aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp983
1 files changed, 718 insertions, 265 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index d9311a343ead..bfd73f4bbac5 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -13,18 +13,19 @@
#include "InstCombineInternal.h"
#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
@@ -55,8 +56,8 @@ static bool HasAddOverflow(ConstantInt *Result,
return Result->getValue().slt(In1->getValue());
}
-/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
-/// overflowed for this type.
+/// Compute Result = In1+In2, returning true if the result overflowed for this
+/// type.
static bool AddWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
@@ -90,8 +91,8 @@ static bool HasSubOverflow(ConstantInt *Result,
return Result->getValue().sgt(In1->getValue());
}
-/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
-/// overflowed for this type.
+/// Compute Result = In1-In2, returning true if the result overflowed for this
+/// type.
static bool SubWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
@@ -113,13 +114,21 @@ static bool SubWithOverflow(Constant *&Result, Constant *In1,
IsSigned);
}
-/// isSignBitCheck - Given an exploded icmp instruction, return true if the
-/// comparison only checks the sign bit. If it only checks the sign bit, set
-/// TrueIfSigned if the result of the comparison is true when the input value is
-/// signed.
-static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
+/// Given an icmp instruction, return true if any use of this comparison is a
+/// branch on sign bit comparison.
+static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
+ for (auto *U : I.users())
+ if (isa<BranchInst>(U))
+ return isSignBit;
+ return false;
+}
+
+/// Given an exploded icmp instruction, return true if the comparison only
+/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
+/// result of the comparison is true when the input value is signed.
+static bool isSignBitCheck(ICmpInst::Predicate Pred, ConstantInt *RHS,
bool &TrueIfSigned) {
- switch (pred) {
+ switch (Pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
return RHS->isZero();
@@ -145,21 +154,21 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
/// Returns true if the exploded icmp can be expressed as a signed comparison
/// to zero and updates the predicate accordingly.
/// The signedness of the comparison is preserved.
-static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
- if (!ICmpInst::isSigned(pred))
+static bool isSignTest(ICmpInst::Predicate &Pred, const ConstantInt *RHS) {
+ if (!ICmpInst::isSigned(Pred))
return false;
if (RHS->isZero())
- return ICmpInst::isRelational(pred);
+ return ICmpInst::isRelational(Pred);
if (RHS->isOne()) {
- if (pred == ICmpInst::ICMP_SLT) {
- pred = ICmpInst::ICMP_SLE;
+ if (Pred == ICmpInst::ICMP_SLT) {
+ Pred = ICmpInst::ICMP_SLE;
return true;
}
} else if (RHS->isAllOnesValue()) {
- if (pred == ICmpInst::ICMP_SGT) {
- pred = ICmpInst::ICMP_SGE;
+ if (Pred == ICmpInst::ICMP_SGT) {
+ Pred = ICmpInst::ICMP_SGE;
return true;
}
}
@@ -167,19 +176,18 @@ static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
return false;
}
-// isHighOnes - Return true if the constant is of the form 1+0+.
-// This is the same as lowones(~X).
+/// Return true if the constant is of the form 1+0+. This is the same as
+/// lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
return (~CI->getValue() + 1).isPowerOf2();
}
-/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
-/// set of known zero and one bits, compute the maximum and minimum values that
-/// could have the specified known zero and known one bits, returning them in
-/// min/max.
-static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
- const APInt& KnownOne,
- APInt& Min, APInt& Max) {
+/// Given a signed integer type and a set of known zero and one bits, compute
+/// the maximum and minimum values that could have the specified known zero and
+/// known one bits, returning them in Min/Max.
+static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+ const APInt &KnownOne,
+ APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
@@ -197,10 +205,9 @@ static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
}
}
-// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
-// a set of known zero and one bits, compute the maximum and minimum values that
-// could have the specified known zero and known one bits, returning them in
-// min/max.
+/// Given an unsigned integer type and a set of known zero and one bits, compute
+/// the maximum and minimum values that could have the specified known zero and
+/// known one bits, returning them in Min/Max.
static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
@@ -216,14 +223,14 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
Max = KnownOne|UnknownBits;
}
-/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
+/// This is called when we see this pattern:
/// cmp pred (load (gep GV, ...)), cmpcst
-/// where GV is a global variable with a constant initializer. Try to simplify
-/// this into some simple computation that does not need the load. For example
+/// where GV is a global variable with a constant initializer. Try to simplify
+/// this into some simple computation that does not need the load. For example
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
///
/// If AndCst is non-null, then the loaded value is masked with that constant
-/// before doing the comparison. This handles cases like "A[i]&4 == 0".
+/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Instruction *InstCombiner::
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
CmpInst &ICI, ConstantInt *AndCst) {
@@ -401,7 +408,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
if (SecondTrueElement != Overdefined) {
// None true -> false.
if (FirstTrueElement == Undefined)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return replaceInstUsesWith(ICI, Builder->getFalse());
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
@@ -421,7 +428,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
if (SecondFalseElement != Overdefined) {
// None false -> true.
if (FirstFalseElement == Undefined)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ return replaceInstUsesWith(ICI, Builder->getTrue());
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
@@ -492,12 +499,12 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
return nullptr;
}
-/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
-/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
-/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
-/// be complex, and scales are involved. The above expression would also be
-/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
-/// This later form is less amenable to optimization though, and we are allowed
+/// Return a value that can be used to compare the *offset* implied by a GEP to
+/// zero. For example, if we have &A[i], we want to return 'i' for
+/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
+/// are involved. The above expression would also be legal to codegen as
+/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This latter form is less amenable to optimization though, and we are allowed
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
@@ -595,8 +602,323 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
}
-/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
-/// else. At this point we know that the GEP is on the LHS of the comparison.
+/// Returns true if we can rewrite Start as a GEP with pointer Base
+/// and some integer offset. The nodes that need to be re-written
+/// for this transformation will be added to Explored.
+static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
+ const DataLayout &DL,
+ SetVector<Value *> &Explored) {
+ SmallVector<Value *, 16> WorkList(1, Start);
+ Explored.insert(Base);
+
+ // The following traversal gives us an order which can be used
+ // when doing the final transformation. Since in the final
+ // transformation we create the PHI replacement instructions first,
+ // we don't have to get them in any particular order.
+ //
+ // However, for other instructions we will have to traverse the
+ // operands of an instruction first, which means that we have to
+ // do a post-order traversal.
+ while (!WorkList.empty()) {
+ SetVector<PHINode *> PHIs;
+
+ while (!WorkList.empty()) {
+ if (Explored.size() >= 100)
+ return false;
+
+ Value *V = WorkList.back();
+
+ if (Explored.count(V) != 0) {
+ WorkList.pop_back();
+ continue;
+ }
+
+ if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
+ !isa<GEPOperator>(V) && !isa<PHINode>(V))
+ // We've found some value that we can't explore which is different from
+ // the base. Therefore we can't do this transformation.
+ return false;
+
+ if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
+ auto *CI = dyn_cast<CastInst>(V);
+ if (!CI->isNoopCast(DL))
+ return false;
+
+ if (Explored.count(CI->getOperand(0)) == 0)
+ WorkList.push_back(CI->getOperand(0));
+ }
+
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ // We're limiting the GEP to having one index. This will preserve
+ // the original pointer type. We could handle more cases in the
+ // future.
+ if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
+ GEP->getType() != Start->getType())
+ return false;
+
+ if (Explored.count(GEP->getOperand(0)) == 0)
+ WorkList.push_back(GEP->getOperand(0));
+ }
+
+ if (WorkList.back() == V) {
+ WorkList.pop_back();
+ // We've finished visiting this node, mark it as such.
+ Explored.insert(V);
+ }
+
+ if (auto *PN = dyn_cast<PHINode>(V)) {
+ // We cannot transform PHIs on unsplittable basic blocks.
+ if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
+ return false;
+ Explored.insert(PN);
+ PHIs.insert(PN);
+ }
+ }
+
+ // Explore the PHI nodes further.
+ for (auto *PN : PHIs)
+ for (Value *Op : PN->incoming_values())
+ if (Explored.count(Op) == 0)
+ WorkList.push_back(Op);
+ }
+
+ // Make sure that we can do this. Since we can't insert GEPs in a basic
+ // block before a PHI node, we can't easily do this transformation if
+ // we have PHI node users of transformed instructions.
+ for (Value *Val : Explored) {
+ for (Value *Use : Val->uses()) {
+
+ auto *PHI = dyn_cast<PHINode>(Use);
+ auto *Inst = dyn_cast<Instruction>(Val);
+
+ if (Inst == Base || Inst == PHI || !Inst || !PHI ||
+ Explored.count(PHI) == 0)
+ continue;
+
+ if (PHI->getParent() == Inst->getParent())
+ return false;
+ }
+ }
+ return true;
+}
+
+// Sets the appropriate insert point on Builder where we can add
+// a replacement Instruction for V (if that is possible).
+static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
+ bool Before = true) {
+ if (auto *PHI = dyn_cast<PHINode>(V)) {
+ Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
+ return;
+ }
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (!Before)
+ I = &*std::next(I->getIterator());
+ Builder.SetInsertPoint(I);
+ return;
+ }
+ if (auto *A = dyn_cast<Argument>(V)) {
+ // Set the insertion point in the entry block.
+ BasicBlock &Entry = A->getParent()->getEntryBlock();
+ Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
+ return;
+ }
+ // Otherwise, this is a constant and we don't need to set a new
+ // insertion point.
+ assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
+}
+
+/// Returns a re-written value of Start as an indexed GEP using Base as a
+/// pointer.
+static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
+ const DataLayout &DL,
+ SetVector<Value *> &Explored) {
+ // Perform all the substitutions. This is a bit tricky because we can
+ // have cycles in our use-def chains.
+ // 1. Create the PHI nodes without any incoming values.
+ // 2. Create all the other values.
+ // 3. Add the edges for the PHI nodes.
+ // 4. Emit GEPs to get the original pointers.
+ // 5. Remove the original instructions.
+ Type *IndexType = IntegerType::get(
+ Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
+
+ DenseMap<Value *, Value *> NewInsts;
+ NewInsts[Base] = ConstantInt::getNullValue(IndexType);
+
+ // Create the new PHI nodes, without adding any incoming values.
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+ // Create empty phi nodes. This avoids cyclic dependencies when creating
+ // the remaining instructions.
+ if (auto *PHI = dyn_cast<PHINode>(Val))
+ NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
+ PHI->getName() + ".idx", PHI);
+ }
+ IRBuilder<> Builder(Base->getContext());
+
+ // Create all the other instructions.
+ for (Value *Val : Explored) {
+
+ if (NewInsts.find(Val) != NewInsts.end())
+ continue;
+
+ if (auto *CI = dyn_cast<CastInst>(Val)) {
+ NewInsts[CI] = NewInsts[CI->getOperand(0)];
+ continue;
+ }
+ if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
+ Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
+ : GEP->getOperand(1);
+ setInsertionPoint(Builder, GEP);
+ // Indices might need to be sign extended. GEPs will magically do
+ // this, but we need to do it ourselves here.
+ if (Index->getType()->getScalarSizeInBits() !=
+ NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
+ Index = Builder.CreateSExtOrTrunc(
+ Index, NewInsts[GEP->getOperand(0)]->getType(),
+ GEP->getOperand(0)->getName() + ".sext");
+ }
+
+ auto *Op = NewInsts[GEP->getOperand(0)];
+ if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
+ NewInsts[GEP] = Index;
+ else
+ NewInsts[GEP] = Builder.CreateNSWAdd(
+ Op, Index, GEP->getOperand(0)->getName() + ".add");
+ continue;
+ }
+ if (isa<PHINode>(Val))
+ continue;
+
+ llvm_unreachable("Unexpected instruction type");
+ }
+
+ // Add the incoming values to the PHI nodes.
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+ // All the instructions have been created, we can now add edges to the
+ // phi nodes.
+ if (auto *PHI = dyn_cast<PHINode>(Val)) {
+ PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
+ for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
+ Value *NewIncoming = PHI->getIncomingValue(I);
+
+ if (NewInsts.find(NewIncoming) != NewInsts.end())
+ NewIncoming = NewInsts[NewIncoming];
+
+ NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
+ }
+ }
+ }
+
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+
+ // Depending on the type, for external users we have to emit
+ // a GEP or a GEP + ptrtoint.
+ setInsertionPoint(Builder, Val, false);
+
+ // If required, create an inttoptr instruction for Base.
+ Value *NewBase = Base;
+ if (!Base->getType()->isPointerTy())
+ NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
+ Start->getName() + "to.ptr");
+
+ Value *GEP = Builder.CreateInBoundsGEP(
+ Start->getType()->getPointerElementType(), NewBase,
+ makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
+
+ if (!Val->getType()->isPointerTy()) {
+ Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
+ Val->getName() + ".conv");
+ GEP = Cast;
+ }
+ Val->replaceAllUsesWith(GEP);
+ }
+
+ return NewInsts[Start];
+}
+
+/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
+/// the input Value as a constant indexed GEP. Returns a pair containing
+/// the GEPs Pointer and Index.
+static std::pair<Value *, Value *>
+getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
+ Type *IndexType = IntegerType::get(V->getContext(),
+ DL.getPointerTypeSizeInBits(V->getType()));
+
+ Constant *Index = ConstantInt::getNullValue(IndexType);
+ while (true) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ // We accept only inbouds GEPs here to exclude the possibility of
+ // overflow.
+ if (!GEP->isInBounds())
+ break;
+ if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
+ GEP->getType() == V->getType()) {
+ V = GEP->getOperand(0);
+ Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
+ Index = ConstantExpr::getAdd(
+ Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
+ continue;
+ }
+ break;
+ }
+ if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
+ if (!CI->isNoopCast(DL))
+ break;
+ V = CI->getOperand(0);
+ continue;
+ }
+ if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
+ if (!CI->isNoopCast(DL))
+ break;
+ V = CI->getOperand(0);
+ continue;
+ }
+ break;
+ }
+ return {V, Index};
+}
+
+/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
+/// We can look through PHIs, GEPs and casts in order to determine a common base
+/// between GEPLHS and RHS.
+static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ const DataLayout &DL) {
+ if (!GEPLHS->hasAllConstantIndices())
+ return nullptr;
+
+ Value *PtrBase, *Index;
+ std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
+
+ // The set of nodes that will take part in this transformation.
+ SetVector<Value *> Nodes;
+
+ if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
+ return nullptr;
+
+ // We know we can re-write this as
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
+ // Since we've only looked through inbouds GEPs we know that we
+ // can't have overflow on either side. We can therefore re-write
+ // this as:
+ // OFFSET1 cmp OFFSET2
+ Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
+
+ // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
+ // GEP having PtrBase as the pointer base, and has returned in NewRHS the
+ // offset. Since Index is the offset of LHS to the base pointer, we will now
+ // compare the offsets instead of comparing the pointers.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
+}
+
+/// Fold comparisons between a GEP instruction and something else. At this point
+/// we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
@@ -670,12 +992,13 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
LOffset, ROffset);
- return ReplaceInstUsesWith(I, Cmp);
+ return replaceInstUsesWith(I, Cmp);
}
// Otherwise, the base pointers are different and the indices are
- // different, bail out.
- return nullptr;
+ // different. Try convert this to an indexed compare by looking through
+ // PHIs/casts.
+ return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}
// If one of the GEPs has all zero indices, recurse.
@@ -706,7 +1029,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
}
if (NumDifferences == 0) // SAME GEP?
- return ReplaceInstUsesWith(I, // No comparison is needed here.
+ return replaceInstUsesWith(I, // No comparison is needed here.
Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1 && GEPsInBounds) {
@@ -727,7 +1050,10 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
}
}
- return nullptr;
+
+ // Try convert this to an indexed compare by looking through PHIs/casts as a
+ // last resort.
+ return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}
Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
@@ -802,12 +1128,12 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
}
Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
- return ReplaceInstUsesWith(
+ return replaceInstUsesWith(
ICI,
ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
}
-/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
+/// Fold "icmp pred (X+CI), X".
Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred) {
@@ -855,8 +1181,8 @@ Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
}
-/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
-/// and CmpRHS are both known to be integer constants.
+/// Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS and CmpRHS are
+/// both known to be integer constants.
Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS) {
ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
@@ -898,8 +1224,8 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
- /// If the division is known to be exact, then there is no remainder from the
- /// divide, so the covered range size is unit, otherwise it is the divisor.
+ // If the division is known to be exact, then there is no remainder from the
+ // divide, so the covered range size is unit, otherwise it is the divisor.
ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
// Figure out the interval that is being checked. For example, a comparison
@@ -973,46 +1299,46 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return replaceInstUsesWith(ICI, Builder->getFalse());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
- return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
DivIsSigned, true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ return replaceInstUsesWith(ICI, Builder->getTrue());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
- return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
DivIsSigned, false));
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ return replaceInstUsesWith(ICI, Builder->getTrue());
if (LoOverflow == -1) // Low bound is less than input range.
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return replaceInstUsesWith(ICI, Builder->getFalse());
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return replaceInstUsesWith(ICI, Builder->getFalse());
if (HiOverflow == -1) // High bound less than input range.
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ return replaceInstUsesWith(ICI, Builder->getTrue());
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
}
}
-/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
+/// Handle "icmp(([al]shr X, cst1), cst2)".
Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
ConstantInt *ShAmt) {
const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
@@ -1077,7 +1403,7 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = Builder->getInt1(IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
+ return replaceInstUsesWith(ICI, Cst);
}
// Otherwise, check to see if the bits shifted out are known to be zero.
@@ -1098,7 +1424,7 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
return nullptr;
}
-/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
+/// Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
/// (icmp eq/ne A, Log2(const2/const1)) ->
/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
@@ -1109,7 +1435,7 @@ Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
auto getConstant = [&I, this](bool IsTrue) {
if (I.getPredicate() == I.ICMP_NE)
IsTrue = !IsTrue;
- return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
};
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
@@ -1118,8 +1444,8 @@ Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
return new ICmpInst(Pred, LHS, RHS);
};
- APInt AP1 = CI1->getValue();
- APInt AP2 = CI2->getValue();
+ const APInt &AP1 = CI1->getValue();
+ const APInt &AP2 = CI2->getValue();
// Don't bother doing any work for cases which InstSimplify handles.
if (AP2 == 0)
@@ -1163,7 +1489,7 @@ Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
return getConstant(false);
}
-/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
+/// Handle "(icmp eq/ne (shl const2, A), const1)" ->
/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1,
@@ -1173,7 +1499,7 @@ Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
auto getConstant = [&I, this](bool IsTrue) {
if (I.getPredicate() == I.ICMP_NE)
IsTrue = !IsTrue;
- return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
};
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
@@ -1182,8 +1508,8 @@ Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
return new ICmpInst(Pred, LHS, RHS);
};
- APInt AP1 = CI1->getValue();
- APInt AP2 = CI2->getValue();
+ const APInt &AP1 = CI1->getValue();
+ const APInt &AP2 = CI2->getValue();
// Don't bother doing any work for cases which InstSimplify handles.
if (AP2 == 0)
@@ -1208,8 +1534,7 @@ Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
return getConstant(false);
}
-/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
-///
+/// Handle "icmp (instr, intcst)".
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Instruction *LHSI,
ConstantInt *RHS) {
@@ -1412,9 +1737,9 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// As a special case, check to see if this means that the
// result is always true or false now.
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return replaceInstUsesWith(ICI, Builder->getFalse());
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ return replaceInstUsesWith(ICI, Builder->getTrue());
} else {
ICI.setOperand(1, NewCst);
Constant *NewAndCst;
@@ -1674,7 +1999,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (Comp != RHS) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = Builder->getInt1(IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
+ return replaceInstUsesWith(ICI, Cst);
}
// If the shift is NUW, then it is just shifting out zeros, no need for an
@@ -1764,8 +2089,28 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
break;
}
- case Instruction::SDiv:
case Instruction::UDiv:
+ if (ConstantInt *DivLHS = dyn_cast<ConstantInt>(LHSI->getOperand(0))) {
+ Value *X = LHSI->getOperand(1);
+ const APInt &C1 = RHS->getValue();
+ const APInt &C2 = DivLHS->getValue();
+ assert(C2 != 0 && "udiv 0, X should have been simplified already.");
+ // (icmp ugt (udiv C2, X), C1) -> (icmp ule X, C2/(C1+1))
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
+ assert(!C1.isMaxValue() &&
+ "icmp ugt X, UINT_MAX should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_ULE, X,
+ ConstantInt::get(X->getType(), C2.udiv(C1 + 1)));
+ }
+ // (icmp ult (udiv C2, X), C1) -> (icmp ugt X, C2/C1)
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT) {
+ assert(C1 != 0 && "icmp ult X, 0 should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_UGT, X,
+ ConstantInt::get(X->getType(), C2.udiv(C1)));
+ }
+ }
+ // fall-through
+ case Instruction::SDiv:
// Fold: icmp pred ([us]div X, C1), C2 -> range test
// Fold this div into the comparison, producing a range check.
// Determine, based on the divide type, what the range is being
@@ -1895,27 +2240,30 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
}
break;
case Instruction::Xor:
- // For the xor case, we can xor two constants together, eliminating
- // the explicit xor.
- if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getXor(RHS, BOC));
- } else if (RHSV == 0) {
- // Replace ((xor A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
+ if (BO->hasOneUse()) {
+ if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
+ // For the xor case, we can xor two constants together, eliminating
+ // the explicit xor.
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ ConstantExpr::getXor(RHS, BOC));
+ } else if (RHSV == 0) {
+ // Replace ((xor A, B) != 0) with (A != B)
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ BO->getOperand(1));
+ }
}
break;
case Instruction::Sub:
- // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
- if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
- if (BO->hasOneUse())
+ if (BO->hasOneUse()) {
+ if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
+ // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
- ConstantExpr::getSub(BOp0C, RHS));
- } else if (RHSV == 0) {
- // Replace ((sub A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
+ ConstantExpr::getSub(BOp0C, RHS));
+ } else if (RHSV == 0) {
+ // Replace ((sub A, B) != 0) with (A != B)
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ BO->getOperand(1));
+ }
}
break;
case Instruction::Or:
@@ -1924,7 +2272,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(RHS);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
- return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
+ return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
+
+ // Comparing if all bits outside of a constant mask are set?
+ // Replace (X | C) == -1 with (X & ~C) == ~C.
+ // This removes the -1 constant.
+ if (BO->hasOneUse() && RHS->isAllOnesValue()) {
+ Constant *NotBOC = ConstantExpr::getNot(BOC);
+ Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
+ return new ICmpInst(ICI.getPredicate(), And, NotBOC);
+ }
}
break;
@@ -1933,7 +2290,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
- return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
+ return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
@@ -2013,11 +2370,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return nullptr;
}
-/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
-/// We only handle extending casts so far.
-///
-Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
- const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
+/// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
+/// far.
+Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICmp) {
+ const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
Type *SrcTy = LHSCIOp->getType();
Type *DestTy = LHSCI->getType();
@@ -2028,7 +2384,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
if (LHSCI->getOpcode() == Instruction::PtrToInt &&
DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
Value *RHSOp = nullptr;
- if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
+ if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
Value *RHSCIOp = RHSC->getOperand(0);
if (RHSCIOp->getType()->getPointerAddressSpace() ==
LHSCIOp->getType()->getPointerAddressSpace()) {
@@ -2037,11 +2393,12 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
if (LHSCIOp->getType() != RHSOp->getType())
RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
- } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
+ } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
+ }
if (RHSOp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
+ return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
}
// The code below only handles extension cast instructions, so far.
@@ -2051,9 +2408,9 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
return nullptr;
bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
- bool isSignedCmp = ICI.isSigned();
+ bool isSignedCmp = ICmp.isSigned();
- if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
+ if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
// Not an extension from the same type?
RHSCIOp = CI->getOperand(0);
if (RHSCIOp->getType() != LHSCIOp->getType())
@@ -2065,50 +2422,51 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
return nullptr;
// Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+ if (ICmp.isEquality())
+ return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedCmp && isSignedExt)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+ return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
// The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
+ return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
}
- // If we aren't dealing with a constant on the RHS, exit early
- ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
- if (!CI)
+ // If we aren't dealing with a constant on the RHS, exit early.
+ auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
+ if (!C)
return nullptr;
// Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DestTy.
- Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
- Res1, DestTy);
+ // re-extended to DestTy.
+ Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
// If the re-extended constant didn't change...
- if (Res2 == CI) {
+ if (Res2 == C) {
// Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+ if (ICmp.isEquality())
+ return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedExt && isSignedCmp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+ return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
// The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
+ return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
}
- // The re-extended constant changed so the constant cannot be represented
- // in the shorter type. Consequently, we cannot emit a simple comparison.
+ // The re-extended constant changed, partly changed (in the case of a vector),
+ // or could not be determined to be equal (in the case of a constant
+ // expression), so the constant cannot be represented in the shorter type.
+ // Consequently, we cannot emit a simple comparison.
// All the cases that fold to true or false will have already been handled
// by SimplifyICmpInst, so only deal with the tricky case.
- if (isSignedCmp || !isSignedExt)
+ if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
return nullptr;
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
@@ -2117,17 +2475,17 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
Constant *NegOne = Constant::getAllOnesValue(SrcTy);
- Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
+ Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
// Finally, return the value computed.
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
- return ReplaceInstUsesWith(ICI, Result);
+ if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
+ return replaceInstUsesWith(ICmp, Result);
- assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
+ assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
return BinaryOperator::CreateNot(Result);
}
-/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
+/// The caller has matched a pattern of the form:
/// I = icmp ugt (add (add A, B), CI2), CI1
/// If this is of the form:
/// sum = a + b
@@ -2207,7 +2565,7 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
// The inner add was the result of the narrow add, zero extended to the
// wider type. Replace it with the result computed by the intrinsic.
- IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
+ IC.replaceInstUsesWith(*OrigAdd, ZExt);
// The original icmp gets replaced with the overflow value.
return ExtractValueInst::Create(Call, 1, "sadd.overflow");
@@ -2491,7 +2849,7 @@ static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
continue;
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
- IC.ReplaceInstUsesWith(*TI, Mul);
+ IC.replaceInstUsesWith(*TI, Mul);
else
TI->setOperand(0, Mul);
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
@@ -2503,7 +2861,7 @@ static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
Instruction *Zext =
cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
IC.Worklist.Add(Zext);
- IC.ReplaceInstUsesWith(*BO, Zext);
+ IC.replaceInstUsesWith(*BO, Zext);
} else {
llvm_unreachable("Unexpected Binary operation");
}
@@ -2545,9 +2903,9 @@ static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
return ExtractValueInst::Create(Call, 1);
}
-// DemandedBitsLHSMask - When performing a comparison against a constant,
-// it is possible that not all the bits in the LHS are demanded. This helper
-// method computes the mask that IS demanded.
+/// When performing a comparison against a constant, it is possible that not all
+/// the bits in the LHS are demanded. This helper method computes the mask that
+/// IS demanded.
static APInt DemandedBitsLHSMask(ICmpInst &I,
unsigned BitWidth, bool isSignCheck) {
if (isSignCheck)
@@ -2656,9 +3014,7 @@ bool InstCombiner::dominatesAllUses(const Instruction *DI,
return true;
}
-///
-/// true when the instruction sequence within a block is select-cmp-br.
-///
+/// Return true when the instruction sequence within a block is select-cmp-br.
static bool isChainSelectCmpBranch(const SelectInst *SI) {
const BasicBlock *BB = SI->getParent();
if (!BB)
@@ -2672,7 +3028,6 @@ static bool isChainSelectCmpBranch(const SelectInst *SI) {
return true;
}
-///
/// \brief True when a select result is replaced by one of its operands
/// in select-icmp sequence. This will eventually result in the elimination
/// of the select.
@@ -2738,6 +3093,63 @@ bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
return false;
}
+/// If we have an icmp le or icmp ge instruction with a constant operand, turn
+/// it into the appropriate icmp lt or icmp gt instruction. This transform
+/// allows them to be folded in visitICmpInst.
+static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
+ ICmpInst::Predicate Pred = I.getPredicate();
+ if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
+ Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
+ return nullptr;
+
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ auto *Op1C = dyn_cast<Constant>(Op1);
+ if (!Op1C)
+ return nullptr;
+
+ // Check if the constant operand can be safely incremented/decremented without
+ // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
+ // the edge cases for us, so we just assert on them. For vectors, we must
+ // handle the edge cases.
+ Type *Op1Type = Op1->getType();
+ bool IsSigned = I.isSigned();
+ bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
+ auto *CI = dyn_cast<ConstantInt>(Op1C);
+ if (CI) {
+ // A <= MAX -> TRUE ; A >= MIN -> TRUE
+ assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
+ } else if (Op1Type->isVectorTy()) {
+ // TODO? If the edge cases for vectors were guaranteed to be handled as they
+ // are for scalar, we could remove the min/max checks. However, to do that,
+ // we would have to use insertelement/shufflevector to replace edge values.
+ unsigned NumElts = Op1Type->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = Op1C->getAggregateElement(i);
+ if (!Elt)
+ return nullptr;
+
+ if (isa<UndefValue>(Elt))
+ continue;
+ // Bail out if we can't determine if this constant is min/max or if we
+ // know that this constant is min/max.
+ auto *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
+ return nullptr;
+ }
+ } else {
+ // ConstantExpr?
+ return nullptr;
+ }
+
+ // Increment or decrement the constant and set the new comparison predicate:
+ // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
+ Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
+ CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
+ NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
+ return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
+}
+
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -2748,8 +3160,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (Op0Cplxity < Op1Cplxity ||
- (Op0Cplxity == Op1Cplxity &&
- swapMayExposeCSEOpportunities(Op0, Op1))) {
+ (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
I.swapOperands();
std::swap(Op0, Op1);
Changed = true;
@@ -2757,12 +3168,11 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Value *V =
SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
- return ReplaceInstUsesWith(I, V);
+ return replaceInstUsesWith(I, V);
// comparing -val or val with non-zero is the same as just comparing val
// ie, abs(val) != 0 -> val != 0
- if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
- {
+ if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
Value *Cond, *SelectTrue, *SelectFalse;
if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
m_Value(SelectFalse)))) {
@@ -2780,47 +3190,50 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Type *Ty = Op0->getType();
// icmp's with boolean values can always be turned into bitwise operations
- if (Ty->isIntegerTy(1)) {
+ if (Ty->getScalarType()->isIntegerTy(1)) {
switch (I.getPredicate()) {
default: llvm_unreachable("Invalid icmp instruction!");
- case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
- Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
+ case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
+ Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
return BinaryOperator::CreateNot(Xor);
}
- case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
+ case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B
return BinaryOperator::CreateXor(Op0, Op1);
case ICmpInst::ICMP_UGT:
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
// FALL THROUGH
- case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
+ Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
// FALL THROUGH
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
// FALL THROUGH
- case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
+ Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
// FALL THROUGH
- case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
+ Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
}
+ if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
+ return NewICmp;
+
unsigned BitWidth = 0;
if (Ty->isIntOrIntVectorTy())
BitWidth = Ty->getScalarSizeInBits();
@@ -2853,6 +3266,19 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
return Res;
}
+ // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
+ if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
+ if (auto *SI = dyn_cast<SelectInst>(Op0)) {
+ SelectPatternResult SPR = matchSelectPattern(SI, A, B);
+ if (SPR.Flavor == SPF_SMIN) {
+ if (isKnownPositive(A, DL))
+ return new ICmpInst(I.getPredicate(), B, CI);
+ if (isKnownPositive(B, DL))
+ return new ICmpInst(I.getPredicate(), A, CI);
+ }
+ }
+
+
// The following transforms are only 'worth it' if the only user of the
// subtraction is the icmp.
if (Op0->hasOneUse()) {
@@ -2882,30 +3308,6 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
}
- // If we have an icmp le or icmp ge instruction, turn it into the
- // appropriate icmp lt or icmp gt instruction. This allows us to rely on
- // them being folded in the code below. The SimplifyICmpInst code has
- // already handled the edge cases for us, so we just assert on them.
- switch (I.getPredicate()) {
- default: break;
- case ICmpInst::ICMP_ULE:
- assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
- Builder->getInt(CI->getValue()+1));
- case ICmpInst::ICMP_SLE:
- assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Builder->getInt(CI->getValue()+1));
- case ICmpInst::ICMP_UGE:
- assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
- Builder->getInt(CI->getValue()-1));
- case ICmpInst::ICMP_SGE:
- assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Builder->getInt(CI->getValue()-1));
- }
-
if (I.isEquality()) {
ConstantInt *CI2;
if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
@@ -2925,6 +3327,42 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// bits, if it is a sign bit comparison, it only demands the sign bit.
bool UnusedBit;
isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
+
+ // Canonicalize icmp instructions based on dominating conditions.
+ BasicBlock *Parent = I.getParent();
+ BasicBlock *Dom = Parent->getSinglePredecessor();
+ auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
+ ICmpInst::Predicate Pred;
+ BasicBlock *TrueBB, *FalseBB;
+ ConstantInt *CI2;
+ if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
+ TrueBB, FalseBB)) &&
+ TrueBB != FalseBB) {
+ ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
+ CI->getValue());
+ ConstantRange DominatingCR =
+ (Parent == TrueBB)
+ ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
+ : ConstantRange::makeExactICmpRegion(
+ CmpInst::getInversePredicate(Pred), CI2->getValue());
+ ConstantRange Intersection = DominatingCR.intersectWith(CR);
+ ConstantRange Difference = DominatingCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return replaceInstUsesWith(I, Builder->getFalse());
+ if (Difference.isEmptySet())
+ return replaceInstUsesWith(I, Builder->getTrue());
+ // Canonicalizing a sign bit comparison that gets used in a branch,
+ // pessimizes codegen by generating branch on zero instruction instead
+ // of a test and branch. So we avoid canonicalizing in such situations
+ // because test and branch instruction has better branch displacement
+ // than compare and branch instruction.
+ if (!isBranchOnSignBitCheck(I, isSignBit) && !I.isEquality()) {
+ if (auto *AI = Intersection.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
+ if (auto *AD = Difference.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
+ }
+ }
}
// See if we can fold the comparison based on range information we can get
@@ -2975,7 +3413,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
default: llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
// If all bits are known zero except for one, then we know at most one
// bit is set. If the comparison is against zero, then this is a check
@@ -3019,7 +3457,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
case ICmpInst::ICMP_NE: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
// If all bits are known zero except for one, then we know at most one
// bit is set. If the comparison is against zero, then this is a check
@@ -3063,9 +3501,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
@@ -3081,9 +3519,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
break;
case ICmpInst::ICMP_UGT:
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
@@ -3100,9 +3538,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
break;
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
@@ -3113,9 +3551,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
@@ -3128,30 +3566,30 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
}
@@ -3179,12 +3617,22 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// See if we are doing a comparison between a constant and an instruction that
// can be folded into the comparison.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ Value *A = nullptr, *B = nullptr;
// Since the RHS is a ConstantInt (CI), if the left hand side is an
// instruction, see if that instruction also has constants so that the
// instruction can be folded into the icmp
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
return Res;
+
+ // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
+ if (I.isEquality() && CI->isZero() &&
+ match(Op0, m_UDiv(m_Value(A), m_Value(B)))) {
+ ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_EQ
+ ? ICmpInst::ICMP_UGT
+ : ICmpInst::ICMP_ULE;
+ return new ICmpInst(Pred, B, A);
+ }
}
// Handle icmp with constant (but not simple integer constant) RHS
@@ -3354,10 +3802,14 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// Analyze the case when either Op0 or Op1 is an add instruction.
// Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Add)
- A = BO0->getOperand(0), B = BO0->getOperand(1);
- if (BO1 && BO1->getOpcode() == Instruction::Add)
- C = BO1->getOperand(0), D = BO1->getOperand(1);
+ if (BO0 && BO0->getOpcode() == Instruction::Add) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Add) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
// icmp (X+cst) < 0 --> X < -cst
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
@@ -3474,11 +3926,18 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// Analyze the case when either Op0 or Op1 is a sub instruction.
// Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
- A = nullptr; B = nullptr; C = nullptr; D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Sub)
- A = BO0->getOperand(0), B = BO0->getOperand(1);
- if (BO1 && BO1->getOpcode() == Instruction::Sub)
- C = BO1->getOperand(0), D = BO1->getOperand(1);
+ A = nullptr;
+ B = nullptr;
+ C = nullptr;
+ D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Sub) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Sub) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
// icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
if (A == Op1 && NoOp0WrapProblem)
@@ -3525,9 +3984,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
default: break;
case ICmpInst::ICMP_EQ:
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
case ICmpInst::ICMP_NE:
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
@@ -3654,8 +4113,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Constant *Overflow;
if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
Overflow)) {
- ReplaceInstUsesWith(*AddI, Result);
- return ReplaceInstUsesWith(I, Overflow);
+ replaceInstUsesWith(*AddI, Result);
+ return replaceInstUsesWith(I, Overflow);
}
}
@@ -3834,7 +4293,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
return Changed ? &I : nullptr;
}
-/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
+/// Fold fcmp ([us]itofp x, cst) if possible.
Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Instruction *LHSI,
Constant *RHSC) {
@@ -3864,10 +4323,10 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getFalse());
assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
- return ReplaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getTrue());
}
}
@@ -3933,9 +4392,9 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
- return ReplaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getTrue());
case FCmpInst::FCMP_UNO:
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getFalse());
}
// Now we know that the APFloat is a normal number, zero or inf.
@@ -3953,8 +4412,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getFalse());
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
@@ -3965,8 +4424,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getFalse());
}
}
@@ -3978,8 +4437,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getFalse());
}
} else {
// See if the RHS value is < UnsignedMin.
@@ -3989,8 +4448,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
Pred == ICmpInst::ICMP_UGE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getFalse());
}
}
@@ -4012,14 +4471,14 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
switch (Pred) {
default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return ReplaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getTrue());
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getFalse());
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getFalse());
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
@@ -4031,7 +4490,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ return replaceInstUsesWith(I, Builder->getFalse());
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
@@ -4044,7 +4503,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getTrue());
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
@@ -4056,7 +4515,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getTrue());
+ return replaceInstUsesWith(I, Builder->getTrue());
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
@@ -4089,7 +4548,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
I.getFastMathFlags(), DL, TLI, DT, AC, &I))
- return ReplaceInstUsesWith(I, V);
+ return replaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
@@ -4208,39 +4667,33 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
break;
CallInst *CI = cast<CallInst>(LHSI);
- const Function *F = CI->getCalledFunction();
- if (!F)
+ Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
+ if (IID != Intrinsic::fabs)
break;
// Various optimization for fabs compared with zero.
- LibFunc::Func Func;
- if (F->getIntrinsicID() == Intrinsic::fabs ||
- (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
- Func == LibFunc::fabsl))) {
- switch (I.getPredicate()) {
- default:
- break;
- // fabs(x) < 0 --> false
- case FCmpInst::FCMP_OLT:
- return ReplaceInstUsesWith(I, Builder->getFalse());
- // fabs(x) > 0 --> x != 0
- case FCmpInst::FCMP_OGT:
- return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
- // fabs(x) <= 0 --> x == 0
- case FCmpInst::FCMP_OLE:
- return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
- // fabs(x) >= 0 --> !isnan(x)
- case FCmpInst::FCMP_OGE:
- return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
- // fabs(x) == 0 --> x == 0
- // fabs(x) != 0 --> x != 0
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_ONE:
- case FCmpInst::FCMP_UNE:
- return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
- }
+ switch (I.getPredicate()) {
+ default:
+ break;
+ // fabs(x) < 0 --> false
+ case FCmpInst::FCMP_OLT:
+ llvm_unreachable("handled by SimplifyFCmpInst");
+ // fabs(x) > 0 --> x != 0
+ case FCmpInst::FCMP_OGT:
+ return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
+ // fabs(x) <= 0 --> x == 0
+ case FCmpInst::FCMP_OLE:
+ return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
+ // fabs(x) >= 0 --> !isnan(x)
+ case FCmpInst::FCMP_OGE:
+ return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
+ // fabs(x) == 0 --> x == 0
+ // fabs(x) != 0 --> x != 0
+ case FCmpInst::FCMP_OEQ:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_UNE:
+ return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
}
}
}