aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86InstrControl.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrControl.td')
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrControl.td358
1 files changed, 358 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrControl.td b/contrib/llvm/lib/Target/X86/X86InstrControl.td
new file mode 100644
index 000000000000..4ea223e82be9
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrControl.td
@@ -0,0 +1,358 @@
+//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 jump, return, call, and related instructions.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions.
+//
+
+// Return instructions.
+//
+// The X86retflag return instructions are variadic because we may add ST0 and
+// ST1 arguments when returning values on the x87 stack.
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
+ def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops),
+ "ret{l}", [], IIC_RET>, OpSize32,
+ Requires<[Not64BitMode]>;
+ def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops),
+ "ret{q}", [], IIC_RET>, OpSize32,
+ Requires<[In64BitMode]>;
+ def RETW : I <0xC3, RawFrm, (outs), (ins),
+ "ret{w}",
+ [], IIC_RET>, OpSize16;
+ def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
+ "ret{l}\t$amt",
+ [], IIC_RET_IMM>, OpSize32,
+ Requires<[Not64BitMode]>;
+ def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
+ "ret{q}\t$amt",
+ [], IIC_RET_IMM>, OpSize32,
+ Requires<[In64BitMode]>;
+ def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
+ "ret{w}\t$amt",
+ [], IIC_RET_IMM>, OpSize16;
+ def LRETL : I <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{l|f}", [], IIC_RET>, OpSize32;
+ def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{|f}q", [], IIC_RET>, Requires<[In64BitMode]>;
+ def LRETW : I <0xCB, RawFrm, (outs), (ins),
+ "{l}ret{w|f}", [], IIC_RET>, OpSize16;
+ def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{l|f}\t$amt", [], IIC_RET>, OpSize32;
+ def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{|f}q\t$amt", [], IIC_RET>, Requires<[In64BitMode]>;
+ def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize16;
+
+ // The machine return from interrupt instruction, but sometimes we need to
+ // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
+ // which expands to include an SP adjustment if necessary.
+ def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", [], IIC_IRET>,
+ OpSize16;
+ def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", [],
+ IIC_IRET>, OpSize32;
+ def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", [],
+ IIC_IRET>, Requires<[In64BitMode]>;
+ let isCodeGenOnly = 1 in
+ def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
+ def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
+}
+
+// Unconditional branches.
+let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
+ def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
+ "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>;
+ let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
+ def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>, OpSize16;
+ def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>, OpSize32;
+ }
+}
+
+// Conditional Branches.
+let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
+ multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
+ def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
+ [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>;
+ let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
+ def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
+ [], IIC_Jcc>, OpSize16, TB;
+ def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
+ [], IIC_Jcc>, TB, OpSize32;
+ }
+ }
+}
+
+defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
+defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
+defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
+defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
+defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
+defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
+defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
+defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
+defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
+defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
+defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
+defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
+defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
+defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
+defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
+defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
+
+// jcx/jecx/jrcx instructions.
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
+ // These are the 32-bit versions of this instruction for the asmparser. In
+ // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
+ // jecxz.
+ let Uses = [CX] in
+ def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jcxz\t$dst", [], IIC_JCXZ>, AdSize16,
+ Requires<[Not64BitMode]>;
+ let Uses = [ECX] in
+ def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jecxz\t$dst", [], IIC_JCXZ>, AdSize32;
+
+ let Uses = [RCX] in
+ def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jrcxz\t$dst", [], IIC_JCXZ>, AdSize64,
+ Requires<[In64BitMode]>;
+}
+
+// Indirect branches
+let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
+ def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
+ [(brind GR16:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
+ OpSize16, Sched<[WriteJump]>;
+ def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
+ [(brind (loadi16 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>;
+
+ def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
+ [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>,
+ OpSize32, Sched<[WriteJump]>;
+ def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
+ [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>;
+
+ def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
+ [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>,
+ Sched<[WriteJump]>;
+ def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
+ [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
+ Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
+
+ let Predicates = [Not64BitMode] in {
+ def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "ljmp{w}\t$seg, $off", [],
+ IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "ljmp{l}\t$seg, $off", [],
+ IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ }
+ def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
+ "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
+ Sched<[WriteJump]>;
+
+ def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
+ "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize16,
+ Sched<[WriteJumpLd]>;
+ def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
+ "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize32,
+ Sched<[WriteJumpLd]>;
+}
+
+
+// Loop instructions
+let SchedRW = [WriteJump] in {
+def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>;
+def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>;
+def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>;
+}
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+let isCall = 1 in
+ // All calls clobber the non-callee saved registers. ESP is marked as
+ // a use to prevent stack-pointer assignments that appear immediately
+ // before calls from potentially appearing dead. Uses for argument
+ // registers are added manually.
+ let Uses = [ESP] in {
+ def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
+ (outs), (ins i32imm_pcrel:$dst),
+ "call{l}\t$dst", [], IIC_CALL_RI>, OpSize32,
+ Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ let hasSideEffects = 0 in
+ def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
+ (outs), (ins i16imm_pcrel:$dst),
+ "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16,
+ Sched<[WriteJump]>;
+ def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
+ "call{w}\t{*}$dst", [(X86call GR16:$dst)], IIC_CALL_RI>,
+ OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
+ "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))],
+ IIC_CALL_MEM>, OpSize16,
+ Requires<[Not64BitMode,FavorMemIndirectCall]>,
+ Sched<[WriteJumpLd]>;
+ def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
+ "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>,
+ OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
+ def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
+ "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))],
+ IIC_CALL_MEM>, OpSize32,
+ Requires<[Not64BitMode,FavorMemIndirectCall]>,
+ Sched<[WriteJumpLd]>;
+
+ let Predicates = [Not64BitMode] in {
+ def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "lcall{w}\t$seg, $off", [],
+ IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "lcall{l}\t$seg, $off", [],
+ IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ }
+
+ def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
+ "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize16,
+ Sched<[WriteJumpLd]>;
+ def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
+ "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize32,
+ Sched<[WriteJumpLd]>;
+ }
+
+
+// Tail call stuff.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
+ isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
+ let Uses = [ESP] in {
+ def TCRETURNdi : PseudoI<(outs),
+ (ins i32imm_pcrel:$dst, i32imm:$offset), []>;
+ def TCRETURNri : PseudoI<(outs),
+ (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
+ let mayLoad = 1 in
+ def TCRETURNmi : PseudoI<(outs),
+ (ins i32mem_TC:$dst, i32imm:$offset), []>;
+
+ // FIXME: The should be pseudo instructions that are lowered when going to
+ // mcinst.
+ def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
+ (ins i32imm_pcrel:$dst),
+ "jmp\t$dst",
+ [], IIC_JMP_REL>;
+
+ def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
+ "", [], IIC_JMP_REG>; // FIXME: Remove encoding when JIT is dead.
+ let mayLoad = 1 in
+ def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
+ "jmp{l}\t{*}$dst", [], IIC_JMP_MEM>;
+}
+
+// Conditional tail calls are similar to the above, but they are branches
+// rather than barriers, and they use EFLAGS.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
+ isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
+ let Uses = [ESP, EFLAGS] in {
+ def TCRETURNdicc : PseudoI<(outs),
+ (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
+
+ // This gets substituted to a conditional jump instruction in MC lowering.
+ def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs),
+ (ins i32imm_pcrel:$dst, i32imm:$cond),
+ "",
+ [], IIC_JMP_REL>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+
+// RSP is marked as a use to prevent stack-pointer assignments that appear
+// immediately before calls from potentially appearing dead. Uses for argument
+// registers are added manually.
+let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in {
+ // NOTE: this pattern doesn't match "X86call imm", because we do not know
+ // that the offset between an arbitrary immediate and the call will fit in
+ // the 32-bit pcrel field that we have.
+ def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
+ (outs), (ins i64i32imm_pcrel:$dst),
+ "call{q}\t$dst", [], IIC_CALL_RI>, OpSize32,
+ Requires<[In64BitMode]>;
+ def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
+ "call{q}\t{*}$dst", [(X86call GR64:$dst)],
+ IIC_CALL_RI>,
+ Requires<[In64BitMode]>;
+ def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
+ "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))],
+ IIC_CALL_MEM>,
+ Requires<[In64BitMode,FavorMemIndirectCall]>;
+
+ def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
+ "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>;
+}
+
+let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
+ isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1,
+ SchedRW = [WriteJump] in {
+ def TCRETURNdi64 : PseudoI<(outs),
+ (ins i64i32imm_pcrel:$dst, i32imm:$offset),
+ []>;
+ def TCRETURNri64 : PseudoI<(outs),
+ (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
+ let mayLoad = 1 in
+ def TCRETURNmi64 : PseudoI<(outs),
+ (ins i64mem_TC:$dst, i32imm:$offset), []>;
+
+ def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>;
+
+ def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
+ "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
+
+ let mayLoad = 1 in
+ def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
+ "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
+
+ // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
+ let hasREX_WPrefix = 1 in {
+ def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
+ "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
+
+ let mayLoad = 1 in
+ def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
+ "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>;
+ }
+}
+
+// Conditional tail calls are similar to the above, but they are branches
+// rather than barriers, and they use EFLAGS.
+let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
+ isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
+ let Uses = [RSP, EFLAGS] in {
+ def TCRETURNdi64cc : PseudoI<(outs),
+ (ins i64i32imm_pcrel:$dst, i32imm:$offset,
+ i32imm:$cond), []>;
+
+ // This gets substituted to a conditional jump instruction in MC lowering.
+ def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs),
+ (ins i64i32imm_pcrel:$dst, i32imm:$cond),
+ "",
+ [], IIC_JMP_REL>;
+}