diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrCompiler.td')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86InstrCompiler.td | 1841 |
1 files changed, 1841 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td new file mode 100644 index 000000000000..7d10b67bfe6d --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td @@ -0,0 +1,1841 @@ +//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the various pseudo instructions used by the compiler, +// as well as Pat patterns used during instruction selection. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Pattern Matching Support + +def GetLo32XForm : SDNodeXForm<imm, [{ + // Transformation function: get the low 32 bits. + return getI32Imm((unsigned)N->getZExtValue()); +}]>; + +def GetLo8XForm : SDNodeXForm<imm, [{ + // Transformation function: get the low 8 bits. + return getI8Imm((uint8_t)N->getZExtValue()); +}]>; + + +//===----------------------------------------------------------------------===// +// Random Pseudo Instructions. + +// PIC base construction. This expands to code that looks like this: +// call $next_inst +// popl %destreg" +let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in + def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), + "", []>; + + +// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into +// a stack adjustment and the codegen must know that they may modify the stack +// pointer before prolog-epilog rewriting occurs. +// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become +// sub / add which can clobber EFLAGS. +let Defs = [ESP, EFLAGS], Uses = [ESP] in { +def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), + "#ADJCALLSTACKDOWN", + [(X86callseq_start timm:$amt)]>, + Requires<[In32BitMode]>; +def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), + "#ADJCALLSTACKUP", + [(X86callseq_end timm:$amt1, timm:$amt2)]>, + Requires<[In32BitMode]>; +} + +// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into +// a stack adjustment and the codegen must know that they may modify the stack +// pointer before prolog-epilog rewriting occurs. +// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become +// sub / add which can clobber EFLAGS. +let Defs = [RSP, EFLAGS], Uses = [RSP] in { +def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), + "#ADJCALLSTACKDOWN", + [(X86callseq_start timm:$amt)]>, + Requires<[In64BitMode]>; +def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), + "#ADJCALLSTACKUP", + [(X86callseq_end timm:$amt1, timm:$amt2)]>, + Requires<[In64BitMode]>; +} + + + +// x86-64 va_start lowering magic. +let usesCustomInserter = 1 in { +def VASTART_SAVE_XMM_REGS : I<0, Pseudo, + (outs), + (ins GR8:$al, + i64imm:$regsavefi, i64imm:$offset, + variable_ops), + "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", + [(X86vastart_save_xmm_regs GR8:$al, + imm:$regsavefi, + imm:$offset)]>; + +// The VAARG_64 pseudo-instruction takes the address of the va_list, +// and places the address of the next argument into a register. +let Defs = [EFLAGS] in +def VAARG_64 : I<0, Pseudo, + (outs GR64:$dst), + (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), + "#VAARG_64 $dst, $ap, $size, $mode, $align", + [(set GR64:$dst, + (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), + (implicit EFLAGS)]>; + +// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows +// targets. These calls are needed to probe the stack when allocating more than +// 4k bytes in one go. Touching the stack at 4K increments is necessary to +// ensure that the guard pages used by the OS virtual memory manager are +// allocated in correct sequence. +// The main point of having separate instruction are extra unmodelled effects +// (compared to ordinary calls) like stack pointer change. + +let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in + def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), + "# dynamic stack allocation", + [(X86WinAlloca)]>; + +// When using segmented stacks these are lowered into instructions which first +// check if the current stacklet has enough free memory. If it does, memory is +// allocated by bumping the stack pointer. Otherwise memory is allocated from +// the heap. + +let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in +def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), + "# variable sized alloca for segmented stacks", + [(set GR32:$dst, + (X86SegAlloca GR32:$size))]>, + Requires<[In32BitMode]>; + +let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in +def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), + "# variable sized alloca for segmented stacks", + [(set GR64:$dst, + (X86SegAlloca GR64:$size))]>, + Requires<[In64BitMode]>; +} + +// The MSVC runtime contains an _ftol2 routine for converting floating-point +// to integer values. It has a strange calling convention: the input is +// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is +// used as a temporary register. No other registers (aside from flags) are +// touched. +// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 +// variant is unnecessary. + +let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in { + def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), + "# win32 fptoui", + [(X86WinFTOL RFP32:$src)]>, + Requires<[In32BitMode]>; + + def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), + "# win32 fptoui", + [(X86WinFTOL RFP64:$src)]>, + Requires<[In32BitMode]>; +} + +//===----------------------------------------------------------------------===// +// EH Pseudo Instructions +// +let SchedRW = [WriteSystem] in { +let isTerminator = 1, isReturn = 1, isBarrier = 1, + hasCtrlDep = 1, isCodeGenOnly = 1 in { +def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), + "ret\t#eh_return, addr: $addr", + [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; + +} + +let isTerminator = 1, isReturn = 1, isBarrier = 1, + hasCtrlDep = 1, isCodeGenOnly = 1 in { +def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), + "ret\t#eh_return, addr: $addr", + [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; + +} + +let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, + usesCustomInserter = 1 in { + def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), + "#EH_SJLJ_SETJMP32", + [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, + Requires<[In32BitMode]>; + def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), + "#EH_SJLJ_SETJMP64", + [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, + Requires<[In64BitMode]>; + let isTerminator = 1 in { + def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), + "#EH_SJLJ_LONGJMP32", + [(X86eh_sjlj_longjmp addr:$buf)]>, + Requires<[In32BitMode]>; + def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), + "#EH_SJLJ_LONGJMP64", + [(X86eh_sjlj_longjmp addr:$buf)]>, + Requires<[In64BitMode]>; + } +} +} // SchedRW + +let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { + def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), + "#EH_SjLj_Setup\t$dst", []>; +} + +//===----------------------------------------------------------------------===// +// Pseudo instructions used by segmented stacks. +// + +// This is lowered into a RET instruction by MCInstLower. We need +// this so that we don't have to have a MachineBasicBlock which ends +// with a RET and also has successors. +let isPseudo = 1 in { +def MORESTACK_RET: I<0, Pseudo, (outs), (ins), + "", []>; + +// This instruction is lowered to a RET followed by a MOV. The two +// instructions are not generated on a higher level since then the +// verifier sees a MachineBasicBlock ending with a non-terminator. +def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), + "", []>; +} + +//===----------------------------------------------------------------------===// +// Alias Instructions +//===----------------------------------------------------------------------===// + +// Alias instruction mapping movr0 to xor. +// FIXME: remove when we can teach regalloc that xor reg, reg is ok. +// FIXME: Set encoding to pseudo. +let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, + isCodeGenOnly = 1 in +def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; + +// Other widths can also make use of the 32-bit xor, which may have a smaller +// encoding and avoid partial register updates. +def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; +def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; +def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { + let AddedComplexity = 20; +} + +// Materialize i64 constant where top 32-bits are zero. This could theoretically +// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however +// that would make it more difficult to rematerialize. +let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, + isCodeGenOnly = 1, neverHasSideEffects = 1 in +def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src), + "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>; + +// This 64-bit pseudo-move can be used for both a 64-bit constant that is +// actually the zero-extension of a 32-bit constant, and for labels in the +// x86-64 small code model. +def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>; + +let AddedComplexity = 1 in +def : Pat<(i64 mov64imm32:$src), + (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; + +// Use sbb to materialize carry bit. +let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { +// FIXME: These are pseudo ops that should be replaced with Pat<> patterns. +// However, Pat<> can't replicate the destination reg into the inputs of the +// result. +def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", + [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", + [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", + [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +} // isCodeGenOnly + + +def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C64r)>; + +def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C64r)>; + +// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and +// will be eliminated and that the sbb can be extended up to a wider type. When +// this happens, it is great. However, if we are left with an 8-bit sbb and an +// and, we might as well just match it as a setb. +def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), + (SETBr)>; + +// (add OP, SETB) -> (adc OP, 0) +def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), + (ADC8ri GR8:$op, 0)>; +def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), + (ADC32ri8 GR32:$op, 0)>; +def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), + (ADC64ri8 GR64:$op, 0)>; + +// (sub OP, SETB) -> (sbb OP, 0) +def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB8ri GR8:$op, 0)>; +def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB32ri8 GR32:$op, 0)>; +def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB64ri8 GR64:$op, 0)>; + +// (sub OP, SETCC_CARRY) -> (adc OP, 0) +def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC8ri GR8:$op, 0)>; +def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC32ri8 GR32:$op, 0)>; +def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC64ri8 GR64:$op, 0)>; + +//===----------------------------------------------------------------------===// +// String Pseudo Instructions +// +let SchedRW = [WriteMicrocoded] in { +let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { +def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", + [(X86rep_movs i8)], IIC_REP_MOVS>, REP, + Requires<[In32BitMode]>; +def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", + [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, + Requires<[In32BitMode]>; +def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", + [(X86rep_movs i32)], IIC_REP_MOVS>, REP, + Requires<[In32BitMode]>; +} + +let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { +def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", + [(X86rep_movs i8)], IIC_REP_MOVS>, REP, + Requires<[In64BitMode]>; +def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", + [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, + Requires<[In64BitMode]>; +def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", + [(X86rep_movs i32)], IIC_REP_MOVS>, REP, + Requires<[In64BitMode]>; +def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", + [(X86rep_movs i64)], IIC_REP_MOVS>, REP, + Requires<[In64BitMode]>; +} + +// FIXME: Should use "(X86rep_stos AL)" as the pattern. +let Defs = [ECX,EDI], isCodeGenOnly = 1 in { + let Uses = [AL,ECX,EDI] in + def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", + [(X86rep_stos i8)], IIC_REP_STOS>, REP, + Requires<[In32BitMode]>; + let Uses = [AX,ECX,EDI] in + def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", + [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, + Requires<[In32BitMode]>; + let Uses = [EAX,ECX,EDI] in + def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", + [(X86rep_stos i32)], IIC_REP_STOS>, REP, + Requires<[In32BitMode]>; +} + +let Defs = [RCX,RDI], isCodeGenOnly = 1 in { + let Uses = [AL,RCX,RDI] in + def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", + [(X86rep_stos i8)], IIC_REP_STOS>, REP, + Requires<[In64BitMode]>; + let Uses = [AX,RCX,RDI] in + def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", + [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, + Requires<[In64BitMode]>; + let Uses = [RAX,RCX,RDI] in + def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", + [(X86rep_stos i32)], IIC_REP_STOS>, REP, + Requires<[In64BitMode]>; + + let Uses = [RAX,RCX,RDI] in + def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", + [(X86rep_stos i64)], IIC_REP_STOS>, REP, + Requires<[In64BitMode]>; +} +} // SchedRW + +//===----------------------------------------------------------------------===// +// Thread Local Storage Instructions +// + +// ELF TLS Support +// All calls clobber the non-callee saved registers. ESP is marked as +// a use to prevent stack-pointer assignments that appear immediately +// before calls from potentially appearing dead. +let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, + MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, + XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], + Uses = [ESP] in { +def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLS_addr32", + [(X86tlsaddr tls32addr:$sym)]>, + Requires<[In32BitMode]>; +def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLS_base_addr32", + [(X86tlsbaseaddr tls32baseaddr:$sym)]>, + Requires<[In32BitMode]>; +} + +// All calls clobber the non-callee saved registers. RSP is marked as +// a use to prevent stack-pointer assignments that appear immediately +// before calls from potentially appearing dead. +let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, + FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, + MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, + XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], + Uses = [RSP] in { +def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLS_addr64", + [(X86tlsaddr tls64addr:$sym)]>, + Requires<[In64BitMode]>; +def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLS_base_addr64", + [(X86tlsbaseaddr tls64baseaddr:$sym)]>, + Requires<[In64BitMode]>; +} + +// Darwin TLS Support +// For i386, the address of the thunk is passed on the stack, on return the +// address of the variable is in %eax. %ecx is trashed during the function +// call. All other registers are preserved. +let Defs = [EAX, ECX, EFLAGS], + Uses = [ESP], + usesCustomInserter = 1 in +def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLSCall_32", + [(X86TLSCall addr:$sym)]>, + Requires<[In32BitMode]>; + +// For x86_64, the address of the thunk is passed in %rdi, on return +// the address of the variable is in %rax. All other registers are preserved. +let Defs = [RAX, EFLAGS], + Uses = [RSP, RDI], + usesCustomInserter = 1 in +def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLSCall_64", + [(X86TLSCall addr:$sym)]>, + Requires<[In64BitMode]>; + + +//===----------------------------------------------------------------------===// +// Conditional Move Pseudo Instructions + +// X86 doesn't have 8-bit conditional moves. Use a customInserter to +// emit control flow. An alternative to this is to mark i8 SELECT as Promote, +// however that requires promoting the operands, and can induce additional +// i8 register pressure. +let usesCustomInserter = 1, Uses = [EFLAGS] in { +def CMOV_GR8 : I<0, Pseudo, + (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), + "#CMOV_GR8 PSEUDO!", + [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, + imm:$cond, EFLAGS))]>; + +let Predicates = [NoCMov] in { +def CMOV_GR32 : I<0, Pseudo, + (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), + "#CMOV_GR32* PSEUDO!", + [(set GR32:$dst, + (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; +def CMOV_GR16 : I<0, Pseudo, + (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), + "#CMOV_GR16* PSEUDO!", + [(set GR16:$dst, + (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; +} // Predicates = [NoCMov] + +// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no +// SSE1. +let Predicates = [FPStackf32] in +def CMOV_RFP32 : I<0, Pseudo, + (outs RFP32:$dst), + (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), + "#CMOV_RFP32 PSEUDO!", + [(set RFP32:$dst, + (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, + EFLAGS))]>; +// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no +// SSE2. +let Predicates = [FPStackf64] in +def CMOV_RFP64 : I<0, Pseudo, + (outs RFP64:$dst), + (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), + "#CMOV_RFP64 PSEUDO!", + [(set RFP64:$dst, + (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, + EFLAGS))]>; +def CMOV_RFP80 : I<0, Pseudo, + (outs RFP80:$dst), + (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), + "#CMOV_RFP80 PSEUDO!", + [(set RFP80:$dst, + (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, + EFLAGS))]>; +} // UsesCustomInserter = 1, Uses = [EFLAGS] + + +//===----------------------------------------------------------------------===// +// Atomic Instruction Pseudo Instructions +//===----------------------------------------------------------------------===// + +// Pseudo atomic instructions + +multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> { + let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in { + let Defs = [EFLAGS, AL] in + def NAME#8 : I<0, Pseudo, (outs GR8:$dst), + (ins i8mem:$ptr, GR8:$val), + !strconcat(mnemonic, "8 PSEUDO!"), []>; + let Defs = [EFLAGS, AX] in + def NAME#16 : I<0, Pseudo,(outs GR16:$dst), + (ins i16mem:$ptr, GR16:$val), + !strconcat(mnemonic, "16 PSEUDO!"), []>; + let Defs = [EFLAGS, EAX] in + def NAME#32 : I<0, Pseudo, (outs GR32:$dst), + (ins i32mem:$ptr, GR32:$val), + !strconcat(mnemonic, "32 PSEUDO!"), []>; + let Defs = [EFLAGS, RAX] in + def NAME#64 : I<0, Pseudo, (outs GR64:$dst), + (ins i64mem:$ptr, GR64:$val), + !strconcat(mnemonic, "64 PSEUDO!"), []>; + } +} + +multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> { + def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val), + (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>; + def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val), + (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>; + def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val), + (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>; + def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val), + (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>; +} + +// Atomic exchange, and, or, xor +defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">; +defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">; +defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">; +defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">; +defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">; +defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">; +defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">; +defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">; + +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">; +defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">; + +multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> { + let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX], + mayLoad = 1, mayStore = 1, hasSideEffects = 0 in + def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), + (ins i64mem:$ptr, GR32:$val1, GR32:$val2), + !strconcat(mnemonic, "6432 PSEUDO!"), []>; +} + +defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">; +defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">; +defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">; +defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">; +defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">; +defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">; +defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">; +defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">; +defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">; +defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">; +defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">; + +//===----------------------------------------------------------------------===// +// Normal-Instructions-With-Lock-Prefix Pseudo Instructions +//===----------------------------------------------------------------------===// + +// FIXME: Use normal instructions and add lock prefix dynamically. + +// Memory barriers + +// TODO: Get this to fold the constant into the instruction. +let isCodeGenOnly = 1, Defs = [EFLAGS] in +def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), + "or{l}\t{$zero, $dst|$dst, $zero}", + [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK, + Sched<[WriteALULd, WriteRMW]>; + +let hasSideEffects = 1 in +def Int_MemBarrier : I<0, Pseudo, (outs), (ins), + "#MEMBARRIER", + [(X86MemBarrier)]>, Sched<[WriteLoad]>; + +// RegOpc corresponds to the mr version of the instruction +// ImmOpc corresponds to the mi version of the instruction +// ImmOpc8 corresponds to the mi8 version of the instruction +// ImmMod corresponds to the instruction format of the mi and mi8 versions +multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, + Format ImmMod, string mnemonic> { +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + +def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, + MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, LOCK; +def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, OpSize, LOCK; +def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, LOCK; +def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, LOCK; + +def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, + ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, OpSize, LOCK; + +def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, OpSize, LOCK; +def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; +def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +} + +} + +defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; +defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; +defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; +defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; +defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; + +// Optimized codegen when the non-memory output is not used. +multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, + string mnemonic> { +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + +def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), + !strconcat(mnemonic, "{b}\t$dst"), + [], IIC_UNARY_MEM>, LOCK; +def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), + !strconcat(mnemonic, "{w}\t$dst"), + [], IIC_UNARY_MEM>, OpSize, LOCK; +def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), + !strconcat(mnemonic, "{l}\t$dst"), + [], IIC_UNARY_MEM>, LOCK; +def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), + !strconcat(mnemonic, "{q}\t$dst"), + [], IIC_UNARY_MEM>, LOCK; +} +} + +defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; +defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; + +// Atomic compare and swap. +multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, + SDPatternOperator frag, X86MemOperand x86memop, + InstrItinClass itin> { +let isCodeGenOnly = 1 in { + def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), + !strconcat(mnemonic, "\t$ptr"), + [(frag addr:$ptr)], itin>, TB, LOCK; +} +} + +multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, + string mnemonic, SDPatternOperator frag, + InstrItinClass itin8, InstrItinClass itin> { +let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { + let Defs = [AL, EFLAGS], Uses = [AL] in + def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), + !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; + let Defs = [AX, EFLAGS], Uses = [AX] in + def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), + !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK; + let Defs = [EAX, EFLAGS], Uses = [EAX] in + def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), + !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK; + let Defs = [RAX, EFLAGS], Uses = [RAX] in + def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), + !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; +} +} + +let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], + SchedRW = [WriteALULd, WriteRMW] in { +defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", + X86cas8, i64mem, + IIC_CMPX_LOCK_8B>; +} + +let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], + Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { +defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", + X86cas16, i128mem, + IIC_CMPX_LOCK_16B>, REX_W; +} + +defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", + X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; + +// Atomic exchange and add +multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, + string frag, + InstrItinClass itin8, InstrItinClass itin> { + let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), + (ins GR8:$val, i8mem:$ptr), + !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), + [(set GR8:$dst, + (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], + itin8>; + def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$val, i16mem:$ptr), + !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), + [(set + GR16:$dst, + (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], + itin>, OpSize; + def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$val, i32mem:$ptr), + !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), + [(set + GR32:$dst, + (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], + itin>; + def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$val, i64mem:$ptr), + !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), + [(set + GR64:$dst, + (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], + itin>; + } +} + +defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", + IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, + TB, LOCK; + +def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), + "#ACQUIRE_MOV PSEUDO!", + [(set GR8:$dst, (atomic_load_8 addr:$src))]>; +def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), + "#ACQUIRE_MOV PSEUDO!", + [(set GR16:$dst, (atomic_load_16 addr:$src))]>; +def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), + "#ACQUIRE_MOV PSEUDO!", + [(set GR32:$dst, (atomic_load_32 addr:$src))]>; +def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), + "#ACQUIRE_MOV PSEUDO!", + [(set GR64:$dst, (atomic_load_64 addr:$src))]>; + +def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), + "#RELEASE_MOV PSEUDO!", + [(atomic_store_8 addr:$dst, GR8 :$src)]>; +def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), + "#RELEASE_MOV PSEUDO!", + [(atomic_store_16 addr:$dst, GR16:$src)]>; +def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), + "#RELEASE_MOV PSEUDO!", + [(atomic_store_32 addr:$dst, GR32:$src)]>; +def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), + "#RELEASE_MOV PSEUDO!", + [(atomic_store_64 addr:$dst, GR64:$src)]>; + +//===----------------------------------------------------------------------===// +// Conditional Move Pseudo Instructions. +//===----------------------------------------------------------------------===// + + +// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after +// instruction selection into a branch sequence. +let Uses = [EFLAGS], usesCustomInserter = 1 in { + def CMOV_FR32 : I<0, Pseudo, + (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), + "#CMOV_FR32 PSEUDO!", + [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, + EFLAGS))]>; + def CMOV_FR64 : I<0, Pseudo, + (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), + "#CMOV_FR64 PSEUDO!", + [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, + EFLAGS))]>; + def CMOV_V4F32 : I<0, Pseudo, + (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), + "#CMOV_V4F32 PSEUDO!", + [(set VR128:$dst, + (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V2F64 : I<0, Pseudo, + (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), + "#CMOV_V2F64 PSEUDO!", + [(set VR128:$dst, + (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V2I64 : I<0, Pseudo, + (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), + "#CMOV_V2I64 PSEUDO!", + [(set VR128:$dst, + (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V8F32 : I<0, Pseudo, + (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), + "#CMOV_V8F32 PSEUDO!", + [(set VR256:$dst, + (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V4F64 : I<0, Pseudo, + (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), + "#CMOV_V4F64 PSEUDO!", + [(set VR256:$dst, + (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V4I64 : I<0, Pseudo, + (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), + "#CMOV_V4I64 PSEUDO!", + [(set VR256:$dst, + (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V8I64 : I<0, Pseudo, + (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), + "#CMOV_V8I64 PSEUDO!", + [(set VR512:$dst, + (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V8F64 : I<0, Pseudo, + (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), + "#CMOV_V8F64 PSEUDO!", + [(set VR512:$dst, + (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, + EFLAGS)))]>; + def CMOV_V16F32 : I<0, Pseudo, + (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), + "#CMOV_V16F32 PSEUDO!", + [(set VR512:$dst, + (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, + EFLAGS)))]>; +} + + +//===----------------------------------------------------------------------===// +// DAG Pattern Matching Rules +//===----------------------------------------------------------------------===// + +// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable +def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; +def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; +def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; +def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; +def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; +def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; + +def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), + (ADD32ri GR32:$src1, tconstpool:$src2)>; +def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), + (ADD32ri GR32:$src1, tjumptable:$src2)>; +def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), + (ADD32ri GR32:$src1, tglobaladdr:$src2)>; +def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), + (ADD32ri GR32:$src1, texternalsym:$src2)>; +def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), + (ADD32ri GR32:$src1, tblockaddress:$src2)>; + +def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), + (MOV32mi addr:$dst, tglobaladdr:$src)>; +def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), + (MOV32mi addr:$dst, texternalsym:$src)>; +def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), + (MOV32mi addr:$dst, tblockaddress:$src)>; + +// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small +// code model mode, should use 'movabs'. FIXME: This is really a hack, the +// 'movabs' predicate should handle this sort of thing. +def : Pat<(i64 (X86Wrapper tconstpool :$dst)), + (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; +def : Pat<(i64 (X86Wrapper tjumptable :$dst)), + (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; +def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), + (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; +def : Pat<(i64 (X86Wrapper texternalsym:$dst)), + (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; +def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), + (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; + +// In kernel code model, we can get the address of a label +// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of +// the MOV64ri32 should accept these. +def : Pat<(i64 (X86Wrapper tconstpool :$dst)), + (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tjumptable :$dst)), + (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), + (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper texternalsym:$dst)), + (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), + (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; + +// If we have small model and -static mode, it is safe to store global addresses +// directly as immediates. FIXME: This is really a hack, the 'imm' predicate +// for MOV64mi32 should handle this sort of thing. +def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tconstpool:$src)>, + Requires<[NearData, IsStatic]>; +def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tjumptable:$src)>, + Requires<[NearData, IsStatic]>; +def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tglobaladdr:$src)>, + Requires<[NearData, IsStatic]>; +def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), + (MOV64mi32 addr:$dst, texternalsym:$src)>, + Requires<[NearData, IsStatic]>; +def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tblockaddress:$src)>, + Requires<[NearData, IsStatic]>; + +// Calls + +// tls has some funny stuff here... +// This corresponds to movabs $foo@tpoff, %rax +def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), + (MOV64ri32 tglobaltlsaddr :$dst)>; +// This corresponds to add $foo@tpoff, %rax +def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), + (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; + + +// Direct PC relative function call for small code model. 32-bit displacement +// sign extended to 64-bit. +def : Pat<(X86call (i64 tglobaladdr:$dst)), + (CALL64pcrel32 tglobaladdr:$dst)>; +def : Pat<(X86call (i64 texternalsym:$dst)), + (CALL64pcrel32 texternalsym:$dst)>; + +// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they +// can never use callee-saved registers. That is the purpose of the GR64_TC +// register classes. +// +// The only volatile register that is never used by the calling convention is +// %r11. This happens when calling a vararg function with 6 arguments. +// +// Match an X86tcret that uses less than 7 volatile registers. +def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), + (X86tcret node:$ptr, node:$off), [{ + // X86tcret args: (*chain, ptr, imm, regs..., glue) + unsigned NumRegs = 0; + for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) + if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) + return false; + return true; +}]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[In32BitMode]>; + +// FIXME: This is disabled for 32-bit PIC mode because the global base +// register which is part of the address mode may be assigned a +// callee-saved register. +def : Pat<(X86tcret (load addr:$dst), imm:$off), + (TCRETURNmi addr:$dst, imm:$off)>, + Requires<[In32BitMode, IsNotPIC]>; + +def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), + (TCRETURNdi texternalsym:$dst, imm:$off)>, + Requires<[In32BitMode]>; + +def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), + (TCRETURNdi texternalsym:$dst, imm:$off)>, + Requires<[In32BitMode]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[In64BitMode]>; + +// Don't fold loads into X86tcret requiring more than 6 regs. +// There wouldn't be enough scratch registers for base+index. +def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), + (TCRETURNmi64 addr:$dst, imm:$off)>, + Requires<[In64BitMode]>; + +def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), + (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, + Requires<[In64BitMode]>; + +def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), + (TCRETURNdi64 texternalsym:$dst, imm:$off)>, + Requires<[In64BitMode]>; + +// Normal calls, with various flavors of addresses. +def : Pat<(X86call (i32 tglobaladdr:$dst)), + (CALLpcrel32 tglobaladdr:$dst)>; +def : Pat<(X86call (i32 texternalsym:$dst)), + (CALLpcrel32 texternalsym:$dst)>; +def : Pat<(X86call (i32 imm:$dst)), + (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; + +// Comparisons. + +// TEST R,R is smaller than CMP R,0 +def : Pat<(X86cmp GR8:$src1, 0), + (TEST8rr GR8:$src1, GR8:$src1)>; +def : Pat<(X86cmp GR16:$src1, 0), + (TEST16rr GR16:$src1, GR16:$src1)>; +def : Pat<(X86cmp GR32:$src1, 0), + (TEST32rr GR32:$src1, GR32:$src1)>; +def : Pat<(X86cmp GR64:$src1, 0), + (TEST64rr GR64:$src1, GR64:$src1)>; + +// Conditional moves with folded loads with operands swapped and conditions +// inverted. +multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, + Instruction Inst64> { + let Predicates = [HasCMov] in { + def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), + (Inst16 GR16:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), + (Inst32 GR32:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), + (Inst64 GR64:$src2, addr:$src1)>; + } +} + +defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; +defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; +defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; +defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; +defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; +defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; +defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; +defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; +defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; +defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; +defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; +defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; +defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; +defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; +defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; +defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; + +// zextload bool -> zextload byte +def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; +def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(zextloadi64i1 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; + +// extload bool -> extload byte +// When extloading from 16-bit and smaller memory locations into 64-bit +// registers, use zero-extending loads so that the entire 64-bit register is +// defined, avoiding partial-register updates. + +def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; +def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; + +// For other extloads, use subregs, since the high contents of the register are +// defined after an extload. +def : Pat<(extloadi64i1 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i8 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i16 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i32 addr:$src), + (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; + +// anyext. Define these to do an explicit zero-extend to +// avoid partial-register updates. +def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG + (MOVZX32rr8 GR8 :$src), sub_16bit)>; +def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; + +// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. +def : Pat<(i32 (anyext GR16:$src)), + (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; + +def : Pat<(i64 (anyext GR8 :$src)), + (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; +def : Pat<(i64 (anyext GR16:$src)), + (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; +def : Pat<(i64 (anyext GR32:$src)), + (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; + + +// Any instruction that defines a 32-bit result leaves the high half of the +// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may +// be copying from a truncate. And x86's cmov doesn't do anything if the +// condition is false. But any other 32-bit operation will zero-extend +// up to 64 bits. +def def32 : PatLeaf<(i32 GR32:$src), [{ + return N->getOpcode() != ISD::TRUNCATE && + N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && + N->getOpcode() != ISD::CopyFromReg && + N->getOpcode() != X86ISD::CMOV; +}]>; + +// In the case of a 32-bit def that is known to implicitly zero-extend, +// we can use a SUBREG_TO_REG. +def : Pat<(i64 (zext def32:$src)), + (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; + +//===----------------------------------------------------------------------===// +// Pattern match OR as ADD +//===----------------------------------------------------------------------===// + +// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be +// 3-addressified into an LEA instruction to avoid copies. However, we also +// want to finally emit these instructions as an or at the end of the code +// generator to make the generated code easier to read. To do this, we select +// into "disjoint bits" pseudo ops. + +// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. +def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) + return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); + + APInt KnownZero0, KnownOne0; + CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0); + APInt KnownZero1, KnownOne1; + CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0); + return (~KnownZero0 & ~KnownZero1) == 0; +}]>; + + +// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. +// Try this before the selecting to OR. +let AddedComplexity = 5, SchedRW = [WriteALU] in { + +let isConvertibleToThreeAddress = 1, + Constraints = "$src1 = $dst", Defs = [EFLAGS] in { +let isCommutable = 1 in { +def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), + "", // orw/addw REG, REG + [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; +def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), + "", // orl/addl REG, REG + [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; +def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), + "", // orq/addq REG, REG + [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; +} // isCommutable + +// NOTE: These are order specific, we want the ri8 forms to be listed +// first so that they are slightly preferred to the ri forms. + +def ADD16ri8_DB : I<0, Pseudo, + (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), + "", // orw/addw REG, imm8 + [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; +def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), + "", // orw/addw REG, imm + [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; + +def ADD32ri8_DB : I<0, Pseudo, + (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), + "", // orl/addl REG, imm8 + [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; +def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), + "", // orl/addl REG, imm + [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; + + +def ADD64ri8_DB : I<0, Pseudo, + (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), + "", // orq/addq REG, imm8 + [(set GR64:$dst, (or_is_add GR64:$src1, + i64immSExt8:$src2))]>; +def ADD64ri32_DB : I<0, Pseudo, + (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), + "", // orq/addq REG, imm + [(set GR64:$dst, (or_is_add GR64:$src1, + i64immSExt32:$src2))]>; +} +} // AddedComplexity, SchedRW + + +//===----------------------------------------------------------------------===// +// Some peepholes +//===----------------------------------------------------------------------===// + +// Odd encoding trick: -128 fits into an 8-bit immediate field while +// +128 doesn't, so in this special case use a sub instead of an add. +def : Pat<(add GR16:$src1, 128), + (SUB16ri8 GR16:$src1, -128)>; +def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), + (SUB16mi8 addr:$dst, -128)>; + +def : Pat<(add GR32:$src1, 128), + (SUB32ri8 GR32:$src1, -128)>; +def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), + (SUB32mi8 addr:$dst, -128)>; + +def : Pat<(add GR64:$src1, 128), + (SUB64ri8 GR64:$src1, -128)>; +def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), + (SUB64mi8 addr:$dst, -128)>; + +// The same trick applies for 32-bit immediate fields in 64-bit +// instructions. +def : Pat<(add GR64:$src1, 0x0000000080000000), + (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; +def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), + (SUB64mi32 addr:$dst, 0xffffffff80000000)>; + +// To avoid needing to materialize an immediate in a register, use a 32-bit and +// with implicit zero-extension instead of a 64-bit and if the immediate has at +// least 32 bits of leading zeros. If in addition the last 32 bits can be +// represented with a sign extension of a 8 bit constant, use that. + +def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), + (SUBREG_TO_REG + (i64 0), + (AND32ri8 + (EXTRACT_SUBREG GR64:$src, sub_32bit), + (i32 (GetLo8XForm imm:$imm))), + sub_32bit)>; + +def : Pat<(and GR64:$src, i64immZExt32:$imm), + (SUBREG_TO_REG + (i64 0), + (AND32ri + (EXTRACT_SUBREG GR64:$src, sub_32bit), + (i32 (GetLo32XForm imm:$imm))), + sub_32bit)>; + + +// r & (2^16-1) ==> movz +def : Pat<(and GR32:$src1, 0xffff), + (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; +// r & (2^8-1) ==> movz +def : Pat<(and GR32:$src1, 0xff), + (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, + GR32_ABCD)), + sub_8bit))>, + Requires<[In32BitMode]>; +// r & (2^8-1) ==> movz +def : Pat<(and GR16:$src1, 0xff), + (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG + (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), + sub_16bit)>, + Requires<[In32BitMode]>; + +// r & (2^32-1) ==> movz +def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), + (SUBREG_TO_REG (i64 0), + (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), + sub_32bit)>; +// r & (2^16-1) ==> movz +def : Pat<(and GR64:$src, 0xffff), + (SUBREG_TO_REG (i64 0), + (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), + sub_32bit)>; +// r & (2^8-1) ==> movz +def : Pat<(and GR64:$src, 0xff), + (SUBREG_TO_REG (i64 0), + (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), + sub_32bit)>; +// r & (2^8-1) ==> movz +def : Pat<(and GR32:$src1, 0xff), + (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, + Requires<[In64BitMode]>; +// r & (2^8-1) ==> movz +def : Pat<(and GR16:$src1, 0xff), + (EXTRACT_SUBREG (MOVZX32rr8 (i8 + (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, + Requires<[In64BitMode]>; + + +// sext_inreg patterns +def : Pat<(sext_inreg GR32:$src, i16), + (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; +def : Pat<(sext_inreg GR32:$src, i8), + (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, + GR32_ABCD)), + sub_8bit))>, + Requires<[In32BitMode]>; + +def : Pat<(sext_inreg GR16:$src, i8), + (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG + (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), + sub_16bit)>, + Requires<[In32BitMode]>; + +def : Pat<(sext_inreg GR64:$src, i32), + (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; +def : Pat<(sext_inreg GR64:$src, i16), + (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; +def : Pat<(sext_inreg GR64:$src, i8), + (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; +def : Pat<(sext_inreg GR32:$src, i8), + (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, + Requires<[In64BitMode]>; +def : Pat<(sext_inreg GR16:$src, i8), + (EXTRACT_SUBREG (MOVSX32rr8 + (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, + Requires<[In64BitMode]>; + +// sext, sext_load, zext, zext_load +def: Pat<(i16 (sext GR8:$src)), + (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; +def: Pat<(sextloadi16i8 addr:$src), + (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; +def: Pat<(i16 (zext GR8:$src)), + (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; +def: Pat<(zextloadi16i8 addr:$src), + (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; + +// trunc patterns +def : Pat<(i16 (trunc GR32:$src)), + (EXTRACT_SUBREG GR32:$src, sub_16bit)>; +def : Pat<(i8 (trunc GR32:$src)), + (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), + sub_8bit)>, + Requires<[In32BitMode]>; +def : Pat<(i8 (trunc GR16:$src)), + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit)>, + Requires<[In32BitMode]>; +def : Pat<(i32 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_32bit)>; +def : Pat<(i16 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_16bit)>; +def : Pat<(i8 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_8bit)>; +def : Pat<(i8 (trunc GR32:$src)), + (EXTRACT_SUBREG GR32:$src, sub_8bit)>, + Requires<[In64BitMode]>; +def : Pat<(i8 (trunc GR16:$src)), + (EXTRACT_SUBREG GR16:$src, sub_8bit)>, + Requires<[In64BitMode]>; + +// h-register tricks +def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi)>, + Requires<[In32BitMode]>; +def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), + (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), + sub_8bit_hi)>, + Requires<[In32BitMode]>; +def : Pat<(srl GR16:$src, (i8 8)), + (EXTRACT_SUBREG + (MOVZX32rr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi)), + sub_16bit)>, + Requires<[In32BitMode]>; +def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), + (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, + GR16_ABCD)), + sub_8bit_hi))>, + Requires<[In32BitMode]>; +def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), + (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, + GR16_ABCD)), + sub_8bit_hi))>, + Requires<[In32BitMode]>; +def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), + (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, + GR32_ABCD)), + sub_8bit_hi))>, + Requires<[In32BitMode]>; +def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), + (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, + GR32_ABCD)), + sub_8bit_hi))>, + Requires<[In32BitMode]>; + +// h-register tricks. +// For now, be conservative on x86-64 and use an h-register extract only if the +// value is immediately zero-extended or stored, which are somewhat common +// cases. This uses a bunch of code to prevent a register requiring a REX prefix +// from being allocated in the same instruction as the h register, as there's +// currently no way to describe this requirement to the register allocator. + +// h-register extract and zero-extend. +def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), + (SUBREG_TO_REG + (i64 0), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), + sub_8bit_hi)), + sub_32bit)>; +def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), + (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, + GR32_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(srl GR16:$src, (i8 8)), + (EXTRACT_SUBREG + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi)), + sub_16bit)>, + Requires<[In64BitMode]>; +def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), + (SUBREG_TO_REG + (i64 0), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi)), + sub_32bit)>; +def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), + (SUBREG_TO_REG + (i64 0), + (MOVZX32_NOREXrr8 + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi)), + sub_32bit)>; + +// h-register extract and store. +def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), + sub_8bit_hi))>; +def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit_hi))>, + Requires<[In64BitMode]>; + + +// (shl x, 1) ==> (add x, x) +// Note that if x is undef (immediate or otherwise), we could theoretically +// end up with the two uses of x getting different values, producing a result +// where the least significant bit is not 0. However, the probability of this +// happening is considered low enough that this is officially not a +// "real problem". +def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; +def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; +def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; +def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; + +// Helper imms that check if a mask doesn't change significant shift bits. +def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>; +def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>; + +// (shl x (and y, 31)) ==> (shl x, y) +def : Pat<(shl GR8:$src1, (and CL, immShift32)), + (SHL8rCL GR8:$src1)>; +def : Pat<(shl GR16:$src1, (and CL, immShift32)), + (SHL16rCL GR16:$src1)>; +def : Pat<(shl GR32:$src1, (and CL, immShift32)), + (SHL32rCL GR32:$src1)>; +def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHL8mCL addr:$dst)>; +def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHL16mCL addr:$dst)>; +def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHL32mCL addr:$dst)>; + +def : Pat<(srl GR8:$src1, (and CL, immShift32)), + (SHR8rCL GR8:$src1)>; +def : Pat<(srl GR16:$src1, (and CL, immShift32)), + (SHR16rCL GR16:$src1)>; +def : Pat<(srl GR32:$src1, (and CL, immShift32)), + (SHR32rCL GR32:$src1)>; +def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHR8mCL addr:$dst)>; +def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHR16mCL addr:$dst)>; +def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), + (SHR32mCL addr:$dst)>; + +def : Pat<(sra GR8:$src1, (and CL, immShift32)), + (SAR8rCL GR8:$src1)>; +def : Pat<(sra GR16:$src1, (and CL, immShift32)), + (SAR16rCL GR16:$src1)>; +def : Pat<(sra GR32:$src1, (and CL, immShift32)), + (SAR32rCL GR32:$src1)>; +def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), + (SAR8mCL addr:$dst)>; +def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), + (SAR16mCL addr:$dst)>; +def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), + (SAR32mCL addr:$dst)>; + +// (shl x (and y, 63)) ==> (shl x, y) +def : Pat<(shl GR64:$src1, (and CL, immShift64)), + (SHL64rCL GR64:$src1)>; +def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), + (SHL64mCL addr:$dst)>; + +def : Pat<(srl GR64:$src1, (and CL, immShift64)), + (SHR64rCL GR64:$src1)>; +def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), + (SHR64mCL addr:$dst)>; + +def : Pat<(sra GR64:$src1, (and CL, immShift64)), + (SAR64rCL GR64:$src1)>; +def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst), + (SAR64mCL addr:$dst)>; + + +// (anyext (setcc_carry)) -> (setcc_carry) +def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; + + + + +//===----------------------------------------------------------------------===// +// EFLAGS-defining Patterns +//===----------------------------------------------------------------------===// + +// add reg, reg +def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; +def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; + +// add reg, mem +def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), + (ADD8rm GR8:$src1, addr:$src2)>; +def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), + (ADD16rm GR16:$src1, addr:$src2)>; +def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), + (ADD32rm GR32:$src1, addr:$src2)>; + +// add reg, imm +def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; +def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; +def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; +def : Pat<(add GR16:$src1, i16immSExt8:$src2), + (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(add GR32:$src1, i32immSExt8:$src2), + (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; + +// sub reg, reg +def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; +def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; + +// sub reg, mem +def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), + (SUB8rm GR8:$src1, addr:$src2)>; +def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), + (SUB16rm GR16:$src1, addr:$src2)>; +def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), + (SUB32rm GR32:$src1, addr:$src2)>; + +// sub reg, imm +def : Pat<(sub GR8:$src1, imm:$src2), + (SUB8ri GR8:$src1, imm:$src2)>; +def : Pat<(sub GR16:$src1, imm:$src2), + (SUB16ri GR16:$src1, imm:$src2)>; +def : Pat<(sub GR32:$src1, imm:$src2), + (SUB32ri GR32:$src1, imm:$src2)>; +def : Pat<(sub GR16:$src1, i16immSExt8:$src2), + (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(sub GR32:$src1, i32immSExt8:$src2), + (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; + +// sub 0, reg +def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; +def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; +def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; +def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; + +// mul reg, reg +def : Pat<(mul GR16:$src1, GR16:$src2), + (IMUL16rr GR16:$src1, GR16:$src2)>; +def : Pat<(mul GR32:$src1, GR32:$src2), + (IMUL32rr GR32:$src1, GR32:$src2)>; + +// mul reg, mem +def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), + (IMUL16rm GR16:$src1, addr:$src2)>; +def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), + (IMUL32rm GR32:$src1, addr:$src2)>; + +// mul reg, imm +def : Pat<(mul GR16:$src1, imm:$src2), + (IMUL16rri GR16:$src1, imm:$src2)>; +def : Pat<(mul GR32:$src1, imm:$src2), + (IMUL32rri GR32:$src1, imm:$src2)>; +def : Pat<(mul GR16:$src1, i16immSExt8:$src2), + (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(mul GR32:$src1, i32immSExt8:$src2), + (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; + +// reg = mul mem, imm +def : Pat<(mul (loadi16 addr:$src1), imm:$src2), + (IMUL16rmi addr:$src1, imm:$src2)>; +def : Pat<(mul (loadi32 addr:$src1), imm:$src2), + (IMUL32rmi addr:$src1, imm:$src2)>; +def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), + (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; +def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), + (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; + +// Patterns for nodes that do not produce flags, for instructions that do. + +// addition +def : Pat<(add GR64:$src1, GR64:$src2), + (ADD64rr GR64:$src1, GR64:$src2)>; +def : Pat<(add GR64:$src1, i64immSExt8:$src2), + (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(add GR64:$src1, i64immSExt32:$src2), + (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; +def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), + (ADD64rm GR64:$src1, addr:$src2)>; + +// subtraction +def : Pat<(sub GR64:$src1, GR64:$src2), + (SUB64rr GR64:$src1, GR64:$src2)>; +def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), + (SUB64rm GR64:$src1, addr:$src2)>; +def : Pat<(sub GR64:$src1, i64immSExt8:$src2), + (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(sub GR64:$src1, i64immSExt32:$src2), + (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// Multiply +def : Pat<(mul GR64:$src1, GR64:$src2), + (IMUL64rr GR64:$src1, GR64:$src2)>; +def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), + (IMUL64rm GR64:$src1, addr:$src2)>; +def : Pat<(mul GR64:$src1, i64immSExt8:$src2), + (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(mul GR64:$src1, i64immSExt32:$src2), + (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; +def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), + (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; +def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), + (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; + +// Increment reg. +def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>; +def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>; +def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>; +def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; + +// Decrement reg. +def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>; +def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>; +def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>; +def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; + +// or reg/reg. +def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; +def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; +def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; + +// or reg/mem +def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), + (OR8rm GR8:$src1, addr:$src2)>; +def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), + (OR16rm GR16:$src1, addr:$src2)>; +def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), + (OR32rm GR32:$src1, addr:$src2)>; +def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), + (OR64rm GR64:$src1, addr:$src2)>; + +// or reg/imm +def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; +def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; +def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; +def : Pat<(or GR16:$src1, i16immSExt8:$src2), + (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(or GR32:$src1, i32immSExt8:$src2), + (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(or GR64:$src1, i64immSExt8:$src2), + (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(or GR64:$src1, i64immSExt32:$src2), + (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// xor reg/reg +def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; +def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; +def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; + +// xor reg/mem +def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), + (XOR8rm GR8:$src1, addr:$src2)>; +def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), + (XOR16rm GR16:$src1, addr:$src2)>; +def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), + (XOR32rm GR32:$src1, addr:$src2)>; +def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), + (XOR64rm GR64:$src1, addr:$src2)>; + +// xor reg/imm +def : Pat<(xor GR8:$src1, imm:$src2), + (XOR8ri GR8:$src1, imm:$src2)>; +def : Pat<(xor GR16:$src1, imm:$src2), + (XOR16ri GR16:$src1, imm:$src2)>; +def : Pat<(xor GR32:$src1, imm:$src2), + (XOR32ri GR32:$src1, imm:$src2)>; +def : Pat<(xor GR16:$src1, i16immSExt8:$src2), + (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(xor GR32:$src1, i32immSExt8:$src2), + (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(xor GR64:$src1, i64immSExt8:$src2), + (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(xor GR64:$src1, i64immSExt32:$src2), + (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// and reg/reg +def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; +def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; +def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; + +// and reg/mem +def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), + (AND8rm GR8:$src1, addr:$src2)>; +def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), + (AND16rm GR16:$src1, addr:$src2)>; +def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), + (AND32rm GR32:$src1, addr:$src2)>; +def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), + (AND64rm GR64:$src1, addr:$src2)>; + +// and reg/imm +def : Pat<(and GR8:$src1, imm:$src2), + (AND8ri GR8:$src1, imm:$src2)>; +def : Pat<(and GR16:$src1, imm:$src2), + (AND16ri GR16:$src1, imm:$src2)>; +def : Pat<(and GR32:$src1, imm:$src2), + (AND32ri GR32:$src1, imm:$src2)>; +def : Pat<(and GR16:$src1, i16immSExt8:$src2), + (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(and GR32:$src1, i32immSExt8:$src2), + (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(and GR64:$src1, i64immSExt8:$src2), + (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(and GR64:$src1, i64immSExt32:$src2), + (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// Bit scan instruction patterns to match explicit zero-undef behavior. +def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; +def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; +def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; +def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; +def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; +def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; |