diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp | 338 |
1 files changed, 338 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp new file mode 100644 index 000000000000..d17dfac6a997 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp @@ -0,0 +1,338 @@ +//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which inserts x86 AVX vzeroupper instructions +// before calls to SSE encoded functions. This avoids transition latency +// penalty when transferring control between AVX encoded instructions and old +// SSE encoding mode. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +using namespace llvm; + +#define DEBUG_TYPE "x86-vzeroupper" + +STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); + +namespace { + + class VZeroUpperInserter : public MachineFunctionPass { + public: + + VZeroUpperInserter() : MachineFunctionPass(ID) {} + bool runOnMachineFunction(MachineFunction &MF) override; + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + StringRef getPassName() const override { return "X86 vzeroupper inserter"; } + + private: + + void processBasicBlock(MachineBasicBlock &MBB); + void insertVZeroUpper(MachineBasicBlock::iterator I, + MachineBasicBlock &MBB); + void addDirtySuccessor(MachineBasicBlock &MBB); + + typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState; + static const char* getBlockExitStateName(BlockExitState ST); + + // Core algorithm state: + // BlockState - Each block is either: + // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor + // vzeroupper instructions in this block. + // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this + // block that will ensure that YMM/ZMM is clean on exit. + // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no + // subsequent vzeroupper in the block clears it. + // + // AddedToDirtySuccessors - This flag is raised when a block is added to the + // DirtySuccessors list to ensure that it's not + // added multiple times. + // + // FirstUnguardedCall - Records the location of the first unguarded call in + // each basic block that may need to be guarded by a + // vzeroupper. We won't know whether it actually needs + // to be guarded until we discover a predecessor that + // is DIRTY_OUT. + struct BlockState { + BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {} + BlockExitState ExitState; + bool AddedToDirtySuccessors; + MachineBasicBlock::iterator FirstUnguardedCall; + }; + typedef SmallVector<BlockState, 8> BlockStateMap; + typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList; + + BlockStateMap BlockStates; + DirtySuccessorsWorkList DirtySuccessors; + bool EverMadeChange; + bool IsX86INTR; + const TargetInstrInfo *TII; + + static char ID; + }; + + char VZeroUpperInserter::ID = 0; +} + +FunctionPass *llvm::createX86IssueVZeroUpperPass() { + return new VZeroUpperInserter(); +} + +#ifndef NDEBUG +const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) { + switch (ST) { + case PASS_THROUGH: return "Pass-through"; + case EXITS_DIRTY: return "Exits-dirty"; + case EXITS_CLEAN: return "Exits-clean"; + } + llvm_unreachable("Invalid block exit state."); +} +#endif + +/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only. +/// Thus, there is no need to check for Y/ZMM16 and above. +static bool isYmmOrZmmReg(unsigned Reg) { + return (Reg >= X86::YMM0 && Reg <= X86::YMM15) || + (Reg >= X86::ZMM0 && Reg <= X86::ZMM15); +} + +static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) { + for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(), + E = MRI.livein_end(); I != E; ++I) + if (isYmmOrZmmReg(I->first)) + return true; + + return false; +} + +static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) { + for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { + if (!MO.clobbersPhysReg(reg)) + return false; + } + for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) { + if (!MO.clobbersPhysReg(reg)) + return false; + } + return true; +} + +static bool hasYmmOrZmmReg(MachineInstr &MI) { + for (const MachineOperand &MO : MI.operands()) { + if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO)) + return true; + if (!MO.isReg()) + continue; + if (MO.isDebug()) + continue; + if (isYmmOrZmmReg(MO.getReg())) + return true; + } + return false; +} + +/// Check if given call instruction has a RegMask operand. +static bool callHasRegMask(MachineInstr &MI) { + assert(MI.isCall() && "Can only be called on call instructions."); + for (const MachineOperand &MO : MI.operands()) { + if (MO.isRegMask()) + return true; + } + return false; +} + +/// Insert a vzeroupper instruction before I. +void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I, + MachineBasicBlock &MBB) { + DebugLoc dl = I->getDebugLoc(); + BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER)); + ++NumVZU; + EverMadeChange = true; +} + +/// Add MBB to the DirtySuccessors list if it hasn't already been added. +void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) { + if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) { + DirtySuccessors.push_back(&MBB); + BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true; + } +} + +/// Loop over all of the instructions in the basic block, inserting vzeroupper +/// instructions before function calls. +void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) { + // Start by assuming that the block is PASS_THROUGH which implies no unguarded + // calls. + BlockExitState CurState = PASS_THROUGH; + BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end(); + + for (MachineInstr &MI : MBB) { + bool IsCall = MI.isCall(); + bool IsReturn = MI.isReturn(); + bool IsControlFlow = IsCall || IsReturn; + + // No need for vzeroupper before iret in interrupt handler function, + // epilogue will restore YMM/ZMM registers if needed. + if (IsX86INTR && IsReturn) + continue; + + // An existing VZERO* instruction resets the state. + if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) { + CurState = EXITS_CLEAN; + continue; + } + + // Shortcut: don't need to check regular instructions in dirty state. + if (!IsControlFlow && CurState == EXITS_DIRTY) + continue; + + if (hasYmmOrZmmReg(MI)) { + // We found a ymm/zmm-using instruction; this could be an AVX/AVX512 + // instruction, or it could be control flow. + CurState = EXITS_DIRTY; + continue; + } + + // Check for control-flow out of the current function (which might + // indirectly execute SSE instructions). + if (!IsControlFlow) + continue; + + // If the call has no RegMask, skip it as well. It usually happens on + // helper function calls (such as '_chkstk', '_ftol2') where standard + // calling convention is not used (RegMask is not used to mark register + // clobbered and register usage (def/imp-def/use) is well-defined and + // explicitly specified. + if (IsCall && !callHasRegMask(MI)) + continue; + + // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15 + // registers. In addition, the processor changes back to Clean state, after + // which execution of SSE instructions or AVX instructions has no transition + // penalty. Add the VZEROUPPER instruction before any function call/return + // that might execute SSE code. + // FIXME: In some cases, we may want to move the VZEROUPPER into a + // predecessor block. + if (CurState == EXITS_DIRTY) { + // After the inserted VZEROUPPER the state becomes clean again, but + // other YMM/ZMM may appear before other subsequent calls or even before + // the end of the BB. + insertVZeroUpper(MI, MBB); + CurState = EXITS_CLEAN; + } else if (CurState == PASS_THROUGH) { + // If this block is currently in pass-through state and we encounter a + // call then whether we need a vzeroupper or not depends on whether this + // block has successors that exit dirty. Record the location of the call, + // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet. + // It will be inserted later if necessary. + BlockStates[MBB.getNumber()].FirstUnguardedCall = MI; + CurState = EXITS_CLEAN; + } + } + + DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: " + << getBlockExitStateName(CurState) << '\n'); + + if (CurState == EXITS_DIRTY) + for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), + SE = MBB.succ_end(); + SI != SE; ++SI) + addDirtySuccessor(**SI); + + BlockStates[MBB.getNumber()].ExitState = CurState; +} + +/// Loop over all of the basic blocks, inserting vzeroupper instructions before +/// function calls. +bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { + const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); + if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite()) + return false; + TII = ST.getInstrInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + EverMadeChange = false; + IsX86INTR = MF.getFunction()->getCallingConv() == CallingConv::X86_INTR; + + bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI); + + // Fast check: if the function doesn't use any ymm/zmm registers, we don't + // need to insert any VZEROUPPER instructions. This is constant-time, so it + // is cheap in the common case of no ymm/zmm use. + bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm; + const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass}; + for (auto *RC : RCs) { + if (!YmmOrZmmUsed) { + for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e; + i++) { + if (!MRI.reg_nodbg_empty(*i)) { + YmmOrZmmUsed = true; + break; + } + } + } + } + if (!YmmOrZmmUsed) { + return false; + } + + assert(BlockStates.empty() && DirtySuccessors.empty() && + "X86VZeroUpper state should be clear"); + BlockStates.resize(MF.getNumBlockIDs()); + + // Process all blocks. This will compute block exit states, record the first + // unguarded call in each block, and add successors of dirty blocks to the + // DirtySuccessors list. + for (MachineBasicBlock &MBB : MF) + processBasicBlock(MBB); + + // If any YMM/ZMM regs are live-in to this function, add the entry block to + // the DirtySuccessors list + if (FnHasLiveInYmmOrZmm) + addDirtySuccessor(MF.front()); + + // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add + // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY + // through PASS_THROUGH blocks. + while (!DirtySuccessors.empty()) { + MachineBasicBlock &MBB = *DirtySuccessors.back(); + DirtySuccessors.pop_back(); + BlockState &BBState = BlockStates[MBB.getNumber()]; + + // MBB is a successor of a dirty block, so its first call needs to be + // guarded. + if (BBState.FirstUnguardedCall != MBB.end()) + insertVZeroUpper(BBState.FirstUnguardedCall, MBB); + + // If this successor was a pass-through block, then it is now dirty. Its + // successors need to be added to the worklist (if they haven't been + // already). + if (BBState.ExitState == PASS_THROUGH) { + DEBUG(dbgs() << "MBB #" << MBB.getNumber() + << " was Pass-through, is now Dirty-out.\n"); + for (MachineBasicBlock *Succ : MBB.successors()) + addDirtySuccessor(*Succ); + } + } + + BlockStates.clear(); + return EverMadeChange; +} |