diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ScheduleSLM.td')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86ScheduleSLM.td | 233 |
1 files changed, 233 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td new file mode 100644 index 000000000000..f95d4fa04177 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td @@ -0,0 +1,233 @@ +//=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the machine model for Intel Silvermont to support +// instruction scheduling and other instruction cost heuristics. +// +//===----------------------------------------------------------------------===// + +def SLMModel : SchedMachineModel { + // All x86 instructions are modeled as a single micro-op, and SLM can decode 2 + // instructions per cycle. + let IssueWidth = 2; + let MicroOpBufferSize = 32; // Based on the reorder buffer. + let LoadLatency = 3; + let MispredictPenalty = 10; + let PostRAScheduler = 1; + + // For small loops, expand by a small factor to hide the backedge cost. + let LoopMicroOpBufferSize = 10; + + // FIXME: SSE4 is unimplemented. This flag is set to allow + // the scheduler to assign a default model to unrecognized opcodes. + let CompleteModel = 0; +} + +let SchedModel = SLMModel in { + +// Silvermont has 5 reservation stations for micro-ops + +def IEC_RSV0 : ProcResource<1>; +def IEC_RSV1 : ProcResource<1>; +def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; } +def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; } +def MEC_RSV : ProcResource<1>; + +// Many micro-ops are capable of issuing on multiple ports. +def IEC_RSV01 : ProcResGroup<[IEC_RSV0, IEC_RSV1]>; +def FPC_RSV01 : ProcResGroup<[FPC_RSV0, FPC_RSV1]>; + +def SMDivider : ProcResource<1>; +def SMFPMultiplier : ProcResource<1>; +def SMFPDivider : ProcResource<1>; + +// Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 +// cycles after the memory operand. +def : ReadAdvance<ReadAfterLd, 3>; + +// Many SchedWrites are defined in pairs with and without a folded load. +// Instructions with folded loads are usually micro-fused, so they only appear +// as two micro-ops when queued in the reservation station. +// This multiclass defines the resource usage for variants with and without +// folded loads. +multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> { + let Latency = !add(Lat, 3); + } +} + +// A folded store needs a cycle on MEC_RSV for the store data, but it does not +// need an extra port cycle to recompute the address. +def : WriteRes<WriteRMW, [MEC_RSV]>; + +def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>; +def : WriteRes<WriteLoad, [MEC_RSV]> { let Latency = 3; } +def : WriteRes<WriteMove, [IEC_RSV01]>; +def : WriteRes<WriteZero, []>; + +defm : SMWriteResPair<WriteALU, IEC_RSV01, 1>; +defm : SMWriteResPair<WriteIMul, IEC_RSV1, 3>; +defm : SMWriteResPair<WriteShift, IEC_RSV0, 1>; +defm : SMWriteResPair<WriteJump, IEC_RSV1, 1>; + +// This is for simple LEAs with one or two input operands. +// The complex ones can only execute on port 1, and they require two cycles on +// the port to read all inputs. We don't model that. +def : WriteRes<WriteLEA, [IEC_RSV1]>; + +// This is quite rough, latency depends on the dividend. +def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> { + let Latency = 25; + let ResourceCycles = [1, 25]; +} +def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> { + let Latency = 29; + let ResourceCycles = [1, 1, 25]; +} + +// Scalar and vector floating point. +defm : SMWriteResPair<WriteFAdd, FPC_RSV1, 3>; +defm : SMWriteResPair<WriteFRcp, FPC_RSV0, 5>; +defm : SMWriteResPair<WriteFRsqrt, FPC_RSV0, 5>; +defm : SMWriteResPair<WriteFSqrt, FPC_RSV0, 15>; +defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>; +defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>; +defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>; +defm : SMWriteResPair<WriteFShuffle, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteFBlend, FPC_RSV0, 1>; + +// This is quite rough, latency depends on precision +def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> { + let Latency = 5; + let ResourceCycles = [1, 2]; +} +def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> { + let Latency = 8; + let ResourceCycles = [1, 1, 2]; +} + +def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> { + let Latency = 34; + let ResourceCycles = [1, 34]; +} +def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> { + let Latency = 37; + let ResourceCycles = [1, 1, 34]; +} + +// Vector integer operations. +defm : SMWriteResPair<WriteVecShift, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>; +defm : SMWriteResPair<WriteVecALU, FPC_RSV01, 1>; +defm : SMWriteResPair<WriteVecIMul, FPC_RSV0, 4>; +defm : SMWriteResPair<WriteShuffle, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteBlend, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteMPSAD, FPC_RSV0, 7>; + +// String instructions. +// Packed Compare Implicit Length Strings, Return Mask +def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> { + let Latency = 13; + let ResourceCycles = [13]; +} +def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 13; + let ResourceCycles = [13, 1]; +} + +// Packed Compare Explicit Length Strings, Return Mask +def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> { + let Latency = 17; + let ResourceCycles = [17]; +} +def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 17; + let ResourceCycles = [17, 1]; +} + +// Packed Compare Implicit Length Strings, Return Index +def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> { + let Latency = 17; + let ResourceCycles = [17]; +} +def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> { + let Latency = 17; + let ResourceCycles = [17, 1]; +} + +// Packed Compare Explicit Length Strings, Return Index +def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> { + let Latency = 21; + let ResourceCycles = [21]; +} +def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> { + let Latency = 21; + let ResourceCycles = [21, 1]; +} + +// AES Instructions. +def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> { + let Latency = 8; + let ResourceCycles = [5]; +} +def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 8; + let ResourceCycles = [5, 1]; +} + +def : WriteRes<WriteAESIMC, [FPC_RSV0]> { + let Latency = 8; + let ResourceCycles = [5]; +} +def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 8; + let ResourceCycles = [5, 1]; +} + +def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> { + let Latency = 8; + let ResourceCycles = [5]; +} +def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 8; + let ResourceCycles = [5, 1]; +} + +// Carry-less multiplication instructions. +def : WriteRes<WriteCLMul, [FPC_RSV0]> { + let Latency = 10; + let ResourceCycles = [10]; +} +def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> { + let Latency = 10; + let ResourceCycles = [10, 1]; +} + + +def : WriteRes<WriteSystem, [FPC_RSV0]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; } +def : WriteRes<WriteFence, [MEC_RSV]>; +def : WriteRes<WriteNop, []>; + +// AVX is not supported on that architecture, but we should define the basic +// scheduling resources anyway. +def : WriteRes<WriteIMulH, [FPC_RSV0]>; +defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteShuffle256, FPC_RSV0, 1>; +defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0, 1>; +} // SchedModel |