diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp | 249 |
1 files changed, 162 insertions, 87 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp index 30290ee7a799..cb165844bdce 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp @@ -13,10 +13,12 @@ //===----------------------------------------------------------------------===// #include "InstCombine.h" -#include "llvm/Support/PatternMatch.h" +#include "llvm/IR/PatternMatch.h" using namespace llvm; using namespace PatternMatch; +#define DEBUG_TYPE "instcombine" + /// CheapToScalarize - Return true if the value is cheaper to scalarize than it /// is to leave as a vector operation. isConstant indicates whether we're /// extracting one known element. If false we're extracting a variable index. @@ -73,7 +75,7 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) { if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa<ConstantInt>(III->getOperand(2))) - return 0; + return nullptr; unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the @@ -97,14 +99,14 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) { } // Extract a value from a vector add operation with a constant zero. - Value *Val = 0; Constant *Con = 0; + Value *Val = nullptr; Constant *Con = nullptr; if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) { if (Con->getAggregateElement(EltNo)->isNullValue()) return FindScalarElement(Val, EltNo); } // Otherwise, we don't know. - return 0; + return nullptr; } // If we have a PHI node with a vector type that has only 2 uses: feed @@ -113,12 +115,12 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) { Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { // Verify that the PHI node has exactly 2 uses. Otherwise return NULL. if (!PN->hasNUses(2)) - return NULL; + return nullptr; // If so, it's known at this point that one operand is PHI and the other is // an extractelement node. Find the PHI user that is not the extractelement // node. - Value::use_iterator iu = PN->use_begin(); + auto iu = PN->user_begin(); Instruction *PHIUser = dyn_cast<Instruction>(*iu); if (PHIUser == cast<Instruction>(&EI)) PHIUser = cast<Instruction>(*(++iu)); @@ -126,9 +128,9 @@ Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { // Verify that this PHI user has one use, which is the PHI itself, // and that it is a binary operation which is cheap to scalarize. // otherwise return NULL. - if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) || + if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true)) - return NULL; + return nullptr; // Create a scalar PHI node that will replace the vector PHI node // just before the current PHI node. @@ -142,7 +144,7 @@ Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { // If the operand is the PHI induction variable: if (PHIInVal == PHIUser) { // Scalarize the binary operation. Its first operand is the - // scalar PHI and the second operand is extracted from the other + // scalar PHI, and the second operand is extracted from the other // vector operand. BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; @@ -318,7 +320,7 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { } } } - return 0; + return nullptr; } /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns @@ -326,7 +328,7 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { /// Otherwise, return false. static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, SmallVectorImpl<Constant*> &Mask) { - assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && + assert(LHS->getType() == RHS->getType() && "Invalid CollectSingleShuffleElements"); unsigned NumElts = V->getType()->getVectorNumElements(); @@ -359,7 +361,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. - // Okay, we can handle this if the vector we are insertinting into is + // We can handle this if the vector we are inserting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted undef. @@ -367,14 +369,14 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, return true; } } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ - if (isa<ConstantInt>(EI->getOperand(1)) && - EI->getOperand(0)->getType() == V->getType()) { + if (isa<ConstantInt>(EI->getOperand(1))) { unsigned ExtractedIdx = cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); // This must be extracting from either LHS or RHS. if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { - // Okay, we can handle this if the vector we are insertinting into is + // We can handle this if the vector we are inserting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted value. @@ -386,7 +388,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, assert(EI->getOperand(0) == RHS); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::getInt32Ty(V->getContext()), - ExtractedIdx+NumElts); + ExtractedIdx + NumLHSElts); } return true; } @@ -394,29 +396,36 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, } } } - // TODO: Handle shufflevector here! return false; } -/// CollectShuffleElements - We are building a shuffle of V, using RHS as the -/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask -/// that computes V and the LHS value of the shuffle. -static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask, - Value *&RHS) { - assert(V->getType()->isVectorTy() && - (RHS == 0 || V->getType() == RHS->getType()) && - "Invalid shuffle!"); + +/// We are building a shuffle to create V, which is a sequence of insertelement, +/// extractelement pairs. If PermittedRHS is set, then we must either use it or +/// not rely on the second vector source. Return a std::pair containing the +/// left and right vectors of the proposed shuffle (or 0), and set the Mask +/// parameter as required. +/// +/// Note: we intentionally don't try to fold earlier shuffles since they have +/// often been chosen carefully to be efficiently implementable on the target. +typedef std::pair<Value *, Value *> ShuffleOps; + +static ShuffleOps CollectShuffleElements(Value *V, + SmallVectorImpl<Constant *> &Mask, + Value *PermittedRHS) { + assert(V->getType()->isVectorTy() && "Invalid shuffle!"); unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); if (isa<UndefValue>(V)) { Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); - return V; + return std::make_pair( + PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); } if (isa<ConstantAggregateZero>(V)) { Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); - return V; + return std::make_pair(V, nullptr); } if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { @@ -426,51 +435,94 @@ static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask, Value *IdxOp = IEI->getOperand(2); if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { - if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && - EI->getOperand(0)->getType() == V->getType()) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { unsigned ExtractedIdx = cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); // Either the extracted from or inserted into vector must be RHSVec, // otherwise we'd end up with a shuffle of three inputs. - if (EI->getOperand(0) == RHS || RHS == 0) { - RHS = EI->getOperand(0); - Value *V = CollectShuffleElements(VecOp, Mask, RHS); + if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { + Value *RHS = EI->getOperand(0); + ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS); + assert(LR.second == nullptr || LR.second == RHS); + + if (LR.first->getType() != RHS->getType()) { + // We tried our best, but we can't find anything compatible with RHS + // further up the chain. Return a trivial shuffle. + for (unsigned i = 0; i < NumElts; ++i) + Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); + return std::make_pair(V, nullptr); + } + + unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::getInt32Ty(V->getContext()), - NumElts+ExtractedIdx); - return V; + NumLHSElts+ExtractedIdx); + return std::make_pair(LR.first, RHS); } - if (VecOp == RHS) { - Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); - // Update Mask to reflect that `ScalarOp' has been inserted at - // position `InsertedIdx' within the vector returned by IEI. - Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx]; - - // Everything but the extracted element is replaced with the RHS. - for (unsigned i = 0; i != NumElts; ++i) { - if (i != InsertedIdx) - Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), - NumElts+i); - } - return V; + if (VecOp == PermittedRHS) { + // We've gone as far as we can: anything on the other side of the + // extractelement will already have been converted into a shuffle. + unsigned NumLHSElts = + EI->getOperand(0)->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get( + Type::getInt32Ty(V->getContext()), + i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); + return std::make_pair(EI->getOperand(0), PermittedRHS); } // If this insertelement is a chain that comes from exactly these two // vectors, return the vector and the effective shuffle. - if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) - return EI->getOperand(0); + if (EI->getOperand(0)->getType() == PermittedRHS->getType() && + CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, + Mask)) + return std::make_pair(EI->getOperand(0), PermittedRHS); } } } - // TODO: Handle shufflevector here! // Otherwise, can't do anything fancy. Return an identity vector. for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); - return V; + return std::make_pair(V, nullptr); +} + +/// Try to find redundant insertvalue instructions, like the following ones: +/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 +/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 +/// Here the second instruction inserts values at the same indices, as the +/// first one, making the first one redundant. +/// It should be transformed to: +/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 +Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { + bool IsRedundant = false; + ArrayRef<unsigned int> FirstIndices = I.getIndices(); + + // If there is a chain of insertvalue instructions (each of them except the + // last one has only one use and it's another insertvalue insn from this + // chain), check if any of the 'children' uses the same indices as the first + // instruction. In this case, the first one is redundant. + Value *V = &I; + unsigned Depth = 0; + while (V->hasOneUse() && Depth < 10) { + User *U = V->user_back(); + auto UserInsInst = dyn_cast<InsertValueInst>(U); + if (!UserInsInst || U->getOperand(0) != V) + break; + if (UserInsInst->getIndices() == FirstIndices) { + IsRedundant = true; + break; + } + V = UserInsInst; + Depth++; + } + + if (IsRedundant) + return ReplaceInstUsesWith(I, I.getOperand(0)); + return nullptr; } Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { @@ -485,17 +537,18 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { // If the inserted element was extracted from some other vector, and if the // indexes are constant, try to turn this into a shufflevector operation. if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { - if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && - EI->getOperand(0)->getType() == IE.getType()) { - unsigned NumVectorElts = IE.getType()->getNumElements(); + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { + unsigned NumInsertVectorElts = IE.getType()->getNumElements(); + unsigned NumExtractVectorElts = + EI->getOperand(0)->getType()->getVectorNumElements(); unsigned ExtractedIdx = cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); - if (ExtractedIdx >= NumVectorElts) // Out of range extract. + if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. return ReplaceInstUsesWith(IE, VecOp); - if (InsertedIdx >= NumVectorElts) // Out of range insert. + if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); // If we are extracting a value from a vector, then inserting it right @@ -505,13 +558,19 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { // If this insertelement isn't used by some other insertelement, turn it // (and any insertelements it points to), into one big shuffle. - if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) { + if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { SmallVector<Constant*, 16> Mask; - Value *RHS = 0; - Value *LHS = CollectShuffleElements(&IE, Mask, RHS); - if (RHS == 0) RHS = UndefValue::get(LHS->getType()); - // We now have a shuffle of LHS, RHS, Mask. - return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); + ShuffleOps LR = CollectShuffleElements(&IE, Mask, nullptr); + + // The proposed shuffle may be trivial, in which case we shouldn't + // perform the combine. + if (LR.first != &IE && LR.second != &IE) { + // We now have a shuffle of LHS, RHS, Mask. + if (LR.second == nullptr) + LR.second = UndefValue::get(LR.first->getType()); + return new ShuffleVectorInst(LR.first, LR.second, + ConstantVector::get(Mask)); + } } } } @@ -525,7 +584,7 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { return &IE; } - return 0; + return nullptr; } /// Return true if we can evaluate the specified expression tree if the vector @@ -640,6 +699,8 @@ static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) { if (isa<PossiblyExactOperator>(BO)) { New->setIsExact(BO->isExact()); } + if (isa<FPMathOperator>(BO)) + New->copyFastMathFlags(I); return New; } case Instruction::ICmp: @@ -765,9 +826,10 @@ InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { } } + // If element is not in Mask, no need to handle the operand 1 (element to + // be inserted). Just evaluate values in operand 0 according to Mask. if (!Found) - return UndefValue::get( - VectorType::get(V->getType()->getScalarType(), Mask.size())); + return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); return InsertElementInst::Create(V, I->getOperand(1), @@ -777,6 +839,20 @@ InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { llvm_unreachable("failed to reorder elements of vector instruction!"); } +static void RecognizeIdentityMask(const SmallVectorImpl<int> &Mask, + bool &isLHSID, bool &isRHSID) { + isLHSID = isRHSID = true; + + for (unsigned i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] < 0) continue; // Ignore undef values. + // Is this an identity shuffle of the LHS value? + isLHSID &= (Mask[i] == (int)i); + + // Is this an identity shuffle of the RHS value? + isRHSID &= (Mask[i]-e == i); + } +} + Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Value *LHS = SVI.getOperand(0); Value *RHS = SVI.getOperand(1); @@ -840,16 +916,8 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { if (VWidth == LHSWidth) { // Analyze the shuffle, are the LHS or RHS and identity shuffles? - bool isLHSID = true, isRHSID = true; - - for (unsigned i = 0, e = Mask.size(); i != e; ++i) { - if (Mask[i] < 0) continue; // Ignore undef values. - // Is this an identity shuffle of the LHS value? - isLHSID &= (Mask[i] == (int)i); - - // Is this an identity shuffle of the RHS value? - isRHSID &= (Mask[i]-e == i); - } + bool isLHSID, isRHSID; + RecognizeIdentityMask(Mask, isLHSID, isRHSID); // Eliminate identity shuffles. if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); @@ -908,16 +976,16 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); if (LHSShuffle) if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) - LHSShuffle = NULL; + LHSShuffle = nullptr; if (RHSShuffle) if (!isa<UndefValue>(RHSShuffle->getOperand(1))) - RHSShuffle = NULL; + RHSShuffle = nullptr; if (!LHSShuffle && !RHSShuffle) - return MadeChange ? &SVI : 0; + return MadeChange ? &SVI : nullptr; - Value* LHSOp0 = NULL; - Value* LHSOp1 = NULL; - Value* RHSOp0 = NULL; + Value* LHSOp0 = nullptr; + Value* LHSOp1 = nullptr; + Value* RHSOp0 = nullptr; unsigned LHSOp0Width = 0; unsigned RHSOp0Width = 0; if (LHSShuffle) { @@ -949,11 +1017,11 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { // case 4 if (LHSOp0 == RHSOp0) { newLHS = LHSOp0; - newRHS = NULL; + newRHS = nullptr; } if (newLHS == LHS && newRHS == RHS) - return MadeChange ? &SVI : 0; + return MadeChange ? &SVI : nullptr; SmallVector<int, 16> LHSMask; SmallVector<int, 16> RHSMask; @@ -1012,8 +1080,8 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. // If newRHS == newLHS, we want to remap any references from newRHS to // newLHS so that we can properly identify splats that may occur due to - // obfuscation accross the two vectors. - if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS) + // obfuscation across the two vectors. + if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) eltMask += newLHSWidth; } @@ -1039,10 +1107,17 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); } } - if (newRHS == NULL) + if (!newRHS) newRHS = UndefValue::get(newLHS->getType()); return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); } - return MadeChange ? &SVI : 0; + // If the result mask is an identity, replace uses of this instruction with + // corresponding argument. + bool isLHSID, isRHSID; + RecognizeIdentityMask(newMask, isLHSID, isRHSID); + if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS); + if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS); + + return MadeChange ? &SVI : nullptr; } |