aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.cpp6402
1 files changed, 6402 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
new file mode 100644
index 000000000000..43decf7cdda9
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
@@ -0,0 +1,6402 @@
+//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86InstrInfo.h"
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+#include <limits>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-instr-info"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "X86GenInstrInfo.inc"
+
+static cl::opt<bool>
+NoFusing("disable-spill-fusing",
+ cl::desc("Disable fusing of spill code into instructions"));
+static cl::opt<bool>
+PrintFailedFusing("print-failed-fuse-candidates",
+ cl::desc("Print instructions that the allocator wants to"
+ " fuse, but the X86 backend currently can't"),
+ cl::Hidden);
+static cl::opt<bool>
+ReMatPICStubLoad("remat-pic-stub-load",
+ cl::desc("Re-materialize load from stub in PIC mode"),
+ cl::init(false), cl::Hidden);
+
+enum {
+ // Select which memory operand is being unfolded.
+ // (stored in bits 0 - 3)
+ TB_INDEX_0 = 0,
+ TB_INDEX_1 = 1,
+ TB_INDEX_2 = 2,
+ TB_INDEX_3 = 3,
+ TB_INDEX_4 = 4,
+ TB_INDEX_MASK = 0xf,
+
+ // Do not insert the reverse map (MemOp -> RegOp) into the table.
+ // This may be needed because there is a many -> one mapping.
+ TB_NO_REVERSE = 1 << 4,
+
+ // Do not insert the forward map (RegOp -> MemOp) into the table.
+ // This is needed for Native Client, which prohibits branch
+ // instructions from using a memory operand.
+ TB_NO_FORWARD = 1 << 5,
+
+ TB_FOLDED_LOAD = 1 << 6,
+ TB_FOLDED_STORE = 1 << 7,
+
+ // Minimum alignment required for load/store.
+ // Used for RegOp->MemOp conversion.
+ // (stored in bits 8 - 15)
+ TB_ALIGN_SHIFT = 8,
+ TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
+ TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
+ TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
+ TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
+ TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
+};
+
+struct X86MemoryFoldTableEntry {
+ uint16_t RegOp;
+ uint16_t MemOp;
+ uint16_t Flags;
+};
+
+// Pin the vtable to this file.
+void X86InstrInfo::anchor() {}
+
+X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
+ : X86GenInstrInfo(
+ (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
+ (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
+ Subtarget(STI), RI(STI.getTargetTriple()) {
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
+ { X86::ADC32ri, X86::ADC32mi, 0 },
+ { X86::ADC32ri8, X86::ADC32mi8, 0 },
+ { X86::ADC32rr, X86::ADC32mr, 0 },
+ { X86::ADC64ri32, X86::ADC64mi32, 0 },
+ { X86::ADC64ri8, X86::ADC64mi8, 0 },
+ { X86::ADC64rr, X86::ADC64mr, 0 },
+ { X86::ADD16ri, X86::ADD16mi, 0 },
+ { X86::ADD16ri8, X86::ADD16mi8, 0 },
+ { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
+ { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
+ { X86::ADD16rr, X86::ADD16mr, 0 },
+ { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
+ { X86::ADD32ri, X86::ADD32mi, 0 },
+ { X86::ADD32ri8, X86::ADD32mi8, 0 },
+ { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
+ { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
+ { X86::ADD32rr, X86::ADD32mr, 0 },
+ { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
+ { X86::ADD64ri32, X86::ADD64mi32, 0 },
+ { X86::ADD64ri8, X86::ADD64mi8, 0 },
+ { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
+ { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
+ { X86::ADD64rr, X86::ADD64mr, 0 },
+ { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
+ { X86::ADD8ri, X86::ADD8mi, 0 },
+ { X86::ADD8rr, X86::ADD8mr, 0 },
+ { X86::AND16ri, X86::AND16mi, 0 },
+ { X86::AND16ri8, X86::AND16mi8, 0 },
+ { X86::AND16rr, X86::AND16mr, 0 },
+ { X86::AND32ri, X86::AND32mi, 0 },
+ { X86::AND32ri8, X86::AND32mi8, 0 },
+ { X86::AND32rr, X86::AND32mr, 0 },
+ { X86::AND64ri32, X86::AND64mi32, 0 },
+ { X86::AND64ri8, X86::AND64mi8, 0 },
+ { X86::AND64rr, X86::AND64mr, 0 },
+ { X86::AND8ri, X86::AND8mi, 0 },
+ { X86::AND8rr, X86::AND8mr, 0 },
+ { X86::DEC16r, X86::DEC16m, 0 },
+ { X86::DEC32r, X86::DEC32m, 0 },
+ { X86::DEC64r, X86::DEC64m, 0 },
+ { X86::DEC8r, X86::DEC8m, 0 },
+ { X86::INC16r, X86::INC16m, 0 },
+ { X86::INC32r, X86::INC32m, 0 },
+ { X86::INC64r, X86::INC64m, 0 },
+ { X86::INC8r, X86::INC8m, 0 },
+ { X86::NEG16r, X86::NEG16m, 0 },
+ { X86::NEG32r, X86::NEG32m, 0 },
+ { X86::NEG64r, X86::NEG64m, 0 },
+ { X86::NEG8r, X86::NEG8m, 0 },
+ { X86::NOT16r, X86::NOT16m, 0 },
+ { X86::NOT32r, X86::NOT32m, 0 },
+ { X86::NOT64r, X86::NOT64m, 0 },
+ { X86::NOT8r, X86::NOT8m, 0 },
+ { X86::OR16ri, X86::OR16mi, 0 },
+ { X86::OR16ri8, X86::OR16mi8, 0 },
+ { X86::OR16rr, X86::OR16mr, 0 },
+ { X86::OR32ri, X86::OR32mi, 0 },
+ { X86::OR32ri8, X86::OR32mi8, 0 },
+ { X86::OR32rr, X86::OR32mr, 0 },
+ { X86::OR64ri32, X86::OR64mi32, 0 },
+ { X86::OR64ri8, X86::OR64mi8, 0 },
+ { X86::OR64rr, X86::OR64mr, 0 },
+ { X86::OR8ri, X86::OR8mi, 0 },
+ { X86::OR8rr, X86::OR8mr, 0 },
+ { X86::ROL16r1, X86::ROL16m1, 0 },
+ { X86::ROL16rCL, X86::ROL16mCL, 0 },
+ { X86::ROL16ri, X86::ROL16mi, 0 },
+ { X86::ROL32r1, X86::ROL32m1, 0 },
+ { X86::ROL32rCL, X86::ROL32mCL, 0 },
+ { X86::ROL32ri, X86::ROL32mi, 0 },
+ { X86::ROL64r1, X86::ROL64m1, 0 },
+ { X86::ROL64rCL, X86::ROL64mCL, 0 },
+ { X86::ROL64ri, X86::ROL64mi, 0 },
+ { X86::ROL8r1, X86::ROL8m1, 0 },
+ { X86::ROL8rCL, X86::ROL8mCL, 0 },
+ { X86::ROL8ri, X86::ROL8mi, 0 },
+ { X86::ROR16r1, X86::ROR16m1, 0 },
+ { X86::ROR16rCL, X86::ROR16mCL, 0 },
+ { X86::ROR16ri, X86::ROR16mi, 0 },
+ { X86::ROR32r1, X86::ROR32m1, 0 },
+ { X86::ROR32rCL, X86::ROR32mCL, 0 },
+ { X86::ROR32ri, X86::ROR32mi, 0 },
+ { X86::ROR64r1, X86::ROR64m1, 0 },
+ { X86::ROR64rCL, X86::ROR64mCL, 0 },
+ { X86::ROR64ri, X86::ROR64mi, 0 },
+ { X86::ROR8r1, X86::ROR8m1, 0 },
+ { X86::ROR8rCL, X86::ROR8mCL, 0 },
+ { X86::ROR8ri, X86::ROR8mi, 0 },
+ { X86::SAR16r1, X86::SAR16m1, 0 },
+ { X86::SAR16rCL, X86::SAR16mCL, 0 },
+ { X86::SAR16ri, X86::SAR16mi, 0 },
+ { X86::SAR32r1, X86::SAR32m1, 0 },
+ { X86::SAR32rCL, X86::SAR32mCL, 0 },
+ { X86::SAR32ri, X86::SAR32mi, 0 },
+ { X86::SAR64r1, X86::SAR64m1, 0 },
+ { X86::SAR64rCL, X86::SAR64mCL, 0 },
+ { X86::SAR64ri, X86::SAR64mi, 0 },
+ { X86::SAR8r1, X86::SAR8m1, 0 },
+ { X86::SAR8rCL, X86::SAR8mCL, 0 },
+ { X86::SAR8ri, X86::SAR8mi, 0 },
+ { X86::SBB32ri, X86::SBB32mi, 0 },
+ { X86::SBB32ri8, X86::SBB32mi8, 0 },
+ { X86::SBB32rr, X86::SBB32mr, 0 },
+ { X86::SBB64ri32, X86::SBB64mi32, 0 },
+ { X86::SBB64ri8, X86::SBB64mi8, 0 },
+ { X86::SBB64rr, X86::SBB64mr, 0 },
+ { X86::SHL16rCL, X86::SHL16mCL, 0 },
+ { X86::SHL16ri, X86::SHL16mi, 0 },
+ { X86::SHL32rCL, X86::SHL32mCL, 0 },
+ { X86::SHL32ri, X86::SHL32mi, 0 },
+ { X86::SHL64rCL, X86::SHL64mCL, 0 },
+ { X86::SHL64ri, X86::SHL64mi, 0 },
+ { X86::SHL8rCL, X86::SHL8mCL, 0 },
+ { X86::SHL8ri, X86::SHL8mi, 0 },
+ { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
+ { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
+ { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
+ { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
+ { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
+ { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
+ { X86::SHR16r1, X86::SHR16m1, 0 },
+ { X86::SHR16rCL, X86::SHR16mCL, 0 },
+ { X86::SHR16ri, X86::SHR16mi, 0 },
+ { X86::SHR32r1, X86::SHR32m1, 0 },
+ { X86::SHR32rCL, X86::SHR32mCL, 0 },
+ { X86::SHR32ri, X86::SHR32mi, 0 },
+ { X86::SHR64r1, X86::SHR64m1, 0 },
+ { X86::SHR64rCL, X86::SHR64mCL, 0 },
+ { X86::SHR64ri, X86::SHR64mi, 0 },
+ { X86::SHR8r1, X86::SHR8m1, 0 },
+ { X86::SHR8rCL, X86::SHR8mCL, 0 },
+ { X86::SHR8ri, X86::SHR8mi, 0 },
+ { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
+ { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
+ { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
+ { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
+ { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
+ { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
+ { X86::SUB16ri, X86::SUB16mi, 0 },
+ { X86::SUB16ri8, X86::SUB16mi8, 0 },
+ { X86::SUB16rr, X86::SUB16mr, 0 },
+ { X86::SUB32ri, X86::SUB32mi, 0 },
+ { X86::SUB32ri8, X86::SUB32mi8, 0 },
+ { X86::SUB32rr, X86::SUB32mr, 0 },
+ { X86::SUB64ri32, X86::SUB64mi32, 0 },
+ { X86::SUB64ri8, X86::SUB64mi8, 0 },
+ { X86::SUB64rr, X86::SUB64mr, 0 },
+ { X86::SUB8ri, X86::SUB8mi, 0 },
+ { X86::SUB8rr, X86::SUB8mr, 0 },
+ { X86::XOR16ri, X86::XOR16mi, 0 },
+ { X86::XOR16ri8, X86::XOR16mi8, 0 },
+ { X86::XOR16rr, X86::XOR16mr, 0 },
+ { X86::XOR32ri, X86::XOR32mi, 0 },
+ { X86::XOR32ri8, X86::XOR32mi8, 0 },
+ { X86::XOR32rr, X86::XOR32mr, 0 },
+ { X86::XOR64ri32, X86::XOR64mi32, 0 },
+ { X86::XOR64ri8, X86::XOR64mi8, 0 },
+ { X86::XOR64rr, X86::XOR64mr, 0 },
+ { X86::XOR8ri, X86::XOR8mi, 0 },
+ { X86::XOR8rr, X86::XOR8mr, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
+ unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
+ unsigned Flags = MemoryFoldTable2Addr[i].Flags;
+ AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 0, folded load and store, no alignment requirement.
+ Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
+ }
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
+ { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
+ { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
+ { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
+ { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
+ { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
+ { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
+ { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
+ { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
+ { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
+ { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
+ { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
+ { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
+ { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
+ { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
+ { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
+ { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
+ { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
+ { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
+ { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
+ { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
+ { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
+ { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
+ { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
+ { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
+ { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
+ { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
+ { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
+ { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
+ { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
+ { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
+ { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
+ { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
+ { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
+ { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
+ { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
+ { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
+ { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
+ { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
+ { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
+ { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
+ { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
+ { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
+ { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
+ { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
+ { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
+ { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
+ { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
+ { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
+ { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
+ { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
+ { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
+ { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
+ { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
+ { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
+ { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
+ { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
+ { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
+ { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
+ { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
+ { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
+ { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
+ { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
+ { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
+ { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
+ { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
+ { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
+ { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
+ { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
+ { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
+ { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
+ { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
+ { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
+ { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
+ { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
+ { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
+
+ // AVX 128-bit versions of foldable instructions
+ { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
+ { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
+ { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
+ { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
+ { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
+ { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
+ { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
+ { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
+
+ // AVX 256-bit foldable instructions
+ { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
+
+ // AVX-512 foldable instructions
+ { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
+ { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
+
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
+
+ // AVX-512 foldable instructions (128-bit versions)
+ { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
+
+ // F16C foldable instructions
+ { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
+ { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable0[i].RegOp;
+ unsigned MemOp = MemoryFoldTable0[i].MemOp;
+ unsigned Flags = MemoryFoldTable0[i].Flags;
+ AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
+ RegOp, MemOp, TB_INDEX_0 | Flags);
+ }
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
+ { X86::CMP16rr, X86::CMP16rm, 0 },
+ { X86::CMP32rr, X86::CMP32rm, 0 },
+ { X86::CMP64rr, X86::CMP64rm, 0 },
+ { X86::CMP8rr, X86::CMP8rm, 0 },
+ { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
+ { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
+ { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
+ { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
+ { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
+ { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
+ { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
+ { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
+ { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
+ { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
+ { X86::IMUL16rri, X86::IMUL16rmi, 0 },
+ { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
+ { X86::IMUL32rri, X86::IMUL32rmi, 0 },
+ { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
+ { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
+ { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
+ { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
+ { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
+ { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
+ { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
+ { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
+ { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
+ { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
+ { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
+ { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
+ { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
+ { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
+ { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
+ { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
+ { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
+ { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
+ { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
+ { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
+ { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
+ { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
+ { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
+ { X86::MOV16rr, X86::MOV16rm, 0 },
+ { X86::MOV32rr, X86::MOV32rm, 0 },
+ { X86::MOV64rr, X86::MOV64rm, 0 },
+ { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
+ { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
+ { X86::MOV8rr, X86::MOV8rm, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
+ { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
+ { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
+ { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
+ { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
+ { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
+ { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
+ { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
+ { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
+ { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
+ { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
+ { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
+ { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
+ { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
+ { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
+ { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
+ { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
+ { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
+ { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
+ { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
+ { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
+ { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
+ { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
+ { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
+ { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
+ { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
+ { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
+ { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
+ { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
+ { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
+ { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
+ { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
+ { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
+ { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
+ { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
+ { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
+ { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
+ { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
+ { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
+ { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
+ { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
+ { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
+ { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
+ { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
+ { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
+ { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
+ { X86::RCPSSr, X86::RCPSSm, 0 },
+ { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 },
+ { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
+ { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
+ { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
+ { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
+ { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
+ { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
+ { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
+ { X86::SQRTSDr, X86::SQRTSDm, 0 },
+ { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
+ { X86::SQRTSSr, X86::SQRTSSm, 0 },
+ { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
+ { X86::TEST16rr, X86::TEST16rm, 0 },
+ { X86::TEST32rr, X86::TEST32rm, 0 },
+ { X86::TEST64rr, X86::TEST64rm, 0 },
+ { X86::TEST8rr, X86::TEST8rm, 0 },
+ // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
+ { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
+ { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
+
+ // MMX version of foldable instructions
+ { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
+ { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
+ { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
+ { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
+ { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
+ { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
+ { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
+ { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
+ { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
+ { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
+
+ // 3DNow! version of foldable instructions
+ { X86::PF2IDrr, X86::PF2IDrm, 0 },
+ { X86::PF2IWrr, X86::PF2IWrm, 0 },
+ { X86::PFRCPrr, X86::PFRCPrm, 0 },
+ { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 },
+ { X86::PI2FDrr, X86::PI2FDrm, 0 },
+ { X86::PI2FWrr, X86::PI2FWrm, 0 },
+ { X86::PSWAPDrr, X86::PSWAPDrm, 0 },
+
+ // AVX 128-bit versions of foldable instructions
+ { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
+ { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
+ { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
+ { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
+ { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
+ { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
+ { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
+ { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
+ { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
+ { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
+ { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
+ { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
+ { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
+ { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
+ { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
+ { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
+ { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
+ { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
+ { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
+ { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
+ { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
+ { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
+ { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
+ { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
+ { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
+ { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
+ { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
+ { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
+ { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
+ { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
+ { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
+ { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
+ { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
+ { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
+ { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
+ { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
+ { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
+ { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
+ { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
+ { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
+ { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
+ { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
+ { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
+ { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
+ { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
+ { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
+ { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
+ { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
+ { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
+ { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
+ { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
+ { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
+ { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
+ { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
+ { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
+ { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
+ { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
+ { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
+ { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
+ { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
+ { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
+ { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
+ { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
+ { X86::VPTESTrr, X86::VPTESTrm, 0 },
+ { X86::VRCPPSr, X86::VRCPPSm, 0 },
+ { X86::VROUNDPDr, X86::VROUNDPDm, 0 },
+ { X86::VROUNDPSr, X86::VROUNDPSm, 0 },
+ { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
+ { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
+ { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
+ { X86::VTESTPDrr, X86::VTESTPDrm, 0 },
+ { X86::VTESTPSrr, X86::VTESTPSrm, 0 },
+ { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
+ { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
+
+ // AVX 256-bit foldable instructions
+ { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
+ { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
+ { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
+ { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
+ { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
+ { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
+ { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
+ { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
+ { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
+ { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
+ { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
+ { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
+ { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
+ { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
+ { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
+ { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
+ { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
+ { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
+ { X86::VPTESTYrr, X86::VPTESTYrm, 0 },
+ { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
+ { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
+ { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
+ { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
+ { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
+ { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
+ { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
+ { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
+
+ // AVX2 foldable instructions
+
+ // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
+ // VBROADCASTS{SD}rm memory instructions were available from AVX1.
+ // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
+ // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
+ // so they don't need an equivalent limitation.
+ { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
+ { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
+ { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
+ { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
+ { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
+ { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
+ { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 },
+ { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 },
+ { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 },
+ { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 },
+ { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 },
+ { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 },
+ { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 },
+ { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 },
+ { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
+ { X86::VPERMQYri, X86::VPERMQYmi, 0 },
+ { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 },
+ { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 },
+ { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
+ { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
+ { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
+ { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 },
+ { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 },
+ { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 },
+ { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
+ { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
+ { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
+ { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 },
+ { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
+ { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
+ { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
+
+ // XOP foldable instructions
+ { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
+ { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
+ { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
+ { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
+ { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
+ { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
+ { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
+ { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
+ { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
+ { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
+ { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
+ { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
+ { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
+ { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
+ { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
+ { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
+ { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
+ { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
+ { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
+ { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
+ { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
+ { X86::VPROTBri, X86::VPROTBmi, 0 },
+ { X86::VPROTBrr, X86::VPROTBmr, 0 },
+ { X86::VPROTDri, X86::VPROTDmi, 0 },
+ { X86::VPROTDrr, X86::VPROTDmr, 0 },
+ { X86::VPROTQri, X86::VPROTQmi, 0 },
+ { X86::VPROTQrr, X86::VPROTQmr, 0 },
+ { X86::VPROTWri, X86::VPROTWmi, 0 },
+ { X86::VPROTWrr, X86::VPROTWmr, 0 },
+ { X86::VPSHABrr, X86::VPSHABmr, 0 },
+ { X86::VPSHADrr, X86::VPSHADmr, 0 },
+ { X86::VPSHAQrr, X86::VPSHAQmr, 0 },
+ { X86::VPSHAWrr, X86::VPSHAWmr, 0 },
+ { X86::VPSHLBrr, X86::VPSHLBmr, 0 },
+ { X86::VPSHLDrr, X86::VPSHLDmr, 0 },
+ { X86::VPSHLQrr, X86::VPSHLQmr, 0 },
+ { X86::VPSHLWrr, X86::VPSHLWmr, 0 },
+
+ // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
+ { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
+ { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
+ { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
+ { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
+ { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
+ { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
+ { X86::BLCI32rr, X86::BLCI32rm, 0 },
+ { X86::BLCI64rr, X86::BLCI64rm, 0 },
+ { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
+ { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
+ { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
+ { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
+ { X86::BLCS32rr, X86::BLCS32rm, 0 },
+ { X86::BLCS64rr, X86::BLCS64rm, 0 },
+ { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
+ { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
+ { X86::BLSI32rr, X86::BLSI32rm, 0 },
+ { X86::BLSI64rr, X86::BLSI64rm, 0 },
+ { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
+ { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
+ { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
+ { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
+ { X86::BLSR32rr, X86::BLSR32rm, 0 },
+ { X86::BLSR64rr, X86::BLSR64rm, 0 },
+ { X86::BZHI32rr, X86::BZHI32rm, 0 },
+ { X86::BZHI64rr, X86::BZHI64rm, 0 },
+ { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
+ { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
+ { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
+ { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
+ { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
+ { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
+ { X86::RORX32ri, X86::RORX32mi, 0 },
+ { X86::RORX64ri, X86::RORX64mi, 0 },
+ { X86::SARX32rr, X86::SARX32rm, 0 },
+ { X86::SARX64rr, X86::SARX64rm, 0 },
+ { X86::SHRX32rr, X86::SHRX32rm, 0 },
+ { X86::SHRX64rr, X86::SHRX64rm, 0 },
+ { X86::SHLX32rr, X86::SHLX32rm, 0 },
+ { X86::SHLX64rr, X86::SHLX64rm, 0 },
+ { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
+ { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
+ { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
+ { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
+ { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
+ { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
+ { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
+
+ // AVX-512 foldable instructions
+ { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
+ { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
+ { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
+ { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
+ { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
+ { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
+ { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
+ { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
+ { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
+ { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
+ { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
+ { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
+ { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
+ { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
+ { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
+
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
+ { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
+ { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
+ { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
+ { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
+ { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
+ { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
+ { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
+ { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
+ { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
+ { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
+
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
+ { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
+ { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
+ { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
+ { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
+ { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
+ { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
+ { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
+ { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
+ { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
+ { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
+
+ // F16C foldable instructions
+ { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
+ { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
+
+ // AES foldable instructions
+ { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
+ { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
+ { X86::VAESIMCrr, X86::VAESIMCrm, 0 },
+ { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable1[i].RegOp;
+ unsigned MemOp = MemoryFoldTable1[i].MemOp;
+ unsigned Flags = MemoryFoldTable1[i].Flags;
+ AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 1, folded load
+ Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
+ }
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
+ { X86::ADC32rr, X86::ADC32rm, 0 },
+ { X86::ADC64rr, X86::ADC64rm, 0 },
+ { X86::ADD16rr, X86::ADD16rm, 0 },
+ { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
+ { X86::ADD32rr, X86::ADD32rm, 0 },
+ { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
+ { X86::ADD64rr, X86::ADD64rm, 0 },
+ { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
+ { X86::ADD8rr, X86::ADD8rm, 0 },
+ { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
+ { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
+ { X86::ADDSDrr, X86::ADDSDrm, 0 },
+ { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
+ { X86::ADDSSrr, X86::ADDSSrm, 0 },
+ { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
+ { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
+ { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
+ { X86::AND16rr, X86::AND16rm, 0 },
+ { X86::AND32rr, X86::AND32rm, 0 },
+ { X86::AND64rr, X86::AND64rm, 0 },
+ { X86::AND8rr, X86::AND8rm, 0 },
+ { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
+ { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
+ { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
+ { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
+ { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
+ { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
+ { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
+ { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
+ { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
+ { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
+ { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
+ { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
+ { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
+ { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
+ { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
+ { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
+ { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
+ { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
+ { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
+ { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
+ { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
+ { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
+ { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
+ { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
+ { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
+ { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
+ { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
+ { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
+ { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
+ { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
+ { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
+ { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
+ { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
+ { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
+ { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
+ { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
+ { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
+ { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
+ { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
+ { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
+ { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
+ { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
+ { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
+ { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
+ { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
+ { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
+ { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
+ { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
+ { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
+ { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
+ { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
+ { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
+ { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
+ { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
+ { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
+ { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
+ { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
+ { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
+ { X86::CMPSDrr, X86::CMPSDrm, 0 },
+ { X86::CMPSSrr, X86::CMPSSrm, 0 },
+ { X86::CRC32r32r32, X86::CRC32r32m32, 0 },
+ { X86::CRC32r64r64, X86::CRC32r64m64, 0 },
+ { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
+ { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
+ { X86::DIVSDrr, X86::DIVSDrm, 0 },
+ { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
+ { X86::DIVSSrr, X86::DIVSSrm, 0 },
+ { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
+ { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
+ { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
+
+ // FIXME: We should not be folding Fs* scalar loads into vector
+ // instructions because the vector instructions require vector-sized
+ // loads. Lowering should create vector-sized instructions (the Fv*
+ // variants below) to allow load folding.
+ { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
+ { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
+ { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
+ { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
+ { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
+ { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
+ { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
+ { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
+
+ { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 },
+ { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 },
+ { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 },
+ { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 },
+ { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 },
+ { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 },
+ { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 },
+ { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 },
+ { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
+ { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
+ { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
+ { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
+ { X86::IMUL16rr, X86::IMUL16rm, 0 },
+ { X86::IMUL32rr, X86::IMUL32rm, 0 },
+ { X86::IMUL64rr, X86::IMUL64rm, 0 },
+ { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
+ { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
+ { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
+ { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
+ { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
+ { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
+ { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
+ { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
+ { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
+ { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
+ { X86::MAXSDrr, X86::MAXSDrm, 0 },
+ { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
+ { X86::MAXSSrr, X86::MAXSSrm, 0 },
+ { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
+ { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
+ { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
+ { X86::MINSDrr, X86::MINSDrm, 0 },
+ { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
+ { X86::MINSSrr, X86::MINSSrm, 0 },
+ { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
+ { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
+ { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
+ { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
+ { X86::MULSDrr, X86::MULSDrm, 0 },
+ { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
+ { X86::MULSSrr, X86::MULSSrm, 0 },
+ { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
+ { X86::OR16rr, X86::OR16rm, 0 },
+ { X86::OR32rr, X86::OR32rm, 0 },
+ { X86::OR64rr, X86::OR64rm, 0 },
+ { X86::OR8rr, X86::OR8rm, 0 },
+ { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
+ { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
+ { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
+ { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
+ { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
+ { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
+ { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
+ { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
+ { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
+ { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
+ { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
+ { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
+ { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
+ { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
+ { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
+ { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
+ { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
+ { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
+ { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
+ { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
+ { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
+ { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
+ { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
+ { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
+ { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
+ { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
+ { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
+ { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
+ { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
+ { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
+ { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
+ { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
+ { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
+ { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
+ { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
+ { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
+ { X86::PINSRBrr, X86::PINSRBrm, 0 },
+ { X86::PINSRDrr, X86::PINSRDrm, 0 },
+ { X86::PINSRQrr, X86::PINSRQrm, 0 },
+ { X86::PINSRWrri, X86::PINSRWrmi, 0 },
+ { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
+ { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
+ { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
+ { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
+ { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
+ { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
+ { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
+ { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
+ { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
+ { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
+ { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
+ { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
+ { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
+ { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
+ { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
+ { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
+ { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
+ { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
+ { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
+ { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
+ { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
+ { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
+ { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
+ { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
+ { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
+ { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
+ { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
+ { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
+ { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
+ { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
+ { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
+ { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
+ { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
+ { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
+ { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
+ { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
+ { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
+ { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
+ { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
+ { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
+ { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
+ { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
+ { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
+ { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
+ { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
+ { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
+ { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
+ { X86::SBB32rr, X86::SBB32rm, 0 },
+ { X86::SBB64rr, X86::SBB64rm, 0 },
+ { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
+ { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
+ { X86::SUB16rr, X86::SUB16rm, 0 },
+ { X86::SUB32rr, X86::SUB32rm, 0 },
+ { X86::SUB64rr, X86::SUB64rm, 0 },
+ { X86::SUB8rr, X86::SUB8rm, 0 },
+ { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
+ { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
+ { X86::SUBSDrr, X86::SUBSDrm, 0 },
+ { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
+ { X86::SUBSSrr, X86::SUBSSrm, 0 },
+ { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
+ // FIXME: TEST*rr -> swapped operand of TEST*mr.
+ { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
+ { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
+ { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
+ { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
+ { X86::XOR16rr, X86::XOR16rm, 0 },
+ { X86::XOR32rr, X86::XOR32rm, 0 },
+ { X86::XOR64rr, X86::XOR64rm, 0 },
+ { X86::XOR8rr, X86::XOR8rm, 0 },
+ { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
+ { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
+
+ // MMX version of foldable instructions
+ { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
+ { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
+ { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
+ { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
+ { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
+ { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
+ { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
+ { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
+ { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
+ { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
+ { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
+ { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
+ { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
+ { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
+ { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
+ { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
+ { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
+ { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
+ { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
+ { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
+ { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
+ { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
+ { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
+ { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
+ { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
+ { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
+ { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
+ { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
+ { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
+ { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
+ { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
+ { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
+ { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
+ { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
+ { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
+ { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
+ { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
+ { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
+ { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
+ { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
+ { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
+ { X86::MMX_PORirr, X86::MMX_PORirm, 0 },
+ { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
+ { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
+ { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
+ { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
+ { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
+ { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
+ { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
+ { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
+ { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
+ { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
+ { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
+ { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
+ { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
+ { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
+ { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
+ { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
+ { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
+ { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
+ { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
+ { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
+ { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
+ { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
+ { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
+ { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
+ { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
+ { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
+ { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
+ { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
+
+ // 3DNow! version of foldable instructions
+ { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 },
+ { X86::PFACCrr, X86::PFACCrm, 0 },
+ { X86::PFADDrr, X86::PFADDrm, 0 },
+ { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 },
+ { X86::PFCMPGErr, X86::PFCMPGErm, 0 },
+ { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 },
+ { X86::PFMAXrr, X86::PFMAXrm, 0 },
+ { X86::PFMINrr, X86::PFMINrm, 0 },
+ { X86::PFMULrr, X86::PFMULrm, 0 },
+ { X86::PFNACCrr, X86::PFNACCrm, 0 },
+ { X86::PFPNACCrr, X86::PFPNACCrm, 0 },
+ { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 },
+ { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 },
+ { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 },
+ { X86::PFSUBrr, X86::PFSUBrm, 0 },
+ { X86::PFSUBRrr, X86::PFSUBRrm, 0 },
+ { X86::PMULHRWrr, X86::PMULHRWrm, 0 },
+
+ // AVX 128-bit versions of foldable instructions
+ { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
+ { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
+ { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
+ { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
+ { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
+ { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
+ { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
+ { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
+ { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
+ { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
+ { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
+ { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
+ { X86::VRCPSSr, X86::VRCPSSm, 0 },
+ { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 },
+ { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
+ { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 },
+ { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
+ { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 },
+ { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
+ { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 },
+ { X86::VADDPDrr, X86::VADDPDrm, 0 },
+ { X86::VADDPSrr, X86::VADDPSrm, 0 },
+ { X86::VADDSDrr, X86::VADDSDrm, 0 },
+ { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
+ { X86::VADDSSrr, X86::VADDSSrm, 0 },
+ { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
+ { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
+ { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
+ { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
+ { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
+ { X86::VANDPDrr, X86::VANDPDrm, 0 },
+ { X86::VANDPSrr, X86::VANDPSrm, 0 },
+ { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
+ { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
+ { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
+ { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
+ { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
+ { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
+ { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
+ { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
+ { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
+ { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
+ { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
+ { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
+ { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
+ { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
+ { X86::VDPPDrri, X86::VDPPDrmi, 0 },
+ { X86::VDPPSrri, X86::VDPPSrmi, 0 },
+ // Do not fold VFs* loads because there are no scalar load variants for
+ // these instructions. When folded, the load is required to be 128-bits, so
+ // the load size would not match.
+ { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 },
+ { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 },
+ { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 },
+ { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 },
+ { X86::VFvORPDrr, X86::VFvORPDrm, 0 },
+ { X86::VFvORPSrr, X86::VFvORPSrm, 0 },
+ { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 },
+ { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 },
+ { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
+ { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
+ { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
+ { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
+ { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
+ { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
+ { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
+ { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
+ { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
+ { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
+ { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
+ { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
+ { X86::VMINPDrr, X86::VMINPDrm, 0 },
+ { X86::VMINPSrr, X86::VMINPSrm, 0 },
+ { X86::VMINSDrr, X86::VMINSDrm, 0 },
+ { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
+ { X86::VMINSSrr, X86::VMINSSrm, 0 },
+ { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
+ { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
+ { X86::VMULPDrr, X86::VMULPDrm, 0 },
+ { X86::VMULPSrr, X86::VMULPSrm, 0 },
+ { X86::VMULSDrr, X86::VMULSDrm, 0 },
+ { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
+ { X86::VMULSSrr, X86::VMULSSrm, 0 },
+ { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
+ { X86::VORPDrr, X86::VORPDrm, 0 },
+ { X86::VORPSrr, X86::VORPSrm, 0 },
+ { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
+ { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
+ { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
+ { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
+ { X86::VPADDBrr, X86::VPADDBrm, 0 },
+ { X86::VPADDDrr, X86::VPADDDrm, 0 },
+ { X86::VPADDQrr, X86::VPADDQrm, 0 },
+ { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
+ { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
+ { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
+ { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
+ { X86::VPADDWrr, X86::VPADDWrm, 0 },
+ { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
+ { X86::VPANDNrr, X86::VPANDNrm, 0 },
+ { X86::VPANDrr, X86::VPANDrm, 0 },
+ { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
+ { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
+ { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
+ { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
+ { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
+ { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
+ { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
+ { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
+ { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
+ { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
+ { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
+ { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
+ { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
+ { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
+ { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
+ { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
+ { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
+ { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
+ { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
+ { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
+ { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
+ { X86::VPINSRBrr, X86::VPINSRBrm, 0 },
+ { X86::VPINSRDrr, X86::VPINSRDrm, 0 },
+ { X86::VPINSRQrr, X86::VPINSRQrm, 0 },
+ { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
+ { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
+ { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
+ { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
+ { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
+ { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
+ { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
+ { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
+ { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
+ { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
+ { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
+ { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
+ { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
+ { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
+ { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
+ { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
+ { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
+ { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
+ { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
+ { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
+ { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
+ { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
+ { X86::VPORrr, X86::VPORrm, 0 },
+ { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
+ { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
+ { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
+ { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
+ { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
+ { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
+ { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
+ { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
+ { X86::VPSRADrr, X86::VPSRADrm, 0 },
+ { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
+ { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
+ { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
+ { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
+ { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
+ { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
+ { X86::VPSUBQrr, X86::VPSUBQrm, 0 },
+ { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
+ { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
+ { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
+ { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
+ { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
+ { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
+ { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
+ { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
+ { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
+ { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
+ { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
+ { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
+ { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
+ { X86::VPXORrr, X86::VPXORrm, 0 },
+ { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
+ { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
+ { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
+ { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
+ { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
+ { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
+ { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
+ { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
+ { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
+ { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
+ { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
+ { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
+ { X86::VXORPDrr, X86::VXORPDrm, 0 },
+ { X86::VXORPSrr, X86::VXORPSrm, 0 },
+
+ // AVX 256-bit foldable instructions
+ { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
+ { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
+ { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
+ { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
+ { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
+ { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
+ { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
+ { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
+ { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
+ { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
+ { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
+ { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
+ { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
+ { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
+ { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
+ { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
+ { X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
+ { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
+ { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
+ { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
+ { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
+ { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
+ { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
+ { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
+ { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
+ { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
+ { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
+ { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
+ { X86::VORPDYrr, X86::VORPDYrm, 0 },
+ { X86::VORPSYrr, X86::VORPSYrm, 0 },
+ { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
+ { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
+ { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
+ { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
+ { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
+ { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
+ { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
+ { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
+ { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
+ { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
+ { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
+ { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
+ { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
+
+ // AVX2 foldable instructions
+ { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
+ { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
+ { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
+ { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
+ { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
+ { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
+ { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
+ { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
+ { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
+ { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
+ { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
+ { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
+ { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
+ { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
+ { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
+ { X86::VPANDYrr, X86::VPANDYrm, 0 },
+ { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
+ { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
+ { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
+ { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
+ { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
+ { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
+ { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
+ { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
+ { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
+ { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
+ { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
+ { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
+ { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
+ { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
+ { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
+ { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
+ { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
+ { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
+ { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
+ { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
+ { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
+ { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
+ { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
+ { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
+ { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
+ { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
+ { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
+ { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
+ { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
+ { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
+ { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
+ { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
+ { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
+ { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
+ { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
+ { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
+ { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
+ { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
+ { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
+ { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
+ { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
+ { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
+ { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
+ { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
+ { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
+ { X86::VPORYrr, X86::VPORYrm, 0 },
+ { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
+ { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
+ { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
+ { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
+ { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
+ { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
+ { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
+ { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
+ { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
+ { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
+ { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
+ { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
+ { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
+ { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
+ { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
+ { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
+ { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
+ { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
+ { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
+ { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
+ { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
+ { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
+ { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
+ { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
+ { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
+ { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
+ { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
+ { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
+ { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
+ { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
+ { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
+ { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
+ { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
+ { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
+ { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
+ { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
+ { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
+ { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
+ { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
+ { X86::VPXORYrr, X86::VPXORYrm, 0 },
+
+ // FMA4 foldable patterns
+ { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
+ { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
+ { X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 },
+ { X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 },
+ { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 },
+ { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 },
+ { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
+ { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
+ { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 },
+ { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 },
+ { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 },
+ { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 },
+ { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
+ { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
+ { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 },
+ { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 },
+ { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 },
+ { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 },
+ { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
+ { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
+ { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 },
+ { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 },
+ { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 },
+ { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 },
+ { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 },
+ { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 },
+ { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 },
+ { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 },
+ { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 },
+ { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 },
+ { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 },
+ { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 },
+
+ // XOP foldable instructions
+ { X86::VPCMOVrr, X86::VPCMOVmr, 0 },
+ { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 },
+ { X86::VPCOMBri, X86::VPCOMBmi, 0 },
+ { X86::VPCOMDri, X86::VPCOMDmi, 0 },
+ { X86::VPCOMQri, X86::VPCOMQmi, 0 },
+ { X86::VPCOMWri, X86::VPCOMWmi, 0 },
+ { X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
+ { X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
+ { X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
+ { X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
+ { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
+ { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
+ { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
+ { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
+ { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
+ { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
+ { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
+ { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
+ { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
+ { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
+ { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
+ { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
+ { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
+ { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
+ { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
+ { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
+ { X86::VPPERMrr, X86::VPPERMmr, 0 },
+ { X86::VPROTBrr, X86::VPROTBrm, 0 },
+ { X86::VPROTDrr, X86::VPROTDrm, 0 },
+ { X86::VPROTQrr, X86::VPROTQrm, 0 },
+ { X86::VPROTWrr, X86::VPROTWrm, 0 },
+ { X86::VPSHABrr, X86::VPSHABrm, 0 },
+ { X86::VPSHADrr, X86::VPSHADrm, 0 },
+ { X86::VPSHAQrr, X86::VPSHAQrm, 0 },
+ { X86::VPSHAWrr, X86::VPSHAWrm, 0 },
+ { X86::VPSHLBrr, X86::VPSHLBrm, 0 },
+ { X86::VPSHLDrr, X86::VPSHLDrm, 0 },
+ { X86::VPSHLQrr, X86::VPSHLQrm, 0 },
+ { X86::VPSHLWrr, X86::VPSHLWrm, 0 },
+
+ // BMI/BMI2 foldable instructions
+ { X86::ANDN32rr, X86::ANDN32rm, 0 },
+ { X86::ANDN64rr, X86::ANDN64rm, 0 },
+ { X86::MULX32rr, X86::MULX32rm, 0 },
+ { X86::MULX64rr, X86::MULX64rm, 0 },
+ { X86::PDEP32rr, X86::PDEP32rm, 0 },
+ { X86::PDEP64rr, X86::PDEP64rm, 0 },
+ { X86::PEXT32rr, X86::PEXT32rm, 0 },
+ { X86::PEXT64rr, X86::PEXT64rm, 0 },
+
+ // AVX-512 foldable instructions
+ { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
+ { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
+ { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
+ { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
+ { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
+ { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
+ { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
+ { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
+ { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
+ { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
+ { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
+ { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
+ { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
+ { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
+ { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
+ { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
+ { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
+ { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
+ { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
+ { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
+ { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
+ { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
+ { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
+ { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
+ { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
+ { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
+ { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
+ { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
+ { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
+ { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
+ { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
+ { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
+ { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
+ { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
+ { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
+ { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
+ { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
+ { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
+
+ // AVX-512{F,VL} foldable instructions
+ { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
+
+ // AVX-512{F,VL} foldable instructions
+ { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
+ { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
+ { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
+ { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
+
+ // AES foldable instructions
+ { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
+ { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
+ { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
+ { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
+ { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
+ { X86::VAESDECrr, X86::VAESDECrm, 0 },
+ { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
+ { X86::VAESENCrr, X86::VAESENCrm, 0 },
+
+ // SHA foldable instructions
+ { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
+ { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
+ { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
+ { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
+ { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
+ { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
+ { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable2[i].RegOp;
+ unsigned MemOp = MemoryFoldTable2[i].MemOp;
+ unsigned Flags = MemoryFoldTable2[i].Flags;
+ AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 2, folded load
+ Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
+ }
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
+ // FMA foldable instructions
+ { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
+
+ { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
+
+ { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
+ { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
+
+ // FMA4 foldable patterns
+ { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
+ { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
+ { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
+ { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
+ { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
+ { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
+ { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
+ { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
+ { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
+ { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
+ { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
+ { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
+ { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
+ { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
+ { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
+ { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
+ { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
+ { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
+ { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
+ { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
+
+ // XOP foldable instructions
+ { X86::VPCMOVrr, X86::VPCMOVrm, 0 },
+ { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 },
+ { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
+ { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
+ { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
+ { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
+ { X86::VPPERMrr, X86::VPPERMrm, 0 },
+
+ // AVX-512 VPERMI instructions with 3 source operands.
+ { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
+ { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
+ { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
+ { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
+ { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
+ { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
+ { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
+ { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
+ { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
+ // AVX-512 arithmetic instructions
+ { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
+ { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
+ { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
+ { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
+ { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
+ { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
+ { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
+ { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
+ { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
+ { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
+ { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
+ { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
+ // AVX-512{F,VL} arithmetic instructions 256-bit
+ { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
+ { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
+ { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
+ { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
+ { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
+ { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
+ { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
+ { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
+ { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
+ { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
+ { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
+ { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
+ // AVX-512{F,VL} arithmetic instructions 128-bit
+ { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
+ { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
+ { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
+ { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
+ { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
+ { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
+ { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
+ { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
+ { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
+ { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
+ { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
+ { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable3[i].RegOp;
+ unsigned MemOp = MemoryFoldTable3[i].MemOp;
+ unsigned Flags = MemoryFoldTable3[i].Flags;
+ AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 3, folded load
+ Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
+ }
+
+ static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
+ // AVX-512 foldable instructions
+ { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
+ { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
+ { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
+ { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
+ { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
+ { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
+ { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
+ { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
+ { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
+ { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
+ { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
+ { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
+ // AVX-512{F,VL} foldable instructions 256-bit
+ { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
+ { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
+ { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
+ { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
+ { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
+ { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
+ { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
+ { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
+ { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
+ { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
+ { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
+ { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
+ // AVX-512{F,VL} foldable instructions 128-bit
+ { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
+ { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
+ { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
+ { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
+ { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
+ { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
+ { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
+ { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
+ { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
+ { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
+ { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
+ { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
+ unsigned RegOp = MemoryFoldTable4[i].RegOp;
+ unsigned MemOp = MemoryFoldTable4[i].MemOp;
+ unsigned Flags = MemoryFoldTable4[i].Flags;
+ AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 4, folded load
+ Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
+ }
+}
+
+void
+X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
+ MemOp2RegOpTableType &M2RTable,
+ unsigned RegOp, unsigned MemOp, unsigned Flags) {
+ if ((Flags & TB_NO_FORWARD) == 0) {
+ assert(!R2MTable.count(RegOp) && "Duplicate entry!");
+ R2MTable[RegOp] = std::make_pair(MemOp, Flags);
+ }
+ if ((Flags & TB_NO_REVERSE) == 0) {
+ assert(!M2RTable.count(MemOp) &&
+ "Duplicated entries in unfolding maps?");
+ M2RTable[MemOp] = std::make_pair(RegOp, Flags);
+ }
+}
+
+bool
+X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ if (!Subtarget.is64Bit())
+ // It's not always legal to reference the low 8-bit of the larger
+ // register in 32-bit mode.
+ return false;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVSX64rr32: {
+ if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
+ // Be conservative.
+ return false;
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ SubIdx = X86::sub_8bit;
+ break;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ SubIdx = X86::sub_16bit;
+ break;
+ case X86::MOVSX64rr32:
+ SubIdx = X86::sub_32bit;
+ break;
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
+
+ if (MI->getOpcode() == getCallFrameSetupOpcode() ||
+ MI->getOpcode() == getCallFrameDestroyOpcode()) {
+ unsigned StackAlign = TFI->getStackAlignment();
+ int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
+ StackAlign;
+
+ SPAdj -= MI->getOperand(1).getImm();
+
+ if (MI->getOpcode() == getCallFrameSetupOpcode())
+ return SPAdj;
+ else
+ return -SPAdj;
+ }
+
+ // To know whether a call adjusts the stack, we need information
+ // that is bound to the following ADJCALLSTACKUP pseudo.
+ // Look for the next ADJCALLSTACKUP that follows the call.
+ if (MI->isCall()) {
+ const MachineBasicBlock* MBB = MI->getParent();
+ auto I = ++MachineBasicBlock::const_iterator(MI);
+ for (auto E = MBB->end(); I != E; ++I) {
+ if (I->getOpcode() == getCallFrameDestroyOpcode() ||
+ I->isCall())
+ break;
+ }
+
+ // If we could not find a frame destroy opcode, then it has already
+ // been simplified, so we don't care.
+ if (I->getOpcode() != getCallFrameDestroyOpcode())
+ return 0;
+
+ return -(I->getOperand(1).getImm());
+ }
+
+ // Currently handle only PUSHes we can reasonably expect to see
+ // in call sequences
+ switch (MI->getOpcode()) {
+ default:
+ return 0;
+ case X86::PUSH32i8:
+ case X86::PUSH32r:
+ case X86::PUSH32rmm:
+ case X86::PUSH32rmr:
+ case X86::PUSHi32:
+ return 4;
+ }
+}
+
+/// Return true and the FrameIndex if the specified
+/// operand and follow operands form a reference to the stack frame.
+bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
+ int &FrameIndex) const {
+ if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
+ MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(Op+X86::AddrDisp).isImm() &&
+ MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
+ MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
+ MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
+ FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
+ return true;
+ }
+ return false;
+}
+
+static bool isFrameLoadOpcode(int Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPDYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQUYrm:
+ case X86::VMOVDQAYrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::VMOVAPSZrm:
+ case X86::VMOVUPSZrm:
+ return true;
+ }
+}
+
+static bool isFrameStoreOpcode(int Opcode) {
+ switch (Opcode) {
+ default: break;
+ case X86::MOV8mr:
+ case X86::MOV16mr:
+ case X86::MOV32mr:
+ case X86::MOV64mr:
+ case X86::ST_FpP64m:
+ case X86::MOVSSmr:
+ case X86::MOVSDmr:
+ case X86::MOVAPSmr:
+ case X86::MOVAPDmr:
+ case X86::MOVDQAmr:
+ case X86::VMOVSSmr:
+ case X86::VMOVSDmr:
+ case X86::VMOVAPSmr:
+ case X86::VMOVAPDmr:
+ case X86::VMOVDQAmr:
+ case X86::VMOVUPSYmr:
+ case X86::VMOVAPSYmr:
+ case X86::VMOVUPDYmr:
+ case X86::VMOVAPDYmr:
+ case X86::VMOVDQUYmr:
+ case X86::VMOVDQAYmr:
+ case X86::VMOVUPSZmr:
+ case X86::VMOVAPSZmr:
+ case X86::MMX_MOVD64mr:
+ case X86::MMX_MOVQ64mr:
+ case X86::MMX_MOVNTQmr:
+ return true;
+ }
+ return false;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode()))
+ if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
+ return MI->getOperand(0).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode()))
+ if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
+ isFrameOperand(MI, 0, FrameIndex))
+ return MI->getOperand(X86::AddrNumOperands).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasStoreToStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
+static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
+ // Don't waste compile time scanning use-def chains of physregs.
+ if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
+ return false;
+ bool isPICBase = false;
+ for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
+ E = MRI.def_instr_end(); I != E; ++I) {
+ MachineInstr *DefMI = &*I;
+ if (DefMI->getOpcode() != X86::MOVPC32r)
+ return false;
+ assert(!isPICBase && "More than one PIC base?");
+ isPICBase = true;
+ }
+ return isPICBase;
+}
+
+bool
+X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm: {
+ // Loads from constant pools are trivially rematerializable.
+ if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
+ MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
+ MI->isInvariantLoad(AA)) {
+ unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
+ if (BaseReg == 0 || BaseReg == X86::RIP)
+ return true;
+ // Allow re-materialization of PIC load.
+ if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
+ return false;
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return regIsPICBase(BaseReg, MRI);
+ }
+ return false;
+ }
+
+ case X86::LEA32r:
+ case X86::LEA64r: {
+ if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+ MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+ MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
+ !MI->getOperand(1+X86::AddrDisp).isReg()) {
+ // lea fi#, lea GV, etc. are all rematerializable.
+ if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
+ return true;
+ unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
+ if (BaseReg == 0)
+ return true;
+ // Allow re-materialization of lea PICBase + x.
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return regIsPICBase(BaseReg, MRI);
+ }
+ return false;
+ }
+ }
+
+ // All other instructions marked M_REMATERIALIZABLE are always trivially
+ // rematerializable.
+ return true;
+}
+
+bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ MachineBasicBlock::iterator E = MBB.end();
+
+ // For compile time consideration, if we are not able to determine the
+ // safety after visiting 4 instructions in each direction, we will assume
+ // it's not safe.
+ MachineBasicBlock::iterator Iter = I;
+ for (unsigned i = 0; Iter != E && i < 4; ++i) {
+ bool SeenDef = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
+ SeenDef = true;
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == X86::EFLAGS) {
+ if (MO.isUse())
+ return false;
+ SeenDef = true;
+ }
+ }
+
+ if (SeenDef)
+ // This instruction defines EFLAGS, no need to look any further.
+ return true;
+ ++Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != E && Iter->isDebugValue())
+ ++Iter;
+ }
+
+ // It is safe to clobber EFLAGS at the end of a block of no successor has it
+ // live in.
+ if (Iter == E) {
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(X86::EFLAGS))
+ return false;
+ return true;
+ }
+
+ MachineBasicBlock::iterator B = MBB.begin();
+ Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
+ // If we make it to the beginning of the block, it's safe to clobber
+ // EFLAGS iff EFLAGS is not live-in.
+ if (Iter == B)
+ return !MBB.isLiveIn(X86::EFLAGS);
+
+ --Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != B && Iter->isDebugValue())
+ --Iter;
+
+ bool SawKill = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ // A register mask may clobber EFLAGS, but we should still look for a
+ // live EFLAGS def.
+ if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
+ SawKill = true;
+ if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
+ if (MO.isDef()) return MO.isDead();
+ if (MO.isKill()) SawKill = true;
+ }
+ }
+
+ if (SawKill)
+ // This instruction kills EFLAGS and doesn't redefine it, so
+ // there's no need to look further.
+ return true;
+ }
+
+ // Conservative answer.
+ return false;
+}
+
+void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ // MOV32r0 is implemented with a xor which clobbers condition code.
+ // Re-materialize it as movri instructions to avoid side effects.
+ unsigned Opc = Orig->getOpcode();
+ if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
+ DebugLoc DL = Orig->getDebugLoc();
+ BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
+ .addImm(0);
+ } else {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MBB.insert(I, MI);
+ }
+
+ MachineInstr *NewMI = std::prev(I);
+ NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+}
+
+/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
+static bool hasLiveCondCodeDef(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() &&
+ MO.getReg() == X86::EFLAGS && !MO.isDead()) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Check whether the shift count for a machine operand is non-zero.
+inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
+ unsigned ShiftAmtOperandIdx) {
+ // The shift count is six bits with the REX.W prefix and five bits without.
+ unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
+ unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
+ return Imm & ShiftCountMask;
+}
+
+/// Check whether the given shift count is appropriate
+/// can be represented by a LEA instruction.
+inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
+ // Left shift instructions can be transformed into load-effective-address
+ // instructions if we can encode them appropriately.
+ // A LEA instruction utilizes a SIB byte to encode it's scale factor.
+ // The SIB.scale field is two bits wide which means that we can encode any
+ // shift amount less than 4.
+ return ShAmt < 4 && ShAmt > 0;
+}
+
+bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
+ unsigned Opc, bool AllowSP,
+ unsigned &NewSrc, bool &isKill, bool &isUndef,
+ MachineOperand &ImplicitOp) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterClass *RC;
+ if (AllowSP) {
+ RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
+ } else {
+ RC = Opc != X86::LEA32r ?
+ &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
+ }
+ unsigned SrcReg = Src.getReg();
+
+ // For both LEA64 and LEA32 the register already has essentially the right
+ // type (32-bit or 64-bit) we may just need to forbid SP.
+ if (Opc != X86::LEA64_32r) {
+ NewSrc = SrcReg;
+ isKill = Src.isKill();
+ isUndef = Src.isUndef();
+
+ if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
+ !MF.getRegInfo().constrainRegClass(NewSrc, RC))
+ return false;
+
+ return true;
+ }
+
+ // This is for an LEA64_32r and incoming registers are 32-bit. One way or
+ // another we need to add 64-bit registers to the final MI.
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
+ ImplicitOp = Src;
+ ImplicitOp.setImplicit();
+
+ NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
+ MachineBasicBlock::LivenessQueryResult LQR =
+ MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
+
+ switch (LQR) {
+ case MachineBasicBlock::LQR_Unknown:
+ // We can't give sane liveness flags to the instruction, abandon LEA
+ // formation.
+ return false;
+ case MachineBasicBlock::LQR_Live:
+ isKill = MI->killsRegister(SrcReg);
+ isUndef = false;
+ break;
+ default:
+ // The physreg itself is dead, so we have to use it as an <undef>.
+ isKill = false;
+ isUndef = true;
+ break;
+ }
+ } else {
+ // Virtual register of the wrong class, we have to create a temporary 64-bit
+ // vreg to feed into the LEA.
+ NewSrc = MF.getRegInfo().createVirtualRegister(RC);
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(TargetOpcode::COPY))
+ .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
+ .addOperand(Src);
+
+ // Which is obviously going to be dead after we're done with it.
+ isKill = true;
+ isUndef = false;
+ }
+
+ // We've set all the parameters without issue.
+ return true;
+}
+
+/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
+/// LEA to form 3-address code by promoting to a 32-bit superregister and then
+/// truncating back down to a 16-bit subregister.
+MachineInstr *
+X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
+ MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isKill = MI->getOperand(1).isKill();
+
+ MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
+ unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ unsigned Opc, leaInReg;
+ if (Subtarget.is64Bit()) {
+ Opc = X86::LEA64_32r;
+ leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+ } else {
+ Opc = X86::LEA32r;
+ leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ }
+
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ // This has the potential to cause partial register stall. e.g.
+ // movw (%rbp,%rcx,2), %dx
+ // leal -65(%rdx), %esi
+ // But testing has shown this *does* help performance in 64-bit mode (at
+ // least on modern x86 machines).
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
+ MachineInstr *InsMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(leaInReg, RegState::Define, X86::sub_16bit)
+ .addReg(Src, getKillRegState(isKill));
+
+ MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
+ get(Opc), leaOutReg);
+ switch (MIOpc) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SHL16ri: {
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ MIB.addReg(0).addImm(1 << ShAmt)
+ .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
+ break;
+ }
+ case X86::INC16r:
+ addRegOffset(MIB, leaInReg, true, 1);
+ break;
+ case X86::DEC16r:
+ addRegOffset(MIB, leaInReg, true, -1);
+ break;
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
+ break;
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB: {
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ unsigned leaInReg2 = 0;
+ MachineInstr *InsMI2 = nullptr;
+ if (Src == Src2) {
+ // ADD16rr %reg1028<kill>, %reg1028
+ // just a single insert_subreg.
+ addRegReg(MIB, leaInReg, true, leaInReg, false);
+ } else {
+ if (Subtarget.is64Bit())
+ leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+ else
+ leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
+ InsMI2 =
+ BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
+ .addReg(Src2, getKillRegState(isKill2));
+ addRegReg(MIB, leaInReg, true, leaInReg2, true);
+ }
+ if (LV && isKill2 && InsMI2)
+ LV->replaceKillInstruction(Src2, MI, InsMI2);
+ break;
+ }
+ }
+
+ MachineInstr *NewMI = MIB;
+ MachineInstr *ExtMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
+
+ if (LV) {
+ // Update live variables
+ LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
+ LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
+ if (isKill)
+ LV->replaceKillInstruction(Src, MI, InsMI);
+ if (isDead)
+ LV->replaceKillInstruction(Dest, MI, ExtMI);
+ }
+
+ return ExtMI;
+}
+
+/// This method must be implemented by targets that
+/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+/// may be able to convert a two-address instruction into a true
+/// three-address instruction on demand. This allows the X86 target (for
+/// example) to convert ADD and SHL instructions into LEA instructions if they
+/// would require register copies due to two-addressness.
+///
+/// This method returns a null pointer if the transformation cannot be
+/// performed, otherwise it returns the new instruction.
+///
+MachineInstr *
+X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+
+ // The following opcodes also sets the condition code register(s). Only
+ // convert them to equivalent lea if the condition code register def's
+ // are dead!
+ if (hasLiveCondCodeDef(MI))
+ return nullptr;
+
+ MachineFunction &MF = *MI->getParent()->getParent();
+ // All instructions input are two-addr instructions. Get the known operands.
+ const MachineOperand &Dest = MI->getOperand(0);
+ const MachineOperand &Src = MI->getOperand(1);
+
+ MachineInstr *NewMI = nullptr;
+ // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
+ // we have better subtarget support, enable the 16-bit LEA generation here.
+ // 16-bit LEA is also slow on Core2.
+ bool DisableLEA16 = true;
+ bool is64Bit = Subtarget.is64Bit();
+
+ unsigned MIOpc = MI->getOpcode();
+ switch (MIOpc) {
+ default: return nullptr;
+ case X86::SHL64ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ // LEA can't handle RSP.
+ if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
+ !MF.getRegInfo().constrainRegClass(Src.getReg(),
+ &X86::GR64_NOSPRegClass))
+ return nullptr;
+
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
+ break;
+ }
+ case X86::SHL32ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ // LEA can't handle ESP.
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt)
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addImm(0).addReg(0);
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+ NewMI = MIB;
+
+ break;
+ }
+ case X86::SHL16ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
+
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest)
+ .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
+ break;
+ }
+ case X86::INC64r:
+ case X86::INC32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, 1);
+ break;
+ }
+ case X86::INC16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), 1);
+ break;
+ case X86::DEC64r:
+ case X86::DEC32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, -1);
+
+ break;
+ }
+ case X86::DEC16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), -1);
+ break;
+ case X86::ADD64rr:
+ case X86::ADD64rr_DB:
+ case X86::ADD32rr:
+ case X86::ADD32rr_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc;
+ if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
+ Opc = X86::LEA64r;
+ else
+ Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ const MachineOperand &Src2 = MI->getOperand(2);
+ bool isKill2, isUndef2;
+ unsigned SrcReg2;
+ MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
+ SrcReg2, isKill2, isUndef2, ImplicitOp2))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest);
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+ if (ImplicitOp2.getReg() != 0)
+ MIB.addOperand(ImplicitOp2);
+
+ NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
+
+ // Preserve undefness of the operands.
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
+
+ if (LV && Src2.isKill())
+ LV->replaceKillInstruction(SrcReg2, MI, NewMI);
+ break;
+ }
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB: {
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest),
+ Src.getReg(), Src.isKill(), Src2, isKill2);
+
+ // Preserve undefness of the operands.
+ bool isUndef = MI->getOperand(1).isUndef();
+ bool isUndef2 = MI->getOperand(2).isUndef();
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
+
+ if (LV && isKill2)
+ LV->replaceKillInstruction(Src2, MI, NewMI);
+ break;
+ }
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8_DB:
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri_DB:
+ case X86::ADD32ri8_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
+
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+
+ NewMI = addOffset(MIB, MI->getOperand(2).getImm());
+ break;
+ }
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
+ }
+
+ if (!NewMI) return nullptr;
+
+ if (LV) { // Update live variables
+ if (Src.isKill())
+ LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
+ if (Dest.isDead())
+ LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
+ }
+
+ MFI->insert(MBBI, NewMI); // Insert the new inst
+ return NewMI;
+}
+
+/// We have a few instructions that must be hacked on to commute them.
+///
+MachineInstr *
+X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ switch (MI->getOpcode()) {
+ case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
+ case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
+ case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
+ case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
+ case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
+ case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
+ unsigned Opc;
+ unsigned Size;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
+ case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
+ case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
+ case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
+ case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
+ case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
+ }
+ unsigned Amt = MI->getOperand(3).getImm();
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ MI->getOperand(3).setImm(Size-Amt);
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+ case X86::BLENDPDrri:
+ case X86::BLENDPSrri:
+ case X86::PBLENDWrri:
+ case X86::VBLENDPDrri:
+ case X86::VBLENDPSrri:
+ case X86::VBLENDPDYrri:
+ case X86::VBLENDPSYrri:
+ case X86::VPBLENDDrri:
+ case X86::VPBLENDWrri:
+ case X86::VPBLENDDYrri:
+ case X86::VPBLENDWYrri:{
+ unsigned Mask;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::BLENDPDrri: Mask = 0x03; break;
+ case X86::BLENDPSrri: Mask = 0x0F; break;
+ case X86::PBLENDWrri: Mask = 0xFF; break;
+ case X86::VBLENDPDrri: Mask = 0x03; break;
+ case X86::VBLENDPSrri: Mask = 0x0F; break;
+ case X86::VBLENDPDYrri: Mask = 0x0F; break;
+ case X86::VBLENDPSYrri: Mask = 0xFF; break;
+ case X86::VPBLENDDrri: Mask = 0x0F; break;
+ case X86::VPBLENDWrri: Mask = 0xFF; break;
+ case X86::VPBLENDDYrri: Mask = 0xFF; break;
+ case X86::VPBLENDWYrri: Mask = 0xFF; break;
+ }
+ // Only the least significant bits of Imm are used.
+ unsigned Imm = MI->getOperand(3).getImm() & Mask;
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->getOperand(3).setImm(Mask ^ Imm);
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+ case X86::PCLMULQDQrr:
+ case X86::VPCLMULQDQrr:{
+ // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
+ // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
+ unsigned Imm = MI->getOperand(3).getImm();
+ unsigned Src1Hi = Imm & 0x01;
+ unsigned Src2Hi = Imm & 0x10;
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+ case X86::CMPPDrri:
+ case X86::CMPPSrri:
+ case X86::VCMPPDrri:
+ case X86::VCMPPSrri:
+ case X86::VCMPPDYrri:
+ case X86::VCMPPSYrri: {
+ // Float comparison can be safely commuted for
+ // Ordered/Unordered/Equal/NotEqual tests
+ unsigned Imm = MI->getOperand(3).getImm() & 0x7;
+ switch (Imm) {
+ case 0x00: // EQUAL
+ case 0x03: // UNORDERED
+ case 0x04: // NOT EQUAL
+ case 0x07: // ORDERED
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ default:
+ return nullptr;
+ }
+ }
+ case X86::VPCOMBri: case X86::VPCOMUBri:
+ case X86::VPCOMDri: case X86::VPCOMUDri:
+ case X86::VPCOMQri: case X86::VPCOMUQri:
+ case X86::VPCOMWri: case X86::VPCOMUWri: {
+ // Flip comparison mode immediate (if necessary).
+ unsigned Imm = MI->getOperand(3).getImm() & 0x7;
+ switch (Imm) {
+ case 0x00: Imm = 0x02; break; // LT -> GT
+ case 0x01: Imm = 0x03; break; // LE -> GE
+ case 0x02: Imm = 0x00; break; // GT -> LT
+ case 0x03: Imm = 0x01; break; // GE -> LE
+ case 0x04: // EQ
+ case 0x05: // NE
+ case 0x06: // FALSE
+ case 0x07: // TRUE
+ default:
+ break;
+ }
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->getOperand(3).setImm(Imm);
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+ case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
+ case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
+ case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
+ case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
+ case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
+ case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
+ case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
+ case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
+ case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
+ case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
+ case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
+ case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
+ case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
+ case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
+ case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
+ case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
+ case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
+ case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
+ case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
+ case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
+ case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
+ case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
+ case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
+ case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
+ case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
+ case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
+ case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
+ case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
+ case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
+ case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
+ case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
+ case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
+ case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
+ case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
+ case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
+ case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
+ case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
+ case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
+ case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
+ case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
+ case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
+ case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
+ case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
+ case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
+ case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
+ case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
+ case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
+ case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
+ case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
+ case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
+ case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
+ case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
+ case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
+ case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
+ case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
+ case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
+ case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
+ case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
+ case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
+ case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
+ case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
+ case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
+ case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
+ }
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ // Fallthrough intended.
+ }
+ default:
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
+}
+
+bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ switch (MI->getOpcode()) {
+ case X86::CMPPDrri:
+ case X86::CMPPSrri:
+ case X86::VCMPPDrri:
+ case X86::VCMPPSrri:
+ case X86::VCMPPDYrri:
+ case X86::VCMPPSYrri: {
+ // Float comparison can be safely commuted for
+ // Ordered/Unordered/Equal/NotEqual tests
+ unsigned Imm = MI->getOperand(3).getImm() & 0x7;
+ switch (Imm) {
+ case 0x00: // EQUAL
+ case 0x03: // UNORDERED
+ case 0x04: // NOT EQUAL
+ case 0x07: // ORDERED
+ SrcOpIdx1 = 1;
+ SrcOpIdx2 = 2;
+ return true;
+ }
+ return false;
+ }
+ case X86::VFMADDPDr231r:
+ case X86::VFMADDPSr231r:
+ case X86::VFMADDSDr231r:
+ case X86::VFMADDSSr231r:
+ case X86::VFMSUBPDr231r:
+ case X86::VFMSUBPSr231r:
+ case X86::VFMSUBSDr231r:
+ case X86::VFMSUBSSr231r:
+ case X86::VFNMADDPDr231r:
+ case X86::VFNMADDPSr231r:
+ case X86::VFNMADDSDr231r:
+ case X86::VFNMADDSSr231r:
+ case X86::VFNMSUBPDr231r:
+ case X86::VFNMSUBPSr231r:
+ case X86::VFNMSUBSDr231r:
+ case X86::VFNMSUBSSr231r:
+ case X86::VFMADDPDr231rY:
+ case X86::VFMADDPSr231rY:
+ case X86::VFMSUBPDr231rY:
+ case X86::VFMSUBPSr231rY:
+ case X86::VFNMADDPDr231rY:
+ case X86::VFNMADDPSr231rY:
+ case X86::VFNMSUBPDr231rY:
+ case X86::VFNMSUBPSr231rY:
+ SrcOpIdx1 = 2;
+ SrcOpIdx2 = 3;
+ return true;
+ default:
+ return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
+ }
+}
+
+static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
+ switch (BrOpc) {
+ default: return X86::COND_INVALID;
+ case X86::JE_1: return X86::COND_E;
+ case X86::JNE_1: return X86::COND_NE;
+ case X86::JL_1: return X86::COND_L;
+ case X86::JLE_1: return X86::COND_LE;
+ case X86::JG_1: return X86::COND_G;
+ case X86::JGE_1: return X86::COND_GE;
+ case X86::JB_1: return X86::COND_B;
+ case X86::JBE_1: return X86::COND_BE;
+ case X86::JA_1: return X86::COND_A;
+ case X86::JAE_1: return X86::COND_AE;
+ case X86::JS_1: return X86::COND_S;
+ case X86::JNS_1: return X86::COND_NS;
+ case X86::JP_1: return X86::COND_P;
+ case X86::JNP_1: return X86::COND_NP;
+ case X86::JO_1: return X86::COND_O;
+ case X86::JNO_1: return X86::COND_NO;
+ }
+}
+
+/// Return condition code of a SET opcode.
+static X86::CondCode getCondFromSETOpc(unsigned Opc) {
+ switch (Opc) {
+ default: return X86::COND_INVALID;
+ case X86::SETAr: case X86::SETAm: return X86::COND_A;
+ case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
+ case X86::SETBr: case X86::SETBm: return X86::COND_B;
+ case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
+ case X86::SETEr: case X86::SETEm: return X86::COND_E;
+ case X86::SETGr: case X86::SETGm: return X86::COND_G;
+ case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
+ case X86::SETLr: case X86::SETLm: return X86::COND_L;
+ case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
+ case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
+ case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
+ case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
+ case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
+ case X86::SETOr: case X86::SETOm: return X86::COND_O;
+ case X86::SETPr: case X86::SETPm: return X86::COND_P;
+ case X86::SETSr: case X86::SETSm: return X86::COND_S;
+ }
+}
+
+/// Return condition code of a CMov opcode.
+X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
+ switch (Opc) {
+ default: return X86::COND_INVALID;
+ case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
+ case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
+ return X86::COND_A;
+ case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
+ case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
+ return X86::COND_AE;
+ case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
+ case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
+ return X86::COND_B;
+ case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
+ case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
+ return X86::COND_BE;
+ case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
+ case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
+ return X86::COND_E;
+ case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
+ case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
+ return X86::COND_G;
+ case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
+ case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
+ return X86::COND_GE;
+ case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
+ case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
+ return X86::COND_L;
+ case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
+ case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
+ return X86::COND_LE;
+ case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
+ case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
+ return X86::COND_NE;
+ case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
+ case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
+ return X86::COND_NO;
+ case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
+ case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
+ return X86::COND_NP;
+ case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
+ case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
+ return X86::COND_NS;
+ case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
+ case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
+ return X86::COND_O;
+ case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
+ case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
+ return X86::COND_P;
+ case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
+ case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
+ return X86::COND_S;
+ }
+}
+
+unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::JE_1;
+ case X86::COND_NE: return X86::JNE_1;
+ case X86::COND_L: return X86::JL_1;
+ case X86::COND_LE: return X86::JLE_1;
+ case X86::COND_G: return X86::JG_1;
+ case X86::COND_GE: return X86::JGE_1;
+ case X86::COND_B: return X86::JB_1;
+ case X86::COND_BE: return X86::JBE_1;
+ case X86::COND_A: return X86::JA_1;
+ case X86::COND_AE: return X86::JAE_1;
+ case X86::COND_S: return X86::JS_1;
+ case X86::COND_NS: return X86::JNS_1;
+ case X86::COND_P: return X86::JP_1;
+ case X86::COND_NP: return X86::JNP_1;
+ case X86::COND_O: return X86::JO_1;
+ case X86::COND_NO: return X86::JNO_1;
+ }
+}
+
+/// Return the inverse of the specified condition,
+/// e.g. turning COND_E to COND_NE.
+X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::COND_NE;
+ case X86::COND_NE: return X86::COND_E;
+ case X86::COND_L: return X86::COND_GE;
+ case X86::COND_LE: return X86::COND_G;
+ case X86::COND_G: return X86::COND_LE;
+ case X86::COND_GE: return X86::COND_L;
+ case X86::COND_B: return X86::COND_AE;
+ case X86::COND_BE: return X86::COND_A;
+ case X86::COND_A: return X86::COND_BE;
+ case X86::COND_AE: return X86::COND_B;
+ case X86::COND_S: return X86::COND_NS;
+ case X86::COND_NS: return X86::COND_S;
+ case X86::COND_P: return X86::COND_NP;
+ case X86::COND_NP: return X86::COND_P;
+ case X86::COND_O: return X86::COND_NO;
+ case X86::COND_NO: return X86::COND_O;
+ }
+}
+
+/// Assuming the flags are set by MI(a,b), return the condition code if we
+/// modify the instructions such that flags are set by MI(b,a).
+static X86::CondCode getSwappedCondition(X86::CondCode CC) {
+ switch (CC) {
+ default: return X86::COND_INVALID;
+ case X86::COND_E: return X86::COND_E;
+ case X86::COND_NE: return X86::COND_NE;
+ case X86::COND_L: return X86::COND_G;
+ case X86::COND_LE: return X86::COND_GE;
+ case X86::COND_G: return X86::COND_L;
+ case X86::COND_GE: return X86::COND_LE;
+ case X86::COND_B: return X86::COND_A;
+ case X86::COND_BE: return X86::COND_AE;
+ case X86::COND_A: return X86::COND_B;
+ case X86::COND_AE: return X86::COND_BE;
+ }
+}
+
+/// Return a set opcode for the given condition and
+/// whether it has memory operand.
+unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
+ static const uint16_t Opc[16][2] = {
+ { X86::SETAr, X86::SETAm },
+ { X86::SETAEr, X86::SETAEm },
+ { X86::SETBr, X86::SETBm },
+ { X86::SETBEr, X86::SETBEm },
+ { X86::SETEr, X86::SETEm },
+ { X86::SETGr, X86::SETGm },
+ { X86::SETGEr, X86::SETGEm },
+ { X86::SETLr, X86::SETLm },
+ { X86::SETLEr, X86::SETLEm },
+ { X86::SETNEr, X86::SETNEm },
+ { X86::SETNOr, X86::SETNOm },
+ { X86::SETNPr, X86::SETNPm },
+ { X86::SETNSr, X86::SETNSm },
+ { X86::SETOr, X86::SETOm },
+ { X86::SETPr, X86::SETPm },
+ { X86::SETSr, X86::SETSm }
+ };
+
+ assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
+ return Opc[CC][HasMemoryOperand ? 1 : 0];
+}
+
+/// Return a cmov opcode for the given condition,
+/// register size in bytes, and operand type.
+unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
+ bool HasMemoryOperand) {
+ static const uint16_t Opc[32][3] = {
+ { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
+ { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
+ { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
+ { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
+ { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
+ { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
+ { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
+ { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
+ { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
+ { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
+ { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
+ { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
+ { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
+ { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
+ { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
+ { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
+ { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
+ { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
+ { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
+ { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
+ { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
+ { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
+ { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
+ { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
+ { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
+ { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
+ { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
+ { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
+ { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
+ { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
+ { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
+ { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
+ };
+
+ assert(CC < 16 && "Can only handle standard cond codes");
+ unsigned Idx = HasMemoryOperand ? 16+CC : CC;
+ switch(RegBytes) {
+ default: llvm_unreachable("Illegal register size!");
+ case 2: return Opc[Idx][0];
+ case 4: return Opc[Idx][1];
+ case 8: return Opc[Idx][2];
+ }
+}
+
+bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ if (!MI->isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (MI->isBranch() && !MI->isBarrier())
+ return true;
+ if (!MI->isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ MachineBasicBlock::iterator UnCondBrIter = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ if (!I->isBranch())
+ return true;
+
+ // Handle unconditional branches.
+ if (I->getOpcode() == X86::JMP_1) {
+ UnCondBrIter = I;
+
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = nullptr;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ UnCondBrIter = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditional destination.
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // Handle conditional branches.
+ X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
+ if (BranchCode == X86::COND_INVALID)
+ return true; // Can't handle indirect branch.
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
+ if (AllowModify && UnCondBrIter != MBB.end() &&
+ MBB.isLayoutSuccessor(TargetBB)) {
+ // If we can modify the code and it ends in something like:
+ //
+ // jCC L1
+ // jmp L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Then we can change this to:
+ //
+ // jnCC L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Which is a bit more efficient.
+ // We conditionally jump to the fall-through block.
+ BranchCode = GetOppositeBranchCondition(BranchCode);
+ unsigned JNCC = GetCondBranchFromCond(BranchCode);
+ MachineBasicBlock::iterator OldInst = I;
+
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
+ .addMBB(UnCondBrIter->getOperand(0).getMBB());
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
+ .addMBB(TargetBB);
+
+ OldInst->eraseFromParent();
+ UnCondBrIter->eraseFromParent();
+
+ // Restart the analysis.
+ UnCondBrIter = MBB.end();
+ I = MBB.end();
+ continue;
+ }
+
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+
+ // Handle subsequent conditional branches. Only handle the case where all
+ // conditional branches branch to the same destination and their condition
+ // opcodes fit one of the special multi-branch idioms.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != I->getOperand(0).getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
+ if (OldBranchCode == BranchCode)
+ continue;
+
+ // If they differ, see if they fit one of the known patterns. Theoretically,
+ // we could handle more patterns here, but we shouldn't expect to see them
+ // if instruction selection has done a reasonable job.
+ if ((OldBranchCode == X86::COND_NP &&
+ BranchCode == X86::COND_E) ||
+ (OldBranchCode == X86::COND_E &&
+ BranchCode == X86::COND_NP))
+ BranchCode = X86::COND_NP_OR_E;
+ else if ((OldBranchCode == X86::COND_P &&
+ BranchCode == X86::COND_NE) ||
+ (OldBranchCode == X86::COND_NE &&
+ BranchCode == X86::COND_P))
+ BranchCode = X86::COND_NE_OR_P;
+ else
+ return true;
+
+ // Update the MachineOperand.
+ Cond[0].setImm(BranchCode);
+ }
+
+ return false;
+}
+
+unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (I->getOpcode() != X86::JMP_1 &&
+ getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+unsigned
+X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "X86 branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
+ switch (CC) {
+ case X86::COND_NP_OR_E:
+ // Synthesize NP_OR_E with two branches.
+ BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
+ ++Count;
+ break;
+ case X86::COND_NE_OR_P:
+ // Synthesize NE_OR_P with two branches.
+ BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
+ ++Count;
+ break;
+ default: {
+ unsigned Opc = GetCondBranchFromCond(CC);
+ BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
+ ++Count;
+ }
+ }
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+bool X86InstrInfo::
+canInsertSelect(const MachineBasicBlock &MBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg,
+ int &CondCycles, int &TrueCycles, int &FalseCycles) const {
+ // Not all subtargets have cmov instructions.
+ if (!Subtarget.hasCMov())
+ return false;
+ if (Cond.size() != 1)
+ return false;
+ // We cannot do the composite conditions, at least not in SSA form.
+ if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
+ return false;
+
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
+ if (X86::GR16RegClass.hasSubClassEq(RC) ||
+ X86::GR32RegClass.hasSubClassEq(RC) ||
+ X86::GR64RegClass.hasSubClassEq(RC)) {
+ // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
+ // Bridge. Probably Ivy Bridge as well.
+ CondCycles = 2;
+ TrueCycles = 2;
+ FalseCycles = 2;
+ return true;
+ }
+
+ // Can't do vectors.
+ return false;
+}
+
+void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DstReg,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned TrueReg, unsigned FalseReg) const {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ assert(Cond.size() == 1 && "Invalid Cond array");
+ unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
+ MRI.getRegClass(DstReg)->getSize(),
+ false/*HasMemoryOperand*/);
+ BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
+}
+
+/// Test if the given register is a physical h register.
+static bool isHReg(unsigned Reg) {
+ return X86::GR8_ABCD_HRegClass.contains(Reg);
+}
+
+// Try and copy between VR128/VR64 and GR64 registers.
+static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
+ const X86Subtarget &Subtarget) {
+
+ // SrcReg(VR128) -> DestReg(GR64)
+ // SrcReg(VR64) -> DestReg(GR64)
+ // SrcReg(GR64) -> DestReg(VR128)
+ // SrcReg(GR64) -> DestReg(VR64)
+
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+ if (X86::GR64RegClass.contains(DestReg)) {
+ if (X86::VR128XRegClass.contains(SrcReg))
+ // Copy from a VR128 register to a GR64 register.
+ return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
+ X86::MOVPQIto64rr);
+ if (X86::VR64RegClass.contains(SrcReg))
+ // Copy from a VR64 register to a GR64 register.
+ return X86::MOVSDto64rr;
+ } else if (X86::GR64RegClass.contains(SrcReg)) {
+ // Copy from a GR64 register to a VR128 register.
+ if (X86::VR128XRegClass.contains(DestReg))
+ return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
+ X86::MOV64toPQIrr);
+ // Copy from a GR64 register to a VR64 register.
+ if (X86::VR64RegClass.contains(DestReg))
+ return X86::MOV64toSDrr;
+ }
+
+ // SrcReg(FR32) -> DestReg(GR32)
+ // SrcReg(GR32) -> DestReg(FR32)
+
+ if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
+ // Copy from a FR32 register to a GR32 register.
+ return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
+
+ if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
+ // Copy from a GR32 register to a FR32 register.
+ return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
+ return 0;
+}
+
+inline static bool MaskRegClassContains(unsigned Reg) {
+ return X86::VK8RegClass.contains(Reg) ||
+ X86::VK16RegClass.contains(Reg) ||
+ X86::VK32RegClass.contains(Reg) ||
+ X86::VK64RegClass.contains(Reg) ||
+ X86::VK1RegClass.contains(Reg);
+}
+static
+unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
+ if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
+ X86::VR256XRegClass.contains(DestReg, SrcReg) ||
+ X86::VR512RegClass.contains(DestReg, SrcReg)) {
+ DestReg = get512BitSuperRegister(DestReg);
+ SrcReg = get512BitSuperRegister(SrcReg);
+ return X86::VMOVAPSZrr;
+ }
+ if (MaskRegClassContains(DestReg) &&
+ MaskRegClassContains(SrcReg))
+ return X86::KMOVWkk;
+ if (MaskRegClassContains(DestReg) &&
+ (X86::GR32RegClass.contains(SrcReg) ||
+ X86::GR16RegClass.contains(SrcReg) ||
+ X86::GR8RegClass.contains(SrcReg))) {
+ SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
+ return X86::KMOVWkr;
+ }
+ if ((X86::GR32RegClass.contains(DestReg) ||
+ X86::GR16RegClass.contains(DestReg) ||
+ X86::GR8RegClass.contains(DestReg)) &&
+ MaskRegClassContains(SrcReg)) {
+ DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
+ return X86::KMOVWrk;
+ }
+ return 0;
+}
+
+void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // First deal with the normal symmetric copies.
+ bool HasAVX = Subtarget.hasAVX();
+ bool HasAVX512 = Subtarget.hasAVX512();
+ unsigned Opc = 0;
+ if (X86::GR64RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV64rr;
+ else if (X86::GR32RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV32rr;
+ else if (X86::GR16RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MOV16rr;
+ else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if ((isHReg(DestReg) || isHReg(SrcReg)) &&
+ Subtarget.is64Bit()) {
+ Opc = X86::MOV8rr_NOREX;
+ // Both operands must be encodable without an REX prefix.
+ assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
+ "8-bit H register can not be copied outside GR8_NOREX");
+ } else
+ Opc = X86::MOV8rr;
+ }
+ else if (X86::VR64RegClass.contains(DestReg, SrcReg))
+ Opc = X86::MMX_MOVQ64rr;
+ else if (HasAVX512)
+ Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
+ else if (X86::VR128RegClass.contains(DestReg, SrcReg))
+ Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
+ else if (X86::VR256RegClass.contains(DestReg, SrcReg))
+ Opc = X86::VMOVAPSYrr;
+ if (!Opc)
+ Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
+
+ if (Opc) {
+ BuildMI(MBB, MI, DL, get(Opc), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ // Moving EFLAGS to / from another register requires a push and a pop.
+ // Notice that we have to adjust the stack if we don't want to clobber the
+ // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
+ if (SrcReg == X86::EFLAGS) {
+ if (X86::GR64RegClass.contains(DestReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF64));
+ BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
+ return;
+ }
+ if (X86::GR32RegClass.contains(DestReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF32));
+ BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
+ return;
+ }
+ }
+ if (DestReg == X86::EFLAGS) {
+ if (X86::GR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH64r))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ BuildMI(MBB, MI, DL, get(X86::POPF64));
+ return;
+ }
+ if (X86::GR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH32r))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ BuildMI(MBB, MI, DL, get(X86::POPF32));
+ return;
+ }
+ }
+
+ DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
+ << " to " << RI.getName(DestReg) << '\n');
+ llvm_unreachable("Cannot emit physreg copy instruction");
+}
+
+static unsigned getLoadStoreRegOpcode(unsigned Reg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI,
+ bool load) {
+ if (STI.hasAVX512()) {
+ if (X86::VK8RegClass.hasSubClassEq(RC) ||
+ X86::VK16RegClass.hasSubClassEq(RC))
+ return load ? X86::KMOVWkm : X86::KMOVWmk;
+ if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
+ if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
+ if (X86::VR512RegClass.hasSubClassEq(RC))
+ return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+ }
+
+ bool HasAVX = STI.hasAVX();
+ switch (RC->getSize()) {
+ default:
+ llvm_unreachable("Unknown spill size");
+ case 1:
+ assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
+ if (STI.is64Bit())
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
+ return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
+ return load ? X86::MOV8rm : X86::MOV8mr;
+ case 2:
+ assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
+ return load ? X86::MOV16rm : X86::MOV16mr;
+ case 4:
+ if (X86::GR32RegClass.hasSubClassEq(RC))
+ return load ? X86::MOV32rm : X86::MOV32mr;
+ if (X86::FR32RegClass.hasSubClassEq(RC))
+ return load ?
+ (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
+ (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
+ if (X86::RFP32RegClass.hasSubClassEq(RC))
+ return load ? X86::LD_Fp32m : X86::ST_Fp32m;
+ llvm_unreachable("Unknown 4-byte regclass");
+ case 8:
+ if (X86::GR64RegClass.hasSubClassEq(RC))
+ return load ? X86::MOV64rm : X86::MOV64mr;
+ if (X86::FR64RegClass.hasSubClassEq(RC))
+ return load ?
+ (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
+ (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
+ if (X86::VR64RegClass.hasSubClassEq(RC))
+ return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
+ if (X86::RFP64RegClass.hasSubClassEq(RC))
+ return load ? X86::LD_Fp64m : X86::ST_Fp64m;
+ llvm_unreachable("Unknown 8-byte regclass");
+ case 10:
+ assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
+ return load ? X86::LD_Fp80m : X86::ST_FpP80m;
+ case 16: {
+ assert((X86::VR128RegClass.hasSubClassEq(RC) ||
+ X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
+ // If stack is realigned we can use aligned stores.
+ if (isStackAligned)
+ return load ?
+ (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
+ (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
+ else
+ return load ?
+ (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
+ (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
+ }
+ case 32:
+ assert((X86::VR256RegClass.hasSubClassEq(RC) ||
+ X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
+ // If stack is realigned we can use aligned stores.
+ if (isStackAligned)
+ return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
+ else
+ return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
+ case 64:
+ assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
+ if (isStackAligned)
+ return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
+ else
+ return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+ }
+}
+
+static unsigned getStoreRegOpcode(unsigned SrcReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI) {
+ return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
+}
+
+
+static unsigned getLoadRegOpcode(unsigned DestReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const X86Subtarget &STI) {
+ return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
+}
+
+void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
+ "Stack slot too small for store");
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned =
+ (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
+ .addReg(SrcReg, getKillRegState(isKill));
+}
+
+void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned = MMOBegin != MMOEnd &&
+ (*MMOBegin)->getAlignment() >= Alignment;
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ MIB.addReg(SrcReg, getKillRegState(isKill));
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+
+void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned =
+ (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
+}
+
+void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+ bool isAligned = MMOBegin != MMOEnd &&
+ (*MMOBegin)->getAlignment() >= Alignment;
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+bool X86InstrInfo::
+analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
+ int &CmpMask, int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP8ri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(1).getImm();
+ return true;
+ // A SUB can be used to perform comparison.
+ case X86::SUB64rm:
+ case X86::SUB32rm:
+ case X86::SUB16rm:
+ case X86::SUB8rm:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::SUB64rr:
+ case X86::SUB32rr:
+ case X86::SUB16rr:
+ case X86::SUB8rr:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = MI->getOperand(2).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB8ri:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(2).getImm();
+ return true;
+ case X86::CMP64rr:
+ case X86::CMP32rr:
+ case X86::CMP16rr:
+ case X86::CMP8rr:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = MI->getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ SrcReg = MI->getOperand(0).getReg();
+ if (MI->getOperand(1).getReg() != SrcReg) return false;
+ // Compare against zero.
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ }
+ return false;
+}
+
+/// Check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// This function can be extended later on.
+/// SrcReg, SrcRegs: register operands for FlagI.
+/// ImmValue: immediate for FlagI if it takes an immediate.
+inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
+ unsigned SrcReg2, int ImmValue,
+ MachineInstr *OI) {
+ if (((FlagI->getOpcode() == X86::CMP64rr &&
+ OI->getOpcode() == X86::SUB64rr) ||
+ (FlagI->getOpcode() == X86::CMP32rr &&
+ OI->getOpcode() == X86::SUB32rr)||
+ (FlagI->getOpcode() == X86::CMP16rr &&
+ OI->getOpcode() == X86::SUB16rr)||
+ (FlagI->getOpcode() == X86::CMP8rr &&
+ OI->getOpcode() == X86::SUB8rr)) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg)))
+ return true;
+
+ if (((FlagI->getOpcode() == X86::CMP64ri32 &&
+ OI->getOpcode() == X86::SUB64ri32) ||
+ (FlagI->getOpcode() == X86::CMP64ri8 &&
+ OI->getOpcode() == X86::SUB64ri8) ||
+ (FlagI->getOpcode() == X86::CMP32ri &&
+ OI->getOpcode() == X86::SUB32ri) ||
+ (FlagI->getOpcode() == X86::CMP32ri8 &&
+ OI->getOpcode() == X86::SUB32ri8) ||
+ (FlagI->getOpcode() == X86::CMP16ri &&
+ OI->getOpcode() == X86::SUB16ri) ||
+ (FlagI->getOpcode() == X86::CMP16ri8 &&
+ OI->getOpcode() == X86::SUB16ri8) ||
+ (FlagI->getOpcode() == X86::CMP8ri &&
+ OI->getOpcode() == X86::SUB8ri)) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue)
+ return true;
+ return false;
+}
+
+/// Check whether the definition can be converted
+/// to remove a comparison against zero.
+inline static bool isDefConvertible(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return false;
+
+ // The shift instructions only modify ZF if their shift count is non-zero.
+ // N.B.: The processor truncates the shift count depending on the encoding.
+ case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
+ case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
+ return getTruncatedShiftCount(MI, 2) != 0;
+
+ // Some left shift instructions can be turned into LEA instructions but only
+ // if their flags aren't used. Avoid transforming such instructions.
+ case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
+ unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+ if (isTruncatedShiftCountForLEA(ShAmt)) return false;
+ return ShAmt != 0;
+ }
+
+ case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
+ case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
+ return getTruncatedShiftCount(MI, 3) != 0;
+
+ case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
+ case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
+ case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
+ case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
+ case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
+ case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
+ case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
+ case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
+ case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
+ case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
+ case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
+ case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
+ case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
+ case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
+ case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
+ case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
+ case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
+ case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
+ case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
+ case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
+ case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
+ case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
+ case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
+ case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
+ case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
+ case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
+ case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
+ case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
+ case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
+ case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
+ case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
+ case X86::ADC32ri: case X86::ADC32ri8:
+ case X86::ADC32rr: case X86::ADC64ri32:
+ case X86::ADC64ri8: case X86::ADC64rr:
+ case X86::SBB32ri: case X86::SBB32ri8:
+ case X86::SBB32rr: case X86::SBB64ri32:
+ case X86::SBB64ri8: case X86::SBB64rr:
+ case X86::ANDN32rr: case X86::ANDN32rm:
+ case X86::ANDN64rr: case X86::ANDN64rm:
+ case X86::BEXTR32rr: case X86::BEXTR64rr:
+ case X86::BEXTR32rm: case X86::BEXTR64rm:
+ case X86::BLSI32rr: case X86::BLSI32rm:
+ case X86::BLSI64rr: case X86::BLSI64rm:
+ case X86::BLSMSK32rr:case X86::BLSMSK32rm:
+ case X86::BLSMSK64rr:case X86::BLSMSK64rm:
+ case X86::BLSR32rr: case X86::BLSR32rm:
+ case X86::BLSR64rr: case X86::BLSR64rm:
+ case X86::BZHI32rr: case X86::BZHI32rm:
+ case X86::BZHI64rr: case X86::BZHI64rm:
+ case X86::LZCNT16rr: case X86::LZCNT16rm:
+ case X86::LZCNT32rr: case X86::LZCNT32rm:
+ case X86::LZCNT64rr: case X86::LZCNT64rm:
+ case X86::POPCNT16rr:case X86::POPCNT16rm:
+ case X86::POPCNT32rr:case X86::POPCNT32rm:
+ case X86::POPCNT64rr:case X86::POPCNT64rm:
+ case X86::TZCNT16rr: case X86::TZCNT16rm:
+ case X86::TZCNT32rr: case X86::TZCNT32rm:
+ case X86::TZCNT64rr: case X86::TZCNT64rm:
+ return true;
+ }
+}
+
+/// Check whether the use can be converted to remove a comparison against zero.
+static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return X86::COND_INVALID;
+ case X86::LZCNT16rr: case X86::LZCNT16rm:
+ case X86::LZCNT32rr: case X86::LZCNT32rm:
+ case X86::LZCNT64rr: case X86::LZCNT64rm:
+ return X86::COND_B;
+ case X86::POPCNT16rr:case X86::POPCNT16rm:
+ case X86::POPCNT32rr:case X86::POPCNT32rm:
+ case X86::POPCNT64rr:case X86::POPCNT64rm:
+ return X86::COND_E;
+ case X86::TZCNT16rr: case X86::TZCNT16rm:
+ case X86::TZCNT32rr: case X86::TZCNT32rm:
+ case X86::TZCNT64rr: case X86::TZCNT64rm:
+ return X86::COND_B;
+ }
+}
+
+/// Check if there exists an earlier instruction that
+/// operates on the same source operands and sets flags in the same way as
+/// Compare; remove Compare if possible.
+bool X86InstrInfo::
+optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
+ int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const {
+ // Check whether we can replace SUB with CMP.
+ unsigned NewOpcode = 0;
+ switch (CmpInstr->getOpcode()) {
+ default: break;
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB8ri:
+ case X86::SUB64rm:
+ case X86::SUB32rm:
+ case X86::SUB16rm:
+ case X86::SUB8rm:
+ case X86::SUB64rr:
+ case X86::SUB32rr:
+ case X86::SUB16rr:
+ case X86::SUB8rr: {
+ if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
+ return false;
+ // There is no use of the destination register, we can replace SUB with CMP.
+ switch (CmpInstr->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
+ case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
+ case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
+ case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
+ case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
+ case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
+ case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
+ case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
+ case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
+ case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
+ case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
+ case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
+ case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
+ case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
+ case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
+ }
+ CmpInstr->setDesc(get(NewOpcode));
+ CmpInstr->RemoveOperand(0);
+ // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
+ if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
+ NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
+ return false;
+ }
+ }
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // CmpInstr is the first instruction of the BB.
+ MachineBasicBlock::iterator I = CmpInstr, Def = MI;
+
+ // If we are comparing against zero, check whether we can use MI to update
+ // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
+ bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
+ if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
+ return false;
+
+ // If we have a use of the source register between the def and our compare
+ // instruction we can eliminate the compare iff the use sets EFLAGS in the
+ // right way.
+ bool ShouldUpdateCC = false;
+ X86::CondCode NewCC = X86::COND_INVALID;
+ if (IsCmpZero && !isDefConvertible(MI)) {
+ // Scan forward from the use until we hit the use we're looking for or the
+ // compare instruction.
+ for (MachineBasicBlock::iterator J = MI;; ++J) {
+ // Do we have a convertible instruction?
+ NewCC = isUseDefConvertible(J);
+ if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
+ J->getOperand(1).getReg() == SrcReg) {
+ assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
+ ShouldUpdateCC = true; // Update CC later on.
+ // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
+ // with the new def.
+ MI = Def = J;
+ break;
+ }
+
+ if (J == I)
+ return false;
+ }
+ }
+
+ // We are searching for an earlier instruction that can make CmpInstr
+ // redundant and that instruction will be saved in Sub.
+ MachineInstr *Sub = nullptr;
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+
+ // We iterate backward, starting from the instruction before CmpInstr and
+ // stop when reaching the definition of a source register or done with the BB.
+ // RI points to the instruction before CmpInstr.
+ // If the definition is in this basic block, RE points to the definition;
+ // otherwise, RE is the rend of the basic block.
+ MachineBasicBlock::reverse_iterator
+ RI = MachineBasicBlock::reverse_iterator(I),
+ RE = CmpInstr->getParent() == MI->getParent() ?
+ MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
+ CmpInstr->getParent()->rend();
+ MachineInstr *Movr0Inst = nullptr;
+ for (; RI != RE; ++RI) {
+ MachineInstr *Instr = &*RI;
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (!IsCmpZero &&
+ isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
+ Sub = Instr;
+ break;
+ }
+
+ if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
+ Instr->readsRegister(X86::EFLAGS, TRI)) {
+ // This instruction modifies or uses EFLAGS.
+
+ // MOV32r0 etc. are implemented with xor which clobbers condition code.
+ // They are safe to move up, if the definition to EFLAGS is dead and
+ // earlier instructions do not read or write EFLAGS.
+ if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
+ Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
+ Movr0Inst = Instr;
+ continue;
+ }
+
+ // We can't remove CmpInstr.
+ return false;
+ }
+ }
+
+ // Return false if no candidates exist.
+ if (!IsCmpZero && !Sub)
+ return false;
+
+ bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg);
+
+ // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
+ // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
+ // If we are done with the basic block, we need to check whether EFLAGS is
+ // live-out.
+ bool IsSafe = false;
+ SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
+ MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
+ for (++I; I != E; ++I) {
+ const MachineInstr &Instr = *I;
+ bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
+ bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
+ // We should check the usage if this instruction uses and updates EFLAGS.
+ if (!UseEFLAGS && ModifyEFLAGS) {
+ // It is safe to remove CmpInstr if EFLAGS is updated again.
+ IsSafe = true;
+ break;
+ }
+ if (!UseEFLAGS && !ModifyEFLAGS)
+ continue;
+
+ // EFLAGS is used by this instruction.
+ X86::CondCode OldCC = X86::COND_INVALID;
+ bool OpcIsSET = false;
+ if (IsCmpZero || IsSwapped) {
+ // We decode the condition code from opcode.
+ if (Instr.isBranch())
+ OldCC = getCondFromBranchOpc(Instr.getOpcode());
+ else {
+ OldCC = getCondFromSETOpc(Instr.getOpcode());
+ if (OldCC != X86::COND_INVALID)
+ OpcIsSET = true;
+ else
+ OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
+ }
+ if (OldCC == X86::COND_INVALID) return false;
+ }
+ if (IsCmpZero) {
+ switch (OldCC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO:
+ // CF and OF are used, we can't perform this optimization.
+ return false;
+ }
+
+ // If we're updating the condition code check if we have to reverse the
+ // condition.
+ if (ShouldUpdateCC)
+ switch (OldCC) {
+ default:
+ return false;
+ case X86::COND_E:
+ break;
+ case X86::COND_NE:
+ NewCC = GetOppositeBranchCondition(NewCC);
+ break;
+ }
+ } else if (IsSwapped) {
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
+ // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ // We swap the condition code and synthesize the new opcode.
+ NewCC = getSwappedCondition(OldCC);
+ if (NewCC == X86::COND_INVALID) return false;
+ }
+
+ if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
+ // Synthesize the new opcode.
+ bool HasMemoryOperand = Instr.hasOneMemOperand();
+ unsigned NewOpc;
+ if (Instr.isBranch())
+ NewOpc = GetCondBranchFromCond(NewCC);
+ else if(OpcIsSET)
+ NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
+ else {
+ unsigned DstReg = Instr.getOperand(0).getReg();
+ NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
+ HasMemoryOperand);
+ }
+
+ // Push the MachineInstr to OpsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // instructions will be modified.
+ OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
+ }
+ if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
+ // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
+ IsSafe = true;
+ break;
+ }
+ }
+
+ // If EFLAGS is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if ((IsCmpZero || IsSwapped) && !IsSafe) {
+ MachineBasicBlock *MBB = CmpInstr->getParent();
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(X86::EFLAGS))
+ return false;
+ }
+
+ // The instruction to be updated is either Sub or MI.
+ Sub = IsCmpZero ? MI : Sub;
+ // Move Movr0Inst to the appropriate place before Sub.
+ if (Movr0Inst) {
+ // Look backwards until we find a def that doesn't use the current EFLAGS.
+ Def = Sub;
+ MachineBasicBlock::reverse_iterator
+ InsertI = MachineBasicBlock::reverse_iterator(++Def),
+ InsertE = Sub->getParent()->rend();
+ for (; InsertI != InsertE; ++InsertI) {
+ MachineInstr *Instr = &*InsertI;
+ if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
+ Instr->modifiesRegister(X86::EFLAGS, TRI)) {
+ Sub->getParent()->remove(Movr0Inst);
+ Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
+ Movr0Inst);
+ break;
+ }
+ }
+ if (InsertI == InsertE)
+ return false;
+ }
+
+ // Make sure Sub instruction defines EFLAGS and mark the def live.
+ unsigned i = 0, e = Sub->getNumOperands();
+ for (; i != e; ++i) {
+ MachineOperand &MO = Sub->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
+ MO.setIsDead(false);
+ break;
+ }
+ }
+ assert(i != e && "Unable to locate a def EFLAGS operand");
+
+ CmpInstr->eraseFromParent();
+
+ // Modify the condition code of instructions in OpsToUpdate.
+ for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
+ OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
+ return true;
+}
+
+/// Try to remove the load by folding it to a register
+/// operand at the use. We fold the load instructions if load defines a virtual
+/// register, the virtual register is used once in the same BB, and the
+/// instructions in-between do not load or store, and have no side effects.
+MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
+ const MachineRegisterInfo *MRI,
+ unsigned &FoldAsLoadDefReg,
+ MachineInstr *&DefMI) const {
+ if (FoldAsLoadDefReg == 0)
+ return nullptr;
+ // To be conservative, if there exists another load, clear the load candidate.
+ if (MI->mayLoad()) {
+ FoldAsLoadDefReg = 0;
+ return nullptr;
+ }
+
+ // Check whether we can move DefMI here.
+ DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
+ assert(DefMI);
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(nullptr, SawStore))
+ return nullptr;
+
+ // Collect information about virtual register operands of MI.
+ unsigned SrcOperandId = 0;
+ bool FoundSrcOperand = false;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg != FoldAsLoadDefReg)
+ continue;
+ // Do not fold if we have a subreg use or a def or multiple uses.
+ if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
+ return nullptr;
+
+ SrcOperandId = i;
+ FoundSrcOperand = true;
+ }
+ if (!FoundSrcOperand)
+ return nullptr;
+
+ // Check whether we can fold the def into SrcOperandId.
+ MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
+ if (FoldMI) {
+ FoldAsLoadDefReg = 0;
+ return FoldMI;
+ }
+
+ return nullptr;
+}
+
+/// Expand a single-def pseudo instruction to a two-addr
+/// instruction with two undef reads of the register being defined.
+/// This is used for mapping:
+/// %xmm4 = V_SET0
+/// to:
+/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
+///
+static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
+ const MCInstrDesc &Desc) {
+ assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
+ unsigned Reg = MIB->getOperand(0).getReg();
+ MIB->setDesc(Desc);
+
+ // MachineInstr::addOperand() will insert explicit operands before any
+ // implicit operands.
+ MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
+ // But we don't trust that.
+ assert(MIB->getOperand(1).getReg() == Reg &&
+ MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
+ return true;
+}
+
+// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
+// code sequence is needed for other targets.
+static void expandLoadStackGuard(MachineInstrBuilder &MIB,
+ const TargetInstrInfo &TII) {
+ MachineBasicBlock &MBB = *MIB->getParent();
+ DebugLoc DL = MIB->getDebugLoc();
+ unsigned Reg = MIB->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
+ unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->
+ getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
+ MachineBasicBlock::iterator I = MIB.getInstr();
+
+ BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
+ .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
+ .addMemOperand(MMO);
+ MIB->setDebugLoc(DL);
+ MIB->setDesc(TII.get(X86::MOV64rm));
+ MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
+}
+
+bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ bool HasAVX = Subtarget.hasAVX();
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ switch (MI->getOpcode()) {
+ case X86::MOV32r0:
+ return Expand2AddrUndef(MIB, get(X86::XOR32rr));
+ case X86::SETB_C8r:
+ return Expand2AddrUndef(MIB, get(X86::SBB8rr));
+ case X86::SETB_C16r:
+ return Expand2AddrUndef(MIB, get(X86::SBB16rr));
+ case X86::SETB_C32r:
+ return Expand2AddrUndef(MIB, get(X86::SBB32rr));
+ case X86::SETB_C64r:
+ return Expand2AddrUndef(MIB, get(X86::SBB64rr));
+ case X86::V_SET0:
+ case X86::FsFLD0SS:
+ case X86::FsFLD0SD:
+ return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
+ case X86::AVX_SET0:
+ assert(HasAVX && "AVX not supported");
+ return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
+ case X86::AVX512_512_SET0:
+ return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
+ case X86::V_SETALLONES:
+ return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
+ case X86::AVX2_SETALLONES:
+ return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
+ case X86::TEST8ri_NOREX:
+ MI->setDesc(get(X86::TEST8ri));
+ return true;
+ case X86::KSET0B:
+ case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
+ case X86::KSET1B:
+ case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
+ case TargetOpcode::LOAD_STACK_GUARD:
+ expandLoadStackGuard(MIB, *this);
+ return true;
+ }
+ return false;
+}
+
+static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
+ ArrayRef<MachineOperand> MOs,
+ MachineInstr *MI,
+ const TargetInstrInfo &TII) {
+ // Create the base instruction with the memory operand as the first part.
+ // Omit the implicit operands, something BuildMI can't do.
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, NewMI);
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+
+ // Loop over the rest of the ri operands, converting them over.
+ unsigned NumOps = MI->getDesc().getNumOperands()-2;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ MachineOperand &MO = MI->getOperand(i+2);
+ MIB.addOperand(MO);
+ }
+ for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ MIB.addOperand(MO);
+ }
+ return MIB;
+}
+
+static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
+ unsigned OpNo, ArrayRef<MachineOperand> MOs,
+ MachineInstr *MI, const TargetInstrInfo &TII) {
+ // Omit the implicit operands, something BuildMI can't do.
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, NewMI);
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (i == OpNo) {
+ assert(MO.isReg() && "Expected to fold into reg operand!");
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ } else {
+ MIB.addOperand(MO);
+ }
+ }
+ return MIB;
+}
+
+static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
+ ArrayRef<MachineOperand> MOs,
+ MachineInstr *MI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
+
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ return MIB.addImm(0);
+}
+
+MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ unsigned OpNum,
+ ArrayRef<MachineOperand> MOs,
+ unsigned Size, unsigned Align,
+ bool AllowCommute) const {
+ const DenseMap<unsigned,
+ std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
+ bool isCallRegIndirect = Subtarget.callRegIndirect();
+ bool isTwoAddrFold = false;
+
+ // For CPUs that favor the register form of a call,
+ // do not fold loads into calls.
+ if (isCallRegIndirect &&
+ (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
+ return nullptr;
+
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // FIXME: AsmPrinter doesn't know how to handle
+ // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
+ if (MI->getOpcode() == X86::ADD32ri &&
+ MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ return nullptr;
+
+ MachineInstr *NewMI = nullptr;
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isReg() &&
+ MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ isTwoAddrFold = true;
+ } else if (OpNum == 0) {
+ if (MI->getOpcode() == X86::MOV32r0) {
+ NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
+ if (NewMI)
+ return NewMI;
+ }
+
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (OpNum == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (OpNum == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ } else if (OpNum == 3) {
+ OpcodeTablePtr = &RegOp2MemOpTable3;
+ } else if (OpNum == 4) {
+ OpcodeTablePtr = &RegOp2MemOpTable4;
+ }
+
+ // If table selected...
+ if (OpcodeTablePtr) {
+ // Find the Opcode to fuse
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ OpcodeTablePtr->find(MI->getOpcode());
+ if (I != OpcodeTablePtr->end()) {
+ unsigned Opcode = I->second.first;
+ unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
+ if (Align < MinAlign)
+ return nullptr;
+ bool NarrowToMOV32rm = false;
+ if (Size) {
+ unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
+ if (Size < RCSize) {
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
+ return nullptr;
+ // If this is a 64-bit load, but the spill slot is 32, then we can do
+ // a 32-bit load which is implicitly zero-extended. This likely is
+ // due to live interval analysis remat'ing a load from stack slot.
+ if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
+ return nullptr;
+ Opcode = X86::MOV32rm;
+ NarrowToMOV32rm = true;
+ }
+ }
+
+ if (isTwoAddrFold)
+ NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
+ else
+ NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
+
+ if (NarrowToMOV32rm) {
+ // If this is the special case where we use a MOV32rm to load a 32-bit
+ // value and zero-extend the top bits. Change the destination register
+ // to a 32-bit one.
+ unsigned DstReg = NewMI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
+ else
+ NewMI->getOperand(0).setSubReg(X86::sub_32bit);
+ }
+ return NewMI;
+ }
+ }
+
+ // If the instruction and target operand are commutable, commute the
+ // instruction and try again.
+ if (AllowCommute) {
+ unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
+ if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
+ bool HasDef = MI->getDesc().getNumDefs();
+ unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
+ unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
+ unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
+ bool Tied0 =
+ 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
+ bool Tied1 =
+ 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
+
+ // If either of the commutable operands are tied to the destination
+ // then we can not commute + fold.
+ if ((HasDef && Reg0 == Reg1 && Tied0) ||
+ (HasDef && Reg0 == Reg2 && Tied1))
+ return nullptr;
+
+ if ((CommuteOpIdx1 == OriginalOpIdx) ||
+ (CommuteOpIdx2 == OriginalOpIdx)) {
+ MachineInstr *CommutedMI = commuteInstruction(MI, false);
+ if (!CommutedMI) {
+ // Unable to commute.
+ return nullptr;
+ }
+ if (CommutedMI != MI) {
+ // New instruction. We can't fold from this.
+ CommutedMI->eraseFromParent();
+ return nullptr;
+ }
+
+ // Attempt to fold with the commuted version of the instruction.
+ unsigned CommuteOp =
+ (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
+ NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
+ /*AllowCommute=*/false);
+ if (NewMI)
+ return NewMI;
+
+ // Folding failed again - undo the commute before returning.
+ MachineInstr *UncommutedMI = commuteInstruction(MI, false);
+ if (!UncommutedMI) {
+ // Unable to commute.
+ return nullptr;
+ }
+ if (UncommutedMI != MI) {
+ // New instruction. It doesn't need to be kept.
+ UncommutedMI->eraseFromParent();
+ return nullptr;
+ }
+
+ // Return here to prevent duplicate fuse failure report.
+ return nullptr;
+ }
+ }
+ }
+
+ // No fusion
+ if (PrintFailedFusing && !MI->isCopy())
+ dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
+ return nullptr;
+}
+
+/// Return true for all instructions that only update
+/// the first 32 or 64-bits of the destination register and leave the rest
+/// unmodified. This can be used to avoid folding loads if the instructions
+/// only update part of the destination register, and the non-updated part is
+/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
+/// instructions breaks the partial register dependency and it can improve
+/// performance. e.g.:
+///
+/// movss (%rdi), %xmm0
+/// cvtss2sd %xmm0, %xmm0
+///
+/// Instead of
+/// cvtss2sd (%rdi), %xmm0
+///
+/// FIXME: This should be turned into a TSFlags.
+///
+static bool hasPartialRegUpdate(unsigned Opcode) {
+ switch (Opcode) {
+ case X86::CVTSI2SSrr:
+ case X86::CVTSI2SSrm:
+ case X86::CVTSI2SS64rr:
+ case X86::CVTSI2SS64rm:
+ case X86::CVTSI2SDrr:
+ case X86::CVTSI2SDrm:
+ case X86::CVTSI2SD64rr:
+ case X86::CVTSI2SD64rm:
+ case X86::CVTSD2SSrr:
+ case X86::CVTSD2SSrm:
+ case X86::Int_CVTSD2SSrr:
+ case X86::Int_CVTSD2SSrm:
+ case X86::CVTSS2SDrr:
+ case X86::CVTSS2SDrm:
+ case X86::Int_CVTSS2SDrr:
+ case X86::Int_CVTSS2SDrm:
+ case X86::RCPSSr:
+ case X86::RCPSSm:
+ case X86::RCPSSr_Int:
+ case X86::RCPSSm_Int:
+ case X86::ROUNDSDr:
+ case X86::ROUNDSDm:
+ case X86::ROUNDSDr_Int:
+ case X86::ROUNDSSr:
+ case X86::ROUNDSSm:
+ case X86::ROUNDSSr_Int:
+ case X86::RSQRTSSr:
+ case X86::RSQRTSSm:
+ case X86::RSQRTSSr_Int:
+ case X86::RSQRTSSm_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSm:
+ case X86::SQRTSSr_Int:
+ case X86::SQRTSSm_Int:
+ case X86::SQRTSDr:
+ case X86::SQRTSDm:
+ case X86::SQRTSDr_Int:
+ case X86::SQRTSDm_Int:
+ return true;
+ }
+
+ return false;
+}
+
+/// Inform the ExeDepsFix pass how many idle
+/// instructions we would like before a partial register update.
+unsigned X86InstrInfo::
+getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
+ return 0;
+
+ // If MI is marked as reading Reg, the partial register update is wanted.
+ const MachineOperand &MO = MI->getOperand(0);
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (MO.readsReg() || MI->readsVirtualRegister(Reg))
+ return 0;
+ } else {
+ if (MI->readsRegister(Reg, TRI))
+ return 0;
+ }
+
+ // If any of the preceding 16 instructions are reading Reg, insert a
+ // dependency breaking instruction. The magic number is based on a few
+ // Nehalem experiments.
+ return 16;
+}
+
+// Return true for any instruction the copies the high bits of the first source
+// operand into the unused high bits of the destination operand.
+static bool hasUndefRegUpdate(unsigned Opcode) {
+ switch (Opcode) {
+ case X86::VCVTSI2SSrr:
+ case X86::VCVTSI2SSrm:
+ case X86::Int_VCVTSI2SSrr:
+ case X86::Int_VCVTSI2SSrm:
+ case X86::VCVTSI2SS64rr:
+ case X86::VCVTSI2SS64rm:
+ case X86::Int_VCVTSI2SS64rr:
+ case X86::Int_VCVTSI2SS64rm:
+ case X86::VCVTSI2SDrr:
+ case X86::VCVTSI2SDrm:
+ case X86::Int_VCVTSI2SDrr:
+ case X86::Int_VCVTSI2SDrm:
+ case X86::VCVTSI2SD64rr:
+ case X86::VCVTSI2SD64rm:
+ case X86::Int_VCVTSI2SD64rr:
+ case X86::Int_VCVTSI2SD64rm:
+ case X86::VCVTSD2SSrr:
+ case X86::VCVTSD2SSrm:
+ case X86::Int_VCVTSD2SSrr:
+ case X86::Int_VCVTSD2SSrm:
+ case X86::VCVTSS2SDrr:
+ case X86::VCVTSS2SDrm:
+ case X86::Int_VCVTSS2SDrr:
+ case X86::Int_VCVTSS2SDrm:
+ case X86::VRCPSSr:
+ case X86::VRCPSSm:
+ case X86::VRCPSSm_Int:
+ case X86::VROUNDSDr:
+ case X86::VROUNDSDm:
+ case X86::VROUNDSDr_Int:
+ case X86::VROUNDSSr:
+ case X86::VROUNDSSm:
+ case X86::VROUNDSSr_Int:
+ case X86::VRSQRTSSr:
+ case X86::VRSQRTSSm:
+ case X86::VRSQRTSSm_Int:
+ case X86::VSQRTSSr:
+ case X86::VSQRTSSm:
+ case X86::VSQRTSSm_Int:
+ case X86::VSQRTSDr:
+ case X86::VSQRTSDm:
+ case X86::VSQRTSDm_Int:
+ // AVX-512
+ case X86::VCVTSD2SSZrr:
+ case X86::VCVTSD2SSZrm:
+ case X86::VCVTSS2SDZrr:
+ case X86::VCVTSS2SDZrm:
+ return true;
+ }
+
+ return false;
+}
+
+/// Inform the ExeDepsFix pass how many idle instructions we would like before
+/// certain undef register reads.
+///
+/// This catches the VCVTSI2SD family of instructions:
+///
+/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
+///
+/// We should to be careful *not* to catch VXOR idioms which are presumably
+/// handled specially in the pipeline:
+///
+/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
+///
+/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
+/// high bits that are passed-through are not live.
+unsigned X86InstrInfo::
+getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (!hasUndefRegUpdate(MI->getOpcode()))
+ return 0;
+
+ // Set the OpNum parameter to the first source operand.
+ OpNum = 1;
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ // Use the same magic number as getPartialRegUpdateClearance.
+ return 16;
+ }
+ return 0;
+}
+
+void X86InstrInfo::
+breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ // If MI kills this register, the false dependence is already broken.
+ if (MI->killsRegister(Reg, TRI))
+ return;
+ if (X86::VR128RegClass.contains(Reg)) {
+ // These instructions are all floating point domain, so xorps is the best
+ // choice.
+ bool HasAVX = Subtarget.hasAVX();
+ unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
+ .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
+ } else if (X86::VR256RegClass.contains(Reg)) {
+ // Use vxorps to clear the full ymm register.
+ // It wants to read and write the xmm sub-register.
+ unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
+ .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
+ .addReg(Reg, RegState::ImplicitDefine);
+ } else
+ return;
+ MI->addRegisterKilled(Reg, TRI, true);
+}
+
+MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ ArrayRef<unsigned> Ops,
+ int FrameIndex) const {
+ // Check switch flag
+ if (NoFusing) return nullptr;
+
+ // Unless optimizing for size, don't fold to avoid partial
+ // register update stalls
+ if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
+ hasPartialRegUpdate(MI->getOpcode()))
+ return nullptr;
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
+ unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
+ // If the function stack isn't realigned we don't want to fold instructions
+ // that need increased alignment.
+ if (!RI.needsStackRealignment(MF))
+ Alignment =
+ std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ unsigned RCSize = 0;
+ switch (MI->getOpcode()) {
+ default: return nullptr;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
+ }
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Size < RCSize)
+ return nullptr;
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return nullptr;
+
+ return foldMemoryOperandImpl(MF, MI, Ops[0],
+ MachineOperand::CreateFI(FrameIndex), Size,
+ Alignment, /*AllowCommute=*/true);
+}
+
+static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
+ const MachineFunction &MF) {
+ unsigned Opc = LoadMI.getOpcode();
+ unsigned RegSize =
+ MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
+
+ if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
+ // These instructions only load 32 bits, we can't fold them if the
+ // destination register is wider than 32 bits (4 bytes).
+ return true;
+
+ if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
+ // These instructions only load 64 bits, we can't fold them if the
+ // destination register is wider than 64 bits (8 bytes).
+ return true;
+
+ return false;
+}
+
+MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ ArrayRef<unsigned> Ops,
+ MachineInstr *LoadMI) const {
+ // If loading from a FrameIndex, fold directly from the FrameIndex.
+ unsigned NumOps = LoadMI->getDesc().getNumOperands();
+ int FrameIndex;
+ if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
+ if (isPartialRegisterLoad(*LoadMI, MF))
+ return nullptr;
+ return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
+ }
+
+ // Check switch flag
+ if (NoFusing) return nullptr;
+
+ // Unless optimizing for size, don't fold to avoid partial
+ // register update stalls
+ if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
+ hasPartialRegUpdate(MI->getOpcode()))
+ return nullptr;
+
+ // Determine the alignment of the load.
+ unsigned Alignment = 0;
+ if (LoadMI->hasOneMemOperand())
+ Alignment = (*LoadMI->memoperands_begin())->getAlignment();
+ else
+ switch (LoadMI->getOpcode()) {
+ case X86::AVX2_SETALLONES:
+ case X86::AVX_SET0:
+ Alignment = 32;
+ break;
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ Alignment = 16;
+ break;
+ case X86::FsFLD0SD:
+ Alignment = 8;
+ break;
+ case X86::FsFLD0SS:
+ Alignment = 4;
+ break;
+ default:
+ return nullptr;
+ }
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ switch (MI->getOpcode()) {
+ default: return nullptr;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
+ }
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return nullptr;
+
+ // Make sure the subregisters match.
+ // Otherwise we risk changing the size of the load.
+ if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
+ return nullptr;
+
+ SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ case X86::AVX2_SETALLONES:
+ case X86::AVX_SET0:
+ case X86::FsFLD0SD:
+ case X86::FsFLD0SS: {
+ // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
+ // Create a constant-pool entry and operands to load from it.
+
+ // Medium and large mode can't fold loads this way.
+ if (MF.getTarget().getCodeModel() != CodeModel::Small &&
+ MF.getTarget().getCodeModel() != CodeModel::Kernel)
+ return nullptr;
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
+ if (Subtarget.is64Bit())
+ PICBase = X86::RIP;
+ else
+ // FIXME: PICBase = getGlobalBaseReg(&MF);
+ // This doesn't work for several reasons.
+ // 1. GlobalBaseReg may have been spilled.
+ // 2. It may not be live at MI.
+ return nullptr;
+ }
+
+ // Create a constant-pool entry.
+ MachineConstantPool &MCP = *MF.getConstantPool();
+ Type *Ty;
+ unsigned Opc = LoadMI->getOpcode();
+ if (Opc == X86::FsFLD0SS)
+ Ty = Type::getFloatTy(MF.getFunction()->getContext());
+ else if (Opc == X86::FsFLD0SD)
+ Ty = Type::getDoubleTy(MF.getFunction()->getContext());
+ else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
+ else
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
+
+ bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
+ const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
+ Constant::getNullValue(Ty);
+ unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
+
+ // Create operands to load from the constant pool entry.
+ MOs.push_back(MachineOperand::CreateReg(PICBase, false));
+ MOs.push_back(MachineOperand::CreateImm(1));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ break;
+ }
+ default: {
+ if (isPartialRegisterLoad(*LoadMI, MF))
+ return nullptr;
+
+ // Folding a normal load. Just copy the load's address operands.
+ MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
+ LoadMI->operands_begin() + NumOps);
+ break;
+ }
+ }
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
+ /*Size=*/0, Alignment, /*AllowCommute=*/true);
+}
+
+bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ ArrayRef<unsigned> Ops) const {
+ // Check switch flag
+ if (NoFusing) return 0;
+
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ return true;
+ case X86::ADD32ri:
+ // FIXME: AsmPrinter doesn't know how to handle
+ // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
+ if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ return false;
+ break;
+ }
+ }
+
+ if (Ops.size() != 1)
+ return false;
+
+ unsigned OpNum = Ops[0];
+ unsigned Opc = MI->getOpcode();
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ const DenseMap<unsigned,
+ std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
+ if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ } else if (OpNum == 0) {
+ if (Opc == X86::MOV32r0)
+ return true;
+
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (OpNum == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (OpNum == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ } else if (OpNum == 3) {
+ OpcodeTablePtr = &RegOp2MemOpTable3;
+ }
+
+ if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
+ return true;
+ return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
+}
+
+bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(MI->getOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & TB_INDEX_MASK;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ if (UnfoldLoad && !FoldedLoad)
+ return false;
+ UnfoldLoad &= FoldedLoad;
+ if (UnfoldStore && !FoldedStore)
+ return false;
+ UnfoldStore &= FoldedStore;
+
+ const MCInstrDesc &MCID = get(Opc);
+ const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
+ if (!MI->hasOneMemOperand() &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
+ // conservatively assume the address is unaligned. That's bad for
+ // performance.
+ return false;
+ SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
+ SmallVector<MachineOperand,2> BeforeOps;
+ SmallVector<MachineOperand,2> AfterOps;
+ SmallVector<MachineOperand,4> ImpOps;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (i >= Index && i < Index + X86::AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (Op.isReg() && Op.isImplicit())
+ ImpOps.push_back(Op);
+ else if (i < Index)
+ BeforeOps.push_back(Op);
+ else if (i > Index)
+ AfterOps.push_back(Op);
+ }
+
+ // Emit the load instruction.
+ if (UnfoldLoad) {
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
+ if (UnfoldStore) {
+ // Address operands cannot be marked isKill.
+ for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
+ MachineOperand &MO = NewMIs[0]->getOperand(i);
+ if (MO.isReg())
+ MO.setIsKill(false);
+ }
+ }
+ }
+
+ // Emit the data processing instruction.
+ MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, DataMI);
+
+ if (FoldedStore)
+ MIB.addReg(Reg, RegState::Define);
+ for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
+ MIB.addOperand(BeforeOps[i]);
+ if (FoldedLoad)
+ MIB.addReg(Reg);
+ for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
+ MIB.addOperand(AfterOps[i]);
+ for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
+ MachineOperand &MO = ImpOps[i];
+ MIB.addReg(MO.getReg(),
+ getDefRegState(MO.isDef()) |
+ RegState::Implicit |
+ getKillRegState(MO.isKill()) |
+ getDeadRegState(MO.isDead()) |
+ getUndefRegState(MO.isUndef()));
+ }
+ // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
+ switch (DataMI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP8ri: {
+ MachineOperand &MO0 = DataMI->getOperand(0);
+ MachineOperand &MO1 = DataMI->getOperand(1);
+ if (MO1.getImm() == 0) {
+ unsigned NewOpc;
+ switch (DataMI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::CMP64ri8:
+ case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
+ case X86::CMP32ri8:
+ case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
+ case X86::CMP16ri8:
+ case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
+ case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
+ }
+ DataMI->setDesc(get(NewOpc));
+ MO1.ChangeToRegister(MO0.getReg(), false);
+ }
+ }
+ }
+ NewMIs.push_back(DataMI);
+
+ // Emit the store instruction.
+ if (UnfoldStore) {
+ const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
+ }
+
+ return true;
+}
+
+bool
+X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const {
+ if (!N->isMachineOpcode())
+ return false;
+
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(N->getMachineOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & TB_INDEX_MASK;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ const MCInstrDesc &MCID = get(Opc);
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
+ unsigned NumDefs = MCID.NumDefs;
+ std::vector<SDValue> AddrOps;
+ std::vector<SDValue> BeforeOps;
+ std::vector<SDValue> AfterOps;
+ SDLoc dl(N);
+ unsigned NumOps = N->getNumOperands();
+ for (unsigned i = 0; i != NumOps-1; ++i) {
+ SDValue Op = N->getOperand(i);
+ if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (i < Index-NumDefs)
+ BeforeOps.push_back(Op);
+ else if (i > Index-NumDefs)
+ AfterOps.push_back(Op);
+ }
+ SDValue Chain = N->getOperand(NumOps-1);
+ AddrOps.push_back(Chain);
+
+ // Emit the load instruction.
+ SDNode *Load = nullptr;
+ if (FoldedLoad) {
+ EVT VT = *RC->vt_begin();
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ if (!(*MMOs.first) &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Do not introduce a slow unaligned load.
+ return false;
+ unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+ bool isAligned = (*MMOs.first) &&
+ (*MMOs.first)->getAlignment() >= Alignment;
+ Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
+ VT, MVT::Other, AddrOps);
+ NewNodes.push_back(Load);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ // Emit the data processing instruction.
+ std::vector<EVT> VTs;
+ const TargetRegisterClass *DstRC = nullptr;
+ if (MCID.getNumDefs() > 0) {
+ DstRC = getRegClass(MCID, 0, &RI, MF);
+ VTs.push_back(*DstRC->vt_begin());
+ }
+ for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
+ VTs.push_back(VT);
+ }
+ if (Load)
+ BeforeOps.push_back(SDValue(Load, 0));
+ BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
+ SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
+ NewNodes.push_back(NewNode);
+
+ // Emit the store instruction.
+ if (FoldedStore) {
+ AddrOps.pop_back();
+ AddrOps.push_back(SDValue(NewNode, 0));
+ AddrOps.push_back(Chain);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ if (!(*MMOs.first) &&
+ RC == &X86::VR128RegClass &&
+ !Subtarget.isUnalignedMemAccessFast())
+ // Do not introduce a slow unaligned store.
+ return false;
+ unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+ bool isAligned = (*MMOs.first) &&
+ (*MMOs.first)->getAlignment() >= Alignment;
+ SDNode *Store =
+ DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
+ dl, MVT::Other, AddrOps);
+ NewNodes.push_back(Store);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ return true;
+}
+
+unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex) const {
+ DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find(Opc);
+ if (I == MemOp2RegOpTable.end())
+ return 0;
+ bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
+ bool FoldedStore = I->second.second & TB_FOLDED_STORE;
+ if (UnfoldLoad && !FoldedLoad)
+ return 0;
+ if (UnfoldStore && !FoldedStore)
+ return 0;
+ if (LoadRegIndex)
+ *LoadRegIndex = I->second.second & TB_INDEX_MASK;
+ return I->second.first;
+}
+
+bool
+X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1, int64_t &Offset2) const {
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ switch (Opc1) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ // AVX load instructions
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ break;
+ }
+ switch (Opc2) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ // AVX load instructions
+ case X86::VMOVSSrm:
+ case X86::VMOVSDrm:
+ case X86::FsVMOVAPSrm:
+ case X86::FsVMOVAPDrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVAPSYrm:
+ case X86::VMOVUPSYrm:
+ case X86::VMOVAPDYrm:
+ case X86::VMOVDQAYrm:
+ case X86::VMOVDQUYrm:
+ break;
+ }
+
+ // Check if chain operands and base addresses match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(5) != Load2->getOperand(5))
+ return false;
+ // Segment operands should match as well.
+ if (Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+ // Scale should be 1, Index should be Reg0.
+ if (Load1->getOperand(1) == Load2->getOperand(1) &&
+ Load1->getOperand(2) == Load2->getOperand(2)) {
+ if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
+ return false;
+
+ // Now let's examine the displacements.
+ if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
+ isa<ConstantSDNode>(Load2->getOperand(3))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ assert(Offset2 > Offset1);
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ if (Opc1 != Opc2)
+ return false; // FIXME: overly conservative?
+
+ switch (Opc1) {
+ default: break;
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ return false;
+ }
+
+ EVT VT = Load1->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ // XMM registers. In 64-bit mode we can be a bit more aggressive since we
+ // have 16 of them to play with.
+ if (Subtarget.is64Bit()) {
+ if (NumLoads >= 3)
+ return false;
+ } else if (NumLoads) {
+ return false;
+ }
+ break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f32:
+ case MVT::f64:
+ if (NumLoads)
+ return false;
+ break;
+ }
+
+ return true;
+}
+
+bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
+ MachineInstr *Second) const {
+ // Check if this processor supports macro-fusion. Since this is a minor
+ // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
+ // proxy for SandyBridge+.
+ if (!Subtarget.hasAVX())
+ return false;
+
+ enum {
+ FuseTest,
+ FuseCmp,
+ FuseInc
+ } FuseKind;
+
+ switch(Second->getOpcode()) {
+ default:
+ return false;
+ case X86::JE_1:
+ case X86::JNE_1:
+ case X86::JL_1:
+ case X86::JLE_1:
+ case X86::JG_1:
+ case X86::JGE_1:
+ FuseKind = FuseInc;
+ break;
+ case X86::JB_1:
+ case X86::JBE_1:
+ case X86::JA_1:
+ case X86::JAE_1:
+ FuseKind = FuseCmp;
+ break;
+ case X86::JS_1:
+ case X86::JNS_1:
+ case X86::JP_1:
+ case X86::JNP_1:
+ case X86::JO_1:
+ case X86::JNO_1:
+ FuseKind = FuseTest;
+ break;
+ }
+ switch (First->getOpcode()) {
+ default:
+ return false;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ case X86::TEST8ri:
+ case X86::TEST16ri:
+ case X86::TEST32ri:
+ case X86::TEST32i32:
+ case X86::TEST64i32:
+ case X86::TEST64ri32:
+ case X86::TEST8rm:
+ case X86::TEST16rm:
+ case X86::TEST32rm:
+ case X86::TEST64rm:
+ case X86::TEST8ri_NOREX:
+ case X86::AND16i16:
+ case X86::AND16ri:
+ case X86::AND16ri8:
+ case X86::AND16rm:
+ case X86::AND16rr:
+ case X86::AND32i32:
+ case X86::AND32ri:
+ case X86::AND32ri8:
+ case X86::AND32rm:
+ case X86::AND32rr:
+ case X86::AND64i32:
+ case X86::AND64ri32:
+ case X86::AND64ri8:
+ case X86::AND64rm:
+ case X86::AND64rr:
+ case X86::AND8i8:
+ case X86::AND8ri:
+ case X86::AND8rm:
+ case X86::AND8rr:
+ return true;
+ case X86::CMP16i16:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP16rm:
+ case X86::CMP16rr:
+ case X86::CMP32i32:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP32rm:
+ case X86::CMP32rr:
+ case X86::CMP64i32:
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP64rm:
+ case X86::CMP64rr:
+ case X86::CMP8i8:
+ case X86::CMP8ri:
+ case X86::CMP8rm:
+ case X86::CMP8rr:
+ case X86::ADD16i16:
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri8_DB:
+ case X86::ADD16ri_DB:
+ case X86::ADD16rm:
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB:
+ case X86::ADD32i32:
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri8_DB:
+ case X86::ADD32ri_DB:
+ case X86::ADD32rm:
+ case X86::ADD32rr:
+ case X86::ADD32rr_DB:
+ case X86::ADD64i32:
+ case X86::ADD64ri32:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8:
+ case X86::ADD64ri8_DB:
+ case X86::ADD64rm:
+ case X86::ADD64rr:
+ case X86::ADD64rr_DB:
+ case X86::ADD8i8:
+ case X86::ADD8mi:
+ case X86::ADD8mr:
+ case X86::ADD8ri:
+ case X86::ADD8rm:
+ case X86::ADD8rr:
+ case X86::SUB16i16:
+ case X86::SUB16ri:
+ case X86::SUB16ri8:
+ case X86::SUB16rm:
+ case X86::SUB16rr:
+ case X86::SUB32i32:
+ case X86::SUB32ri:
+ case X86::SUB32ri8:
+ case X86::SUB32rm:
+ case X86::SUB32rr:
+ case X86::SUB64i32:
+ case X86::SUB64ri32:
+ case X86::SUB64ri8:
+ case X86::SUB64rm:
+ case X86::SUB64rr:
+ case X86::SUB8i8:
+ case X86::SUB8ri:
+ case X86::SUB8rm:
+ case X86::SUB8rr:
+ return FuseKind == FuseCmp || FuseKind == FuseInc;
+ case X86::INC16r:
+ case X86::INC32r:
+ case X86::INC64r:
+ case X86::INC8r:
+ case X86::DEC16r:
+ case X86::DEC32r:
+ case X86::DEC64r:
+ case X86::DEC8r:
+ return FuseKind == FuseInc;
+ }
+}
+
+bool X86InstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid X86 branch condition!");
+ X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
+ if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
+ return true;
+ Cond[0].setImm(GetOppositeBranchCondition(CC));
+ return false;
+}
+
+bool X86InstrInfo::
+isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
+ // FIXME: Return false for x87 stack register classes for now. We can't
+ // allow any loads of these registers before FpGet_ST0_80.
+ return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
+ RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
+}
+
+/// Return a virtual register initialized with the
+/// the global base register value. Output instructions required to
+/// initialize the register in the function entry block, if necessary.
+///
+/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
+///
+unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
+ assert(!Subtarget.is64Bit() &&
+ "X86-64 PIC uses RIP relative addressing");
+
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
+ if (GlobalBaseReg != 0)
+ return GlobalBaseReg;
+
+ // Create the register. The code to initialize it is inserted
+ // later, by the CGBR pass (below).
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+ X86FI->setGlobalBaseReg(GlobalBaseReg);
+ return GlobalBaseReg;
+}
+
+// These are the replaceable SSE instructions. Some of these have Int variants
+// that we don't include here. We don't want to replace instructions selected
+// by intrinsics.
+static const uint16_t ReplaceableInstrs[][3] = {
+ //PackedSingle PackedDouble PackedInt
+ { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
+ { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
+ { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
+ { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
+ { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
+ { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
+ { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
+ { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
+ { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
+ { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
+ { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
+ { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
+ { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
+ { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
+ { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
+ // AVX 128-bit support
+ { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
+ { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
+ { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
+ { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
+ { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
+ { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
+ { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
+ { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
+ { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
+ { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
+ { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
+ { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
+ { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
+ { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
+ { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
+ // AVX 256-bit support
+ { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
+ { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
+ { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
+ { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
+ { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
+ { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
+};
+
+static const uint16_t ReplaceableInstrsAVX2[][3] = {
+ //PackedSingle PackedDouble PackedInt
+ { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
+ { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
+ { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
+ { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
+ { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
+ { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
+ { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
+ { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
+ { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
+ { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
+ { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
+ { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
+ { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
+ { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
+ { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
+ { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
+ { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
+ { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
+ { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
+ { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
+};
+
+// FIXME: Some shuffle and unpack instructions have equivalents in different
+// domains, but they require a bit more work than just switching opcodes.
+
+static const uint16_t *lookup(unsigned opcode, unsigned domain) {
+ for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
+ if (ReplaceableInstrs[i][domain-1] == opcode)
+ return ReplaceableInstrs[i];
+ return nullptr;
+}
+
+static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
+ for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
+ if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
+ return ReplaceableInstrsAVX2[i];
+ return nullptr;
+}
+
+std::pair<uint16_t, uint16_t>
+X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
+ uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ bool hasAVX2 = Subtarget.hasAVX2();
+ uint16_t validDomains = 0;
+ if (domain && lookup(MI->getOpcode(), domain))
+ validDomains = 0xe;
+ else if (domain && lookupAVX2(MI->getOpcode(), domain))
+ validDomains = hasAVX2 ? 0xe : 0x6;
+ return std::make_pair(domain, validDomains);
+}
+
+void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
+ assert(Domain>0 && Domain<4 && "Invalid execution domain");
+ uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ assert(dom && "Not an SSE instruction");
+ const uint16_t *table = lookup(MI->getOpcode(), dom);
+ if (!table) { // try the other table
+ assert((Subtarget.hasAVX2() || Domain < 3) &&
+ "256-bit vector operations only available in AVX2");
+ table = lookupAVX2(MI->getOpcode(), dom);
+ }
+ assert(table && "Cannot change domain");
+ MI->setDesc(get(table[Domain-1]));
+}
+
+/// Return the noop instruction to use for a noop.
+void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(X86::NOOP);
+}
+
+// This code must remain in sync with getJumpInstrTableEntryBound in this class!
+// In particular, getJumpInstrTableEntryBound must always return an upper bound
+// on the encoding lengths of the instructions generated by
+// getUnconditionalBranch and getTrap.
+void X86InstrInfo::getUnconditionalBranch(
+ MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
+ Branch.setOpcode(X86::JMP_1);
+ Branch.addOperand(MCOperand::createExpr(BranchTarget));
+}
+
+// This code must remain in sync with getJumpInstrTableEntryBound in this class!
+// In particular, getJumpInstrTableEntryBound must always return an upper bound
+// on the encoding lengths of the instructions generated by
+// getUnconditionalBranch and getTrap.
+void X86InstrInfo::getTrap(MCInst &MI) const {
+ MI.setOpcode(X86::TRAP);
+}
+
+// See getTrap and getUnconditionalBranch for conditions on the value returned
+// by this function.
+unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
+ // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
+ // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
+ return 5;
+}
+
+bool X86InstrInfo::isHighLatencyDef(int opc) const {
+ switch (opc) {
+ default: return false;
+ case X86::DIVSDrm:
+ case X86::DIVSDrm_Int:
+ case X86::DIVSDrr:
+ case X86::DIVSDrr_Int:
+ case X86::DIVSSrm:
+ case X86::DIVSSrm_Int:
+ case X86::DIVSSrr:
+ case X86::DIVSSrr_Int:
+ case X86::SQRTPDm:
+ case X86::SQRTPDr:
+ case X86::SQRTPSm:
+ case X86::SQRTPSr:
+ case X86::SQRTSDm:
+ case X86::SQRTSDm_Int:
+ case X86::SQRTSDr:
+ case X86::SQRTSDr_Int:
+ case X86::SQRTSSm:
+ case X86::SQRTSSm_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSr_Int:
+ // AVX instructions with high latency
+ case X86::VDIVSDrm:
+ case X86::VDIVSDrm_Int:
+ case X86::VDIVSDrr:
+ case X86::VDIVSDrr_Int:
+ case X86::VDIVSSrm:
+ case X86::VDIVSSrm_Int:
+ case X86::VDIVSSrr:
+ case X86::VDIVSSrr_Int:
+ case X86::VSQRTPDm:
+ case X86::VSQRTPDr:
+ case X86::VSQRTPSm:
+ case X86::VSQRTPSr:
+ case X86::VSQRTSDm:
+ case X86::VSQRTSDm_Int:
+ case X86::VSQRTSDr:
+ case X86::VSQRTSSm:
+ case X86::VSQRTSSm_Int:
+ case X86::VSQRTSSr:
+ case X86::VSQRTPDZm:
+ case X86::VSQRTPDZr:
+ case X86::VSQRTPSZm:
+ case X86::VSQRTPSZr:
+ case X86::VSQRTSDZm:
+ case X86::VSQRTSDZm_Int:
+ case X86::VSQRTSDZr:
+ case X86::VSQRTSSZm_Int:
+ case X86::VSQRTSSZr:
+ case X86::VSQRTSSZm:
+ case X86::VDIVSDZrm:
+ case X86::VDIVSDZrr:
+ case X86::VDIVSSZrm:
+ case X86::VDIVSSZrr:
+
+ case X86::VGATHERQPSZrm:
+ case X86::VGATHERQPDZrm:
+ case X86::VGATHERDPDZrm:
+ case X86::VGATHERDPSZrm:
+ case X86::VPGATHERQDZrm:
+ case X86::VPGATHERQQZrm:
+ case X86::VPGATHERDDZrm:
+ case X86::VPGATHERDQZrm:
+ case X86::VSCATTERQPDZmr:
+ case X86::VSCATTERQPSZmr:
+ case X86::VSCATTERDPDZmr:
+ case X86::VSCATTERDPSZmr:
+ case X86::VPSCATTERQDZmr:
+ case X86::VPSCATTERQQZmr:
+ case X86::VPSCATTERDDZmr:
+ case X86::VPSCATTERDQZmr:
+ return true;
+ }
+}
+
+bool X86InstrInfo::
+hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ return isHighLatencyDef(DefMI->getOpcode());
+}
+
+namespace {
+ /// Create Global Base Reg pass. This initializes the PIC
+ /// global base register for x86-32.
+ struct CGBR : public MachineFunctionPass {
+ static char ID;
+ CGBR() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ const X86TargetMachine *TM =
+ static_cast<const X86TargetMachine *>(&MF.getTarget());
+ const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
+
+ // Don't do anything if this is 64-bit as 64-bit PIC
+ // uses RIP relative addressing.
+ if (STI.is64Bit())
+ return false;
+
+ // Only emit a global base reg in PIC mode.
+ if (TM->getRelocationModel() != Reloc::PIC_)
+ return false;
+
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
+
+ // If we didn't need a GlobalBaseReg, don't insert code.
+ if (GlobalBaseReg == 0)
+ return false;
+
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF.front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ const X86InstrInfo *TII = STI.getInstrInfo();
+
+ unsigned PC;
+ if (STI.isPICStyleGOT())
+ PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ else
+ PC = GlobalBaseReg;
+
+ // Operand of MovePCtoStack is completely ignored by asm printer. It's
+ // only used in JIT code emission as displacement to pc.
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
+
+ // If we're using vanilla 'GOT' PIC style, we should use relative addressing
+ // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
+ if (STI.isPICStyleGOT()) {
+ // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
+ .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
+ X86II::MO_GOT_ABSOLUTE_ADDRESS);
+ }
+
+ return true;
+ }
+
+ const char *getPassName() const override {
+ return "X86 PIC Global Base Reg Initialization";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char CGBR::ID = 0;
+FunctionPass*
+llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
+
+namespace {
+ struct LDTLSCleanup : public MachineFunctionPass {
+ static char ID;
+ LDTLSCleanup() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
+ if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
+ // No point folding accesses if there isn't at least two.
+ return false;
+ }
+
+ MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
+ return VisitNode(DT->getRootNode(), 0);
+ }
+
+ // Visit the dominator subtree rooted at Node in pre-order.
+ // If TLSBaseAddrReg is non-null, then use that to replace any
+ // TLS_base_addr instructions. Otherwise, create the register
+ // when the first such instruction is seen, and then use it
+ // as we encounter more instructions.
+ bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
+ MachineBasicBlock *BB = Node->getBlock();
+ bool Changed = false;
+
+ // Traverse the current block.
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ switch (I->getOpcode()) {
+ case X86::TLS_base_addr32:
+ case X86::TLS_base_addr64:
+ if (TLSBaseAddrReg)
+ I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
+ else
+ I = SetRegister(I, &TLSBaseAddrReg);
+ Changed = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Visit the children of this block in the dominator tree.
+ for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
+ I != E; ++I) {
+ Changed |= VisitNode(*I, TLSBaseAddrReg);
+ }
+
+ return Changed;
+ }
+
+ // Replace the TLS_base_addr instruction I with a copy from
+ // TLSBaseAddrReg, returning the new instruction.
+ MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
+ unsigned TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
+ const bool is64Bit = STI.is64Bit();
+ const X86InstrInfo *TII = STI.getInstrInfo();
+
+ // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
+ MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ is64Bit ? X86::RAX : X86::EAX)
+ .addReg(TLSBaseAddrReg);
+
+ // Erase the TLS_base_addr instruction.
+ I->eraseFromParent();
+
+ return Copy;
+ }
+
+ // Create a virtal register in *TLSBaseAddrReg, and populate it by
+ // inserting a copy instruction after I. Returns the new instruction.
+ MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
+ MachineFunction *MF = I->getParent()->getParent();
+ const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
+ const bool is64Bit = STI.is64Bit();
+ const X86InstrInfo *TII = STI.getInstrInfo();
+
+ // Create a virtual register for the TLS base address.
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
+ ? &X86::GR64RegClass
+ : &X86::GR32RegClass);
+
+ // Insert a copy from RAX/EAX to TLSBaseAddrReg.
+ MachineInstr *Next = I->getNextNode();
+ MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ *TLSBaseAddrReg)
+ .addReg(is64Bit ? X86::RAX : X86::EAX);
+
+ return Copy;
+ }
+
+ const char *getPassName() const override {
+ return "Local Dynamic TLS Access Clean-up";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+}
+
+char LDTLSCleanup::ID = 0;
+FunctionPass*
+llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }