aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp1259
1 files changed, 1259 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 000000000000..a7595482eedb
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,1259 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+
+/// simplifyValueKnownNonZero - The specific integer value is used in a context
+/// where it is known to be non-zero. If this allows us to simplify the
+/// computation, do so and return the new operand, otherwise return null.
+static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
+ // If V has multiple uses, then we would have to do more analysis to determine
+ // if this is safe. For example, the use could be in dynamically unreached
+ // code.
+ if (!V->hasOneUse()) return 0;
+
+ bool MadeChange = false;
+
+ // ((1 << A) >>u B) --> (1 << (A-B))
+ // Because V cannot be zero, we know that B is less than A.
+ Value *A = 0, *B = 0, *PowerOf2 = 0;
+ if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
+ m_Value(B))) &&
+ // The "1" can be any value known to be a power of 2.
+ isKnownToBeAPowerOfTwo(PowerOf2)) {
+ A = IC.Builder->CreateSub(A, B);
+ return IC.Builder->CreateShl(PowerOf2, A);
+ }
+
+ // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
+ // inexact. Similarly for <<.
+ if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
+ if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
+ // We know that this is an exact/nuw shift and that the input is a
+ // non-zero context as well.
+ if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
+ I->setOperand(0, V2);
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
+ I->setIsExact();
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
+ I->setHasNoUnsignedWrap();
+ MadeChange = true;
+ }
+ }
+
+ // TODO: Lots more we could do here:
+ // If V is a phi node, we can call this on each of its operands.
+ // "select cond, X, 0" can simplify to "X".
+
+ return MadeChange ? V : 0;
+}
+
+
+/// MultiplyOverflows - True if the multiply can not be expressed in an int
+/// this size.
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
+ uint32_t W = C1->getBitWidth();
+ APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
+ if (sign) {
+ LHSExt = LHSExt.sext(W * 2);
+ RHSExt = RHSExt.sext(W * 2);
+ } else {
+ LHSExt = LHSExt.zext(W * 2);
+ RHSExt = RHSExt.zext(W * 2);
+ }
+
+ APInt MulExt = LHSExt * RHSExt;
+
+ if (!sign)
+ return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
+
+ APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
+ APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
+ return MulExt.slt(Min) || MulExt.sgt(Max);
+}
+
+/// \brief A helper routine of InstCombiner::visitMul().
+///
+/// If C is a vector of known powers of 2, then this function returns
+/// a new vector obtained from C replacing each element with its logBase2.
+/// Return a null pointer otherwise.
+static Constant *getLogBase2Vector(ConstantDataVector *CV) {
+ const APInt *IVal;
+ SmallVector<Constant *, 4> Elts;
+
+ for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
+ Constant *Elt = CV->getElementAsConstant(I);
+ if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
+ return 0;
+ Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
+ }
+
+ return ConstantVector::get(Elts);
+}
+
+Instruction *InstCombiner::visitMul(BinaryOperator &I) {
+ bool Changed = SimplifyAssociativeOrCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyMulInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
+
+ if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
+ return BinaryOperator::CreateNeg(Op0, I.getName());
+
+ // Also allow combining multiply instructions on vectors.
+ {
+ Value *NewOp;
+ Constant *C1, *C2;
+ const APInt *IVal;
+ if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
+ m_Constant(C1))) &&
+ match(C1, m_APInt(IVal)))
+ // ((X << C1)*C2) == (X * (C2 << C1))
+ return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
+
+ if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
+ Constant *NewCst = 0;
+ if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
+ // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
+ NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
+ else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
+ // Replace X*(2^C) with X << C, where C is a vector of known
+ // constant powers of 2.
+ NewCst = getLogBase2Vector(CV);
+
+ if (NewCst) {
+ BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
+ if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
+ if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
+ return Shl;
+ }
+ }
+ }
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
+ { Value *X; ConstantInt *C1;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
+ Value *Add = Builder->CreateMul(X, CI);
+ return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
+ }
+ }
+
+ // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
+ // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
+ // The "* (2**n)" thus becomes a potential shifting opportunity.
+ {
+ const APInt & Val = CI->getValue();
+ const APInt &PosVal = Val.abs();
+ if (Val.isNegative() && PosVal.isPowerOf2()) {
+ Value *X = 0, *Y = 0;
+ if (Op0->hasOneUse()) {
+ ConstantInt *C1;
+ Value *Sub = 0;
+ if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
+ Sub = Builder->CreateSub(X, Y, "suba");
+ else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
+ Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
+ if (Sub)
+ return
+ BinaryOperator::CreateMul(Sub,
+ ConstantInt::get(Y->getType(), PosVal));
+ }
+ }
+ }
+ }
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1))
+ return BinaryOperator::CreateMul(Op0v, Op1v);
+
+ // (X / Y) * Y = X - (X % Y)
+ // (X / Y) * -Y = (X % Y) - X
+ {
+ Value *Op1C = Op1;
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
+ if (!BO ||
+ (BO->getOpcode() != Instruction::UDiv &&
+ BO->getOpcode() != Instruction::SDiv)) {
+ Op1C = Op0;
+ BO = dyn_cast<BinaryOperator>(Op1);
+ }
+ Value *Neg = dyn_castNegVal(Op1C);
+ if (BO && BO->hasOneUse() &&
+ (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
+ (BO->getOpcode() == Instruction::UDiv ||
+ BO->getOpcode() == Instruction::SDiv)) {
+ Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
+
+ // If the division is exact, X % Y is zero, so we end up with X or -X.
+ if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
+ if (SDiv->isExact()) {
+ if (Op1BO == Op1C)
+ return ReplaceInstUsesWith(I, Op0BO);
+ return BinaryOperator::CreateNeg(Op0BO);
+ }
+
+ Value *Rem;
+ if (BO->getOpcode() == Instruction::UDiv)
+ Rem = Builder->CreateURem(Op0BO, Op1BO);
+ else
+ Rem = Builder->CreateSRem(Op0BO, Op1BO);
+ Rem->takeName(BO);
+
+ if (Op1BO == Op1C)
+ return BinaryOperator::CreateSub(Op0BO, Rem);
+ return BinaryOperator::CreateSub(Rem, Op0BO);
+ }
+ }
+
+ /// i1 mul -> i1 and.
+ if (I.getType()->isIntegerTy(1))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op1, Y);
+ if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op0, Y);
+ }
+
+ // If one of the operands of the multiply is a cast from a boolean value, then
+ // we know the bool is either zero or one, so this is a 'masking' multiply.
+ // X * Y (where Y is 0 or 1) -> X & (0-Y)
+ if (!I.getType()->isVectorTy()) {
+ // -2 is "-1 << 1" so it is all bits set except the low one.
+ APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+
+ Value *BoolCast = 0, *OtherOp = 0;
+ if (MaskedValueIsZero(Op0, Negative2))
+ BoolCast = Op0, OtherOp = Op1;
+ else if (MaskedValueIsZero(Op1, Negative2))
+ BoolCast = Op1, OtherOp = Op0;
+
+ if (BoolCast) {
+ Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+ BoolCast);
+ return BinaryOperator::CreateAnd(V, OtherOp);
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+//
+// Detect pattern:
+//
+// log2(Y*0.5)
+//
+// And check for corresponding fast math flags
+//
+
+static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
+
+ if (!Op->hasOneUse())
+ return;
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
+ if (!II)
+ return;
+ if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
+ return;
+ Log2 = II;
+
+ Value *OpLog2Of = II->getArgOperand(0);
+ if (!OpLog2Of->hasOneUse())
+ return;
+
+ Instruction *I = dyn_cast<Instruction>(OpLog2Of);
+ if (!I)
+ return;
+ if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return;
+
+ ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
+ if (CFP && CFP->isExactlyValue(0.5)) {
+ Y = I->getOperand(1);
+ return;
+ }
+ CFP = dyn_cast<ConstantFP>(I->getOperand(1));
+ if (CFP && CFP->isExactlyValue(0.5))
+ Y = I->getOperand(0);
+}
+
+/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
+/// true iff the given value is FMul or FDiv with one and only one operand
+/// being a normal constant (i.e. not Zero/NaN/Infinity).
+static bool isFMulOrFDivWithConstant(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || (I->getOpcode() != Instruction::FMul &&
+ I->getOpcode() != Instruction::FDiv))
+ return false;
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+ ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+ if (C0 && C1)
+ return false;
+
+ return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
+ (C1 && C1->getValueAPF().isFiniteNonZero());
+}
+
+static bool isNormalFp(const ConstantFP *C) {
+ const APFloat &Flt = C->getValueAPF();
+ return Flt.isNormal();
+}
+
+/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
+/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
+/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
+/// This function is to simplify "FMulOrDiv * C" and returns the
+/// resulting expression. Note that this function could return NULL in
+/// case the constants cannot be folded into a normal floating-point.
+///
+Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
+ Instruction *InsertBefore) {
+ assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
+
+ Value *Opnd0 = FMulOrDiv->getOperand(0);
+ Value *Opnd1 = FMulOrDiv->getOperand(1);
+
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+
+ BinaryOperator *R = 0;
+
+ // (X * C0) * C => X * (C0*C)
+ if (FMulOrDiv->getOpcode() == Instruction::FMul) {
+ Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
+ } else {
+ if (C0) {
+ // (C0 / X) * C => (C0 * C) / X
+ if (FMulOrDiv->hasOneUse()) {
+ // It would otherwise introduce another div.
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
+ if (isNormalFp(F))
+ R = BinaryOperator::CreateFDiv(F, Opnd1);
+ }
+ } else {
+ // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
+ ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
+ if (isNormalFp(F)) {
+ R = BinaryOperator::CreateFMul(Opnd0, F);
+ } else {
+ // (X / C1) * C => X / (C1/C)
+ Constant *F = ConstantExpr::getFDiv(C1, C);
+ if (isNormalFp(cast<ConstantFP>(F)))
+ R = BinaryOperator::CreateFDiv(Opnd0, F);
+ }
+ }
+ }
+
+ if (R) {
+ R->setHasUnsafeAlgebra(true);
+ InsertNewInstWith(R, *InsertBefore);
+ }
+
+ return R;
+}
+
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+ bool Changed = SimplifyAssociativeOrCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (isa<Constant>(Op0))
+ std::swap(Op0, Op1);
+
+ if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+ bool AllowReassociate = I.hasUnsafeAlgebra();
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+
+ ConstantFP *C = dyn_cast<ConstantFP>(Op1);
+ if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
+ // Let MDC denote an expression in one of these forms:
+ // X * C, C/X, X/C, where C is a constant.
+ //
+ // Try to simplify "MDC * Constant"
+ if (isFMulOrFDivWithConstant(Op0)) {
+ Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
+ if (V)
+ return ReplaceInstUsesWith(I, V);
+ }
+
+ // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
+ Instruction *FAddSub = dyn_cast<Instruction>(Op0);
+ if (FAddSub &&
+ (FAddSub->getOpcode() == Instruction::FAdd ||
+ FAddSub->getOpcode() == Instruction::FSub)) {
+ Value *Opnd0 = FAddSub->getOperand(0);
+ Value *Opnd1 = FAddSub->getOperand(1);
+ ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
+ ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
+ bool Swap = false;
+ if (C0) {
+ std::swap(C0, C1);
+ std::swap(Opnd0, Opnd1);
+ Swap = true;
+ }
+
+ if (C1 && C1->getValueAPF().isFiniteNonZero() &&
+ isFMulOrFDivWithConstant(Opnd0)) {
+ Value *M1 = ConstantExpr::getFMul(C1, C);
+ Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
+ foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
+ 0;
+ if (M0 && M1) {
+ if (Swap && FAddSub->getOpcode() == Instruction::FSub)
+ std::swap(M0, M1);
+
+ Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
+ ? BinaryOperator::CreateFAdd(M0, M1)
+ : BinaryOperator::CreateFSub(M0, M1);
+ RI->copyFastMathFlags(&I);
+ return RI;
+ }
+ }
+ }
+ }
+ }
+
+
+ // Under unsafe algebra do:
+ // X * log2(0.5*Y) = X*log2(Y) - X
+ if (I.hasUnsafeAlgebra()) {
+ Value *OpX = NULL;
+ Value *OpY = NULL;
+ IntrinsicInst *Log2;
+ detectLog2OfHalf(Op0, OpY, Log2);
+ if (OpY) {
+ OpX = Op1;
+ } else {
+ detectLog2OfHalf(Op1, OpY, Log2);
+ if (OpY) {
+ OpX = Op0;
+ }
+ }
+ // if pattern detected emit alternate sequence
+ if (OpX && OpY) {
+ BuilderTy::FastMathFlagGuard Guard(*Builder);
+ Builder->SetFastMathFlags(Log2->getFastMathFlags());
+ Log2->setArgOperand(0, OpY);
+ Value *FMulVal = Builder->CreateFMul(OpX, Log2);
+ Value *FSub = Builder->CreateFSub(FMulVal, OpX);
+ FSub->takeName(&I);
+ return ReplaceInstUsesWith(I, FSub);
+ }
+ }
+
+ // Handle symmetric situation in a 2-iteration loop
+ Value *Opnd0 = Op0;
+ Value *Opnd1 = Op1;
+ for (int i = 0; i < 2; i++) {
+ bool IgnoreZeroSign = I.hasNoSignedZeros();
+ if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
+ BuilderTy::FastMathFlagGuard Guard(*Builder);
+ Builder->SetFastMathFlags(I.getFastMathFlags());
+
+ Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
+ Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
+
+ // -X * -Y => X*Y
+ if (N1)
+ return BinaryOperator::CreateFMul(N0, N1);
+
+ if (Opnd0->hasOneUse()) {
+ // -X * Y => -(X*Y) (Promote negation as high as possible)
+ Value *T = Builder->CreateFMul(N0, Opnd1);
+ Value *Neg = Builder->CreateFNeg(T);
+ Neg->takeName(&I);
+ return ReplaceInstUsesWith(I, Neg);
+ }
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ //
+ if (AllowReassociate) {
+ Value *Opnd0_0, *Opnd0_1;
+ if (Opnd0->hasOneUse() &&
+ match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
+ Value *Y = 0;
+ if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
+ Y = Opnd0_1;
+ else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
+ Y = Opnd0_0;
+
+ if (Y) {
+ BuilderTy::FastMathFlagGuard Guard(*Builder);
+ Builder->SetFastMathFlags(I.getFastMathFlags());
+ Value *T = Builder->CreateFMul(Opnd1, Opnd1);
+
+ Value *R = Builder->CreateFMul(T, Y);
+ R->takeName(&I);
+ return ReplaceInstUsesWith(I, R);
+ }
+ }
+ }
+
+ // B * (uitofp i1 C) -> select C, B, 0
+ if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
+ Value *LHS = Op0, *RHS = Op1;
+ Value *B, *C;
+ if (!match(RHS, m_UIToFP(m_Value(C))))
+ std::swap(LHS, RHS);
+
+ if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
+ B = LHS;
+ Value *Zero = ConstantFP::getNegativeZero(B->getType());
+ return SelectInst::Create(C, B, Zero);
+ }
+ }
+
+ // A * (1 - uitofp i1 C) -> select C, 0, A
+ if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
+ Value *LHS = Op0, *RHS = Op1;
+ Value *A, *C;
+ if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
+ std::swap(LHS, RHS);
+
+ if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
+ C->getType()->isIntegerTy(1)) {
+ A = LHS;
+ Value *Zero = ConstantFP::getNegativeZero(A->getType());
+ return SelectInst::Create(C, Zero, A);
+ }
+ }
+
+ if (!isa<Constant>(Op1))
+ std::swap(Opnd0, Opnd1);
+ else
+ break;
+ }
+
+ return Changed ? &I : 0;
+}
+
+/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
+/// instruction.
+bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
+ SelectInst *SI = cast<SelectInst>(I.getOperand(1));
+
+ // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+ int NonNullOperand = -1;
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
+ if (ST->isNullValue())
+ NonNullOperand = 2;
+ // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
+ if (ST->isNullValue())
+ NonNullOperand = 1;
+
+ if (NonNullOperand == -1)
+ return false;
+
+ Value *SelectCond = SI->getOperand(0);
+
+ // Change the div/rem to use 'Y' instead of the select.
+ I.setOperand(1, SI->getOperand(NonNullOperand));
+
+ // Okay, we know we replace the operand of the div/rem with 'Y' with no
+ // problem. However, the select, or the condition of the select may have
+ // multiple uses. Based on our knowledge that the operand must be non-zero,
+ // propagate the known value for the select into other uses of it, and
+ // propagate a known value of the condition into its other users.
+
+ // If the select and condition only have a single use, don't bother with this,
+ // early exit.
+ if (SI->use_empty() && SelectCond->hasOneUse())
+ return true;
+
+ // Scan the current block backward, looking for other uses of SI.
+ BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
+
+ while (BBI != BBFront) {
+ --BBI;
+ // If we found a call to a function, we can't assume it will return, so
+ // information from below it cannot be propagated above it.
+ if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
+ break;
+
+ // Replace uses of the select or its condition with the known values.
+ for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
+ I != E; ++I) {
+ if (*I == SI) {
+ *I = SI->getOperand(NonNullOperand);
+ Worklist.Add(BBI);
+ } else if (*I == SelectCond) {
+ *I = Builder->getInt1(NonNullOperand == 1);
+ Worklist.Add(BBI);
+ }
+ }
+
+ // If we past the instruction, quit looking for it.
+ if (&*BBI == SI)
+ SI = 0;
+ if (&*BBI == SelectCond)
+ SelectCond = 0;
+
+ // If we ran out of things to eliminate, break out of the loop.
+ if (SelectCond == 0 && SI == 0)
+ break;
+
+ }
+ return true;
+}
+
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// @brief Common integer divide transforms
+Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: [su]div X, (select Cond, Y, Z)
+ // This does not apply for fdiv.
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // (X / C1) / C2 -> X / (C1*C2)
+ if (Instruction *LHS = dyn_cast<Instruction>(Op0))
+ if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
+ if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
+ if (MultiplyOverflows(RHS, LHSRHS,
+ I.getOpcode()==Instruction::SDiv))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
+ ConstantExpr::getMul(RHS, LHSRHS));
+ }
+
+ if (!RHS->isZero()) { // avoid X udiv 0
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+ }
+
+ // See if we can fold away this div instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
+ Value *X = 0, *Z = 0;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
+ bool isSigned = I.getOpcode() == Instruction::SDiv;
+ if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ return BinaryOperator::Create(I.getOpcode(), X, Op1);
+ }
+
+ return 0;
+}
+
+/// dyn_castZExtVal - Checks if V is a zext or constant that can
+/// be truncated to Ty without losing bits.
+static Value *dyn_castZExtVal(Value *V, Type *Ty) {
+ if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
+ if (Z->getSrcTy() == Ty)
+ return Z->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
+ if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
+ return ConstantExpr::getTrunc(C, Ty);
+ }
+ return 0;
+}
+
+namespace {
+const unsigned MaxDepth = 6;
+typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
+ const BinaryOperator &I,
+ InstCombiner &IC);
+
+/// \brief Used to maintain state for visitUDivOperand().
+struct UDivFoldAction {
+ FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
+ ///< operand. This can be zero if this action
+ ///< joins two actions together.
+
+ Value *OperandToFold; ///< Which operand to fold.
+ union {
+ Instruction *FoldResult; ///< The instruction returned when FoldAction is
+ ///< invoked.
+
+ size_t SelectLHSIdx; ///< Stores the LHS action index if this action
+ ///< joins two actions together.
+ };
+
+ UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
+ : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
+ UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
+ : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
+};
+}
+
+// X udiv 2^C -> X >> C
+static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
+ const BinaryOperator &I, InstCombiner &IC) {
+ const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(
+ Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
+ if (I.isExact()) LShr->setIsExact();
+ return LShr;
+}
+
+// X udiv C, where C >= signbit
+static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
+ const BinaryOperator &I, InstCombiner &IC) {
+ Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
+
+ return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
+ ConstantInt::get(I.getType(), 1));
+}
+
+// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
+ InstCombiner &IC) {
+ Instruction *ShiftLeft = cast<Instruction>(Op1);
+ if (isa<ZExtInst>(ShiftLeft))
+ ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
+
+ const APInt &CI =
+ cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
+ Value *N = ShiftLeft->getOperand(1);
+ if (CI != 1)
+ N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
+ if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
+ N = IC.Builder->CreateZExt(N, Z->getDestTy());
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
+ if (I.isExact()) LShr->setIsExact();
+ return LShr;
+}
+
+// \brief Recursively visits the possible right hand operands of a udiv
+// instruction, seeing through select instructions, to determine if we can
+// replace the udiv with something simpler. If we find that an operand is not
+// able to simplify the udiv, we abort the entire transformation.
+static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
+ SmallVectorImpl<UDivFoldAction> &Actions,
+ unsigned Depth = 0) {
+ // Check to see if this is an unsigned division with an exact power of 2,
+ // if so, convert to a right shift.
+ if (match(Op1, m_Power2())) {
+ Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
+ return Actions.size();
+ }
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
+ // X udiv C, where C >= signbit
+ if (C->getValue().isNegative()) {
+ Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
+ return Actions.size();
+ }
+
+ // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+ if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
+ match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
+ Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
+ return Actions.size();
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return 0;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
+ if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
+ Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
+ return Actions.size();
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
+ if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
+ Value *X;
+ ConstantInt *C1;
+ if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
+ APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
+ return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
+ }
+ }
+
+ // (zext A) udiv (zext B) --> zext (A udiv B)
+ if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
+ if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
+ return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
+ I.isExact()),
+ I.getType());
+
+ // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
+ SmallVector<UDivFoldAction, 6> UDivActions;
+ if (visitUDivOperand(Op0, Op1, I, UDivActions))
+ for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
+ FoldUDivOperandCb Action = UDivActions[i].FoldAction;
+ Value *ActionOp1 = UDivActions[i].OperandToFold;
+ Instruction *Inst;
+ if (Action)
+ Inst = Action(Op0, ActionOp1, I, *this);
+ else {
+ // This action joins two actions together. The RHS of this action is
+ // simply the last action we processed, we saved the LHS action index in
+ // the joining action.
+ size_t SelectRHSIdx = i - 1;
+ Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
+ size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
+ Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
+ Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
+ SelectLHS, SelectRHS);
+ }
+
+ // If this is the last action to process, return it to the InstCombiner.
+ // Otherwise, we insert it before the UDiv and record it so that we may
+ // use it as part of a joining action (i.e., a SelectInst).
+ if (e - i != 1) {
+ Inst->insertBefore(&I);
+ UDivActions[i].FoldResult = Inst;
+ } else
+ return Inst;
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifySDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // sdiv X, -1 == -X
+ if (RHS->isAllOnesValue())
+ return BinaryOperator::CreateNeg(Op0);
+
+ // sdiv X, C --> ashr exact X, log2(C)
+ if (I.isExact() && RHS->getValue().isNonNegative() &&
+ RHS->getValue().isPowerOf2()) {
+ Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+ RHS->getValue().exactLogBase2());
+ return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
+ }
+
+ // -X/C --> X/-C provided the negation doesn't overflow.
+ if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+ if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
+ return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+ ConstantExpr::getNeg(RHS));
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a udiv.
+ if (I.getType()->isIntegerTy()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+
+ if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
+/// FP value and:
+/// 1) 1/C is exact, or
+/// 2) reciprocal is allowed.
+/// If the conversion was successful, the simplified expression "X * 1/C" is
+/// returned; otherwise, NULL is returned.
+///
+static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
+ ConstantFP *Divisor,
+ bool AllowReciprocal) {
+ const APFloat &FpVal = Divisor->getValueAPF();
+ APFloat Reciprocal(FpVal.getSemantics());
+ bool Cvt = FpVal.getExactInverse(&Reciprocal);
+
+ if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
+ Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
+ (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
+ Cvt = !Reciprocal.isDenormal();
+ }
+
+ if (!Cvt)
+ return 0;
+
+ ConstantFP *R;
+ R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
+ return BinaryOperator::CreateFMul(Dividend, R);
+}
+
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (isa<Constant>(Op0))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ bool AllowReassociate = I.hasUnsafeAlgebra();
+ bool AllowReciprocal = I.hasAllowReciprocal();
+
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (AllowReassociate) {
+ ConstantFP *C1 = 0;
+ ConstantFP *C2 = Op1C;
+ Value *X;
+ Instruction *Res = 0;
+
+ if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
+ // (X*C1)/C2 => X * (C1/C2)
+ //
+ Constant *C = ConstantExpr::getFDiv(C1, C2);
+ const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
+ if (F.isNormal())
+ Res = BinaryOperator::CreateFMul(X, C);
+ } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
+ // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
+ //
+ Constant *C = ConstantExpr::getFMul(C1, C2);
+ const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
+ if (F.isNormal()) {
+ Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
+ AllowReciprocal);
+ if (!Res)
+ Res = BinaryOperator::CreateFDiv(X, C);
+ }
+ }
+
+ if (Res) {
+ Res->setFastMathFlags(I.getFastMathFlags());
+ return Res;
+ }
+ }
+
+ // X / C => X * 1/C
+ if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
+ return T;
+
+ return 0;
+ }
+
+ if (AllowReassociate && isa<ConstantFP>(Op0)) {
+ ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
+ Constant *Fold = 0;
+ Value *X;
+ bool CreateDiv = true;
+
+ // C1 / (X*C2) => (C1/C2) / X
+ if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
+ Fold = ConstantExpr::getFDiv(C1, C2);
+ else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
+ // C1 / (X/C2) => (C1*C2) / X
+ Fold = ConstantExpr::getFMul(C1, C2);
+ } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
+ // C1 / (C2/X) => (C1/C2) * X
+ Fold = ConstantExpr::getFDiv(C1, C2);
+ CreateDiv = false;
+ }
+
+ if (Fold) {
+ const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
+ if (FoldC.isNormal()) {
+ Instruction *R = CreateDiv ?
+ BinaryOperator::CreateFDiv(Fold, X) :
+ BinaryOperator::CreateFMul(X, Fold);
+ R->setFastMathFlags(I.getFastMathFlags());
+ return R;
+ }
+ }
+ return 0;
+ }
+
+ if (AllowReassociate) {
+ Value *X, *Y;
+ Value *NewInst = 0;
+ Instruction *SimpR = 0;
+
+ if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
+ // (X/Y) / Z => X / (Y*Z)
+ //
+ if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
+ NewInst = Builder->CreateFMul(Y, Op1);
+ SimpR = BinaryOperator::CreateFDiv(X, NewInst);
+ }
+ } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
+ // Z / (X/Y) => Z*Y / X
+ //
+ if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
+ NewInst = Builder->CreateFMul(Op0, Y);
+ SimpR = BinaryOperator::CreateFDiv(NewInst, X);
+ }
+ }
+
+ if (NewInst) {
+ if (Instruction *T = dyn_cast<Instruction>(NewInst))
+ T->setDebugLoc(I.getDebugLoc());
+ SimpR->setFastMathFlags(I.getFastMathFlags());
+ return SimpR;
+ }
+ }
+
+ return 0;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// @brief Common integer remainder transforms
+Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ if (isa<ConstantInt>(Op1)) {
+ if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ } else if (isa<PHINode>(Op0I)) {
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ // See if we can fold away this rem instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitURem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyURemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Instruction *common = commonIRemTransforms(I))
+ return common;
+
+ // (zext A) urem (zext B) --> zext (A urem B)
+ if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
+ if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
+ return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
+ I.getType());
+
+ // X urem Y -> X and Y-1, where Y is a power of 2,
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(Op1, N1);
+ return BinaryOperator::CreateAnd(Op0, Add);
+ }
+
+ // 1 urem X -> zext(X != 1)
+ if (match(Op0, m_One())) {
+ Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
+ Value *Ext = Builder->CreateZExt(Cmp, I.getType());
+ return ReplaceInstUsesWith(I, Ext);
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifySRemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer rem common cases
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
+
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
+ if (!isa<Constant>(RHSNeg) ||
+ (isa<ConstantInt>(RHSNeg) &&
+ cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
+ // X % -Y -> X % Y
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, RHSNeg);
+ return &I;
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a urem.
+ if (I.getType()->isIntegerTy()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+ }
+ }
+
+ // If it's a constant vector, flip any negative values positive.
+ if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
+ Constant *C = cast<Constant>(Op1);
+ unsigned VWidth = C->getType()->getVectorNumElements();
+
+ bool hasNegative = false;
+ bool hasMissing = false;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (Elt == 0) {
+ hasMissing = true;
+ break;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
+ if (RHS->isNegative())
+ hasNegative = true;
+ }
+
+ if (hasNegative && !hasMissing) {
+ SmallVector<Constant *, 16> Elts(VWidth);
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
+ if (RHS->isNegative())
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+ }
+ }
+
+ Constant *NewRHSV = ConstantVector::get(Elts);
+ if (NewRHSV != C) { // Don't loop on -MININT
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, NewRHSV);
+ return &I;
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ return 0;
+}