aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86Schedule.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86Schedule.td')
-rw-r--r--contrib/llvm/lib/Target/X86/X86Schedule.td94
1 files changed, 93 insertions, 1 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86Schedule.td b/contrib/llvm/lib/Target/X86/X86Schedule.td
index c14407f9ac1b..9fbde88b7100 100644
--- a/contrib/llvm/lib/Target/X86/X86Schedule.td
+++ b/contrib/llvm/lib/Target/X86/X86Schedule.td
@@ -7,9 +7,94 @@
//
//===----------------------------------------------------------------------===//
+// InstrSchedModel annotations for out-of-order CPUs.
+//
+// These annotations are independent of the itinerary classes defined below.
+
+// Instructions with folded loads need to read the memory operand immediately,
+// but other register operands don't have to be read until the load is ready.
+// These operands are marked with ReadAfterLd.
+def ReadAfterLd : SchedRead;
+
+// Instructions with both a load and a store folded are modeled as a folded
+// load + WriteRMW.
+def WriteRMW : SchedWrite;
+
+// Most instructions can fold loads, so almost every SchedWrite comes in two
+// variants: With and without a folded load.
+// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
+// with a folded load.
+class X86FoldableSchedWrite : SchedWrite {
+ // The SchedWrite to use when a load is folded into the instruction.
+ SchedWrite Folded;
+}
+
+// Multiclass that produces a linked pair of SchedWrites.
+multiclass X86SchedWritePair {
+ // Register-Memory operation.
+ def Ld : SchedWrite;
+ // Register-Register operation.
+ def NAME : X86FoldableSchedWrite {
+ let Folded = !cast<SchedWrite>(NAME#"Ld");
+ }
+}
+
+// Arithmetic.
+defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
+defm WriteIMul : X86SchedWritePair; // Integer multiplication.
+defm WriteIDiv : X86SchedWritePair; // Integer division.
+def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
+
+// Integer shifts and rotates.
+defm WriteShift : X86SchedWritePair;
+
+// Loads, stores, and moves, not folded with other operations.
+def WriteLoad : SchedWrite;
+def WriteStore : SchedWrite;
+def WriteMove : SchedWrite;
+
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+def WriteZero : SchedWrite;
+
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+defm WriteJump : X86SchedWritePair;
+
+// Floating point. This covers both scalar and vector operations.
+defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
+defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
+defm WriteFDiv : X86SchedWritePair; // Floating point division.
+defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
+defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal.
+defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
+
+// FMA Scheduling helper class.
+class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
+
+// Vector integer operations.
+defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
+defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
+defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
+
+// Vector bitwise operations.
+// These are often used on both floating point and integer vectors.
+defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
+defm WriteShuffle : X86SchedWritePair; // Vector shuffles and blends.
+
+// Conversion between integer and float.
+defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
+defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
+defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
+
+// Catch-all for expensive system instructions.
+def WriteSystem : SchedWrite;
+
+// Old microcoded instructions that nobody use.
+def WriteMicrocoded : SchedWrite;
+
//===----------------------------------------------------------------------===//
// Instruction Itinerary classes used for X86
-def IIC_DEFAULT : InstrItinClass;
def IIC_ALU_MEM : InstrItinClass;
def IIC_ALU_NONMEM : InstrItinClass;
def IIC_LEA : InstrItinClass;
@@ -470,12 +555,19 @@ def IIC_NOP : InstrItinClass;
// latencies. Since these latencies are not used for pipeline hazards,
// they do not need to be exact.
//
+// ILPWindow=10 is an arbitrary threshold that approximates cycles of
+// latency hidden by instruction buffers. The actual value is not very
+// important but should be zero for inorder and nonzero for OOO processors.
+//
// The GenericModel contains no instruciton itineraries.
def GenericModel : SchedMachineModel {
let IssueWidth = 4;
let MinLatency = 0;
let LoadLatency = 4;
let HighLatency = 10;
+ let ILPWindow = 10;
}
include "X86ScheduleAtom.td"
+include "X86SchedSandyBridge.td"
+include "X86SchedHaswell.td"