFn = IRB.CreateBitCast(
+ IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
+ CS.setCalledFunction(NewFn);
+ }
+ }
+ }
+
+ /// \brief Add MemorySanitizer instrumentation to a function.
+ bool runOnFunction() {
+ MS.initializeCallbacks(*F.getParent());
+ if (!MS.TD) return false;
+
+ // In the presence of unreachable blocks, we may see Phi nodes with
+ // incoming nodes from such blocks. Since InstVisitor skips unreachable
+ // blocks, such nodes will not have any shadow value associated with them.
+ // It's easier to remove unreachable blocks than deal with missing shadow.
+ removeUnreachableBlocks(F);
+
+ // Iterate all BBs in depth-first order and create shadow instructions
+ // for all instructions (where applicable).
+ // For PHI nodes we create dummy shadow PHIs which will be finalized later.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+
+ // Finalize PHI nodes.
+ for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
+ PHINode *PN = ShadowPHINodes[i];
+ PHINode *PNS = cast<PHINode>(getShadow(PN));
+ PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
+ size_t NumValues = PN->getNumIncomingValues();
+ for (size_t v = 0; v < NumValues; v++) {
+ PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
+ if (PNO)
+ PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
+ }
+ }
+
+ VAHelper->finalizeInstrumentation();
+
+ // Delayed instrumentation of StoreInst.
+ // This may add new checks to be inserted later.
+ materializeStores();
+
+ // Insert shadow value checks.
+ materializeChecks();
+
+ // Wrap indirect calls.
+ materializeIndirectCalls();
+
+ return true;
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Value.
+ Type *getShadowTy(Value *V) {
+ return getShadowTy(V->getType());
+ }
+
+ /// \brief Compute the shadow type that corresponds to a given Type.
+ Type *getShadowTy(Type *OrigTy) {
+ if (!OrigTy->isSized()) {
+ return 0;
+ }
+ // For integer type, shadow is the same as the original type.
+ // This may return weird-sized types like i1.
+ if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
+ return IT;
+ if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
+ uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
+ return VectorType::get(IntegerType::get(*MS.C, EltSize),
+ VT->getNumElements());
+ }
+ if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
+ SmallVector<Type*, 4> Elements;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Elements.push_back(getShadowTy(ST->getElementType(i)));
+ StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
+ DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
+ return Res;
+ }
+ uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
+ return IntegerType::get(*MS.C, TypeSize);
+ }
+
+ /// \brief Flatten a vector type.
+ Type *getShadowTyNoVec(Type *ty) {
+ if (VectorType *vt = dyn_cast<VectorType>(ty))
+ return IntegerType::get(*MS.C, vt->getBitWidth());
+ return ty;
+ }
+
+ /// \brief Convert a shadow value to it's flattened variant.
+ Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
+ Type *Ty = V->getType();
+ Type *NoVecTy = getShadowTyNoVec(Ty);
+ if (Ty == NoVecTy) return V;
+ return IRB.CreateBitCast(V, NoVecTy);
+ }
+
+ /// \brief Compute the shadow address that corresponds to a given application
+ /// address.
+ ///
+ /// Shadow = Addr & ~ShadowMask.
+ Value *getShadowPtr(Value *Addr, Type *ShadowTy,
+ IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
+ }
+
+ /// \brief Compute the origin address that corresponds to a given application
+ /// address.
+ ///
+ /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
+ Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
+ Value *ShadowLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ Value *Add =
+ IRB.CreateAdd(ShadowLong,
+ ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
+ Value *SecondAnd =
+ IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
+ return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
+ }
+
+ /// \brief Compute the shadow address for a given function argument.
+ ///
+ /// Shadow = ParamTLS+ArgOffset.
+ Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ /// \brief Compute the origin address for a given function argument.
+ Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ if (!MS.TrackOrigins) return 0;
+ Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
+ "_msarg_o");
+ }
+
+ /// \brief Compute the shadow address for a retval.
+ Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
+ Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msret");
+ }
+
+ /// \brief Compute the origin address for a retval.
+ Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
+ // We keep a single origin for the entire retval. Might be too optimistic.
+ return MS.RetvalOriginTLS;
+ }
+
+ /// \brief Set SV to be the shadow value for V.
+ void setShadow(Value *V, Value *SV) {
+ assert(!ShadowMap.count(V) && "Values may only have one shadow");
+ ShadowMap[V] = SV;
+ }
+
+ /// \brief Set Origin to be the origin value for V.
+ void setOrigin(Value *V, Value *Origin) {
+ if (!MS.TrackOrigins) return;
+ assert(!OriginMap.count(V) && "Values may only have one origin");
+ DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
+ OriginMap[V] = Origin;
+ }
+
+ /// \brief Create a clean shadow value for a given value.
+ ///
+ /// Clean shadow (all zeroes) means all bits of the value are defined
+ /// (initialized).
+ Constant *getCleanShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return 0;
+ return Constant::getNullValue(ShadowTy);
+ }
+
+ /// \brief Create a dirty shadow of a given shadow type.
+ Constant *getPoisonedShadow(Type *ShadowTy) {
+ assert(ShadowTy);
+ if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
+ return Constant::getAllOnesValue(ShadowTy);
+ StructType *ST = cast<StructType>(ShadowTy);
+ SmallVector<Constant *, 4> Vals;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
+ return ConstantStruct::get(ST, Vals);
+ }
+
+ /// \brief Create a dirty shadow for a given value.
+ Constant *getPoisonedShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return 0;
+ return getPoisonedShadow(ShadowTy);
+ }
+
+ /// \brief Create a clean (zero) origin.
+ Value *getCleanOrigin() {
+ return Constant::getNullValue(MS.OriginTy);
+ }
+
+ /// \brief Get the shadow value for a given Value.
+ ///
+ /// This function either returns the value set earlier with setShadow,
+ /// or extracts if from ParamTLS (for function arguments).
+ Value *getShadow(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // For instructions the shadow is already stored in the map.
+ Value *Shadow = ShadowMap[V];
+ if (!Shadow) {
+ DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
+ (void)I;
+ assert(Shadow && "No shadow for a value");
+ }
+ return Shadow;
+ }
+ if (UndefValue *U = dyn_cast<UndefValue>(V)) {
+ Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
+ DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
+ (void)U;
+ return AllOnes;
+ }
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ // For arguments we compute the shadow on demand and store it in the map.
+ Value **ShadowPtr = &ShadowMap[V];
+ if (*ShadowPtr)
+ return *ShadowPtr;
+ Function *F = A->getParent();
+ IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
+ unsigned ArgOffset = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI) {
+ if (!AI->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg is not sized\n");
+ continue;
+ }
+ unsigned Size = AI->hasByValAttr()
+ ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
+ : MS.TD->getTypeAllocSize(AI->getType());
+ if (A == AI) {
+ Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
+ if (AI->hasByValAttr()) {
+ // ByVal pointer itself has clean shadow. We copy the actual
+ // argument shadow to the underlying memory.
+ // Figure out maximal valid memcpy alignment.
+ unsigned ArgAlign = AI->getParamAlignment();
+ if (ArgAlign == 0) {
+ Type *EltType = A->getType()->getPointerElementType();
+ ArgAlign = MS.TD->getABITypeAlignment(EltType);
+ }
+ unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
+ Value *Cpy = EntryIRB.CreateMemCpy(
+ getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
+ CopyAlign);
+ DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
+ (void)Cpy;
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
+ }
+ DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
+ **ShadowPtr << "\n");
+ if (MS.TrackOrigins) {
+ Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
+ setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
+ }
+ }
+ ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
+ }
+ assert(*ShadowPtr && "Could not find shadow for an argument");
+ return *ShadowPtr;
+ }
+ // For everything else the shadow is zero.
+ return getCleanShadow(V);
+ }
+
+ /// \brief Get the shadow for i-th argument of the instruction I.
+ Value *getShadow(Instruction *I, int i) {
+ return getShadow(I->getOperand(i));
+ }
+
+ /// \brief Get the origin for a value.
+ Value *getOrigin(Value *V) {
+ if (!MS.TrackOrigins) return 0;
+ if (isa<Instruction>(V) || isa<Argument>(V)) {
+ Value *Origin = OriginMap[V];
+ if (!Origin) {
+ DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
+ Origin = getCleanOrigin();
+ }
+ return Origin;
+ }
+ return getCleanOrigin();
+ }
+
+ /// \brief Get the origin for i-th argument of the instruction I.
+ Value *getOrigin(Instruction *I, int i) {
+ return getOrigin(I->getOperand(i));
+ }
+
+ /// \brief Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the shadow value is not 0.
+ void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
+ assert(Shadow);
+ if (!InsertChecks) return;
+#ifndef NDEBUG
+ Type *ShadowTy = Shadow->getType();
+ assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
+ "Can only insert checks for integer and vector shadow types");
+#endif
+ InstrumentationList.push_back(
+ ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
+ }
+
+ /// \brief Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the value is not fully defined.
+ void insertShadowCheck(Value *Val, Instruction *OrigIns) {
+ assert(Val);
+ Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
+ if (!Shadow) return;
+ Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ insertShadowCheck(Shadow, Origin, OrigIns);
+ }
+
+ AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
+ switch (a) {
+ case NotAtomic:
+ return NotAtomic;
+ case Unordered:
+ case Monotonic:
+ case Release:
+ return Release;
+ case Acquire:
+ case AcquireRelease:
+ return AcquireRelease;
+ case SequentiallyConsistent:
+ return SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+ }
+
+ AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
+ switch (a) {
+ case NotAtomic:
+ return NotAtomic;
+ case Unordered:
+ case Monotonic:
+ case Acquire:
+ return Acquire;
+ case Release:
+ case AcquireRelease:
+ return AcquireRelease;
+ case SequentiallyConsistent:
+ return SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+ }
+
+ // ------------------- Visitors.
+
+ /// \brief Instrument LoadInst
+ ///
+ /// Loads the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the load address is fully defined.
+ void visitLoadInst(LoadInst &I) {
+ assert(I.getType()->isSized() && "Load type must have size");
+ IRBuilder<> IRB(I.getNextNode());
+ Type *ShadowTy = getShadowTy(&I);
+ Value *Addr = I.getPointerOperand();
+ if (LoadShadow) {
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ setShadow(&I,
+ IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(I.getPointerOperand(), &I);
+
+ if (I.isAtomic())
+ I.setOrdering(addAcquireOrdering(I.getOrdering()));
+
+ if (MS.TrackOrigins) {
+ if (LoadShadow) {
+ unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
+ setOrigin(&I,
+ IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
+ } else {
+ setOrigin(&I, getCleanOrigin());
+ }
+ }
+ }
+
+ /// \brief Instrument StoreInst
+ ///
+ /// Stores the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the store address is fully defined.
+ void visitStoreInst(StoreInst &I) {
+ StoreList.push_back(&I);
+ }
+
+ void handleCASOrRMW(Instruction &I) {
+ assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
+
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getOperand(0);
+ Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ // Only test the conditional argument of cmpxchg instruction.
+ // The other argument can potentially be uninitialized, but we can not
+ // detect this situation reliably without possible false positives.
+ if (isa<AtomicCmpXchgInst>(I))
+ insertShadowCheck(I.getOperand(1), &I);
+
+ IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
+
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ void visitAtomicRMWInst(AtomicRMWInst &I) {
+ handleCASOrRMW(I);
+ I.setOrdering(addReleaseOrdering(I.getOrdering()));
+ }
+
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
+ handleCASOrRMW(I);
+ I.setOrdering(addReleaseOrdering(I.getOrdering()));
+ }
+
+ // Vector manipulation.
+ void visitExtractElementInst(ExtractElementInst &I) {
+ insertShadowCheck(I.getOperand(1), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
+ "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitInsertElementInst(InsertElementInst &I) {
+ insertShadowCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShuffleVectorInst(ShuffleVectorInst &I) {
+ insertShadowCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ // Casts.
+ void visitSExtInst(SExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitZExtInst(ZExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitTruncInst(TruncInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitBitCastInst(BitCastInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitPtrToIntInst(PtrToIntInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_ptrtoint"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitIntToPtrInst(IntToPtrInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_inttoptr"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
+ void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
+
+ /// \brief Propagate shadow for bitwise AND.
+ ///
+ /// This code is exact, i.e. if, for example, a bit in the left argument
+ /// is defined and 0, then neither the value not definedness of the
+ /// corresponding bit in B don't affect the resulting shadow.
+ void visitAnd(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "And" of 0 and a poisoned value results in unpoisoned value.
+ // 1&1 => 1; 0&1 => 0; p&1 => p;
+ // 1&0 => 0; 0&0 => 0; p&0 => 0;
+ // 1&p => p; 0&p => 0; p&p => p;
+ // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = I.getOperand(0);
+ Value *V2 = I.getOperand(1);
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ void visitOr(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "Or" of 1 and a poisoned value results in unpoisoned value.
+ // 1|1 => 1; 0|1 => 1; p|1 => 1;
+ // 1|0 => 1; 0|0 => 0; p|0 => p;
+ // 1|p => 1; 0|p => p; p|p => p;
+ // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = IRB.CreateNot(I.getOperand(0));
+ Value *V2 = IRB.CreateNot(I.getOperand(1));
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Default propagation of shadow and/or origin.
+ ///
+ /// This class implements the general case of shadow propagation, used in all
+ /// cases where we don't know and/or don't care about what the operation
+ /// actually does. It converts all input shadow values to a common type
+ /// (extending or truncating as necessary), and bitwise OR's them.
+ ///
+ /// This is much cheaper than inserting checks (i.e. requiring inputs to be
+ /// fully initialized), and less prone to false positives.
+ ///
+ /// This class also implements the general case of origin propagation. For a
+ /// Nary operation, result origin is set to the origin of an argument that is
+ /// not entirely initialized. If there is more than one such arguments, the
+ /// rightmost of them is picked. It does not matter which one is picked if all
+ /// arguments are initialized.
+ template <bool CombineShadow>
+ class Combiner {
+ Value *Shadow;
+ Value *Origin;
+ IRBuilder<> &IRB;
+ MemorySanitizerVisitor *MSV;
+
+ public:
+ Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
+ Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
+
+ /// \brief Add a pair of shadow and origin values to the mix.
+ Combiner &Add(Value *OpShadow, Value *OpOrigin) {
+ if (CombineShadow) {
+ assert(OpShadow);
+ if (!Shadow)
+ Shadow = OpShadow;
+ else {
+ OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
+ Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
+ }
+ }
+
+ if (MSV->MS.TrackOrigins) {
+ assert(OpOrigin);
+ if (!Origin) {
+ Origin = OpOrigin;
+ } else {
+ Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
+ Value *Cond = IRB.CreateICmpNE(FlatShadow,
+ MSV->getCleanShadow(FlatShadow));
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ }
+ return *this;
+ }
+
+ /// \brief Add an application value to the mix.
+ Combiner &Add(Value *V) {
+ Value *OpShadow = MSV->getShadow(V);
+ Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
+ return Add(OpShadow, OpOrigin);
+ }
+
+ /// \brief Set the current combined values as the given instruction's shadow
+ /// and origin.
+ void Done(Instruction *I) {
+ if (CombineShadow) {
+ assert(Shadow);
+ Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
+ MSV->setShadow(I, Shadow);
+ }
+ if (MSV->MS.TrackOrigins) {
+ assert(Origin);
+ MSV->setOrigin(I, Origin);
+ }
+ }
+ };
+
+ typedef Combiner<true> ShadowAndOriginCombiner;
+ typedef Combiner<false> OriginCombiner;
+
+ /// \brief Propagate origin for arbitrary operation.
+ void setOriginForNaryOp(Instruction &I) {
+ if (!MS.TrackOrigins) return;
+ IRBuilder<> IRB(&I);
+ OriginCombiner OC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ OC.Add(OI->get());
+ OC.Done(&I);
+ }
+
+ size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
+ assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
+ "Vector of pointers is not a valid shadow type");
+ return Ty->isVectorTy() ?
+ Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
+ Ty->getPrimitiveSizeInBits();
+ }
+
+ /// \brief Cast between two shadow types, extending or truncating as
+ /// necessary.
+ Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
+ bool Signed = false) {
+ Type *srcTy = V->getType();
+ if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
+ return IRB.CreateIntCast(V, dstTy, Signed);
+ if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
+ dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
+ return IRB.CreateIntCast(V, dstTy, Signed);
+ size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
+ size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
+ Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
+ Value *V2 =
+ IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
+ return IRB.CreateBitCast(V2, dstTy);
+ // TODO: handle struct types.
+ }
+
+ /// \brief Propagate shadow for arbitrary operation.
+ void handleShadowOr(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ SC.Add(OI->get());
+ SC.Done(&I);
+ }
+
+ void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
+ void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitXor(BinaryOperator &I) { handleShadowOr(I); }
+ void visitMul(BinaryOperator &I) { handleShadowOr(I); }
+
+ void handleDiv(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ // Strict on the second argument.
+ insertShadowCheck(I.getOperand(1), &I);
+ setShadow(&I, getShadow(&I, 0));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitUDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitSDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitFDiv(BinaryOperator &I) { handleDiv(I); }
+ void visitURem(BinaryOperator &I) { handleDiv(I); }
+ void visitSRem(BinaryOperator &I) { handleDiv(I); }
+ void visitFRem(BinaryOperator &I) { handleDiv(I); }
+
+ /// \brief Instrument == and != comparisons.
+ ///
+ /// Sometimes the comparison result is known even if some of the bits of the
+ /// arguments are not.
+ void handleEqualityComparison(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // A == B <==> (C = A^B) == 0
+ // A != B <==> (C = A^B) != 0
+ // Sc = Sa | Sb
+ Value *C = IRB.CreateXor(A, B);
+ Value *Sc = IRB.CreateOr(Sa, Sb);
+ // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
+ // Result is defined if one of the following is true
+ // * there is a defined 1 bit in C
+ // * C is fully defined
+ // Si = !(C & ~Sc) && Sc
+ Value *Zero = Constant::getNullValue(Sc->getType());
+ Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
+ Value *Si =
+ IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
+ IRB.CreateICmpEQ(
+ IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
+ Si->setName("_msprop_icmp");
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Build the lowest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Maximise the undefined shadow bit, minimize other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
+ } else {
+ // Minimize undefined bits.
+ return IRB.CreateAnd(A, IRB.CreateNot(Sa));
+ }
+ }
+
+ /// \brief Build the highest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Minimise the undefined shadow bit, maximise other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
+ } else {
+ // Maximize undefined bits.
+ return IRB.CreateOr(A, Sa);
+ }
+ }
+
+ /// \brief Instrument relational comparisons.
+ ///
+ /// This function does exact shadow propagation for all relational
+ /// comparisons of integers, pointers and vectors of those.
+ /// FIXME: output seems suboptimal when one of the operands is a constant
+ void handleRelationalComparisonExact(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // Let [a0, a1] be the interval of possible values of A, taking into account
+ // its undefined bits. Let [b0, b1] be the interval of possible values of B.
+ // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
+ bool IsSigned = I.isSigned();
+ Value *S1 = IRB.CreateICmp(I.getPredicate(),
+ getLowestPossibleValue(IRB, A, Sa, IsSigned),
+ getHighestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *S2 = IRB.CreateICmp(I.getPredicate(),
+ getHighestPossibleValue(IRB, A, Sa, IsSigned),
+ getLowestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *Si = IRB.CreateXor(S1, S2);
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// \brief Instrument signed relational comparisons.
+ ///
+ /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
+ /// propagating the highest bit of the shadow. Everything else is delegated
+ /// to handleShadowOr().
+ void handleSignedRelationalComparison(ICmpInst &I) {
+ Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
+ Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
+ Value* op = NULL;
+ CmpInst::Predicate pre = I.getPredicate();
+ if (constOp0 && constOp0->isNullValue() &&
+ (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
+ op = I.getOperand(1);
+ } else if (constOp1 && constOp1->isNullValue() &&
+ (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
+ op = I.getOperand(0);
+ }
+ if (op) {
+ IRBuilder<> IRB(&I);
+ Value* Shadow =
+ IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
+ setShadow(&I, Shadow);
+ setOrigin(&I, getOrigin(op));
+ } else {
+ handleShadowOr(I);
+ }
+ }
+
+ void visitICmpInst(ICmpInst &I) {
+ if (!ClHandleICmp) {
+ handleShadowOr(I);
+ return;
+ }
+ if (I.isEquality()) {
+ handleEqualityComparison(I);
+ return;
+ }
+
+ assert(I.isRelational());
+ if (ClHandleICmpExact) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+ if (I.isSigned()) {
+ handleSignedRelationalComparison(I);
+ return;
+ }
+
+ assert(I.isUnsigned());
+ if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+
+ handleShadowOr(I);
+ }
+
+ void visitFCmpInst(FCmpInst &I) {
+ handleShadowOr(I);
+ }
+
+ void handleShift(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // If any of the S2 bits are poisoned, the whole thing is poisoned.
+ // Otherwise perform the same shift on S1.
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
+ S2->getType());
+ Value *V2 = I.getOperand(1);
+ Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
+ setShadow(&I, IRB.CreateOr(Shift, S2Conv));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShl(BinaryOperator &I) { handleShift(I); }
+ void visitAShr(BinaryOperator &I) { handleShift(I); }
+ void visitLShr(BinaryOperator &I) { handleShift(I); }
+
+ /// \brief Instrument llvm.memmove
+ ///
+ /// At this point we don't know if llvm.memmove will be inlined or not.
+ /// If we don't instrument it and it gets inlined,
+ /// our interceptor will not kick in and we will lose the memmove.
+ /// If we instrument the call here, but it does not get inlined,
+ /// we will memove the shadow twice: which is bad in case
+ /// of overlapping regions. So, we simply lower the intrinsic to a call.
+ ///
+ /// Similar situation exists for memcpy and memset.
+ void visitMemMoveInst(MemMoveInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemmoveFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Similar to memmove: avoid copying shadow twice.
+ // This is somewhat unfortunate as it may slowdown small constant memcpys.
+ // FIXME: consider doing manual inline for small constant sizes and proper
+ // alignment.
+ void visitMemCpyInst(MemCpyInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemcpyFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ // Same as memcpy.
+ void visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall3(
+ MS.MemsetFn,
+ IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
+ I.eraseFromParent();
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ VAHelper->visitVAStartInst(I);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ VAHelper->visitVACopyInst(I);
+ }
+
+ enum IntrinsicKind {
+ IK_DoesNotAccessMemory,
+ IK_OnlyReadsMemory,
+ IK_WritesMemory
+ };
+
+ static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
+ const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
+ const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
+ const int OnlyReadsMemory = IK_OnlyReadsMemory;
+ const int OnlyAccessesArgumentPointees = IK_WritesMemory;
+ const int UnknownModRefBehavior = IK_WritesMemory;
+#define GET_INTRINSIC_MODREF_BEHAVIOR
+#define ModRefBehavior IntrinsicKind
+#include "llvm/IR/Intrinsics.gen"
+#undef ModRefBehavior
+#undef GET_INTRINSIC_MODREF_BEHAVIOR
+ }
+
+ /// \brief Handle vector store-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD store: writes memory,
+ /// has 1 pointer argument and 1 vector argument, returns void.
+ bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Value *Shadow = getShadow(&I, 1);
+ Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
+
+ // We don't know the pointer alignment (could be unaligned SSE store!).
+ // Have to assume to worst case.
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ // FIXME: use ClStoreCleanOrigin
+ // FIXME: factor out common code from materializeStores
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
+ return true;
+ }
+
+ /// \brief Handle vector load-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD load: reads memory,
+ /// has 1 pointer argument, returns a vector.
+ bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+
+ Type *ShadowTy = getShadowTy(&I);
+ if (LoadShadow) {
+ Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
+ // We don't know the pointer alignment (could be unaligned SSE load!).
+ // Have to assume to worst case.
+ setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ if (MS.TrackOrigins) {
+ if (LoadShadow)
+ setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
+ else
+ setOrigin(&I, getCleanOrigin());
+ }
+ return true;
+ }
+
+ /// \brief Handle (SIMD arithmetic)-like intrinsics.
+ ///
+ /// Instrument intrinsics with any number of arguments of the same type,
+ /// equal to the return type. The type should be simple (no aggregates or
+ /// pointers; vectors are fine).
+ /// Caller guarantees that this intrinsic does not access memory.
+ bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
+ Type *RetTy = I.getType();
+ if (!(RetTy->isIntOrIntVectorTy() ||
+ RetTy->isFPOrFPVectorTy() ||
+ RetTy->isX86_MMXTy()))
+ return false;
+
+ unsigned NumArgOperands = I.getNumArgOperands();
+
+ for (unsigned i = 0; i < NumArgOperands; ++i) {
+ Type *Ty = I.getArgOperand(i)->getType();
+ if (Ty != RetTy)
+ return false;
+ }
+
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (unsigned i = 0; i < NumArgOperands; ++i)
+ SC.Add(I.getArgOperand(i));
+ SC.Done(&I);
+
+ return true;
+ }
+
+ /// \brief Heuristically instrument unknown intrinsics.
+ ///
+ /// The main purpose of this code is to do something reasonable with all
+ /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
+ /// We recognize several classes of intrinsics by their argument types and
+ /// ModRefBehaviour and apply special intrumentation when we are reasonably
+ /// sure that we know what the intrinsic does.
+ ///
+ /// We special-case intrinsics where this approach fails. See llvm.bswap
+ /// handling as an example of that.
+ bool handleUnknownIntrinsic(IntrinsicInst &I) {
+ unsigned NumArgOperands = I.getNumArgOperands();
+ if (NumArgOperands == 0)
+ return false;
+
+ Intrinsic::ID iid = I.getIntrinsicID();
+ IntrinsicKind IK = getIntrinsicKind(iid);
+ bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
+ bool WritesMemory = IK == IK_WritesMemory;
+ assert(!(OnlyReadsMemory && WritesMemory));
+
+ if (NumArgOperands == 2 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getArgOperand(1)->getType()->isVectorTy() &&
+ I.getType()->isVoidTy() &&
+ WritesMemory) {
+ // This looks like a vector store.
+ return handleVectorStoreIntrinsic(I);
+ }
+
+ if (NumArgOperands == 1 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getType()->isVectorTy() &&
+ OnlyReadsMemory) {
+ // This looks like a vector load.
+ return handleVectorLoadIntrinsic(I);
+ }
+
+ if (!OnlyReadsMemory && !WritesMemory)
+ if (maybeHandleSimpleNomemIntrinsic(I))
+ return true;
+
+ // FIXME: detect and handle SSE maskstore/maskload
+ return false;
+ }
+
+ void handleBswap(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Op = I.getArgOperand(0);
+ Type *OpType = Op->getType();
+ Function *BswapFunc = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
+ setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
+ setOrigin(&I, getOrigin(Op));
+ }
+
+ // \brief Instrument vector convert instrinsic.
+ //
+ // This function instruments intrinsics like cvtsi2ss:
+ // %Out = int_xxx_cvtyyy(%ConvertOp)
+ // or
+ // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
+ // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
+ // number \p Out elements, and (if has 2 arguments) copies the rest of the
+ // elements from \p CopyOp.
+ // In most cases conversion involves floating-point value which may trigger a
+ // hardware exception when not fully initialized. For this reason we require
+ // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
+ // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
+ // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
+ // return a fully initialized value.
+ void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
+ IRBuilder<> IRB(&I);
+ Value *CopyOp, *ConvertOp;
+
+ switch (I.getNumArgOperands()) {
+ case 2:
+ CopyOp = I.getArgOperand(0);
+ ConvertOp = I.getArgOperand(1);
+ break;
+ case 1:
+ ConvertOp = I.getArgOperand(0);
+ CopyOp = NULL;
+ break;
+ default:
+ llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
+ }
+
+ // The first *NumUsedElements* elements of ConvertOp are converted to the
+ // same number of output elements. The rest of the output is copied from
+ // CopyOp, or (if not available) filled with zeroes.
+ // Combine shadow for elements of ConvertOp that are used in this operation,
+ // and insert a check.
+ // FIXME: consider propagating shadow of ConvertOp, at least in the case of
+ // int->any conversion.
+ Value *ConvertShadow = getShadow(ConvertOp);
+ Value *AggShadow = 0;
+ if (ConvertOp->getType()->isVectorTy()) {
+ AggShadow = IRB.CreateExtractElement(
+ ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
+ for (int i = 1; i < NumUsedElements; ++i) {
+ Value *MoreShadow = IRB.CreateExtractElement(
+ ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
+ AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
+ }
+ } else {
+ AggShadow = ConvertShadow;
+ }
+ assert(AggShadow->getType()->isIntegerTy());
+ insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
+
+ // Build result shadow by zero-filling parts of CopyOp shadow that come from
+ // ConvertOp.
+ if (CopyOp) {
+ assert(CopyOp->getType() == I.getType());
+ assert(CopyOp->getType()->isVectorTy());
+ Value *ResultShadow = getShadow(CopyOp);
+ Type *EltTy = ResultShadow->getType()->getVectorElementType();
+ for (int i = 0; i < NumUsedElements; ++i) {
+ ResultShadow = IRB.CreateInsertElement(
+ ResultShadow, ConstantInt::getNullValue(EltTy),
+ ConstantInt::get(IRB.getInt32Ty(), i));
+ }
+ setShadow(&I, ResultShadow);
+ setOrigin(&I, getOrigin(CopyOp));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+ }
+
+ void visitIntrinsicInst(IntrinsicInst &I) {
+ switch (I.getIntrinsicID()) {
+ case llvm::Intrinsic::bswap:
+ handleBswap(I);
+ break;
+ case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
+ case llvm::Intrinsic::x86_avx512_cvtsd2usi:
+ case llvm::Intrinsic::x86_avx512_cvtss2usi64:
+ case llvm::Intrinsic::x86_avx512_cvtss2usi:
+ case llvm::Intrinsic::x86_avx512_cvttss2usi64:
+ case llvm::Intrinsic::x86_avx512_cvttss2usi:
+ case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
+ case llvm::Intrinsic::x86_avx512_cvttsd2usi:
+ case llvm::Intrinsic::x86_avx512_cvtusi2sd:
+ case llvm::Intrinsic::x86_avx512_cvtusi2ss:
+ case llvm::Intrinsic::x86_avx512_cvtusi642sd:
+ case llvm::Intrinsic::x86_avx512_cvtusi642ss:
+ case llvm::Intrinsic::x86_sse2_cvtsd2si64:
+ case llvm::Intrinsic::x86_sse2_cvtsd2si:
+ case llvm::Intrinsic::x86_sse2_cvtsd2ss:
+ case llvm::Intrinsic::x86_sse2_cvtsi2sd:
+ case llvm::Intrinsic::x86_sse2_cvtsi642sd:
+ case llvm::Intrinsic::x86_sse2_cvtss2sd:
+ case llvm::Intrinsic::x86_sse2_cvttsd2si64:
+ case llvm::Intrinsic::x86_sse2_cvttsd2si:
+ case llvm::Intrinsic::x86_sse_cvtsi2ss:
+ case llvm::Intrinsic::x86_sse_cvtsi642ss:
+ case llvm::Intrinsic::x86_sse_cvtss2si64:
+ case llvm::Intrinsic::x86_sse_cvtss2si:
+ case llvm::Intrinsic::x86_sse_cvttss2si64:
+ case llvm::Intrinsic::x86_sse_cvttss2si:
+ handleVectorConvertIntrinsic(I, 1);
+ break;
+ case llvm::Intrinsic::x86_sse2_cvtdq2pd:
+ case llvm::Intrinsic::x86_sse2_cvtps2pd:
+ case llvm::Intrinsic::x86_sse_cvtps2pi:
+ case llvm::Intrinsic::x86_sse_cvttps2pi:
+ handleVectorConvertIntrinsic(I, 2);
+ break;
+ default:
+ if (!handleUnknownIntrinsic(I))
+ visitInstruction(I);
+ break;
+ }
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction &I = *CS.getInstruction();
+ assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
+ if (CS.isCall()) {
+ CallInst *Call = cast<CallInst>(&I);
+
+ // For inline asm, do the usual thing: check argument shadow and mark all
+ // outputs as clean. Note that any side effects of the inline asm that are
+ // not immediately visible in its constraints are not handled.
+ if (Call->isInlineAsm()) {
+ visitInstruction(I);
+ return;
+ }
+
+ // Allow only tail calls with the same types, otherwise
+ // we may have a false positive: shadow for a non-void RetVal
+ // will get propagated to a void RetVal.
+ if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
+ Call->setTailCall(false);
+
+ assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
+
+ // We are going to insert code that relies on the fact that the callee
+ // will become a non-readonly function after it is instrumented by us. To
+ // prevent this code from being optimized out, mark that function
+ // non-readonly in advance.
+ if (Function *Func = Call->getCalledFunction()) {
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ Func->removeAttributes(AttributeSet::FunctionIndex,
+ AttributeSet::get(Func->getContext(),
+ AttributeSet::FunctionIndex,
+ B));
+ }
+ }
+ IRBuilder<> IRB(&I);
+
+ if (MS.WrapIndirectCalls && !CS.getCalledFunction())
+ IndirectCallList.push_back(CS);
+
+ unsigned ArgOffset = 0;
+ DEBUG(dbgs() << " CallSite: " << I << "\n");
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned i = ArgIt - CS.arg_begin();
+ if (!A->getType()->isSized()) {
+ DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
+ continue;
+ }
+ unsigned Size = 0;
+ Value *Store = 0;
+ // Compute the Shadow for arg even if it is ByVal, because
+ // in that case getShadow() will copy the actual arg shadow to
+ // __msan_param_tls.
+ Value *ArgShadow = getShadow(A);
+ Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
+ DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
+ " Shadow: " << *ArgShadow << "\n");
+ if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
+ assert(A->getType()->isPointerTy() &&
+ "ByVal argument is not a pointer!");
+ Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
+ unsigned Alignment = CS.getParamAlignment(i + 1);
+ Store = IRB.CreateMemCpy(ArgShadowBase,
+ getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
+ Size, Alignment);
+ } else {
+ Size = MS.TD->getTypeAllocSize(A->getType());
+ Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
+ kShadowTLSAlignment);
+ }
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(A),
+ getOriginPtrForArgument(A, IRB, ArgOffset));
+ (void)Store;
+ assert(Size != 0 && Store != 0);
+ DEBUG(dbgs() << " Param:" << *Store << "\n");
+ ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ }
+ DEBUG(dbgs() << " done with call args\n");
+
+ FunctionType *FT =
+ cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
+ if (FT->isVarArg()) {
+ VAHelper->visitCallSite(CS, IRB);
+ }
+
+ // Now, get the shadow for the RetVal.
+ if (!I.getType()->isSized()) return;
+ IRBuilder<> IRBBefore(&I);
+ // Untill we have full dynamic coverage, make sure the retval shadow is 0.
+ Value *Base = getShadowPtrForRetval(&I, IRBBefore);
+ IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
+ Instruction *NextInsn = 0;
+ if (CS.isCall()) {
+ NextInsn = I.getNextNode();
+ } else {
+ BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
+ if (!NormalDest->getSinglePredecessor()) {
+ // FIXME: this case is tricky, so we are just conservative here.
+ // Perhaps we need to split the edge between this BB and NormalDest,
+ // but a naive attempt to use SplitEdge leads to a crash.
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ return;
+ }
+ NextInsn = NormalDest->getFirstInsertionPt();
+ assert(NextInsn &&
+ "Could not find insertion point for retval shadow load");
+ }
+ IRBuilder<> IRBAfter(NextInsn);
+ Value *RetvalShadow =
+ IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
+ kShadowTLSAlignment, "_msret");
+ setShadow(&I, RetvalShadow);
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
+ }
+
+ void visitReturnInst(ReturnInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *RetVal = I.getReturnValue();
+ if (!RetVal) return;
+ Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
+ if (CheckReturnValue) {
+ insertShadowCheck(RetVal, &I);
+ Value *Shadow = getCleanShadow(RetVal);
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ } else {
+ Value *Shadow = getShadow(RetVal);
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ // FIXME: make it conditional if ClStoreCleanOrigin==0
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
+ }
+ }
+
+ void visitPHINode(PHINode &I) {
+ IRBuilder<> IRB(&I);
+ ShadowPHINodes.push_back(&I);
+ setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
+ "_msphi_s"));
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
+ "_msphi_o"));
+ }
+
+ void visitAllocaInst(AllocaInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ IRBuilder<> IRB(I.getNextNode());
+ uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
+ if (PoisonStack && ClPoisonStackWithCall) {
+ IRB.CreateCall2(MS.MsanPoisonStackFn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size));
+ } else {
+ Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
+ Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
+ IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
+ }
+
+ if (PoisonStack && MS.TrackOrigins) {
+ setOrigin(&I, getCleanOrigin());
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ // We create a string with a description of the stack allocation and
+ // pass it into __msan_set_alloca_origin.
+ // It will be printed by the run-time if stack-originated UMR is found.
+ // The first 4 bytes of the string are set to '----' and will be replaced
+ // by __msan_va_arg_overflow_size_tls at the first call.
+ StackDescription << "----" << I.getName() << "@" << F.getName();
+ Value *Descr =
+ createPrivateNonConstGlobalForString(*F.getParent(),
+ StackDescription.str());
+
+ IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
+ IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
+ ConstantInt::get(MS.IntptrTy, Size),
+ IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(&F, MS.IntptrTy));
+ }
+ }
+
+ void visitSelectInst(SelectInst& I) {
+ IRBuilder<> IRB(&I);
+ // a = select b, c, d
+ Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
+ getShadow(I.getFalseValue()));
+ if (I.getType()->isAggregateType()) {
+ // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
+ // an extra "select". This results in much more compact IR.
+ // Sa = select Sb, poisoned, (select b, Sc, Sd)
+ S = IRB.CreateSelect(getShadow(I.getCondition()),
+ getPoisonedShadow(getShadowTy(I.getType())), S,
+ "_msprop_select_agg");
+ } else {
+ // Sa = (sext Sb) | (select b, Sc, Sd)
+ S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
+ S->getType(), true),
+ "_msprop_select");
+ }
+ setShadow(&I, S);
+ if (MS.TrackOrigins) {
+ // Origins are always i32, so any vector conditions must be flattened.
+ // FIXME: consider tracking vector origins for app vectors?
+ Value *Cond = I.getCondition();
+ if (Cond->getType()->isVectorTy()) {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
+ Cond = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mso_select");
+ }
+ setOrigin(&I, IRB.CreateSelect(Cond,
+ getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
+ }
+ }
+
+ void visitLandingPadInst(LandingPadInst &I) {
+ // Do nothing.
+ // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &I) {
+ handleShadowOr(I);
+ }
+
+ void visitExtractValueInst(ExtractValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Agg = I.getAggregateOperand();
+ DEBUG(dbgs() << "ExtractValue: " << I << "\n");
+ Value *AggShadow = getShadow(Agg);
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
+ DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
+ setShadow(&I, ResShadow);
+ setOriginForNaryOp(I);
+ }
+
+ void visitInsertValueInst(InsertValueInst &I) {
+ IRBuilder<> IRB(&I);
+ DEBUG(dbgs() << "InsertValue: " << I << "\n");
+ Value *AggShadow = getShadow(I.getAggregateOperand());
+ Value *InsShadow = getShadow(I.getInsertedValueOperand());
+ DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
+ Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
+ DEBUG(dbgs() << " Res: " << *Res << "\n");
+ setShadow(&I, Res);
+ setOriginForNaryOp(I);
+ }
+
+ void dumpInst(Instruction &I) {
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
+ } else {
+ errs() << "ZZZ " << I.getOpcodeName() << "\n";
+ }
+ errs() << "QQQ " << I << "\n";
+ }
+
+ void visitResumeInst(ResumeInst &I) {
+ DEBUG(dbgs() << "Resume: " << I << "\n");
+ // Nothing to do here.
+ }
+
+ void visitInstruction(Instruction &I) {
+ // Everything else: stop propagating and check for poisoned shadow.
+ if (ClDumpStrictInstructions)
+ dumpInst(I);
+ DEBUG(dbgs() << "DEFAULT: " << I << "\n");
+ for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
+ insertShadowCheck(I.getOperand(i), &I);
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+};
+
+/// \brief AMD64-specific implementation of VarArgHelper.
+struct VarArgAMD64Helper : public VarArgHelper {
+ // An unfortunate workaround for asymmetric lowering of va_arg stuff.
+ // See a comment in visitCallSite for more details.
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64FpEndOffset = 176;
+
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy;
+ Value *VAArgOverflowSize;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV)
+ : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
+
+ enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
+
+ ArgKind classifyArgument(Value* arg) {
+ // A very rough approximation of X86_64 argument classification rules.
+ Type *T = arg->getType();
+ if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
+ return AK_FloatingPoint;
+ if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
+ return AK_GeneralPurpose;
+ if (T->isPointerTy())
+ return AK_GeneralPurpose;
+ return AK_Memory;
+ }
+
+ // For VarArg functions, store the argument shadow in an ABI-specific format
+ // that corresponds to va_list layout.
+ // We do this because Clang lowers va_arg in the frontend, and this pass
+ // only sees the low level code that deals with va_list internals.
+ // A much easier alternative (provided that Clang emits va_arg instructions)
+ // would have been to associate each live instance of va_list with a copy of
+ // MSanParamTLS, and extract shadow on va_arg() call in the argument list
+ // order.
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
+ unsigned GpOffset = 0;
+ unsigned FpOffset = AMD64GpEndOffset;
+ unsigned OverflowOffset = AMD64FpEndOffset;
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ ArgKind AK = classifyArgument(A);
+ if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
+ AK = AK_Memory;
+ if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
+ AK = AK_Memory;
+ Value *Base;
+ switch (AK) {
+ case AK_GeneralPurpose:
+ Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
+ GpOffset += 8;
+ break;
+ case AK_FloatingPoint:
+ Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
+ FpOffset += 16;
+ break;
+ case AK_Memory:
+ uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
+ Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
+ OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
+ }
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+ Constant *OverflowSize =
+ ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
+ IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// \brief Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */24, /* alignment */8, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */24, /* alignment */8, false);
+ }
+
+ void finalizeInstrumentation() {
+ assert(!VAArgOverflowSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
+ VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
+ Value *CopySize =
+ IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
+ VAArgOverflowSize);
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+
+ Value *RegSaveAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 16)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr =
+ MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
+ AMD64FpEndOffset, 16);
+
+ Value *OverflowArgAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 8)),
+ Type::getInt64PtrTy(*MS.C));
+ Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
+ Value *OverflowArgAreaShadowPtr =
+ MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
+ Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
+ IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
+ }
+ }
+};
+
+/// \brief A no-op implementation of VarArgHelper.
+struct VarArgNoOpHelper : public VarArgHelper {
+ VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV) {}
+
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {}
+
+ void visitVAStartInst(VAStartInst &I) {}
+
+ void visitVACopyInst(VACopyInst &I) {}
+
+ void finalizeInstrumentation() {}
+};
+
+VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor) {
+ // VarArg handling is only implemented on AMD64. False positives are possible
+ // on other platforms.
+ llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
+ if (TargetTriple.getArch() == llvm::Triple::x86_64)
+ return new VarArgAMD64Helper(Func, Msan, Visitor);
+ else
+ return new VarArgNoOpHelper(Func, Msan, Visitor);
+}
+
+} // namespace
+
+bool MemorySanitizer::runOnFunction(Function &F) {
+ MemorySanitizerVisitor Visitor(F, *this);
+
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F.removeAttributes(AttributeSet::FunctionIndex,
+ AttributeSet::get(F.getContext(),
+ AttributeSet::FunctionIndex, B));
+
+ return Visitor.runOnFunction();
+}