aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp1862
1 files changed, 1862 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
new file mode 100644
index 000000000000..72377dc0adca
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -0,0 +1,1862 @@
+//===- InstCombineCasts.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for cast operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
+/// expression. If so, decompose it, returning some value X, such that Val is
+/// X*Scale+Offset.
+///
+static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
+ uint64_t &Offset) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ Offset = CI->getZExtValue();
+ Scale = 0;
+ return ConstantInt::get(Val->getType(), 0);
+ }
+
+ if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
+ // Cannot look past anything that might overflow.
+ OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
+ if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
+ Scale = 1;
+ Offset = 0;
+ return Val;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (I->getOpcode() == Instruction::Shl) {
+ // This is a value scaled by '1 << the shift amt'.
+ Scale = UINT64_C(1) << RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Mul) {
+ // This value is scaled by 'RHS'.
+ Scale = RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Add) {
+ // We have X+C. Check to see if we really have (X*C2)+C1,
+ // where C1 is divisible by C2.
+ unsigned SubScale;
+ Value *SubVal =
+ DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
+ Offset += RHS->getZExtValue();
+ Scale = SubScale;
+ return SubVal;
+ }
+ }
+ }
+
+ // Otherwise, we can't look past this.
+ Scale = 1;
+ Offset = 0;
+ return Val;
+}
+
+/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
+/// try to eliminate the cast by moving the type information into the alloc.
+Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
+ AllocaInst &AI) {
+ // This requires DataLayout to get the alloca alignment and size information.
+ if (!TD) return 0;
+
+ PointerType *PTy = cast<PointerType>(CI.getType());
+
+ BuilderTy AllocaBuilder(*Builder);
+ AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
+
+ // Get the type really allocated and the type casted to.
+ Type *AllocElTy = AI.getAllocatedType();
+ Type *CastElTy = PTy->getElementType();
+ if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
+
+ unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
+ unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
+ if (CastElTyAlign < AllocElTyAlign) return 0;
+
+ // If the allocation has multiple uses, only promote it if we are strictly
+ // increasing the alignment of the resultant allocation. If we keep it the
+ // same, we open the door to infinite loops of various kinds.
+ if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
+
+ uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
+ if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+
+ // If the allocation has multiple uses, only promote it if we're not
+ // shrinking the amount of memory being allocated.
+ uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
+ if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
+
+ // See if we can satisfy the modulus by pulling a scale out of the array
+ // size argument.
+ unsigned ArraySizeScale;
+ uint64_t ArrayOffset;
+ Value *NumElements = // See if the array size is a decomposable linear expr.
+ DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
+
+ // If we can now satisfy the modulus, by using a non-1 scale, we really can
+ // do the xform.
+ if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
+ (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
+
+ unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
+ Value *Amt = 0;
+ if (Scale == 1) {
+ Amt = NumElements;
+ } else {
+ Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
+ // Insert before the alloca, not before the cast.
+ Amt = AllocaBuilder.CreateMul(Amt, NumElements);
+ }
+
+ if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
+ Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
+ Offset, true);
+ Amt = AllocaBuilder.CreateAdd(Amt, Off);
+ }
+
+ AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
+ New->setAlignment(AI.getAlignment());
+ New->takeName(&AI);
+
+ // If the allocation has multiple real uses, insert a cast and change all
+ // things that used it to use the new cast. This will also hack on CI, but it
+ // will die soon.
+ if (!AI.hasOneUse()) {
+ // New is the allocation instruction, pointer typed. AI is the original
+ // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
+ Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
+ ReplaceInstUsesWith(AI, NewCast);
+ }
+ return ReplaceInstUsesWith(CI, New);
+}
+
+/// EvaluateInDifferentType - Given an expression that
+/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
+/// insert the code to evaluate the expression.
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
+ bool isSigned) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
+ // If we got a constantexpr back, try to simplify it with TD info.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD, TLI);
+ return C;
+ }
+
+ // Otherwise, it must be an instruction.
+ Instruction *I = cast<Instruction>(V);
+ Instruction *Res = 0;
+ unsigned Opc = I->getOpcode();
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ case Instruction::Shl:
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
+ Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // If the source type of the cast is the type we're trying for then we can
+ // just return the source. There's no need to insert it because it is not
+ // new.
+ if (I->getOperand(0)->getType() == Ty)
+ return I->getOperand(0);
+
+ // Otherwise, must be the same type of cast, so just reinsert a new one.
+ // This also handles the case of zext(trunc(x)) -> zext(x).
+ Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
+ Opc == Instruction::SExt);
+ break;
+ case Instruction::Select: {
+ Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
+ Res = SelectInst::Create(I->getOperand(0), True, False);
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *OPN = cast<PHINode>(I);
+ PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
+ for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
+ Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
+ NPN->addIncoming(V, OPN->getIncomingBlock(i));
+ }
+ Res = NPN;
+ break;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ llvm_unreachable("Unreachable!");
+ }
+
+ Res->takeName(I);
+ return InsertNewInstWith(Res, *I);
+}
+
+
+/// This function is a wrapper around CastInst::isEliminableCastPair. It
+/// simply extracts arguments and returns what that function returns.
+static Instruction::CastOps
+isEliminableCastPair(
+ const CastInst *CI, ///< The first cast instruction
+ unsigned opcode, ///< The opcode of the second cast instruction
+ Type *DstTy, ///< The target type for the second cast instruction
+ DataLayout *TD ///< The target data for pointer size
+) {
+
+ Type *SrcTy = CI->getOperand(0)->getType(); // A from above
+ Type *MidTy = CI->getType(); // B from above
+
+ // Get the opcodes of the two Cast instructions
+ Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opcode);
+ Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(SrcTy) : 0;
+ Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(MidTy) : 0;
+ Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
+ TD->getIntPtrType(DstTy) : 0;
+ unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
+ DstTy, SrcIntPtrTy, MidIntPtrTy,
+ DstIntPtrTy);
+
+ // We don't want to form an inttoptr or ptrtoint that converts to an integer
+ // type that differs from the pointer size.
+ if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
+ (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
+ Res = 0;
+
+ return Instruction::CastOps(Res);
+}
+
+/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
+/// results in any code being generated and is interesting to optimize out. If
+/// the cast can be eliminated by some other simple transformation, we prefer
+/// to do the simplification first.
+bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
+ Type *Ty) {
+ // Noop casts and casts of constants should be eliminated trivially.
+ if (V->getType() == Ty || isa<Constant>(V)) return false;
+
+ // If this is another cast that can be eliminated, we prefer to have it
+ // eliminated.
+ if (const CastInst *CI = dyn_cast<CastInst>(V))
+ if (isEliminableCastPair(CI, opc, Ty, TD))
+ return false;
+
+ // If this is a vector sext from a compare, then we don't want to break the
+ // idiom where each element of the extended vector is either zero or all ones.
+ if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
+ return false;
+
+ return true;
+}
+
+
+/// @brief Implement the transforms common to all CastInst visitors.
+Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
+ // eliminate it now.
+ if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
+ if (Instruction::CastOps opc =
+ isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
+ // The first cast (CSrc) is eliminable so we need to fix up or replace
+ // the second cast (CI). CSrc will then have a good chance of being dead.
+ return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
+ }
+ }
+
+ // If we are casting a select then fold the cast into the select
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src))
+ if (Instruction *NV = FoldOpIntoSelect(CI, SI))
+ return NV;
+
+ // If we are casting a PHI then fold the cast into the PHI
+ if (isa<PHINode>(Src)) {
+ // We don't do this if this would create a PHI node with an illegal type if
+ // it is currently legal.
+ if (!Src->getType()->isIntegerTy() ||
+ !CI.getType()->isIntegerTy() ||
+ ShouldChangeType(CI.getType(), Src->getType()))
+ if (Instruction *NV = FoldOpIntoPhi(CI))
+ return NV;
+ }
+
+ return 0;
+}
+
+/// CanEvaluateTruncated - Return true if we can evaluate the specified
+/// expression tree as type Ty instead of its larger type, and arrive with the
+/// same value. This is used by code that tries to eliminate truncates.
+///
+/// Ty will always be a type smaller than V. We should return true if trunc(V)
+/// can be computed by computing V in the smaller type. If V is an instruction,
+/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
+/// makes sense if x and y can be efficiently truncated.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateTruncated(Value *V, Type *Ty) {
+ // We can always evaluate constants in another type.
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ Type *OrigTy = V->getType();
+
+ // If this is an extension from the dest type, we can eliminate it, even if it
+ // has multiple uses.
+ if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ unsigned Opc = I->getOpcode();
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // These operators can all arbitrarily be extended or truncated.
+ return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty);
+
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // UDiv and URem can be truncated if all the truncated bits are zero.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (BitWidth < OrigBitWidth) {
+ APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
+ if (MaskedValueIsZero(I->getOperand(0), Mask) &&
+ MaskedValueIsZero(I->getOperand(1), Mask)) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty);
+ }
+ }
+ break;
+ }
+ case Instruction::Shl:
+ // If we are truncating the result of this SHL, and if it's a shift of a
+ // constant amount, we can always perform a SHL in a smaller type.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (CI->getLimitedValue(BitWidth) < BitWidth)
+ return CanEvaluateTruncated(I->getOperand(0), Ty);
+ }
+ break;
+ case Instruction::LShr:
+ // If this is a truncate of a logical shr, we can truncate it to a smaller
+ // lshr iff we know that the bits we would otherwise be shifting in are
+ // already zeros.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (MaskedValueIsZero(I->getOperand(0),
+ APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
+ CI->getLimitedValue(BitWidth) < BitWidth) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty);
+ }
+ }
+ break;
+ case Instruction::Trunc:
+ // trunc(trunc(x)) -> trunc(x)
+ return true;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
+ // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
+ return true;
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
+ CanEvaluateTruncated(SI->getFalseValue(), Ty);
+ }
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
+ if (Instruction *Result = commonCastTransforms(CI))
+ return Result;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ Type *DestTy = CI.getType(), *SrcTy = Src->getType();
+
+ // Attempt to truncate the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateTruncated(Src, DestTy)) {
+
+ // If this cast is a truncate, evaluting in a different type always
+ // eliminates the cast, so it is always a win.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid cast: " << CI << '\n');
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+ return ReplaceInstUsesWith(CI, Res);
+ }
+
+ // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
+ if (DestTy->getScalarSizeInBits() == 1) {
+ Constant *One = ConstantInt::get(Src->getType(), 1);
+ Src = Builder->CreateAnd(Src, One);
+ Value *Zero = Constant::getNullValue(Src->getType());
+ return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
+ }
+
+ // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
+ Value *A = 0; ConstantInt *Cst = 0;
+ if (Src->hasOneUse() &&
+ match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
+ // We have three types to worry about here, the type of A, the source of
+ // the truncate (MidSize), and the destination of the truncate. We know that
+ // ASize < MidSize and MidSize > ResultSize, but don't know the relation
+ // between ASize and ResultSize.
+ unsigned ASize = A->getType()->getPrimitiveSizeInBits();
+
+ // If the shift amount is larger than the size of A, then the result is
+ // known to be zero because all the input bits got shifted out.
+ if (Cst->getZExtValue() >= ASize)
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
+
+ // Since we're doing an lshr and a zero extend, and know that the shift
+ // amount is smaller than ASize, it is always safe to do the shift in A's
+ // type, then zero extend or truncate to the result.
+ Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
+ Shift->takeName(Src);
+ return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
+ }
+
+ // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
+ // type isn't non-native.
+ if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
+ ShouldChangeType(Src->getType(), CI.getType()) &&
+ match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
+ Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
+ return BinaryOperator::CreateAnd(NewTrunc,
+ ConstantExpr::getTrunc(Cst, CI.getType()));
+ }
+
+ return 0;
+}
+
+/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
+/// in order to eliminate the icmp.
+Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+ bool DoXform) {
+ // If we are just checking for a icmp eq of a single bit and zext'ing it
+ // to an integer, then shift the bit to the appropriate place and then
+ // cast to integer to avoid the comparison.
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
+ const APInt &Op1CV = Op1C->getValue();
+
+ // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
+ // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
+ if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+ (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
+ if (!DoXform) return ICI;
+
+ Value *In = ICI->getOperand(0);
+ Value *Sh = ConstantInt::get(In->getType(),
+ In->getType()->getScalarSizeInBits()-1);
+ In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
+ if (In->getType() != CI.getType())
+ In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, In->getName()+".not");
+ }
+
+ return ReplaceInstUsesWith(CI, In);
+ }
+
+ // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ // zext (X == 1) to i32 --> X iff X has only the low bit set.
+ // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 0) to i32 --> X iff X has only the low bit set.
+ // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ // This only works for EQ and NE
+ ICI->isEquality()) {
+ // If Op1C some other power of two, convert:
+ uint32_t BitWidth = Op1C->getType()->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
+
+ APInt KnownZeroMask(~KnownZero);
+ if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
+ if (!DoXform) return ICI;
+
+ bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
+ if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
+ // (X&4) == 2 --> false
+ // (X&4) != 2 --> true
+ Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
+ isNE);
+ Res = ConstantExpr::getZExt(Res, CI.getType());
+ return ReplaceInstUsesWith(CI, Res);
+ }
+
+ uint32_t ShiftAmt = KnownZeroMask.logBase2();
+ Value *In = ICI->getOperand(0);
+ if (ShiftAmt) {
+ // Perform a logical shr by shiftamt.
+ // Insert the shift to put the result in the low bit.
+ In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
+ In->getName()+".lobit");
+ }
+
+ if ((Op1CV != 0) == isNE) { // Toggle the low bit.
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One);
+ }
+
+ if (CI.getType() == In->getType())
+ return ReplaceInstUsesWith(CI, In);
+ return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
+ }
+ }
+ }
+
+ // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
+ // It is also profitable to transform icmp eq into not(xor(A, B)) because that
+ // may lead to additional simplifications.
+ if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
+ uint32_t BitWidth = ITy->getBitWidth();
+ Value *LHS = ICI->getOperand(0);
+ Value *RHS = ICI->getOperand(1);
+
+ APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
+ APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
+ ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
+ ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
+
+ if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
+ APInt KnownBits = KnownZeroLHS | KnownOneLHS;
+ APInt UnknownBit = ~KnownBits;
+ if (UnknownBit.countPopulation() == 1) {
+ if (!DoXform) return ICI;
+
+ Value *Result = Builder->CreateXor(LHS, RHS);
+
+ // Mask off any bits that are set and won't be shifted away.
+ if (KnownOneLHS.uge(UnknownBit))
+ Result = Builder->CreateAnd(Result,
+ ConstantInt::get(ITy, UnknownBit));
+
+ // Shift the bit we're testing down to the lsb.
+ Result = Builder->CreateLShr(
+ Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
+ Result->takeName(ICI);
+ return ReplaceInstUsesWith(CI, Result);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// CanEvaluateZExtd - Determine if the specified value can be computed in the
+/// specified wider type and produce the same low bits. If not, return false.
+///
+/// If this function returns true, it can also return a non-zero number of bits
+/// (in BitsToClear) which indicates that the value it computes is correct for
+/// the zero extend, but that the additional BitsToClear bits need to be zero'd
+/// out. For example, to promote something like:
+///
+/// %B = trunc i64 %A to i32
+/// %C = lshr i32 %B, 8
+/// %E = zext i32 %C to i64
+///
+/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
+/// set to 8 to indicate that the promoted value needs to have bits 24-31
+/// cleared in addition to bits 32-63. Since an 'and' will be generated to
+/// clear the top bits anyway, doing this has no extra cost.
+///
+/// This function works on both vectors and scalars.
+static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
+ BitsToClear = 0;
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // If the input is a truncate from the destination type, we can trivially
+ // eliminate it.
+ if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ unsigned Opc = I->getOpcode(), Tmp;
+ switch (Opc) {
+ case Instruction::ZExt: // zext(zext(x)) -> zext(x).
+ case Instruction::SExt: // zext(sext(x)) -> sext(x).
+ case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
+ !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
+ return false;
+ // These can all be promoted if neither operand has 'bits to clear'.
+ if (BitsToClear == 0 && Tmp == 0)
+ return true;
+
+ // If the operation is an AND/OR/XOR and the bits to clear are zero in the
+ // other side, BitsToClear is ok.
+ if (Tmp == 0 &&
+ (Opc == Instruction::And || Opc == Instruction::Or ||
+ Opc == Instruction::Xor)) {
+ // We use MaskedValueIsZero here for generality, but the case we care
+ // about the most is constant RHS.
+ unsigned VSize = V->getType()->getScalarSizeInBits();
+ if (MaskedValueIsZero(I->getOperand(1),
+ APInt::getHighBitsSet(VSize, BitsToClear)))
+ return true;
+ }
+
+ // Otherwise, we don't know how to analyze this BitsToClear case yet.
+ return false;
+
+ case Instruction::Shl:
+ // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
+ // upper bits we can reduce BitsToClear by the shift amount.
+ if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+ return false;
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
+ return true;
+ }
+ return false;
+ case Instruction::LShr:
+ // We can promote lshr(x, cst) if we can promote x. This requires the
+ // ultimate 'and' to clear out the high zero bits we're clearing out though.
+ if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+ return false;
+ BitsToClear += Amt->getZExtValue();
+ if (BitsToClear > V->getType()->getScalarSizeInBits())
+ BitsToClear = V->getType()->getScalarSizeInBits();
+ return true;
+ }
+ // Cannot promote variable LSHR.
+ return false;
+ case Instruction::Select:
+ if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
+ !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
+ // TODO: If important, we could handle the case when the BitsToClear are
+ // known zero in the disagreeing side.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
+ return false;
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
+ // TODO: If important, we could handle the case when the BitsToClear
+ // are known zero in the disagreeing input.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ return false;
+ }
+}
+
+Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
+ // If this zero extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this zext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+ return 0;
+
+ // If one of the common conversion will work, do it.
+ if (Instruction *Result = commonCastTransforms(CI))
+ return Result;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // Attempt to extend the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ unsigned BitsToClear;
+ if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
+ "Unreasonable BitsToClear");
+
+ // Okay, we can transform this! Insert the new expression now.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid zero extend: " << CI);
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+
+ uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with zeros, just replace this
+ // cast with the result.
+ if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
+ DestBitSize-SrcBitsKept)))
+ return ReplaceInstUsesWith(CI, Res);
+
+ // We need to emit an AND to clear the high bits.
+ Constant *C = ConstantInt::get(Res->getType(),
+ APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
+ return BinaryOperator::CreateAnd(Res, C);
+ }
+
+ // If this is a TRUNC followed by a ZEXT then we are dealing with integral
+ // types and if the sizes are just right we can convert this into a logical
+ // 'and' which will be much cheaper than the pair of casts.
+ if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
+ // TODO: Subsume this into EvaluateInDifferentType.
+
+ // Get the sizes of the types involved. We know that the intermediate type
+ // will be smaller than A or C, but don't know the relation between A and C.
+ Value *A = CSrc->getOperand(0);
+ unsigned SrcSize = A->getType()->getScalarSizeInBits();
+ unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
+ unsigned DstSize = CI.getType()->getScalarSizeInBits();
+ // If we're actually extending zero bits, then if
+ // SrcSize < DstSize: zext(a & mask)
+ // SrcSize == DstSize: a & mask
+ // SrcSize > DstSize: trunc(a) & mask
+ if (SrcSize < DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+ Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
+ return new ZExtInst(And, CI.getType());
+ }
+
+ if (SrcSize == DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
+ AndValue));
+ }
+ if (SrcSize > DstSize) {
+ Value *Trunc = Builder->CreateTrunc(A, CI.getType());
+ APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
+ return BinaryOperator::CreateAnd(Trunc,
+ ConstantInt::get(Trunc->getType(),
+ AndValue));
+ }
+ }
+
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
+ return transformZExtICmp(ICI, CI);
+
+ BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
+ if (SrcI && SrcI->getOpcode() == Instruction::Or) {
+ // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
+ // of the (zext icmp) will be transformed.
+ ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
+ ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
+ if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
+ (transformZExtICmp(LHS, CI, false) ||
+ transformZExtICmp(RHS, CI, false))) {
+ Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
+ return BinaryOperator::Create(Instruction::Or, LCast, RCast);
+ }
+ }
+
+ // zext(trunc(t) & C) -> (t & zext(C)).
+ if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
+ if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+ if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
+ Value *TI0 = TI->getOperand(0);
+ if (TI0->getType() == CI.getType())
+ return
+ BinaryOperator::CreateAnd(TI0,
+ ConstantExpr::getZExt(C, CI.getType()));
+ }
+
+ // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
+ if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
+ if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+ if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
+ if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
+ And->getOperand(1) == C)
+ if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
+ Value *TI0 = TI->getOperand(0);
+ if (TI0->getType() == CI.getType()) {
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ Value *NewAnd = Builder->CreateAnd(TI0, ZC);
+ return BinaryOperator::CreateXor(NewAnd, ZC);
+ }
+ }
+
+ // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
+ Value *X;
+ if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
+ match(SrcI, m_Not(m_Value(X))) &&
+ (!X->hasOneUse() || !isa<CmpInst>(X))) {
+ Value *New = Builder->CreateZExt(X, CI.getType());
+ return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
+ }
+
+ return 0;
+}
+
+/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
+/// in order to eliminate the icmp.
+Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
+ Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
+ // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
+ if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
+ (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
+
+ Value *Sh = ConstantInt::get(Op0->getType(),
+ Op0->getType()->getScalarSizeInBits()-1);
+ Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
+ if (In->getType() != CI.getType())
+ In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
+
+ if (Pred == ICmpInst::ICMP_SGT)
+ In = Builder->CreateNot(In, In->getName()+".not");
+ return ReplaceInstUsesWith(CI, In);
+ }
+
+ // If we know that only one bit of the LHS of the icmp can be set and we
+ // have an equality comparison with zero or a power of 2, we can transform
+ // the icmp and sext into bitwise/integer operations.
+ if (ICI->hasOneUse() &&
+ ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
+ unsigned BitWidth = Op1C->getType()->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ ComputeMaskedBits(Op0, KnownZero, KnownOne);
+
+ APInt KnownZeroMask(~KnownZero);
+ if (KnownZeroMask.isPowerOf2()) {
+ Value *In = ICI->getOperand(0);
+
+ // If the icmp tests for a known zero bit we can constant fold it.
+ if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
+ Value *V = Pred == ICmpInst::ICMP_NE ?
+ ConstantInt::getAllOnesValue(CI.getType()) :
+ ConstantInt::getNullValue(CI.getType());
+ return ReplaceInstUsesWith(CI, V);
+ }
+
+ if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
+ // sext ((x & 2^n) == 0) -> (x >> n) - 1
+ // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
+ unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
+ // Perform a right shift to place the desired bit in the LSB.
+ if (ShiftAmt)
+ In = Builder->CreateLShr(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
+
+ // At this point "In" is either 1 or 0. Subtract 1 to turn
+ // {1, 0} -> {0, -1}.
+ In = Builder->CreateAdd(In,
+ ConstantInt::getAllOnesValue(In->getType()),
+ "sext");
+ } else {
+ // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
+ // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
+ unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
+ // Perform a left shift to place the desired bit in the MSB.
+ if (ShiftAmt)
+ In = Builder->CreateShl(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
+
+ // Distribute the bit over the whole bit width.
+ In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
+ BitWidth - 1), "sext");
+ }
+
+ if (CI.getType() == In->getType())
+ return ReplaceInstUsesWith(CI, In);
+ return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
+ }
+ }
+ }
+
+ // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
+ if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
+ if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
+ Op0->getType() == CI.getType()) {
+ Type *EltTy = VTy->getElementType();
+
+ // splat the shift constant to a constant vector.
+ Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
+ Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
+ return ReplaceInstUsesWith(CI, In);
+ }
+ }
+
+ return 0;
+}
+
+/// CanEvaluateSExtd - Return true if we can take the specified value
+/// and return it as type Ty without inserting any new casts and without
+/// changing the value of the common low bits. This is used by code that tries
+/// to promote integer operations to a wider types will allow us to eliminate
+/// the extension.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateSExtd(Value *V, Type *Ty) {
+ assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
+ "Can't sign extend type to a smaller type");
+ // If this is a constant, it can be trivially promoted.
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // If this is a truncate from the dest type, we can trivially eliminate it.
+ if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ switch (I->getOpcode()) {
+ case Instruction::SExt: // sext(sext(x)) -> sext(x)
+ case Instruction::ZExt: // sext(zext(x)) -> zext(x)
+ case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ // These operators can all arbitrarily be extended if their inputs can.
+ return CanEvaluateSExtd(I->getOperand(0), Ty) &&
+ CanEvaluateSExtd(I->getOperand(1), Ty);
+
+ //case Instruction::Shl: TODO
+ //case Instruction::LShr: TODO
+
+ case Instruction::Select:
+ return CanEvaluateSExtd(I->getOperand(1), Ty) &&
+ CanEvaluateSExtd(I->getOperand(2), Ty);
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+Instruction *InstCombiner::visitSExt(SExtInst &CI) {
+ // If this sign extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this sext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+ return 0;
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // Attempt to extend the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateSExtd(Src, DestTy)) {
+ // Okay, we can transform this! Insert the new expression now.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid sign extend: " << CI);
+ Value *Res = EvaluateInDifferentType(Src, DestTy, true);
+ assert(Res->getType() == DestTy);
+
+ uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with sign bit, just replace this
+ // cast with the result.
+ if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
+ return ReplaceInstUsesWith(CI, Res);
+
+ // We need to emit a shl + ashr to do the sign extend.
+ Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
+ return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
+ ShAmt);
+ }
+
+ // If this input is a trunc from our destination, then turn sext(trunc(x))
+ // into shifts.
+ if (TruncInst *TI = dyn_cast<TruncInst>(Src))
+ if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
+ uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // We need to emit a shl + ashr to do the sign extend.
+ Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
+ Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
+ return BinaryOperator::CreateAShr(Res, ShAmt);
+ }
+
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
+ return transformSExtICmp(ICI, CI);
+
+ // If the input is a shl/ashr pair of a same constant, then this is a sign
+ // extension from a smaller value. If we could trust arbitrary bitwidth
+ // integers, we could turn this into a truncate to the smaller bit and then
+ // use a sext for the whole extension. Since we don't, look deeper and check
+ // for a truncate. If the source and dest are the same type, eliminate the
+ // trunc and extend and just do shifts. For example, turn:
+ // %a = trunc i32 %i to i8
+ // %b = shl i8 %a, 6
+ // %c = ashr i8 %b, 6
+ // %d = sext i8 %c to i32
+ // into:
+ // %a = shl i32 %i, 30
+ // %d = ashr i32 %a, 30
+ Value *A = 0;
+ // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
+ ConstantInt *BA = 0, *CA = 0;
+ if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
+ m_ConstantInt(CA))) &&
+ BA == CA && A->getType() == CI.getType()) {
+ unsigned MidSize = Src->getType()->getScalarSizeInBits();
+ unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
+ unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
+ Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
+ A = Builder->CreateShl(A, ShAmtV, CI.getName());
+ return BinaryOperator::CreateAShr(A, ShAmtV);
+ }
+
+ return 0;
+}
+
+
+/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
+/// in the specified FP type without changing its value.
+static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
+ bool losesInfo;
+ APFloat F = CFP->getValueAPF();
+ (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
+ if (!losesInfo)
+ return ConstantFP::get(CFP->getContext(), F);
+ return 0;
+}
+
+/// LookThroughFPExtensions - If this is an fp extension instruction, look
+/// through it until we get the source value.
+static Value *LookThroughFPExtensions(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (I->getOpcode() == Instruction::FPExt)
+ return LookThroughFPExtensions(I->getOperand(0));
+
+ // If this value is a constant, return the constant in the smallest FP type
+ // that can accurately represent it. This allows us to turn
+ // (float)((double)X+2.0) into x+2.0f.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
+ return V; // No constant folding of this.
+ // See if the value can be truncated to half and then reextended.
+ if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
+ return V;
+ // See if the value can be truncated to float and then reextended.
+ if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
+ return V;
+ if (CFP->getType()->isDoubleTy())
+ return V; // Won't shrink.
+ if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
+ return V;
+ // Don't try to shrink to various long double types.
+ }
+
+ return V;
+}
+
+Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
+ // smaller than the destination type, we can eliminate the truncate by doing
+ // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
+ // as many builtins (sqrt, etc).
+ BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
+ if (OpI && OpI->hasOneUse()) {
+ switch (OpI->getOpcode()) {
+ default: break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ Type *SrcTy = OpI->getType();
+ Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
+ Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
+ if (LHSTrunc->getType() != SrcTy &&
+ RHSTrunc->getType() != SrcTy) {
+ unsigned DstSize = CI.getType()->getScalarSizeInBits();
+ // If the source types were both smaller than the destination type of
+ // the cast, do this xform.
+ if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
+ RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
+ LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
+ RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
+ return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
+ }
+ }
+ break;
+ }
+
+ // (fptrunc (fneg x)) -> (fneg (fptrunc x))
+ if (BinaryOperator::isFNeg(OpI)) {
+ Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
+ CI.getType());
+ return BinaryOperator::CreateFNeg(InnerTrunc);
+ }
+ }
+
+ // (fptrunc (select cond, R1, Cst)) -->
+ // (select cond, (fptrunc R1), (fptrunc Cst))
+ SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
+ if (SI &&
+ (isa<ConstantFP>(SI->getOperand(1)) ||
+ isa<ConstantFP>(SI->getOperand(2)))) {
+ Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
+ CI.getType());
+ Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
+ CI.getType());
+ return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
+ if (II) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs: {
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
+ CI.getType());
+ Type *IntrinsicType[] = { CI.getType() };
+ Function *Overload =
+ Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
+ II->getIntrinsicID(), IntrinsicType);
+
+ Value *Args[] = { InnerTrunc };
+ return CallInst::Create(Overload, Args, II->getName());
+ }
+ }
+ }
+
+ // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
+ // Note that we restrict this transformation based on
+ // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
+ // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
+ // single-precision intrinsic can be expanded in the backend.
+ CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
+ if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
+ (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
+ Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
+ Call->getNumArgOperands() == 1 &&
+ Call->hasOneUse()) {
+ CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
+ if (Arg && Arg->getOpcode() == Instruction::FPExt &&
+ CI.getType()->isFloatTy() &&
+ Call->getType()->isDoubleTy() &&
+ Arg->getType()->isDoubleTy() &&
+ Arg->getOperand(0)->getType()->isFloatTy()) {
+ Function *Callee = Call->getCalledFunction();
+ Module *M = CI.getParent()->getParent()->getParent();
+ Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
+ Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
+ M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
+ Builder->getFloatTy(), Builder->getFloatTy(),
+ NULL);
+ CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
+ "sqrtfcall");
+ ret->setAttributes(Callee->getAttributes());
+
+
+ // Remove the old Call. With -fmath-errno, it won't get marked readnone.
+ ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
+ EraseInstFromFunction(*Call);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFPExt(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
+ Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+ if (OpI == 0)
+ return commonCastTransforms(FI);
+
+ // fptoui(uitofp(X)) --> X
+ // fptoui(sitofp(X)) --> X
+ // This is safe if the intermediate type has enough bits in its mantissa to
+ // accurately represent all values of X. For example, do not do this with
+ // i64->float->i64. This is also safe for sitofp case, because any negative
+ // 'X' value would cause an undefined result for the fptoui.
+ if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+ OpI->getOperand(0)->getType() == FI.getType() &&
+ (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
+ OpI->getType()->getFPMantissaWidth())
+ return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
+ Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+ if (OpI == 0)
+ return commonCastTransforms(FI);
+
+ // fptosi(sitofp(X)) --> X
+ // fptosi(uitofp(X)) --> X
+ // This is safe if the intermediate type has enough bits in its mantissa to
+ // accurately represent all values of X. For example, do not do this with
+ // i64->float->i64. This is also safe for sitofp case, because any negative
+ // 'X' value would cause an undefined result for the fptoui.
+ if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+ OpI->getOperand(0)->getType() == FI.getType() &&
+ (int)FI.getType()->getScalarSizeInBits() <=
+ OpI->getType()->getFPMantissaWidth())
+ return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
+ // If the source integer type is not the intptr_t type for this target, do a
+ // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
+ // cast to be exposed to other transforms.
+
+ if (TD) {
+ unsigned AS = CI.getAddressSpace();
+ if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
+ TD->getPointerSizeInBits(AS)) {
+ Type *Ty = TD->getIntPtrType(CI.getContext(), AS);
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ return new IntToPtrInst(P, CI.getType());
+ }
+ }
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ return 0;
+}
+
+/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
+Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
+ // If casting the result of a getelementptr instruction with no offset, turn
+ // this into a cast of the original pointer!
+ if (GEP->hasAllZeroIndices()) {
+ // Changing the cast operand is usually not a good idea but it is safe
+ // here because the pointer operand is being replaced with another
+ // pointer operand so the opcode doesn't need to change.
+ Worklist.Add(GEP);
+ CI.setOperand(0, GEP->getOperand(0));
+ return &CI;
+ }
+
+ if (!TD)
+ return commonCastTransforms(CI);
+
+ // If the GEP has a single use, and the base pointer is a bitcast, and the
+ // GEP computes a constant offset, see if we can convert these three
+ // instructions into fewer. This typically happens with unions and other
+ // non-type-safe code.
+ unsigned AS = GEP->getPointerAddressSpace();
+ unsigned OffsetBits = TD->getPointerSizeInBits(AS);
+ APInt Offset(OffsetBits, 0);
+ BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
+ if (GEP->hasOneUse() &&
+ BCI &&
+ GEP->accumulateConstantOffset(*TD, Offset)) {
+ // Get the base pointer input of the bitcast, and the type it points to.
+ Value *OrigBase = BCI->getOperand(0);
+ SmallVector<Value*, 8> NewIndices;
+ if (FindElementAtOffset(OrigBase->getType(),
+ Offset.getSExtValue(),
+ NewIndices)) {
+ // If we were able to index down into an element, create the GEP
+ // and bitcast the result. This eliminates one bitcast, potentially
+ // two.
+ Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
+ Builder->CreateGEP(OrigBase, NewIndices);
+ NGEP->takeName(GEP);
+
+ if (isa<BitCastInst>(CI))
+ return new BitCastInst(NGEP, CI.getType());
+ assert(isa<PtrToIntInst>(CI));
+ return new PtrToIntInst(NGEP, CI.getType());
+ }
+ }
+ }
+
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
+ // If the destination integer type is not the intptr_t type for this target,
+ // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
+ // to be exposed to other transforms.
+
+ if (!TD)
+ return commonPointerCastTransforms(CI);
+
+ Type *Ty = CI.getType();
+ unsigned AS = CI.getPointerAddressSpace();
+
+ if (Ty->getScalarSizeInBits() == TD->getPointerSizeInBits(AS))
+ return commonPointerCastTransforms(CI);
+
+ Type *PtrTy = TD->getIntPtrType(CI.getContext(), AS);
+ if (Ty->isVectorTy()) // Handle vectors of pointers.
+ PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
+
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
+ return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
+}
+
+/// OptimizeVectorResize - This input value (which is known to have vector type)
+/// is being zero extended or truncated to the specified vector type. Try to
+/// replace it with a shuffle (and vector/vector bitcast) if possible.
+///
+/// The source and destination vector types may have different element types.
+static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
+ InstCombiner &IC) {
+ // We can only do this optimization if the output is a multiple of the input
+ // element size, or the input is a multiple of the output element size.
+ // Convert the input type to have the same element type as the output.
+ VectorType *SrcTy = cast<VectorType>(InVal->getType());
+
+ if (SrcTy->getElementType() != DestTy->getElementType()) {
+ // The input types don't need to be identical, but for now they must be the
+ // same size. There is no specific reason we couldn't handle things like
+ // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
+ // there yet.
+ if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
+ DestTy->getElementType()->getPrimitiveSizeInBits())
+ return 0;
+
+ SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
+ InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
+ }
+
+ // Now that the element types match, get the shuffle mask and RHS of the
+ // shuffle to use, which depends on whether we're increasing or decreasing the
+ // size of the input.
+ SmallVector<uint32_t, 16> ShuffleMask;
+ Value *V2;
+
+ if (SrcTy->getNumElements() > DestTy->getNumElements()) {
+ // If we're shrinking the number of elements, just shuffle in the low
+ // elements from the input and use undef as the second shuffle input.
+ V2 = UndefValue::get(SrcTy);
+ for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
+ ShuffleMask.push_back(i);
+
+ } else {
+ // If we're increasing the number of elements, shuffle in all of the
+ // elements from InVal and fill the rest of the result elements with zeros
+ // from a constant zero.
+ V2 = Constant::getNullValue(SrcTy);
+ unsigned SrcElts = SrcTy->getNumElements();
+ for (unsigned i = 0, e = SrcElts; i != e; ++i)
+ ShuffleMask.push_back(i);
+
+ // The excess elements reference the first element of the zero input.
+ for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
+ ShuffleMask.push_back(SrcElts);
+ }
+
+ return new ShuffleVectorInst(InVal, V2,
+ ConstantDataVector::get(V2->getContext(),
+ ShuffleMask));
+}
+
+static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
+ return Value % Ty->getPrimitiveSizeInBits() == 0;
+}
+
+static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
+ return Value / Ty->getPrimitiveSizeInBits();
+}
+
+/// CollectInsertionElements - V is a value which is inserted into a vector of
+/// VecEltTy. Look through the value to see if we can decompose it into
+/// insertions into the vector. See the example in the comment for
+/// OptimizeIntegerToVectorInsertions for the pattern this handles.
+/// The type of V is always a non-zero multiple of VecEltTy's size.
+/// Shift is the number of bits between the lsb of V and the lsb of
+/// the vector.
+///
+/// This returns false if the pattern can't be matched or true if it can,
+/// filling in Elements with the elements found here.
+static bool CollectInsertionElements(Value *V, unsigned Shift,
+ SmallVectorImpl<Value*> &Elements,
+ Type *VecEltTy, InstCombiner &IC) {
+ assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
+ "Shift should be a multiple of the element type size");
+
+ // Undef values never contribute useful bits to the result.
+ if (isa<UndefValue>(V)) return true;
+
+ // If we got down to a value of the right type, we win, try inserting into the
+ // right element.
+ if (V->getType() == VecEltTy) {
+ // Inserting null doesn't actually insert any elements.
+ if (Constant *C = dyn_cast<Constant>(V))
+ if (C->isNullValue())
+ return true;
+
+ unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
+ if (IC.getDataLayout()->isBigEndian())
+ ElementIndex = Elements.size() - ElementIndex - 1;
+
+ // Fail if multiple elements are inserted into this slot.
+ if (Elements[ElementIndex] != 0)
+ return false;
+
+ Elements[ElementIndex] = V;
+ return true;
+ }
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ // Figure out the # elements this provides, and bitcast it or slice it up
+ // as required.
+ unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
+ VecEltTy);
+ // If the constant is the size of a vector element, we just need to bitcast
+ // it to the right type so it gets properly inserted.
+ if (NumElts == 1)
+ return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
+ Shift, Elements, VecEltTy, IC);
+
+ // Okay, this is a constant that covers multiple elements. Slice it up into
+ // pieces and insert each element-sized piece into the vector.
+ if (!isa<IntegerType>(C->getType()))
+ C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
+ C->getType()->getPrimitiveSizeInBits()));
+ unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
+ Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ unsigned ShiftI = Shift+i*ElementSize;
+ Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
+ ShiftI));
+ Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
+ if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
+ return false;
+ }
+ return true;
+ }
+
+ if (!V->hasOneUse()) return false;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I == 0) return false;
+ switch (I->getOpcode()) {
+ default: return false; // Unhandled case.
+ case Instruction::BitCast:
+ return CollectInsertionElements(I->getOperand(0), Shift,
+ Elements, VecEltTy, IC);
+ case Instruction::ZExt:
+ if (!isMultipleOfTypeSize(
+ I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
+ VecEltTy))
+ return false;
+ return CollectInsertionElements(I->getOperand(0), Shift,
+ Elements, VecEltTy, IC);
+ case Instruction::Or:
+ return CollectInsertionElements(I->getOperand(0), Shift,
+ Elements, VecEltTy, IC) &&
+ CollectInsertionElements(I->getOperand(1), Shift,
+ Elements, VecEltTy, IC);
+ case Instruction::Shl: {
+ // Must be shifting by a constant that is a multiple of the element size.
+ ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
+ if (CI == 0) return false;
+ Shift += CI->getZExtValue();
+ if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
+ return CollectInsertionElements(I->getOperand(0), Shift,
+ Elements, VecEltTy, IC);
+ }
+
+ }
+}
+
+
+/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
+/// may be doing shifts and ors to assemble the elements of the vector manually.
+/// Try to rip the code out and replace it with insertelements. This is to
+/// optimize code like this:
+///
+/// %tmp37 = bitcast float %inc to i32
+/// %tmp38 = zext i32 %tmp37 to i64
+/// %tmp31 = bitcast float %inc5 to i32
+/// %tmp32 = zext i32 %tmp31 to i64
+/// %tmp33 = shl i64 %tmp32, 32
+/// %ins35 = or i64 %tmp33, %tmp38
+/// %tmp43 = bitcast i64 %ins35 to <2 x float>
+///
+/// Into two insertelements that do "buildvector{%inc, %inc5}".
+static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
+ InstCombiner &IC) {
+ // We need to know the target byte order to perform this optimization.
+ if (!IC.getDataLayout()) return 0;
+
+ VectorType *DestVecTy = cast<VectorType>(CI.getType());
+ Value *IntInput = CI.getOperand(0);
+
+ SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
+ if (!CollectInsertionElements(IntInput, 0, Elements,
+ DestVecTy->getElementType(), IC))
+ return 0;
+
+ // If we succeeded, we know that all of the element are specified by Elements
+ // or are zero if Elements has a null entry. Recast this as a set of
+ // insertions.
+ Value *Result = Constant::getNullValue(CI.getType());
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ if (Elements[i] == 0) continue; // Unset element.
+
+ Result = IC.Builder->CreateInsertElement(Result, Elements[i],
+ IC.Builder->getInt32(i));
+ }
+
+ return Result;
+}
+
+
+/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
+/// bitcast. The various long double bitcasts can't get in here.
+static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
+ // We need to know the target byte order to perform this optimization.
+ if (!IC.getDataLayout()) return 0;
+
+ Value *Src = CI.getOperand(0);
+ Type *DestTy = CI.getType();
+
+ // If this is a bitcast from int to float, check to see if the int is an
+ // extraction from a vector.
+ Value *VecInput = 0;
+ // bitcast(trunc(bitcast(somevector)))
+ if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
+ isa<VectorType>(VecInput->getType())) {
+ VectorType *VecTy = cast<VectorType>(VecInput->getType());
+ unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
+
+ if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
+ // If the element type of the vector doesn't match the result type,
+ // bitcast it to be a vector type we can extract from.
+ if (VecTy->getElementType() != DestTy) {
+ VecTy = VectorType::get(DestTy,
+ VecTy->getPrimitiveSizeInBits() / DestWidth);
+ VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
+ }
+
+ unsigned Elt = 0;
+ if (IC.getDataLayout()->isBigEndian())
+ Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
+ return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
+ }
+ }
+
+ // bitcast(trunc(lshr(bitcast(somevector), cst))
+ ConstantInt *ShAmt = 0;
+ if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
+ m_ConstantInt(ShAmt)))) &&
+ isa<VectorType>(VecInput->getType())) {
+ VectorType *VecTy = cast<VectorType>(VecInput->getType());
+ unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
+ if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
+ ShAmt->getZExtValue() % DestWidth == 0) {
+ // If the element type of the vector doesn't match the result type,
+ // bitcast it to be a vector type we can extract from.
+ if (VecTy->getElementType() != DestTy) {
+ VecTy = VectorType::get(DestTy,
+ VecTy->getPrimitiveSizeInBits() / DestWidth);
+ VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
+ }
+
+ unsigned Elt = ShAmt->getZExtValue() / DestWidth;
+ if (IC.getDataLayout()->isBigEndian())
+ Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
+ return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
+ // If the operands are integer typed then apply the integer transforms,
+ // otherwise just apply the common ones.
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType();
+ Type *DestTy = CI.getType();
+
+ // Get rid of casts from one type to the same type. These are useless and can
+ // be replaced by the operand.
+ if (DestTy == Src->getType())
+ return ReplaceInstUsesWith(CI, Src);
+
+ if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
+ PointerType *SrcPTy = cast<PointerType>(SrcTy);
+ Type *DstElTy = DstPTy->getElementType();
+ Type *SrcElTy = SrcPTy->getElementType();
+
+ // If the address spaces don't match, don't eliminate the bitcast, which is
+ // required for changing types.
+ if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
+ return 0;
+
+ // If we are casting a alloca to a pointer to a type of the same
+ // size, rewrite the allocation instruction to allocate the "right" type.
+ // There is no need to modify malloc calls because it is their bitcast that
+ // needs to be cleaned up.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
+ if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
+ return V;
+
+ // If the source and destination are pointers, and this cast is equivalent
+ // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
+ // This can enhance SROA and other transforms that want type-safe pointers.
+ Constant *ZeroUInt =
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
+ unsigned NumZeros = 0;
+ while (SrcElTy != DstElTy &&
+ isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
+ SrcElTy->getNumContainedTypes() /* not "{}" */) {
+ SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
+ ++NumZeros;
+ }
+
+ // If we found a path from the src to dest, create the getelementptr now.
+ if (SrcElTy == DstElTy) {
+ SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
+ return GetElementPtrInst::CreateInBounds(Src, Idxs);
+ }
+ }
+
+ // Try to optimize int -> float bitcasts.
+ if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
+ if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
+ return I;
+
+ if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
+ Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+ return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
+ }
+
+ if (isa<IntegerType>(SrcTy)) {
+ // If this is a cast from an integer to vector, check to see if the input
+ // is a trunc or zext of a bitcast from vector. If so, we can replace all
+ // the casts with a shuffle and (potentially) a bitcast.
+ if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
+ CastInst *SrcCast = cast<CastInst>(Src);
+ if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
+ if (isa<VectorType>(BCIn->getOperand(0)->getType()))
+ if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
+ cast<VectorType>(DestTy), *this))
+ return I;
+ }
+
+ // If the input is an 'or' instruction, we may be doing shifts and ors to
+ // assemble the elements of the vector manually. Try to rip the code out
+ // and replace it with insertelements.
+ if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
+ return ReplaceInstUsesWith(CI, V);
+ }
+ }
+
+ if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+ if (SrcVTy->getNumElements() == 1) {
+ // If our destination is not a vector, then make this a straight
+ // scalar-scalar cast.
+ if (!DestTy->isVectorTy()) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
+
+ // Otherwise, see if our source is an insert. If so, then use the scalar
+ // component directly.
+ if (InsertElementInst *IEI =
+ dyn_cast<InsertElementInst>(CI.getOperand(0)))
+ return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
+ DestTy);
+ }
+ }
+
+ if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
+ // Okay, we have (bitcast (shuffle ..)). Check to see if this is
+ // a bitcast to a vector with the same # elts.
+ if (SVI->hasOneUse() && DestTy->isVectorTy() &&
+ DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
+ SVI->getType()->getNumElements() ==
+ SVI->getOperand(0)->getType()->getVectorNumElements()) {
+ BitCastInst *Tmp;
+ // If either of the operands is a cast from CI.getType(), then
+ // evaluating the shuffle in the casted destination's type will allow
+ // us to eliminate at least one cast.
+ if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
+ Tmp->getOperand(0)->getType() == DestTy) ||
+ ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
+ Tmp->getOperand(0)->getType() == DestTy)) {
+ Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
+ Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
+ // Return a new shuffle vector. Use the same element ID's, as we
+ // know the vector types match #elts.
+ return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
+ }
+ }
+ }
+
+ if (SrcTy->isPointerTy())
+ return commonPointerCastTransforms(CI);
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
+ return commonCastTransforms(CI);
+}