aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrCompiler.td')
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrCompiler.td1841
1 files changed, 1841 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
new file mode 100644
index 000000000000..7d10b67bfe6d
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
@@ -0,0 +1,1841 @@
+//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the various pseudo instructions used by the compiler,
+// as well as Pat patterns used during instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Pattern Matching Support
+
+def GetLo32XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 32 bits.
+ return getI32Imm((unsigned)N->getZExtValue());
+}]>;
+
+def GetLo8XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 8 bits.
+ return getI8Imm((uint8_t)N->getZExtValue());
+}]>;
+
+
+//===----------------------------------------------------------------------===//
+// Random Pseudo Instructions.
+
+// PIC base construction. This expands to code that looks like this:
+// call $next_inst
+// popl %destreg"
+let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
+ def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
+ "", []>;
+
+
+// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [ESP, EFLAGS], Uses = [ESP] in {
+def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(X86callseq_start timm:$amt)]>,
+ Requires<[In32BitMode]>;
+def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[In32BitMode]>;
+}
+
+// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [RSP, EFLAGS], Uses = [RSP] in {
+def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(X86callseq_start timm:$amt)]>,
+ Requires<[In64BitMode]>;
+def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[In64BitMode]>;
+}
+
+
+
+// x86-64 va_start lowering magic.
+let usesCustomInserter = 1 in {
+def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
+ (outs),
+ (ins GR8:$al,
+ i64imm:$regsavefi, i64imm:$offset,
+ variable_ops),
+ "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
+ [(X86vastart_save_xmm_regs GR8:$al,
+ imm:$regsavefi,
+ imm:$offset)]>;
+
+// The VAARG_64 pseudo-instruction takes the address of the va_list,
+// and places the address of the next argument into a register.
+let Defs = [EFLAGS] in
+def VAARG_64 : I<0, Pseudo,
+ (outs GR64:$dst),
+ (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
+ "#VAARG_64 $dst, $ap, $size, $mode, $align",
+ [(set GR64:$dst,
+ (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
+ (implicit EFLAGS)]>;
+
+// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
+// targets. These calls are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+ def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
+ "# dynamic stack allocation",
+ [(X86WinAlloca)]>;
+
+// When using segmented stacks these are lowered into instructions which first
+// check if the current stacklet has enough free memory. If it does, memory is
+// allocated by bumping the stack pointer. Otherwise memory is allocated from
+// the heap.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR32:$dst,
+ (X86SegAlloca GR32:$size))]>,
+ Requires<[In32BitMode]>;
+
+let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
+def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR64:$dst,
+ (X86SegAlloca GR64:$size))]>,
+ Requires<[In64BitMode]>;
+}
+
+// The MSVC runtime contains an _ftol2 routine for converting floating-point
+// to integer values. It has a strange calling convention: the input is
+// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
+// used as a temporary register. No other registers (aside from flags) are
+// touched.
+// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
+// variant is unnecessary.
+
+let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
+ def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP32:$src)]>,
+ Requires<[In32BitMode]>;
+
+ def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
+ "# win32 fptoui",
+ [(X86WinFTOL RFP64:$src)]>,
+ Requires<[In32BitMode]>;
+}
+
+//===----------------------------------------------------------------------===//
+// EH Pseudo Instructions
+//
+let SchedRW = [WriteSystem] in {
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
+
+}
+
+let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In32BitMode]>;
+ def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
+ "#EH_SJLJ_SETJMP64",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In64BitMode]>;
+ let isTerminator = 1 in {
+ def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In32BitMode]>;
+ def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
+ "#EH_SJLJ_LONGJMP64",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In64BitMode]>;
+ }
+}
+} // SchedRW
+
+let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
+ def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
+ "#EH_SjLj_Setup\t$dst", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by segmented stacks.
+//
+
+// This is lowered into a RET instruction by MCInstLower. We need
+// this so that we don't have to have a MachineBasicBlock which ends
+// with a RET and also has successors.
+let isPseudo = 1 in {
+def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
+ "", []>;
+
+// This instruction is lowered to a RET followed by a MOV. The two
+// instructions are not generated on a higher level since then the
+// verifier sees a MachineBasicBlock ending with a non-terminator.
+def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
+ "", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Alias Instructions
+//===----------------------------------------------------------------------===//
+
+// Alias instruction mapping movr0 to xor.
+// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
+// FIXME: Set encoding to pseudo.
+let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isCodeGenOnly = 1 in
+def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
+
+// Other widths can also make use of the 32-bit xor, which may have a smaller
+// encoding and avoid partial register updates.
+def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
+def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
+def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
+ let AddedComplexity = 20;
+}
+
+// Materialize i64 constant where top 32-bits are zero. This could theoretically
+// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
+// that would make it more difficult to rematerialize.
+let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isCodeGenOnly = 1, neverHasSideEffects = 1 in
+def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
+ "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
+
+// This 64-bit pseudo-move can be used for both a 64-bit constant that is
+// actually the zero-extension of a 32-bit constant, and for labels in the
+// x86-64 small code model.
+def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
+
+let AddedComplexity = 1 in
+def : Pat<(i64 mov64imm32:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
+
+// Use sbb to materialize carry bit.
+let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
+// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
+// However, Pat<> can't replicate the destination reg into the inputs of the
+// result.
+def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
+ [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
+ [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
+ [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+} // isCodeGenOnly
+
+
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
+// will be eliminated and that the sbb can be extended up to a wider type. When
+// this happens, it is great. However, if we are left with an 8-bit sbb and an
+// and, we might as well just match it as a setb.
+def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
+ (SETBr)>;
+
+// (add OP, SETB) -> (adc OP, 0)
+def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
+ (ADC64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETB) -> (sbb OP, 0)
+def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETCC_CARRY) -> (adc OP, 0)
+def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC64ri8 GR64:$op, 0)>;
+
+//===----------------------------------------------------------------------===//
+// String Pseudo Instructions
+//
+let SchedRW = [WriteMicrocoded] in {
+let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
+def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[In32BitMode]>;
+def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
+ Requires<[In32BitMode]>;
+def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
+ Requires<[In32BitMode]>;
+}
+
+let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
+def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
+ Requires<[In64BitMode]>;
+def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
+ [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
+ Requires<[In64BitMode]>;
+}
+
+// FIXME: Should use "(X86rep_stos AL)" as the pattern.
+let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,ECX,EDI] in
+ def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[In32BitMode]>;
+ let Uses = [AX,ECX,EDI] in
+ def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
+ Requires<[In32BitMode]>;
+ let Uses = [EAX,ECX,EDI] in
+ def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP,
+ Requires<[In32BitMode]>;
+}
+
+let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,RCX,RDI] in
+ def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+ let Uses = [AX,RCX,RDI] in
+ def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
+ Requires<[In64BitMode]>;
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
+ [(X86rep_stos i64)], IIC_REP_STOS>, REP,
+ Requires<[In64BitMode]>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Thread Local Storage Instructions
+//
+
+// ELF TLS Support
+// All calls clobber the non-callee saved registers. ESP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [ESP] in {
+def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_addr32",
+ [(X86tlsaddr tls32addr:$sym)]>,
+ Requires<[In32BitMode]>;
+def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_base_addr32",
+ [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
+ Requires<[In32BitMode]>;
+}
+
+// All calls clobber the non-callee saved registers. RSP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
+ Uses = [RSP] in {
+def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_addr64",
+ [(X86tlsaddr tls64addr:$sym)]>,
+ Requires<[In64BitMode]>;
+def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_base_addr64",
+ [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
+ Requires<[In64BitMode]>;
+}
+
+// Darwin TLS Support
+// For i386, the address of the thunk is passed on the stack, on return the
+// address of the variable is in %eax. %ecx is trashed during the function
+// call. All other registers are preserved.
+let Defs = [EAX, ECX, EFLAGS],
+ Uses = [ESP],
+ usesCustomInserter = 1 in
+def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLSCall_32",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[In32BitMode]>;
+
+// For x86_64, the address of the thunk is passed in %rdi, on return
+// the address of the variable is in %rax. All other registers are preserved.
+let Defs = [RAX, EFLAGS],
+ Uses = [RSP, RDI],
+ usesCustomInserter = 1 in
+def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLSCall_64",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[In64BitMode]>;
+
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions
+
+// X86 doesn't have 8-bit conditional moves. Use a customInserter to
+// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
+// however that requires promoting the operands, and can induce additional
+// i8 register pressure.
+let usesCustomInserter = 1, Uses = [EFLAGS] in {
+def CMOV_GR8 : I<0, Pseudo,
+ (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
+ "#CMOV_GR8 PSEUDO!",
+ [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
+ imm:$cond, EFLAGS))]>;
+
+let Predicates = [NoCMov] in {
+def CMOV_GR32 : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
+ "#CMOV_GR32* PSEUDO!",
+ [(set GR32:$dst,
+ (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
+def CMOV_GR16 : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
+ "#CMOV_GR16* PSEUDO!",
+ [(set GR16:$dst,
+ (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
+} // Predicates = [NoCMov]
+
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE1.
+let Predicates = [FPStackf32] in
+def CMOV_RFP32 : I<0, Pseudo,
+ (outs RFP32:$dst),
+ (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
+ "#CMOV_RFP32 PSEUDO!",
+ [(set RFP32:$dst,
+ (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
+ EFLAGS))]>;
+// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+// SSE2.
+let Predicates = [FPStackf64] in
+def CMOV_RFP64 : I<0, Pseudo,
+ (outs RFP64:$dst),
+ (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
+ "#CMOV_RFP64 PSEUDO!",
+ [(set RFP64:$dst,
+ (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
+ EFLAGS))]>;
+def CMOV_RFP80 : I<0, Pseudo,
+ (outs RFP80:$dst),
+ (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
+ "#CMOV_RFP80 PSEUDO!",
+ [(set RFP80:$dst,
+ (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
+ EFLAGS))]>;
+} // UsesCustomInserter = 1, Uses = [EFLAGS]
+
+
+//===----------------------------------------------------------------------===//
+// Atomic Instruction Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+// Pseudo atomic instructions
+
+multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
+ let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
+ let Defs = [EFLAGS, AL] in
+ def NAME#8 : I<0, Pseudo, (outs GR8:$dst),
+ (ins i8mem:$ptr, GR8:$val),
+ !strconcat(mnemonic, "8 PSEUDO!"), []>;
+ let Defs = [EFLAGS, AX] in
+ def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
+ (ins i16mem:$ptr, GR16:$val),
+ !strconcat(mnemonic, "16 PSEUDO!"), []>;
+ let Defs = [EFLAGS, EAX] in
+ def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
+ (ins i32mem:$ptr, GR32:$val),
+ !strconcat(mnemonic, "32 PSEUDO!"), []>;
+ let Defs = [EFLAGS, RAX] in
+ def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
+ (ins i64mem:$ptr, GR64:$val),
+ !strconcat(mnemonic, "64 PSEUDO!"), []>;
+ }
+}
+
+multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
+ def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
+ (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
+ def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
+ (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
+ def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
+ (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
+ def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
+ (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
+}
+
+// Atomic exchange, and, or, xor
+defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
+defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
+defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
+defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
+defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
+defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
+defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
+defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
+
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
+defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
+
+multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
+ let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
+ mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
+ def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
+ (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
+ !strconcat(mnemonic, "6432 PSEUDO!"), []>;
+}
+
+defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
+defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
+defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
+defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
+defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
+defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
+defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
+defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
+defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
+defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
+defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
+
+//===----------------------------------------------------------------------===//
+// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+// FIXME: Use normal instructions and add lock prefix dynamically.
+
+// Memory barriers
+
+// TODO: Get this to fold the constant into the instruction.
+let isCodeGenOnly = 1, Defs = [EFLAGS] in
+def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
+ "or{l}\t{$zero, $dst|$dst, $zero}",
+ [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK,
+ Sched<[WriteALULd, WriteRMW]>;
+
+let hasSideEffects = 1 in
+def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
+ "#MEMBARRIER",
+ [(X86MemBarrier)]>, Sched<[WriteLoad]>;
+
+// RegOpc corresponds to the mr version of the instruction
+// ImmOpc corresponds to the mi version of the instruction
+// ImmOpc8 corresponds to the mi8 version of the instruction
+// ImmMod corresponds to the instruction format of the mi and mi8 versions
+multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
+ Format ImmMod, string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
+ MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, OpSize, LOCK;
+def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_NONMEM>, LOCK;
+
+def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
+ ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize, LOCK;
+
+def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, OpSize, LOCK;
+def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
+
+}
+
+}
+
+defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
+defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
+defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
+defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
+defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
+
+// Optimized codegen when the non-memory output is not used.
+multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
+ !strconcat(mnemonic, "{b}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
+ !strconcat(mnemonic, "{w}\t$dst"),
+ [], IIC_UNARY_MEM>, OpSize, LOCK;
+def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
+ !strconcat(mnemonic, "{l}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
+ !strconcat(mnemonic, "{q}\t$dst"),
+ [], IIC_UNARY_MEM>, LOCK;
+}
+}
+
+defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
+defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
+
+// Atomic compare and swap.
+multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
+ SDPatternOperator frag, X86MemOperand x86memop,
+ InstrItinClass itin> {
+let isCodeGenOnly = 1 in {
+ def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
+ !strconcat(mnemonic, "\t$ptr"),
+ [(frag addr:$ptr)], itin>, TB, LOCK;
+}
+}
+
+multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic, SDPatternOperator frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
+ let Defs = [AL, EFLAGS], Uses = [AL] in
+ def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
+ !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
+ let Defs = [AX, EFLAGS], Uses = [AX] in
+ def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
+ !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
+ let Defs = [EAX, EFLAGS], Uses = [EAX] in
+ def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
+ !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
+ let Defs = [RAX, EFLAGS], Uses = [RAX] in
+ def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
+ !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
+}
+}
+
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
+ SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
+ X86cas8, i64mem,
+ IIC_CMPX_LOCK_8B>;
+}
+
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
+ Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
+ X86cas16, i128mem,
+ IIC_CMPX_LOCK_16B>, REX_W;
+}
+
+defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
+ X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
+
+// Atomic exchange and add
+multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
+ string frag,
+ InstrItinClass itin8, InstrItinClass itin> {
+ let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+ def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
+ (ins GR8:$val, i8mem:$ptr),
+ !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
+ [(set GR8:$dst,
+ (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
+ itin8>;
+ def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$val, i16mem:$ptr),
+ !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR16:$dst,
+ (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
+ itin>, OpSize;
+ def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$val, i32mem:$ptr),
+ !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR32:$dst,
+ (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
+ itin>;
+ def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$val, i64mem:$ptr),
+ !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR64:$dst,
+ (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
+ itin>;
+ }
+}
+
+defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
+ IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
+ TB, LOCK;
+
+def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
+def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
+def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
+def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
+
+def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_8 addr:$dst, GR8 :$src)]>;
+def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_16 addr:$dst, GR16:$src)]>;
+def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_32 addr:$dst, GR32:$src)]>;
+def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
+ "#RELEASE_MOV PSEUDO!",
+ [(atomic_store_64 addr:$dst, GR64:$src)]>;
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions.
+//===----------------------------------------------------------------------===//
+
+
+// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let Uses = [EFLAGS], usesCustomInserter = 1 in {
+ def CMOV_FR32 : I<0, Pseudo,
+ (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
+ "#CMOV_FR32 PSEUDO!",
+ [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_FR64 : I<0, Pseudo,
+ (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
+ "#CMOV_FR64 PSEUDO!",
+ [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
+ EFLAGS))]>;
+ def CMOV_V4F32 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V4F32 PSEUDO!",
+ [(set VR128:$dst,
+ (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2F64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2F64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V2I64 : I<0, Pseudo,
+ (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
+ "#CMOV_V2I64 PSEUDO!",
+ [(set VR128:$dst,
+ (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F32 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V8F32 PSEUDO!",
+ [(set VR256:$dst,
+ (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4F64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4F64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V4I64 : I<0, Pseudo,
+ (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
+ "#CMOV_V4I64 PSEUDO!",
+ [(set VR256:$dst,
+ (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8I64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8I64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V8F64 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V8F64 PSEUDO!",
+ [(set VR512:$dst,
+ (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+ def CMOV_V16F32 : I<0, Pseudo,
+ (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
+ "#CMOV_V16F32 PSEUDO!",
+ [(set VR512:$dst,
+ (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
+ EFLAGS)))]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// DAG Pattern Matching Rules
+//===----------------------------------------------------------------------===//
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
+def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
+def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
+def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
+def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
+
+def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
+ (ADD32ri GR32:$src1, tconstpool:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
+ (ADD32ri GR32:$src1, tjumptable:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
+ (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
+ (ADD32ri GR32:$src1, texternalsym:$src2)>;
+def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
+ (ADD32ri GR32:$src1, tblockaddress:$src2)>;
+
+def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tglobaladdr:$src)>;
+def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV32mi addr:$dst, texternalsym:$src)>;
+def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV32mi addr:$dst, tblockaddress:$src)>;
+
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
+// code model mode, should use 'movabs'. FIXME: This is really a hack, the
+// 'movabs' predicate should handle this sort of thing.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
+
+// In kernel code model, we can get the address of a label
+// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri32 should accept these.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
+
+// If we have small model and -static mode, it is safe to store global addresses
+// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
+// for MOV64mi32 should handle this sort of thing.
+def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tconstpool:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tjumptable:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, texternalsym:$src)>,
+ Requires<[NearData, IsStatic]>;
+def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tblockaddress:$src)>,
+ Requires<[NearData, IsStatic]>;
+
+// Calls
+
+// tls has some funny stuff here...
+// This corresponds to movabs $foo@tpoff, %rax
+def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
+ (MOV64ri32 tglobaltlsaddr :$dst)>;
+// This corresponds to add $foo@tpoff, %rax
+def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
+ (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
+
+
+// Direct PC relative function call for small code model. 32-bit displacement
+// sign extended to 64-bit.
+def : Pat<(X86call (i64 tglobaladdr:$dst)),
+ (CALL64pcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i64 texternalsym:$dst)),
+ (CALL64pcrel32 texternalsym:$dst)>;
+
+// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
+// can never use callee-saved registers. That is the purpose of the GR64_TC
+// register classes.
+//
+// The only volatile register that is never used by the calling convention is
+// %r11. This happens when calling a vararg function with 6 arguments.
+//
+// Match an X86tcret that uses less than 7 volatile registers.
+def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
+ (X86tcret node:$ptr, node:$off), [{
+ // X86tcret args: (*chain, ptr, imm, regs..., glue)
+ unsigned NumRegs = 0;
+ for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
+ if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
+ return false;
+ return true;
+}]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In32BitMode]>;
+
+// FIXME: This is disabled for 32-bit PIC mode because the global base
+// register which is part of the address mode may be assigned a
+// callee-saved register.
+def : Pat<(X86tcret (load addr:$dst), imm:$off),
+ (TCRETURNmi addr:$dst, imm:$off)>,
+ Requires<[In32BitMode, IsNotPIC]>;
+
+def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[In32BitMode]>;
+
+def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[In32BitMode]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+// Don't fold loads into X86tcret requiring more than 6 regs.
+// There wouldn't be enough scratch registers for base+index.
+def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
+ (TCRETURNmi64 addr:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
+ (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
+ Requires<[In64BitMode]>;
+
+// Normal calls, with various flavors of addresses.
+def : Pat<(X86call (i32 tglobaladdr:$dst)),
+ (CALLpcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i32 texternalsym:$dst)),
+ (CALLpcrel32 texternalsym:$dst)>;
+def : Pat<(X86call (i32 imm:$dst)),
+ (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
+
+// Comparisons.
+
+// TEST R,R is smaller than CMP R,0
+def : Pat<(X86cmp GR8:$src1, 0),
+ (TEST8rr GR8:$src1, GR8:$src1)>;
+def : Pat<(X86cmp GR16:$src1, 0),
+ (TEST16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(X86cmp GR32:$src1, 0),
+ (TEST32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(X86cmp GR64:$src1, 0),
+ (TEST64rr GR64:$src1, GR64:$src1)>;
+
+// Conditional moves with folded loads with operands swapped and conditions
+// inverted.
+multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
+ Instruction Inst64> {
+ let Predicates = [HasCMov] in {
+ def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
+ (Inst16 GR16:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
+ (Inst32 GR32:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
+ (Inst64 GR64:$src2, addr:$src1)>;
+ }
+}
+
+defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
+defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
+defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
+defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
+defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
+defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
+defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
+defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
+defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
+defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
+defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
+defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
+defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
+defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
+defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
+defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
+
+// zextload bool -> zextload byte
+def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(zextloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+
+// extload bool -> extload byte
+// When extloading from 16-bit and smaller memory locations into 64-bit
+// registers, use zero-extending loads so that the entire 64-bit register is
+// defined, avoiding partial-register updates.
+
+def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
+
+// For other extloads, use subregs, since the high contents of the register are
+// defined after an extload.
+def : Pat<(extloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i8 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i16 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i32 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
+
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
+ (MOVZX32rr8 GR8 :$src), sub_16bit)>;
+def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
+
+// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
+def : Pat<(i32 (anyext GR16:$src)),
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
+
+def : Pat<(i64 (anyext GR8 :$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR16:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+
+// Any instruction that defines a 32-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. And x86's cmov doesn't do anything if the
+// condition is false. But any other 32-bit operation will zero-extend
+// up to 64 bits.
+def def32 : PatLeaf<(i32 GR32:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != X86ISD::CMOV;
+}]>;
+
+// In the case of a 32-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i64 (zext def32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+//===----------------------------------------------------------------------===//
+// Pattern match OR as ADD
+//===----------------------------------------------------------------------===//
+
+// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
+// 3-addressified into an LEA instruction to avoid copies. However, we also
+// want to finally emit these instructions as an or at the end of the code
+// generator to make the generated code easier to read. To do this, we select
+// into "disjoint bits" pseudo ops.
+
+// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
+def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
+
+ APInt KnownZero0, KnownOne0;
+ CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
+ APInt KnownZero1, KnownOne1;
+ CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
+ return (~KnownZero0 & ~KnownZero1) == 0;
+}]>;
+
+
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+// Try this before the selecting to OR.
+let AddedComplexity = 5, SchedRW = [WriteALU] in {
+
+let isConvertibleToThreeAddress = 1,
+ Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
+let isCommutable = 1 in {
+def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
+ "", // orw/addw REG, REG
+ [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
+def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "", // orl/addl REG, REG
+ [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
+def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "", // orq/addq REG, REG
+ [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
+} // isCommutable
+
+// NOTE: These are order specific, we want the ri8 forms to be listed
+// first so that they are slightly preferred to the ri forms.
+
+def ADD16ri8_DB : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "", // orw/addw REG, imm8
+ [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
+def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "", // orw/addw REG, imm
+ [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
+
+def ADD32ri8_DB : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "", // orl/addl REG, imm8
+ [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
+def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "", // orl/addl REG, imm
+ [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
+
+
+def ADD64ri8_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "", // orq/addq REG, imm8
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt8:$src2))]>;
+def ADD64ri32_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "", // orq/addq REG, imm
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt32:$src2))]>;
+}
+} // AddedComplexity, SchedRW
+
+
+//===----------------------------------------------------------------------===//
+// Some peepholes
+//===----------------------------------------------------------------------===//
+
+// Odd encoding trick: -128 fits into an 8-bit immediate field while
+// +128 doesn't, so in this special case use a sub instead of an add.
+def : Pat<(add GR16:$src1, 128),
+ (SUB16ri8 GR16:$src1, -128)>;
+def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
+ (SUB16mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR32:$src1, 128),
+ (SUB32ri8 GR32:$src1, -128)>;
+def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
+ (SUB32mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR64:$src1, 128),
+ (SUB64ri8 GR64:$src1, -128)>;
+def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
+ (SUB64mi8 addr:$dst, -128)>;
+
+// The same trick applies for 32-bit immediate fields in 64-bit
+// instructions.
+def : Pat<(add GR64:$src1, 0x0000000080000000),
+ (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
+def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
+ (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
+
+// To avoid needing to materialize an immediate in a register, use a 32-bit and
+// with implicit zero-extension instead of a 64-bit and if the immediate has at
+// least 32 bits of leading zeros. If in addition the last 32 bits can be
+// represented with a sign extension of a 8 bit constant, use that.
+
+def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri8
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo8XForm imm:$imm))),
+ sub_32bit)>;
+
+def : Pat<(and GR64:$src, i64immZExt32:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo32XForm imm:$imm))),
+ sub_32bit)>;
+
+
+// r & (2^16-1) ==> movz
+def : Pat<(and GR32:$src1, 0xffff),
+ (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[In32BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
+ (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
+ sub_16bit)>,
+ Requires<[In32BitMode]>;
+
+// r & (2^32-1) ==> movz
+def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
+ (SUBREG_TO_REG (i64 0),
+ (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
+ sub_32bit)>;
+// r & (2^16-1) ==> movz
+def : Pat<(and GR64:$src, 0xffff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR64:$src, 0xff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
+ Requires<[In64BitMode]>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (i8
+ (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+
+// sext_inreg patterns
+def : Pat<(sext_inreg GR32:$src, i16),
+ (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit))>,
+ Requires<[In32BitMode]>;
+
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
+ (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
+ sub_16bit)>,
+ Requires<[In32BitMode]>;
+
+def : Pat<(sext_inreg GR64:$src, i32),
+ (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
+def : Pat<(sext_inreg GR64:$src, i16),
+ (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR64:$src, i8),
+ (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
+ Requires<[In64BitMode]>;
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (MOVSX32rr8
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
+ Requires<[In64BitMode]>;
+
+// sext, sext_load, zext, zext_load
+def: Pat<(i16 (sext GR8:$src)),
+ (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(sextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
+def: Pat<(i16 (zext GR8:$src)),
+ (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(zextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
+
+// trunc patterns
+def : Pat<(i16 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit)>,
+ Requires<[In32BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit)>,
+ Requires<[In32BitMode]>;
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
+def : Pat<(i16 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+
+// h-register tricks
+def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[In32BitMode]>;
+def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi)>,
+ Requires<[In32BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32rr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[In32BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In32BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
+ GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In32BitMode]>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In32BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In32BitMode]>;
+
+// h-register tricks.
+// For now, be conservative on x86-64 and use an h-register extract only if the
+// value is immediately zero-extended or stored, which are somewhat common
+// cases. This uses a bunch of code to prevent a register requiring a REX prefix
+// from being allocated in the same instruction as the h register, as there's
+// currently no way to describe this requirement to the register allocator.
+
+// h-register extract and zero-extend.
+def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
+ (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
+ GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_16bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi)),
+ sub_32bit)>;
+
+// h-register extract and store.
+def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
+ sub_8bit_hi))>;
+def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+
+
+// (shl x, 1) ==> (add x, x)
+// Note that if x is undef (immediate or otherwise), we could theoretically
+// end up with the two uses of x getting different values, producing a result
+// where the least significant bit is not 0. However, the probability of this
+// happening is considered low enough that this is officially not a
+// "real problem".
+def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
+def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
+
+// Helper imms that check if a mask doesn't change significant shift bits.
+def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
+def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
+
+// (shl x (and y, 31)) ==> (shl x, y)
+def : Pat<(shl GR8:$src1, (and CL, immShift32)),
+ (SHL8rCL GR8:$src1)>;
+def : Pat<(shl GR16:$src1, (and CL, immShift32)),
+ (SHL16rCL GR16:$src1)>;
+def : Pat<(shl GR32:$src1, (and CL, immShift32)),
+ (SHL32rCL GR32:$src1)>;
+def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHL8mCL addr:$dst)>;
+def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHL16mCL addr:$dst)>;
+def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHL32mCL addr:$dst)>;
+
+def : Pat<(srl GR8:$src1, (and CL, immShift32)),
+ (SHR8rCL GR8:$src1)>;
+def : Pat<(srl GR16:$src1, (and CL, immShift32)),
+ (SHR16rCL GR16:$src1)>;
+def : Pat<(srl GR32:$src1, (and CL, immShift32)),
+ (SHR32rCL GR32:$src1)>;
+def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHR8mCL addr:$dst)>;
+def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHR16mCL addr:$dst)>;
+def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SHR32mCL addr:$dst)>;
+
+def : Pat<(sra GR8:$src1, (and CL, immShift32)),
+ (SAR8rCL GR8:$src1)>;
+def : Pat<(sra GR16:$src1, (and CL, immShift32)),
+ (SAR16rCL GR16:$src1)>;
+def : Pat<(sra GR32:$src1, (and CL, immShift32)),
+ (SAR32rCL GR32:$src1)>;
+def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SAR8mCL addr:$dst)>;
+def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SAR16mCL addr:$dst)>;
+def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (SAR32mCL addr:$dst)>;
+
+// (shl x (and y, 63)) ==> (shl x, y)
+def : Pat<(shl GR64:$src1, (and CL, immShift64)),
+ (SHL64rCL GR64:$src1)>;
+def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
+ (SHL64mCL addr:$dst)>;
+
+def : Pat<(srl GR64:$src1, (and CL, immShift64)),
+ (SHR64rCL GR64:$src1)>;
+def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
+ (SHR64mCL addr:$dst)>;
+
+def : Pat<(sra GR64:$src1, (and CL, immShift64)),
+ (SAR64rCL GR64:$src1)>;
+def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
+ (SAR64mCL addr:$dst)>;
+
+
+// (anyext (setcc_carry)) -> (setcc_carry)
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+
+
+
+
+//===----------------------------------------------------------------------===//
+// EFLAGS-defining Patterns
+//===----------------------------------------------------------------------===//
+
+// add reg, reg
+def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
+
+// add reg, mem
+def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
+ (ADD8rm GR8:$src1, addr:$src2)>;
+def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
+ (ADD16rm GR16:$src1, addr:$src2)>;
+def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
+ (ADD32rm GR32:$src1, addr:$src2)>;
+
+// add reg, imm
+def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
+def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
+def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
+def : Pat<(add GR16:$src1, i16immSExt8:$src2),
+ (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(add GR32:$src1, i32immSExt8:$src2),
+ (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub reg, reg
+def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
+
+// sub reg, mem
+def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
+ (SUB8rm GR8:$src1, addr:$src2)>;
+def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
+ (SUB16rm GR16:$src1, addr:$src2)>;
+def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
+ (SUB32rm GR32:$src1, addr:$src2)>;
+
+// sub reg, imm
+def : Pat<(sub GR8:$src1, imm:$src2),
+ (SUB8ri GR8:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, imm:$src2),
+ (SUB16ri GR16:$src1, imm:$src2)>;
+def : Pat<(sub GR32:$src1, imm:$src2),
+ (SUB32ri GR32:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
+ (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
+ (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// sub 0, reg
+def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
+def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
+def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
+def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
+
+// mul reg, reg
+def : Pat<(mul GR16:$src1, GR16:$src2),
+ (IMUL16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(mul GR32:$src1, GR32:$src2),
+ (IMUL32rr GR32:$src1, GR32:$src2)>;
+
+// mul reg, mem
+def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
+ (IMUL16rm GR16:$src1, addr:$src2)>;
+def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
+ (IMUL32rm GR32:$src1, addr:$src2)>;
+
+// mul reg, imm
+def : Pat<(mul GR16:$src1, imm:$src2),
+ (IMUL16rri GR16:$src1, imm:$src2)>;
+def : Pat<(mul GR32:$src1, imm:$src2),
+ (IMUL32rri GR32:$src1, imm:$src2)>;
+def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
+ (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
+ (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// reg = mul mem, imm
+def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
+ (IMUL16rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
+ (IMUL32rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
+ (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
+ (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
+
+// Patterns for nodes that do not produce flags, for instructions that do.
+
+// addition
+def : Pat<(add GR64:$src1, GR64:$src2),
+ (ADD64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt8:$src2),
+ (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt32:$src2),
+ (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
+ (ADD64rm GR64:$src1, addr:$src2)>;
+
+// subtraction
+def : Pat<(sub GR64:$src1, GR64:$src2),
+ (SUB64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
+ (SUB64rm GR64:$src1, addr:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
+ (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
+ (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Multiply
+def : Pat<(mul GR64:$src1, GR64:$src2),
+ (IMUL64rr GR64:$src1, GR64:$src2)>;
+def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
+ (IMUL64rm GR64:$src1, addr:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
+ (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
+ (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
+ (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
+ (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
+
+// Increment reg.
+def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
+def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
+def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
+def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
+def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
+def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
+
+// Decrement reg.
+def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
+def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
+def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
+def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
+def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
+def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
+
+// or reg/reg.
+def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
+
+// or reg/mem
+def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
+ (OR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
+ (OR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
+ (OR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
+ (OR64rm GR64:$src1, addr:$src2)>;
+
+// or reg/imm
+def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, i16immSExt8:$src2),
+ (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(or GR32:$src1, i32immSExt8:$src2),
+ (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt8:$src2),
+ (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt32:$src2),
+ (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// xor reg/reg
+def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
+
+// xor reg/mem
+def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
+ (XOR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
+ (XOR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
+ (XOR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
+ (XOR64rm GR64:$src1, addr:$src2)>;
+
+// xor reg/imm
+def : Pat<(xor GR8:$src1, imm:$src2),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, imm:$src2),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(xor GR32:$src1, imm:$src2),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// and reg/reg
+def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
+
+// and reg/mem
+def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
+ (AND8rm GR8:$src1, addr:$src2)>;
+def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
+ (AND16rm GR16:$src1, addr:$src2)>;
+def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
+ (AND32rm GR32:$src1, addr:$src2)>;
+def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
+ (AND64rm GR64:$src1, addr:$src2)>;
+
+// and reg/imm
+def : Pat<(and GR8:$src1, imm:$src2),
+ (AND8ri GR8:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, imm:$src2),
+ (AND16ri GR16:$src1, imm:$src2)>;
+def : Pat<(and GR32:$src1, imm:$src2),
+ (AND32ri GR32:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, i16immSExt8:$src2),
+ (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(and GR32:$src1, i32immSExt8:$src2),
+ (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt8:$src2),
+ (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt32:$src2),
+ (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Bit scan instruction patterns to match explicit zero-undef behavior.
+def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
+def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
+def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
+def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;