diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp | 2812 |
1 files changed, 2812 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp new file mode 100644 index 000000000000..36d16907bfef --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -0,0 +1,2812 @@ +//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a DAG pattern matching instruction selector for X86, +// converting from a legalized dag to a X86 dag. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-isel" +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86MachineFunctionInfo.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); + +//===----------------------------------------------------------------------===// +// Pattern Matcher Implementation +//===----------------------------------------------------------------------===// + +namespace { + /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses + /// SDValue's instead of register numbers for the leaves of the matched + /// tree. + struct X86ISelAddressMode { + enum { + RegBase, + FrameIndexBase + } BaseType; + + // This is really a union, discriminated by BaseType! + SDValue Base_Reg; + int Base_FrameIndex; + + unsigned Scale; + SDValue IndexReg; + int32_t Disp; + SDValue Segment; + const GlobalValue *GV; + const Constant *CP; + const BlockAddress *BlockAddr; + const char *ES; + int JT; + unsigned Align; // CP alignment. + unsigned char SymbolFlags; // X86II::MO_* + + X86ISelAddressMode() + : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), + Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), + SymbolFlags(X86II::MO_NO_FLAG) { + } + + bool hasSymbolicDisplacement() const { + return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; + } + + bool hasBaseOrIndexReg() const { + return BaseType == FrameIndexBase || + IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; + } + + /// isRIPRelative - Return true if this addressing mode is already RIP + /// relative. + bool isRIPRelative() const { + if (BaseType != RegBase) return false; + if (RegisterSDNode *RegNode = + dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) + return RegNode->getReg() == X86::RIP; + return false; + } + + void setBaseReg(SDValue Reg) { + BaseType = RegBase; + Base_Reg = Reg; + } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + void dump() { + dbgs() << "X86ISelAddressMode " << this << '\n'; + dbgs() << "Base_Reg "; + if (Base_Reg.getNode() != 0) + Base_Reg.getNode()->dump(); + else + dbgs() << "nul"; + dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' + << " Scale" << Scale << '\n' + << "IndexReg "; + if (IndexReg.getNode() != 0) + IndexReg.getNode()->dump(); + else + dbgs() << "nul"; + dbgs() << " Disp " << Disp << '\n' + << "GV "; + if (GV) + GV->dump(); + else + dbgs() << "nul"; + dbgs() << " CP "; + if (CP) + CP->dump(); + else + dbgs() << "nul"; + dbgs() << '\n' + << "ES "; + if (ES) + dbgs() << ES; + else + dbgs() << "nul"; + dbgs() << " JT" << JT << " Align" << Align << '\n'; + } +#endif + }; +} + +namespace { + //===--------------------------------------------------------------------===// + /// ISel - X86 specific code to select X86 machine instructions for + /// SelectionDAG operations. + /// + class X86DAGToDAGISel : public SelectionDAGISel { + /// Subtarget - Keep a pointer to the X86Subtarget around so that we can + /// make the right decision when generating code for different targets. + const X86Subtarget *Subtarget; + + /// OptForSize - If true, selector should try to optimize for code size + /// instead of performance. + bool OptForSize; + + public: + explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) + : SelectionDAGISel(tm, OptLevel), + Subtarget(&tm.getSubtarget<X86Subtarget>()), + OptForSize(false) {} + + virtual const char *getPassName() const { + return "X86 DAG->DAG Instruction Selection"; + } + + virtual void EmitFunctionEntryCode(); + + virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; + + virtual void PreprocessISelDAG(); + + inline bool immSext8(SDNode *N) const { + return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); + } + + // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit + // sign extended field. + inline bool i64immSExt32(SDNode *N) const { + uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); + return (int64_t)v == (int32_t)v; + } + +// Include the pieces autogenerated from the target description. +#include "X86GenDAGISel.inc" + + private: + SDNode *Select(SDNode *N); + SDNode *SelectGather(SDNode *N, unsigned Opc); + SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); + SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT); + + bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); + bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); + bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); + bool MatchAddress(SDValue N, X86ISelAddressMode &AM); + bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, + unsigned Depth); + bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); + bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); + bool SelectMOV64Imm32(SDValue N, SDValue &Imm); + bool SelectLEAAddr(SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); + bool SelectLEA64_32Addr(SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); + bool SelectTLSADDRAddr(SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); + bool SelectScalarSSELoad(SDNode *Root, SDValue N, + SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, + SDValue &Segment, + SDValue &NodeWithChain); + + bool TryFoldLoad(SDNode *P, SDValue N, + SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, + SDValue &Segment); + + /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for + /// inline asm expressions. + virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, + char ConstraintCode, + std::vector<SDValue> &OutOps); + + void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); + + inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, + SDValue &Scale, SDValue &Index, + SDValue &Disp, SDValue &Segment) { + Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? + CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, + getTargetLowering()->getPointerTy()) : + AM.Base_Reg; + Scale = getI8Imm(AM.Scale); + Index = AM.IndexReg; + // These are 32-bit even in 64-bit mode since RIP relative offset + // is 32-bit. + if (AM.GV) + Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), + MVT::i32, AM.Disp, + AM.SymbolFlags); + else if (AM.CP) + Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, + AM.Align, AM.Disp, AM.SymbolFlags); + else if (AM.ES) { + assert(!AM.Disp && "Non-zero displacement is ignored with ES."); + Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); + } else if (AM.JT != -1) { + assert(!AM.Disp && "Non-zero displacement is ignored with JT."); + Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); + } else if (AM.BlockAddr) + Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, + AM.SymbolFlags); + else + Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); + + if (AM.Segment.getNode()) + Segment = AM.Segment; + else + Segment = CurDAG->getRegister(0, MVT::i32); + } + + /// getI8Imm - Return a target constant with the specified value, of type + /// i8. + inline SDValue getI8Imm(unsigned Imm) { + return CurDAG->getTargetConstant(Imm, MVT::i8); + } + + /// getI32Imm - Return a target constant with the specified value, of type + /// i32. + inline SDValue getI32Imm(unsigned Imm) { + return CurDAG->getTargetConstant(Imm, MVT::i32); + } + + /// getGlobalBaseReg - Return an SDNode that returns the value of + /// the global base register. Output instructions required to + /// initialize the global base register, if necessary. + /// + SDNode *getGlobalBaseReg(); + + /// getTargetMachine - Return a reference to the TargetMachine, casted + /// to the target-specific type. + const X86TargetMachine &getTargetMachine() const { + return static_cast<const X86TargetMachine &>(TM); + } + + /// getInstrInfo - Return a reference to the TargetInstrInfo, casted + /// to the target-specific type. + const X86InstrInfo *getInstrInfo() const { + return getTargetMachine().getInstrInfo(); + } + }; +} + + +bool +X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { + if (OptLevel == CodeGenOpt::None) return false; + + if (!N.hasOneUse()) + return false; + + if (N.getOpcode() != ISD::LOAD) + return true; + + // If N is a load, do additional profitability checks. + if (U == Root) { + switch (U->getOpcode()) { + default: break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::AND: + case X86ISD::XOR: + case X86ISD::OR: + case ISD::ADD: + case ISD::ADDC: + case ISD::ADDE: + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + SDValue Op1 = U->getOperand(1); + + // If the other operand is a 8-bit immediate we should fold the immediate + // instead. This reduces code size. + // e.g. + // movl 4(%esp), %eax + // addl $4, %eax + // vs. + // movl $4, %eax + // addl 4(%esp), %eax + // The former is 2 bytes shorter. In case where the increment is 1, then + // the saving can be 4 bytes (by using incl %eax). + if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) + if (Imm->getAPIntValue().isSignedIntN(8)) + return false; + + // If the other operand is a TLS address, we should fold it instead. + // This produces + // movl %gs:0, %eax + // leal i@NTPOFF(%eax), %eax + // instead of + // movl $i@NTPOFF, %eax + // addl %gs:0, %eax + // if the block also has an access to a second TLS address this will save + // a load. + // FIXME: This is probably also true for non TLS addresses. + if (Op1.getOpcode() == X86ISD::Wrapper) { + SDValue Val = Op1.getOperand(0); + if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) + return false; + } + } + } + } + + return true; +} + +/// MoveBelowCallOrigChain - Replace the original chain operand of the call with +/// load's chain operand and move load below the call's chain operand. +static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, + SDValue Call, SDValue OrigChain) { + SmallVector<SDValue, 8> Ops; + SDValue Chain = OrigChain.getOperand(0); + if (Chain.getNode() == Load.getNode()) + Ops.push_back(Load.getOperand(0)); + else { + assert(Chain.getOpcode() == ISD::TokenFactor && + "Unexpected chain operand"); + for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) + if (Chain.getOperand(i).getNode() == Load.getNode()) + Ops.push_back(Load.getOperand(0)); + else + Ops.push_back(Chain.getOperand(i)); + SDValue NewChain = + CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), + MVT::Other, &Ops[0], Ops.size()); + Ops.clear(); + Ops.push_back(NewChain); + } + for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) + Ops.push_back(OrigChain.getOperand(i)); + CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); + CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), + Load.getOperand(1), Load.getOperand(2)); + + unsigned NumOps = Call.getNode()->getNumOperands(); + Ops.clear(); + Ops.push_back(SDValue(Load.getNode(), 1)); + for (unsigned i = 1, e = NumOps; i != e; ++i) + Ops.push_back(Call.getOperand(i)); + CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps); +} + +/// isCalleeLoad - Return true if call address is a load and it can be +/// moved below CALLSEQ_START and the chains leading up to the call. +/// Return the CALLSEQ_START by reference as a second output. +/// In the case of a tail call, there isn't a callseq node between the call +/// chain and the load. +static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { + // The transformation is somewhat dangerous if the call's chain was glued to + // the call. After MoveBelowOrigChain the load is moved between the call and + // the chain, this can create a cycle if the load is not folded. So it is + // *really* important that we are sure the load will be folded. + if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) + return false; + LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); + if (!LD || + LD->isVolatile() || + LD->getAddressingMode() != ISD::UNINDEXED || + LD->getExtensionType() != ISD::NON_EXTLOAD) + return false; + + // Now let's find the callseq_start. + while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { + if (!Chain.hasOneUse()) + return false; + Chain = Chain.getOperand(0); + } + + if (!Chain.getNumOperands()) + return false; + // Since we are not checking for AA here, conservatively abort if the chain + // writes to memory. It's not safe to move the callee (a load) across a store. + if (isa<MemSDNode>(Chain.getNode()) && + cast<MemSDNode>(Chain.getNode())->writeMem()) + return false; + if (Chain.getOperand(0).getNode() == Callee.getNode()) + return true; + if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && + Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && + Callee.getValue(1).hasOneUse()) + return true; + return false; +} + +void X86DAGToDAGISel::PreprocessISelDAG() { + // OptForSize is used in pattern predicates that isel is matching. + OptForSize = MF->getFunction()->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); + + for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), + E = CurDAG->allnodes_end(); I != E; ) { + SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. + + if (OptLevel != CodeGenOpt::None && + // Only does this when target favors doesn't favor register indirect + // call. + ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) || + (N->getOpcode() == X86ISD::TC_RETURN && + // Only does this if load can be folded into TC_RETURN. + (Subtarget->is64Bit() || + getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { + /// Also try moving call address load from outside callseq_start to just + /// before the call to allow it to be folded. + /// + /// [Load chain] + /// ^ + /// | + /// [Load] + /// ^ ^ + /// | | + /// / \-- + /// / | + ///[CALLSEQ_START] | + /// ^ | + /// | | + /// [LOAD/C2Reg] | + /// | | + /// \ / + /// \ / + /// [CALL] + bool HasCallSeq = N->getOpcode() == X86ISD::CALL; + SDValue Chain = N->getOperand(0); + SDValue Load = N->getOperand(1); + if (!isCalleeLoad(Load, Chain, HasCallSeq)) + continue; + MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); + ++NumLoadMoved; + continue; + } + + // Lower fpround and fpextend nodes that target the FP stack to be store and + // load to the stack. This is a gross hack. We would like to simply mark + // these as being illegal, but when we do that, legalize produces these when + // it expands calls, then expands these in the same legalize pass. We would + // like dag combine to be able to hack on these between the call expansion + // and the node legalization. As such this pass basically does "really + // late" legalization of these inline with the X86 isel pass. + // FIXME: This should only happen when not compiled with -O0. + if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) + continue; + + MVT SrcVT = N->getOperand(0).getSimpleValueType(); + MVT DstVT = N->getSimpleValueType(0); + + // If any of the sources are vectors, no fp stack involved. + if (SrcVT.isVector() || DstVT.isVector()) + continue; + + // If the source and destination are SSE registers, then this is a legal + // conversion that should not be lowered. + const X86TargetLowering *X86Lowering = + static_cast<const X86TargetLowering *>(getTargetLowering()); + bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); + bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); + if (SrcIsSSE && DstIsSSE) + continue; + + if (!SrcIsSSE && !DstIsSSE) { + // If this is an FPStack extension, it is a noop. + if (N->getOpcode() == ISD::FP_EXTEND) + continue; + // If this is a value-preserving FPStack truncation, it is a noop. + if (N->getConstantOperandVal(1)) + continue; + } + + // Here we could have an FP stack truncation or an FPStack <-> SSE convert. + // FPStack has extload and truncstore. SSE can fold direct loads into other + // operations. Based on this, decide what we want to do. + MVT MemVT; + if (N->getOpcode() == ISD::FP_ROUND) + MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. + else + MemVT = SrcIsSSE ? SrcVT : DstVT; + + SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); + SDLoc dl(N); + + // FIXME: optimize the case where the src/dest is a load or store? + SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, + N->getOperand(0), + MemTmp, MachinePointerInfo(), MemVT, + false, false, 0); + SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, + MachinePointerInfo(), + MemVT, false, false, 0); + + // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the + // extload we created. This will cause general havok on the dag because + // anything below the conversion could be folded into other existing nodes. + // To avoid invalidating 'I', back it up to the convert node. + --I; + CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); + + // Now that we did that, the node is dead. Increment the iterator to the + // next node to process, then delete N. + ++I; + CurDAG->DeleteNode(N); + } +} + + +/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in +/// the main function. +void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, + MachineFrameInfo *MFI) { + const TargetInstrInfo *TII = TM.getInstrInfo(); + if (Subtarget->isTargetCygMing()) { + unsigned CallOp = + Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; + BuildMI(BB, DebugLoc(), + TII->get(CallOp)).addExternalSymbol("__main"); + } +} + +void X86DAGToDAGISel::EmitFunctionEntryCode() { + // If this is main, emit special code for main. + if (const Function *Fn = MF->getFunction()) + if (Fn->hasExternalLinkage() && Fn->getName() == "main") + EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); +} + +static bool isDispSafeForFrameIndex(int64_t Val) { + // On 64-bit platforms, we can run into an issue where a frame index + // includes a displacement that, when added to the explicit displacement, + // will overflow the displacement field. Assuming that the frame index + // displacement fits into a 31-bit integer (which is only slightly more + // aggressive than the current fundamental assumption that it fits into + // a 32-bit integer), a 31-bit disp should always be safe. + return isInt<31>(Val); +} + +bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, + X86ISelAddressMode &AM) { + int64_t Val = AM.Disp + Offset; + CodeModel::Model M = TM.getCodeModel(); + if (Subtarget->is64Bit()) { + if (!X86::isOffsetSuitableForCodeModel(Val, M, + AM.hasSymbolicDisplacement())) + return true; + // In addition to the checks required for a register base, check that + // we do not try to use an unsafe Disp with a frame index. + if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && + !isDispSafeForFrameIndex(Val)) + return true; + } + AM.Disp = Val; + return false; + +} + +bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ + SDValue Address = N->getOperand(1); + + // load gs:0 -> GS segment register. + // load fs:0 -> FS segment register. + // + // This optimization is valid because the GNU TLS model defines that + // gs:0 (or fs:0 on X86-64) contains its own address. + // For more information see http://people.redhat.com/drepper/tls.pdf + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) + if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && + Subtarget->isTargetLinux()) + switch (N->getPointerInfo().getAddrSpace()) { + case 256: + AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); + return false; + case 257: + AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); + return false; + } + + return true; +} + +/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes +/// into an addressing mode. These wrap things that will resolve down into a +/// symbol reference. If no match is possible, this returns true, otherwise it +/// returns false. +bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { + // If the addressing mode already has a symbol as the displacement, we can + // never match another symbol. + if (AM.hasSymbolicDisplacement()) + return true; + + SDValue N0 = N.getOperand(0); + CodeModel::Model M = TM.getCodeModel(); + + // Handle X86-64 rip-relative addresses. We check this before checking direct + // folding because RIP is preferable to non-RIP accesses. + if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && + // Under X86-64 non-small code model, GV (and friends) are 64-bits, so + // they cannot be folded into immediate fields. + // FIXME: This can be improved for kernel and other models? + (M == CodeModel::Small || M == CodeModel::Kernel)) { + // Base and index reg must be 0 in order to use %rip as base. + if (AM.hasBaseOrIndexReg()) + return true; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { + X86ISelAddressMode Backup = AM; + AM.GV = G->getGlobal(); + AM.SymbolFlags = G->getTargetFlags(); + if (FoldOffsetIntoAddress(G->getOffset(), AM)) { + AM = Backup; + return true; + } + } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { + X86ISelAddressMode Backup = AM; + AM.CP = CP->getConstVal(); + AM.Align = CP->getAlignment(); + AM.SymbolFlags = CP->getTargetFlags(); + if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { + AM = Backup; + return true; + } + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { + AM.ES = S->getSymbol(); + AM.SymbolFlags = S->getTargetFlags(); + } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { + AM.JT = J->getIndex(); + AM.SymbolFlags = J->getTargetFlags(); + } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { + X86ISelAddressMode Backup = AM; + AM.BlockAddr = BA->getBlockAddress(); + AM.SymbolFlags = BA->getTargetFlags(); + if (FoldOffsetIntoAddress(BA->getOffset(), AM)) { + AM = Backup; + return true; + } + } else + llvm_unreachable("Unhandled symbol reference node."); + + if (N.getOpcode() == X86ISD::WrapperRIP) + AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); + return false; + } + + // Handle the case when globals fit in our immediate field: This is true for + // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit + // mode, this only applies to a non-RIP-relative computation. + if (!Subtarget->is64Bit() || + M == CodeModel::Small || M == CodeModel::Kernel) { + assert(N.getOpcode() != X86ISD::WrapperRIP && + "RIP-relative addressing already handled"); + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { + AM.GV = G->getGlobal(); + AM.Disp += G->getOffset(); + AM.SymbolFlags = G->getTargetFlags(); + } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { + AM.CP = CP->getConstVal(); + AM.Align = CP->getAlignment(); + AM.Disp += CP->getOffset(); + AM.SymbolFlags = CP->getTargetFlags(); + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { + AM.ES = S->getSymbol(); + AM.SymbolFlags = S->getTargetFlags(); + } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { + AM.JT = J->getIndex(); + AM.SymbolFlags = J->getTargetFlags(); + } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { + AM.BlockAddr = BA->getBlockAddress(); + AM.Disp += BA->getOffset(); + AM.SymbolFlags = BA->getTargetFlags(); + } else + llvm_unreachable("Unhandled symbol reference node."); + return false; + } + + return true; +} + +/// MatchAddress - Add the specified node to the specified addressing mode, +/// returning true if it cannot be done. This just pattern matches for the +/// addressing mode. +bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { + if (MatchAddressRecursively(N, AM, 0)) + return true; + + // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has + // a smaller encoding and avoids a scaled-index. + if (AM.Scale == 2 && + AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base_Reg.getNode() == 0) { + AM.Base_Reg = AM.IndexReg; + AM.Scale = 1; + } + + // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, + // because it has a smaller encoding. + // TODO: Which other code models can use this? + if (TM.getCodeModel() == CodeModel::Small && + Subtarget->is64Bit() && + AM.Scale == 1 && + AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base_Reg.getNode() == 0 && + AM.IndexReg.getNode() == 0 && + AM.SymbolFlags == X86II::MO_NO_FLAG && + AM.hasSymbolicDisplacement()) + AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); + + return false; +} + +// Insert a node into the DAG at least before the Pos node's position. This +// will reposition the node as needed, and will assign it a node ID that is <= +// the Pos node's ID. Note that this does *not* preserve the uniqueness of node +// IDs! The selection DAG must no longer depend on their uniqueness when this +// is used. +static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { + if (N.getNode()->getNodeId() == -1 || + N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { + DAG.RepositionNode(Pos.getNode(), N.getNode()); + N.getNode()->setNodeId(Pos.getNode()->getNodeId()); + } +} + +// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This +// allows us to convert the shift and and into an h-register extract and +// a scaled index. Returns false if the simplification is performed. +static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, + uint64_t Mask, + SDValue Shift, SDValue X, + X86ISelAddressMode &AM) { + if (Shift.getOpcode() != ISD::SRL || + !isa<ConstantSDNode>(Shift.getOperand(1)) || + !Shift.hasOneUse()) + return true; + + int ScaleLog = 8 - Shift.getConstantOperandVal(1); + if (ScaleLog <= 0 || ScaleLog >= 4 || + Mask != (0xffu << ScaleLog)) + return true; + + MVT VT = N.getSimpleValueType(); + SDLoc DL(N); + SDValue Eight = DAG.getConstant(8, MVT::i8); + SDValue NewMask = DAG.getConstant(0xff, VT); + SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); + SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); + SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); + SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); + + // Insert the new nodes into the topological ordering. We must do this in + // a valid topological ordering as nothing is going to go back and re-sort + // these nodes. We continually insert before 'N' in sequence as this is + // essentially a pre-flattened and pre-sorted sequence of nodes. There is no + // hierarchy left to express. + InsertDAGNode(DAG, N, Eight); + InsertDAGNode(DAG, N, Srl); + InsertDAGNode(DAG, N, NewMask); + InsertDAGNode(DAG, N, And); + InsertDAGNode(DAG, N, ShlCount); + InsertDAGNode(DAG, N, Shl); + DAG.ReplaceAllUsesWith(N, Shl); + AM.IndexReg = And; + AM.Scale = (1 << ScaleLog); + return false; +} + +// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this +// allows us to fold the shift into this addressing mode. Returns false if the +// transform succeeded. +static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, + uint64_t Mask, + SDValue Shift, SDValue X, + X86ISelAddressMode &AM) { + if (Shift.getOpcode() != ISD::SHL || + !isa<ConstantSDNode>(Shift.getOperand(1))) + return true; + + // Not likely to be profitable if either the AND or SHIFT node has more + // than one use (unless all uses are for address computation). Besides, + // isel mechanism requires their node ids to be reused. + if (!N.hasOneUse() || !Shift.hasOneUse()) + return true; + + // Verify that the shift amount is something we can fold. + unsigned ShiftAmt = Shift.getConstantOperandVal(1); + if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) + return true; + + MVT VT = N.getSimpleValueType(); + SDLoc DL(N); + SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); + SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); + SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); + + // Insert the new nodes into the topological ordering. We must do this in + // a valid topological ordering as nothing is going to go back and re-sort + // these nodes. We continually insert before 'N' in sequence as this is + // essentially a pre-flattened and pre-sorted sequence of nodes. There is no + // hierarchy left to express. + InsertDAGNode(DAG, N, NewMask); + InsertDAGNode(DAG, N, NewAnd); + InsertDAGNode(DAG, N, NewShift); + DAG.ReplaceAllUsesWith(N, NewShift); + + AM.Scale = 1 << ShiftAmt; + AM.IndexReg = NewAnd; + return false; +} + +// Implement some heroics to detect shifts of masked values where the mask can +// be replaced by extending the shift and undoing that in the addressing mode +// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and +// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in +// the addressing mode. This results in code such as: +// +// int f(short *y, int *lookup_table) { +// ... +// return *y + lookup_table[*y >> 11]; +// } +// +// Turning into: +// movzwl (%rdi), %eax +// movl %eax, %ecx +// shrl $11, %ecx +// addl (%rsi,%rcx,4), %eax +// +// Instead of: +// movzwl (%rdi), %eax +// movl %eax, %ecx +// shrl $9, %ecx +// andl $124, %rcx +// addl (%rsi,%rcx), %eax +// +// Note that this function assumes the mask is provided as a mask *after* the +// value is shifted. The input chain may or may not match that, but computing +// such a mask is trivial. +static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, + uint64_t Mask, + SDValue Shift, SDValue X, + X86ISelAddressMode &AM) { + if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || + !isa<ConstantSDNode>(Shift.getOperand(1))) + return true; + + unsigned ShiftAmt = Shift.getConstantOperandVal(1); + unsigned MaskLZ = countLeadingZeros(Mask); + unsigned MaskTZ = countTrailingZeros(Mask); + + // The amount of shift we're trying to fit into the addressing mode is taken + // from the trailing zeros of the mask. + unsigned AMShiftAmt = MaskTZ; + + // There is nothing we can do here unless the mask is removing some bits. + // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. + if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; + + // We also need to ensure that mask is a continuous run of bits. + if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; + + // Scale the leading zero count down based on the actual size of the value. + // Also scale it down based on the size of the shift. + MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; + + // The final check is to ensure that any masked out high bits of X are + // already known to be zero. Otherwise, the mask has a semantic impact + // other than masking out a couple of low bits. Unfortunately, because of + // the mask, zero extensions will be removed from operands in some cases. + // This code works extra hard to look through extensions because we can + // replace them with zero extensions cheaply if necessary. + bool ReplacingAnyExtend = false; + if (X.getOpcode() == ISD::ANY_EXTEND) { + unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - + X.getOperand(0).getSimpleValueType().getSizeInBits(); + // Assume that we'll replace the any-extend with a zero-extend, and + // narrow the search to the extended value. + X = X.getOperand(0); + MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; + ReplacingAnyExtend = true; + } + APInt MaskedHighBits = + APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); + APInt KnownZero, KnownOne; + DAG.ComputeMaskedBits(X, KnownZero, KnownOne); + if (MaskedHighBits != KnownZero) return true; + + // We've identified a pattern that can be transformed into a single shift + // and an addressing mode. Make it so. + MVT VT = N.getSimpleValueType(); + if (ReplacingAnyExtend) { + assert(X.getValueType() != VT); + // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. + SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); + InsertDAGNode(DAG, N, NewX); + X = NewX; + } + SDLoc DL(N); + SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); + SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); + SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); + SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); + + // Insert the new nodes into the topological ordering. We must do this in + // a valid topological ordering as nothing is going to go back and re-sort + // these nodes. We continually insert before 'N' in sequence as this is + // essentially a pre-flattened and pre-sorted sequence of nodes. There is no + // hierarchy left to express. + InsertDAGNode(DAG, N, NewSRLAmt); + InsertDAGNode(DAG, N, NewSRL); + InsertDAGNode(DAG, N, NewSHLAmt); + InsertDAGNode(DAG, N, NewSHL); + DAG.ReplaceAllUsesWith(N, NewSHL); + + AM.Scale = 1 << AMShiftAmt; + AM.IndexReg = NewSRL; + return false; +} + +bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, + unsigned Depth) { + SDLoc dl(N); + DEBUG({ + dbgs() << "MatchAddress: "; + AM.dump(); + }); + // Limit recursion. + if (Depth > 5) + return MatchAddressBase(N, AM); + + // If this is already a %rip relative address, we can only merge immediates + // into it. Instead of handling this in every case, we handle it here. + // RIP relative addressing: %rip + 32-bit displacement! + if (AM.isRIPRelative()) { + // FIXME: JumpTable and ExternalSymbol address currently don't like + // displacements. It isn't very important, but this should be fixed for + // consistency. + if (!AM.ES && AM.JT != -1) return true; + + if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) + if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) + return false; + return true; + } + + switch (N.getOpcode()) { + default: break; + case ISD::Constant: { + uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); + if (!FoldOffsetIntoAddress(Val, AM)) + return false; + break; + } + + case X86ISD::Wrapper: + case X86ISD::WrapperRIP: + if (!MatchWrapper(N, AM)) + return false; + break; + + case ISD::LOAD: + if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) + return false; + break; + + case ISD::FrameIndex: + if (AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base_Reg.getNode() == 0 && + (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { + AM.BaseType = X86ISelAddressMode::FrameIndexBase; + AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); + return false; + } + break; + + case ISD::SHL: + if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) + break; + + if (ConstantSDNode + *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { + unsigned Val = CN->getZExtValue(); + // Note that we handle x<<1 as (,x,2) rather than (x,x) here so + // that the base operand remains free for further matching. If + // the base doesn't end up getting used, a post-processing step + // in MatchAddress turns (,x,2) into (x,x), which is cheaper. + if (Val == 1 || Val == 2 || Val == 3) { + AM.Scale = 1 << Val; + SDValue ShVal = N.getNode()->getOperand(0); + + // Okay, we know that we have a scale by now. However, if the scaled + // value is an add of something and a constant, we can fold the + // constant into the disp field here. + if (CurDAG->isBaseWithConstantOffset(ShVal)) { + AM.IndexReg = ShVal.getNode()->getOperand(0); + ConstantSDNode *AddVal = + cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); + uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; + if (!FoldOffsetIntoAddress(Disp, AM)) + return false; + } + + AM.IndexReg = ShVal; + return false; + } + } + break; + + case ISD::SRL: { + // Scale must not be used already. + if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; + + SDValue And = N.getOperand(0); + if (And.getOpcode() != ISD::AND) break; + SDValue X = And.getOperand(0); + + // We only handle up to 64-bit values here as those are what matter for + // addressing mode optimizations. + if (X.getSimpleValueType().getSizeInBits() > 64) break; + + // The mask used for the transform is expected to be post-shift, but we + // found the shift first so just apply the shift to the mask before passing + // it down. + if (!isa<ConstantSDNode>(N.getOperand(1)) || + !isa<ConstantSDNode>(And.getOperand(1))) + break; + uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); + + // Try to fold the mask and shift into the scale, and return false if we + // succeed. + if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) + return false; + break; + } + + case ISD::SMUL_LOHI: + case ISD::UMUL_LOHI: + // A mul_lohi where we need the low part can be folded as a plain multiply. + if (N.getResNo() != 0) break; + // FALL THROUGH + case ISD::MUL: + case X86ISD::MUL_IMM: + // X*[3,5,9] -> X+X*[2,4,8] + if (AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base_Reg.getNode() == 0 && + AM.IndexReg.getNode() == 0) { + if (ConstantSDNode + *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) + if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || + CN->getZExtValue() == 9) { + AM.Scale = unsigned(CN->getZExtValue())-1; + + SDValue MulVal = N.getNode()->getOperand(0); + SDValue Reg; + + // Okay, we know that we have a scale by now. However, if the scaled + // value is an add of something and a constant, we can fold the + // constant into the disp field here. + if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && + isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { + Reg = MulVal.getNode()->getOperand(0); + ConstantSDNode *AddVal = + cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); + uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); + if (FoldOffsetIntoAddress(Disp, AM)) + Reg = N.getNode()->getOperand(0); + } else { + Reg = N.getNode()->getOperand(0); + } + + AM.IndexReg = AM.Base_Reg = Reg; + return false; + } + } + break; + + case ISD::SUB: { + // Given A-B, if A can be completely folded into the address and + // the index field with the index field unused, use -B as the index. + // This is a win if a has multiple parts that can be folded into + // the address. Also, this saves a mov if the base register has + // other uses, since it avoids a two-address sub instruction, however + // it costs an additional mov if the index register has other uses. + + // Add an artificial use to this node so that we can keep track of + // it if it gets CSE'd with a different node. + HandleSDNode Handle(N); + + // Test if the LHS of the sub can be folded. + X86ISelAddressMode Backup = AM; + if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { + AM = Backup; + break; + } + // Test if the index field is free for use. + if (AM.IndexReg.getNode() || AM.isRIPRelative()) { + AM = Backup; + break; + } + + int Cost = 0; + SDValue RHS = Handle.getValue().getNode()->getOperand(1); + // If the RHS involves a register with multiple uses, this + // transformation incurs an extra mov, due to the neg instruction + // clobbering its operand. + if (!RHS.getNode()->hasOneUse() || + RHS.getNode()->getOpcode() == ISD::CopyFromReg || + RHS.getNode()->getOpcode() == ISD::TRUNCATE || + RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || + (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && + RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) + ++Cost; + // If the base is a register with multiple uses, this + // transformation may save a mov. + if ((AM.BaseType == X86ISelAddressMode::RegBase && + AM.Base_Reg.getNode() && + !AM.Base_Reg.getNode()->hasOneUse()) || + AM.BaseType == X86ISelAddressMode::FrameIndexBase) + --Cost; + // If the folded LHS was interesting, this transformation saves + // address arithmetic. + if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + + ((AM.Disp != 0) && (Backup.Disp == 0)) + + (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) + --Cost; + // If it doesn't look like it may be an overall win, don't do it. + if (Cost >= 0) { + AM = Backup; + break; + } + + // Ok, the transformation is legal and appears profitable. Go for it. + SDValue Zero = CurDAG->getConstant(0, N.getValueType()); + SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); + AM.IndexReg = Neg; + AM.Scale = 1; + + // Insert the new nodes into the topological ordering. + InsertDAGNode(*CurDAG, N, Zero); + InsertDAGNode(*CurDAG, N, Neg); + return false; + } + + case ISD::ADD: { + // Add an artificial use to this node so that we can keep track of + // it if it gets CSE'd with a different node. + HandleSDNode Handle(N); + + X86ISelAddressMode Backup = AM; + if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && + !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) + return false; + AM = Backup; + + // Try again after commuting the operands. + if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& + !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) + return false; + AM = Backup; + + // If we couldn't fold both operands into the address at the same time, + // see if we can just put each operand into a register and fold at least + // the add. + if (AM.BaseType == X86ISelAddressMode::RegBase && + !AM.Base_Reg.getNode() && + !AM.IndexReg.getNode()) { + N = Handle.getValue(); + AM.Base_Reg = N.getOperand(0); + AM.IndexReg = N.getOperand(1); + AM.Scale = 1; + return false; + } + N = Handle.getValue(); + break; + } + + case ISD::OR: + // Handle "X | C" as "X + C" iff X is known to have C bits clear. + if (CurDAG->isBaseWithConstantOffset(N)) { + X86ISelAddressMode Backup = AM; + ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); + + // Start with the LHS as an addr mode. + if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && + !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) + return false; + AM = Backup; + } + break; + + case ISD::AND: { + // Perform some heroic transforms on an and of a constant-count shift + // with a constant to enable use of the scaled offset field. + + // Scale must not be used already. + if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; + + SDValue Shift = N.getOperand(0); + if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; + SDValue X = Shift.getOperand(0); + + // We only handle up to 64-bit values here as those are what matter for + // addressing mode optimizations. + if (X.getSimpleValueType().getSizeInBits() > 64) break; + + if (!isa<ConstantSDNode>(N.getOperand(1))) + break; + uint64_t Mask = N.getConstantOperandVal(1); + + // Try to fold the mask and shift into an extract and scale. + if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) + return false; + + // Try to fold the mask and shift directly into the scale. + if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) + return false; + + // Try to swap the mask and shift to place shifts which can be done as + // a scale on the outside of the mask. + if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) + return false; + break; + } + } + + return MatchAddressBase(N, AM); +} + +/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the +/// specified addressing mode without any further recursion. +bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { + // Is the base register already occupied? + if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { + // If so, check to see if the scale index register is set. + if (AM.IndexReg.getNode() == 0) { + AM.IndexReg = N; + AM.Scale = 1; + return false; + } + + // Otherwise, we cannot select it. + return true; + } + + // Default, generate it as a register. + AM.BaseType = X86ISelAddressMode::RegBase; + AM.Base_Reg = N; + return false; +} + +/// SelectAddr - returns true if it is able pattern match an addressing mode. +/// It returns the operands which make up the maximal addressing mode it can +/// match by reference. +/// +/// Parent is the parent node of the addr operand that is being matched. It +/// is always a load, store, atomic node, or null. It is only null when +/// checking memory operands for inline asm nodes. +bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, + SDValue &Disp, SDValue &Segment) { + X86ISelAddressMode AM; + + if (Parent && + // This list of opcodes are all the nodes that have an "addr:$ptr" operand + // that are not a MemSDNode, and thus don't have proper addrspace info. + Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme + Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores + Parent->getOpcode() != X86ISD::TLSCALL && // Fixme + Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp + Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp + unsigned AddrSpace = + cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); + // AddrSpace 256 -> GS, 257 -> FS. + if (AddrSpace == 256) + AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); + if (AddrSpace == 257) + AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); + } + + if (MatchAddress(N, AM)) + return false; + + MVT VT = N.getSimpleValueType(); + if (AM.BaseType == X86ISelAddressMode::RegBase) { + if (!AM.Base_Reg.getNode()) + AM.Base_Reg = CurDAG->getRegister(0, VT); + } + + if (!AM.IndexReg.getNode()) + AM.IndexReg = CurDAG->getRegister(0, VT); + + getAddressOperands(AM, Base, Scale, Index, Disp, Segment); + return true; +} + +/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to +/// match a load whose top elements are either undef or zeros. The load flavor +/// is derived from the type of N, which is either v4f32 or v2f64. +/// +/// We also return: +/// PatternChainNode: this is the matched node that has a chain input and +/// output. +bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, + SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, + SDValue &Disp, SDValue &Segment, + SDValue &PatternNodeWithChain) { + if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { + PatternNodeWithChain = N.getOperand(0); + if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && + PatternNodeWithChain.hasOneUse() && + IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && + IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { + LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); + if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) + return false; + return true; + } + } + + // Also handle the case where we explicitly require zeros in the top + // elements. This is a vector shuffle from the zero vector. + if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && + // Check to see if the top elements are all zeros (or bitcast of zeros). + N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && + N.getOperand(0).getNode()->hasOneUse() && + ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && + N.getOperand(0).getOperand(0).hasOneUse() && + IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && + IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { + // Okay, this is a zero extending load. Fold it. + LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); + if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) + return false; + PatternNodeWithChain = SDValue(LD, 0); + return true; + } + return false; +} + + +bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) { + if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { + uint64_t ImmVal = CN->getZExtValue(); + if ((uint32_t)ImmVal != (uint64_t)ImmVal) + return false; + + Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64); + return true; + } + + // In static codegen with small code model, we can get the address of a label + // into a register with 'movl'. TableGen has already made sure we're looking + // at a label of some kind. + assert(N->getOpcode() == X86ISD::Wrapper && + "Unexpected node type for MOV32ri64"); + N = N.getOperand(0); + + if (N->getOpcode() != ISD::TargetConstantPool && + N->getOpcode() != ISD::TargetJumpTable && + N->getOpcode() != ISD::TargetGlobalAddress && + N->getOpcode() != ISD::TargetExternalSymbol && + N->getOpcode() != ISD::TargetBlockAddress) + return false; + + Imm = N; + return TM.getCodeModel() == CodeModel::Small; +} + +bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, + SDValue &Disp, SDValue &Segment) { + if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment)) + return false; + + SDLoc DL(N); + RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); + if (RN && RN->getReg() == 0) + Base = CurDAG->getRegister(0, MVT::i64); + else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) { + // Base could already be %rip, particularly in the x32 ABI. + Base = SDValue(CurDAG->getMachineNode( + TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, + CurDAG->getTargetConstant(0, MVT::i64), + Base, + CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), + 0); + } + + RN = dyn_cast<RegisterSDNode>(Index); + if (RN && RN->getReg() == 0) + Index = CurDAG->getRegister(0, MVT::i64); + else { + assert(Index.getValueType() == MVT::i32 && + "Expect to be extending 32-bit registers for use in LEA"); + Index = SDValue(CurDAG->getMachineNode( + TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, + CurDAG->getTargetConstant(0, MVT::i64), + Index, + CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), + 0); + } + + return true; +} + +/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing +/// mode it matches can be cost effectively emitted as an LEA instruction. +bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, + SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, + SDValue &Segment) { + X86ISelAddressMode AM; + + // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support + // segments. + SDValue Copy = AM.Segment; + SDValue T = CurDAG->getRegister(0, MVT::i32); + AM.Segment = T; + if (MatchAddress(N, AM)) + return false; + assert (T == AM.Segment); + AM.Segment = Copy; + + MVT VT = N.getSimpleValueType(); + unsigned Complexity = 0; + if (AM.BaseType == X86ISelAddressMode::RegBase) + if (AM.Base_Reg.getNode()) + Complexity = 1; + else + AM.Base_Reg = CurDAG->getRegister(0, VT); + else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) + Complexity = 4; + + if (AM.IndexReg.getNode()) + Complexity++; + else + AM.IndexReg = CurDAG->getRegister(0, VT); + + // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with + // a simple shift. + if (AM.Scale > 1) + Complexity++; + + // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA + // to a LEA. This is determined with some expermentation but is by no means + // optimal (especially for code size consideration). LEA is nice because of + // its three-address nature. Tweak the cost function again when we can run + // convertToThreeAddress() at register allocation time. + if (AM.hasSymbolicDisplacement()) { + // For X86-64, we should always use lea to materialize RIP relative + // addresses. + if (Subtarget->is64Bit()) + Complexity = 4; + else + Complexity += 2; + } + + if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) + Complexity++; + + // If it isn't worth using an LEA, reject it. + if (Complexity <= 2) + return false; + + getAddressOperands(AM, Base, Scale, Index, Disp, Segment); + return true; +} + +/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. +bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, + SDValue &Scale, SDValue &Index, + SDValue &Disp, SDValue &Segment) { + assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); + const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); + + X86ISelAddressMode AM; + AM.GV = GA->getGlobal(); + AM.Disp += GA->getOffset(); + AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); + AM.SymbolFlags = GA->getTargetFlags(); + + if (N.getValueType() == MVT::i32) { + AM.Scale = 1; + AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); + } else { + AM.IndexReg = CurDAG->getRegister(0, MVT::i64); + } + + getAddressOperands(AM, Base, Scale, Index, Disp, Segment); + return true; +} + + +bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, + SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, + SDValue &Segment) { + if (!ISD::isNON_EXTLoad(N.getNode()) || + !IsProfitableToFold(N, P, P) || + !IsLegalToFold(N, P, P, OptLevel)) + return false; + + return SelectAddr(N.getNode(), + N.getOperand(1), Base, Scale, Index, Disp, Segment); +} + +/// getGlobalBaseReg - Return an SDNode that returns the value of +/// the global base register. Output instructions required to +/// initialize the global base register, if necessary. +/// +SDNode *X86DAGToDAGISel::getGlobalBaseReg() { + unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); + return CurDAG->getRegister(GlobalBaseReg, + getTargetLowering()->getPointerTy()).getNode(); +} + +SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { + SDValue Chain = Node->getOperand(0); + SDValue In1 = Node->getOperand(1); + SDValue In2L = Node->getOperand(2); + SDValue In2H = Node->getOperand(3); + + SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; + if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) + return NULL; + MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); + MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); + const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; + SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), + MVT::i32, MVT::i32, MVT::Other, Ops); + cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); + return ResNode; +} + +/// Atomic opcode table +/// +enum AtomicOpc { + ADD, + SUB, + INC, + DEC, + OR, + AND, + XOR, + AtomicOpcEnd +}; + +enum AtomicSz { + ConstantI8, + I8, + SextConstantI16, + ConstantI16, + I16, + SextConstantI32, + ConstantI32, + I32, + SextConstantI64, + ConstantI64, + I64, + AtomicSzEnd +}; + +static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { + { + X86::LOCK_ADD8mi, + X86::LOCK_ADD8mr, + X86::LOCK_ADD16mi8, + X86::LOCK_ADD16mi, + X86::LOCK_ADD16mr, + X86::LOCK_ADD32mi8, + X86::LOCK_ADD32mi, + X86::LOCK_ADD32mr, + X86::LOCK_ADD64mi8, + X86::LOCK_ADD64mi32, + X86::LOCK_ADD64mr, + }, + { + X86::LOCK_SUB8mi, + X86::LOCK_SUB8mr, + X86::LOCK_SUB16mi8, + X86::LOCK_SUB16mi, + X86::LOCK_SUB16mr, + X86::LOCK_SUB32mi8, + X86::LOCK_SUB32mi, + X86::LOCK_SUB32mr, + X86::LOCK_SUB64mi8, + X86::LOCK_SUB64mi32, + X86::LOCK_SUB64mr, + }, + { + 0, + X86::LOCK_INC8m, + 0, + 0, + X86::LOCK_INC16m, + 0, + 0, + X86::LOCK_INC32m, + 0, + 0, + X86::LOCK_INC64m, + }, + { + 0, + X86::LOCK_DEC8m, + 0, + 0, + X86::LOCK_DEC16m, + 0, + 0, + X86::LOCK_DEC32m, + 0, + 0, + X86::LOCK_DEC64m, + }, + { + X86::LOCK_OR8mi, + X86::LOCK_OR8mr, + X86::LOCK_OR16mi8, + X86::LOCK_OR16mi, + X86::LOCK_OR16mr, + X86::LOCK_OR32mi8, + X86::LOCK_OR32mi, + X86::LOCK_OR32mr, + X86::LOCK_OR64mi8, + X86::LOCK_OR64mi32, + X86::LOCK_OR64mr, + }, + { + X86::LOCK_AND8mi, + X86::LOCK_AND8mr, + X86::LOCK_AND16mi8, + X86::LOCK_AND16mi, + X86::LOCK_AND16mr, + X86::LOCK_AND32mi8, + X86::LOCK_AND32mi, + X86::LOCK_AND32mr, + X86::LOCK_AND64mi8, + X86::LOCK_AND64mi32, + X86::LOCK_AND64mr, + }, + { + X86::LOCK_XOR8mi, + X86::LOCK_XOR8mr, + X86::LOCK_XOR16mi8, + X86::LOCK_XOR16mi, + X86::LOCK_XOR16mr, + X86::LOCK_XOR32mi8, + X86::LOCK_XOR32mi, + X86::LOCK_XOR32mr, + X86::LOCK_XOR64mi8, + X86::LOCK_XOR64mi32, + X86::LOCK_XOR64mr, + } +}; + +// Return the target constant operand for atomic-load-op and do simple +// translations, such as from atomic-load-add to lock-sub. The return value is +// one of the following 3 cases: +// + target-constant, the operand could be supported as a target constant. +// + empty, the operand is not needed any more with the new op selected. +// + non-empty, otherwise. +static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, + SDLoc dl, + enum AtomicOpc &Op, MVT NVT, + SDValue Val) { + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { + int64_t CNVal = CN->getSExtValue(); + // Quit if not 32-bit imm. + if ((int32_t)CNVal != CNVal) + return Val; + // For atomic-load-add, we could do some optimizations. + if (Op == ADD) { + // Translate to INC/DEC if ADD by 1 or -1. + if ((CNVal == 1) || (CNVal == -1)) { + Op = (CNVal == 1) ? INC : DEC; + // No more constant operand after being translated into INC/DEC. + return SDValue(); + } + // Translate to SUB if ADD by negative value. + if (CNVal < 0) { + Op = SUB; + CNVal = -CNVal; + } + } + return CurDAG->getTargetConstant(CNVal, NVT); + } + + // If the value operand is single-used, try to optimize it. + if (Op == ADD && Val.hasOneUse()) { + // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). + if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { + Op = SUB; + return Val.getOperand(1); + } + // A special case for i16, which needs truncating as, in most cases, it's + // promoted to i32. We will translate + // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) + if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && + Val.getOperand(0).getOpcode() == ISD::SUB && + X86::isZeroNode(Val.getOperand(0).getOperand(0))) { + Op = SUB; + Val = Val.getOperand(0); + return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, + Val.getOperand(1)); + } + } + + return Val; +} + +SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) { + if (Node->hasAnyUseOfValue(0)) + return 0; + + SDLoc dl(Node); + + // Optimize common patterns for __sync_or_and_fetch and similar arith + // operations where the result is not used. This allows us to use the "lock" + // version of the arithmetic instruction. + SDValue Chain = Node->getOperand(0); + SDValue Ptr = Node->getOperand(1); + SDValue Val = Node->getOperand(2); + SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; + if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) + return 0; + + // Which index into the table. + enum AtomicOpc Op; + switch (Node->getOpcode()) { + default: + return 0; + case ISD::ATOMIC_LOAD_OR: + Op = OR; + break; + case ISD::ATOMIC_LOAD_AND: + Op = AND; + break; + case ISD::ATOMIC_LOAD_XOR: + Op = XOR; + break; + case ISD::ATOMIC_LOAD_ADD: + Op = ADD; + break; + } + + Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val); + bool isUnOp = !Val.getNode(); + bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); + + unsigned Opc = 0; + switch (NVT.SimpleTy) { + default: return 0; + case MVT::i8: + if (isCN) + Opc = AtomicOpcTbl[Op][ConstantI8]; + else + Opc = AtomicOpcTbl[Op][I8]; + break; + case MVT::i16: + if (isCN) { + if (immSext8(Val.getNode())) + Opc = AtomicOpcTbl[Op][SextConstantI16]; + else + Opc = AtomicOpcTbl[Op][ConstantI16]; + } else + Opc = AtomicOpcTbl[Op][I16]; + break; + case MVT::i32: + if (isCN) { + if (immSext8(Val.getNode())) + Opc = AtomicOpcTbl[Op][SextConstantI32]; + else + Opc = AtomicOpcTbl[Op][ConstantI32]; + } else + Opc = AtomicOpcTbl[Op][I32]; + break; + case MVT::i64: + Opc = AtomicOpcTbl[Op][I64]; + if (isCN) { + if (immSext8(Val.getNode())) + Opc = AtomicOpcTbl[Op][SextConstantI64]; + else if (i64immSExt32(Val.getNode())) + Opc = AtomicOpcTbl[Op][ConstantI64]; + } + break; + } + + assert(Opc != 0 && "Invalid arith lock transform!"); + + SDValue Ret; + SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, NVT), 0); + MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); + MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); + if (isUnOp) { + SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; + Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); + } else { + SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; + Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); + } + cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); + SDValue RetVals[] = { Undef, Ret }; + return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); +} + +/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has +/// any uses which require the SF or OF bits to be accurate. +static bool HasNoSignedComparisonUses(SDNode *N) { + // Examine each user of the node. + for (SDNode::use_iterator UI = N->use_begin(), + UE = N->use_end(); UI != UE; ++UI) { + // Only examine CopyToReg uses. + if (UI->getOpcode() != ISD::CopyToReg) + return false; + // Only examine CopyToReg uses that copy to EFLAGS. + if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != + X86::EFLAGS) + return false; + // Examine each user of the CopyToReg use. + for (SDNode::use_iterator FlagUI = UI->use_begin(), + FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { + // Only examine the Flag result. + if (FlagUI.getUse().getResNo() != 1) continue; + // Anything unusual: assume conservatively. + if (!FlagUI->isMachineOpcode()) return false; + // Examine the opcode of the user. + switch (FlagUI->getMachineOpcode()) { + // These comparisons don't treat the most significant bit specially. + case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: + case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: + case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: + case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: + case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: + case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: + case X86::CMOVA16rr: case X86::CMOVA16rm: + case X86::CMOVA32rr: case X86::CMOVA32rm: + case X86::CMOVA64rr: case X86::CMOVA64rm: + case X86::CMOVAE16rr: case X86::CMOVAE16rm: + case X86::CMOVAE32rr: case X86::CMOVAE32rm: + case X86::CMOVAE64rr: case X86::CMOVAE64rm: + case X86::CMOVB16rr: case X86::CMOVB16rm: + case X86::CMOVB32rr: case X86::CMOVB32rm: + case X86::CMOVB64rr: case X86::CMOVB64rm: + case X86::CMOVBE16rr: case X86::CMOVBE16rm: + case X86::CMOVBE32rr: case X86::CMOVBE32rm: + case X86::CMOVBE64rr: case X86::CMOVBE64rm: + case X86::CMOVE16rr: case X86::CMOVE16rm: + case X86::CMOVE32rr: case X86::CMOVE32rm: + case X86::CMOVE64rr: case X86::CMOVE64rm: + case X86::CMOVNE16rr: case X86::CMOVNE16rm: + case X86::CMOVNE32rr: case X86::CMOVNE32rm: + case X86::CMOVNE64rr: case X86::CMOVNE64rm: + case X86::CMOVNP16rr: case X86::CMOVNP16rm: + case X86::CMOVNP32rr: case X86::CMOVNP32rm: + case X86::CMOVNP64rr: case X86::CMOVNP64rm: + case X86::CMOVP16rr: case X86::CMOVP16rm: + case X86::CMOVP32rr: case X86::CMOVP32rm: + case X86::CMOVP64rr: case X86::CMOVP64rm: + continue; + // Anything else: assume conservatively. + default: return false; + } + } + } + return true; +} + +/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode +/// is suitable for doing the {load; increment or decrement; store} to modify +/// transformation. +static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, + SDValue StoredVal, SelectionDAG *CurDAG, + LoadSDNode* &LoadNode, SDValue &InputChain) { + + // is the value stored the result of a DEC or INC? + if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; + + // is the stored value result 0 of the load? + if (StoredVal.getResNo() != 0) return false; + + // are there other uses of the loaded value than the inc or dec? + if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; + + // is the store non-extending and non-indexed? + if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) + return false; + + SDValue Load = StoredVal->getOperand(0); + // Is the stored value a non-extending and non-indexed load? + if (!ISD::isNormalLoad(Load.getNode())) return false; + + // Return LoadNode by reference. + LoadNode = cast<LoadSDNode>(Load); + // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) + EVT LdVT = LoadNode->getMemoryVT(); + if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && + LdVT != MVT::i8) + return false; + + // Is store the only read of the loaded value? + if (!Load.hasOneUse()) + return false; + + // Is the address of the store the same as the load? + if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || + LoadNode->getOffset() != StoreNode->getOffset()) + return false; + + // Check if the chain is produced by the load or is a TokenFactor with + // the load output chain as an operand. Return InputChain by reference. + SDValue Chain = StoreNode->getChain(); + + bool ChainCheck = false; + if (Chain == Load.getValue(1)) { + ChainCheck = true; + InputChain = LoadNode->getChain(); + } else if (Chain.getOpcode() == ISD::TokenFactor) { + SmallVector<SDValue, 4> ChainOps; + for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { + SDValue Op = Chain.getOperand(i); + if (Op == Load.getValue(1)) { + ChainCheck = true; + continue; + } + + // Make sure using Op as part of the chain would not cause a cycle here. + // In theory, we could check whether the chain node is a predecessor of + // the load. But that can be very expensive. Instead visit the uses and + // make sure they all have smaller node id than the load. + int LoadId = LoadNode->getNodeId(); + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = UI->use_end(); UI != UE; ++UI) { + if (UI.getUse().getResNo() != 0) + continue; + if (UI->getNodeId() > LoadId) + return false; + } + + ChainOps.push_back(Op); + } + + if (ChainCheck) + // Make a new TokenFactor with all the other input chains except + // for the load. + InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), + MVT::Other, &ChainOps[0], ChainOps.size()); + } + if (!ChainCheck) + return false; + + return true; +} + +/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory +/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. +static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { + if (Opc == X86ISD::DEC) { + if (LdVT == MVT::i64) return X86::DEC64m; + if (LdVT == MVT::i32) return X86::DEC32m; + if (LdVT == MVT::i16) return X86::DEC16m; + if (LdVT == MVT::i8) return X86::DEC8m; + } else { + assert(Opc == X86ISD::INC && "unrecognized opcode"); + if (LdVT == MVT::i64) return X86::INC64m; + if (LdVT == MVT::i32) return X86::INC32m; + if (LdVT == MVT::i16) return X86::INC16m; + if (LdVT == MVT::i8) return X86::INC8m; + } + llvm_unreachable("unrecognized size for LdVT"); +} + +/// SelectGather - Customized ISel for GATHER operations. +/// +SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) { + // Operands of Gather: VSrc, Base, VIdx, VMask, Scale + SDValue Chain = Node->getOperand(0); + SDValue VSrc = Node->getOperand(2); + SDValue Base = Node->getOperand(3); + SDValue VIdx = Node->getOperand(4); + SDValue VMask = Node->getOperand(5); + ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); + if (!Scale) + return 0; + + SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), + MVT::Other); + + // Memory Operands: Base, Scale, Index, Disp, Segment + SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32); + SDValue Segment = CurDAG->getRegister(0, MVT::i32); + const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx, + Disp, Segment, VMask, Chain}; + SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops); + // Node has 2 outputs: VDst and MVT::Other. + // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. + // We replace VDst of Node with VDst of ResNode, and Other of Node with Other + // of ResNode. + ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); + ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); + return ResNode; +} + +SDNode *X86DAGToDAGISel::Select(SDNode *Node) { + MVT NVT = Node->getSimpleValueType(0); + unsigned Opc, MOpc; + unsigned Opcode = Node->getOpcode(); + SDLoc dl(Node); + + DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); + + if (Node->isMachineOpcode()) { + DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); + Node->setNodeId(-1); + return NULL; // Already selected. + } + + switch (Opcode) { + default: break; + case ISD::INTRINSIC_W_CHAIN: { + unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); + switch (IntNo) { + default: break; + case Intrinsic::x86_avx2_gather_d_pd: + case Intrinsic::x86_avx2_gather_d_pd_256: + case Intrinsic::x86_avx2_gather_q_pd: + case Intrinsic::x86_avx2_gather_q_pd_256: + case Intrinsic::x86_avx2_gather_d_ps: + case Intrinsic::x86_avx2_gather_d_ps_256: + case Intrinsic::x86_avx2_gather_q_ps: + case Intrinsic::x86_avx2_gather_q_ps_256: + case Intrinsic::x86_avx2_gather_d_q: + case Intrinsic::x86_avx2_gather_d_q_256: + case Intrinsic::x86_avx2_gather_q_q: + case Intrinsic::x86_avx2_gather_q_q_256: + case Intrinsic::x86_avx2_gather_d_d: + case Intrinsic::x86_avx2_gather_d_d_256: + case Intrinsic::x86_avx2_gather_q_d: + case Intrinsic::x86_avx2_gather_q_d_256: { + if (!Subtarget->hasAVX2()) + break; + unsigned Opc; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); + case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break; + case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; + case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break; + case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; + case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break; + case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; + case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break; + case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; + case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break; + case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break; + case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break; + case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break; + case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break; + case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break; + case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break; + case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break; + } + SDNode *RetVal = SelectGather(Node, Opc); + if (RetVal) + // We already called ReplaceUses inside SelectGather. + return NULL; + break; + } + } + break; + } + case X86ISD::GlobalBaseReg: + return getGlobalBaseReg(); + + + case X86ISD::ATOMOR64_DAG: + case X86ISD::ATOMXOR64_DAG: + case X86ISD::ATOMADD64_DAG: + case X86ISD::ATOMSUB64_DAG: + case X86ISD::ATOMNAND64_DAG: + case X86ISD::ATOMAND64_DAG: + case X86ISD::ATOMMAX64_DAG: + case X86ISD::ATOMMIN64_DAG: + case X86ISD::ATOMUMAX64_DAG: + case X86ISD::ATOMUMIN64_DAG: + case X86ISD::ATOMSWAP64_DAG: { + unsigned Opc; + switch (Opcode) { + default: llvm_unreachable("Impossible opcode"); + case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break; + case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break; + case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break; + case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break; + case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break; + case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break; + case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break; + case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break; + case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break; + case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break; + case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break; + } + SDNode *RetVal = SelectAtomic64(Node, Opc); + if (RetVal) + return RetVal; + break; + } + + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_ADD: { + SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); + if (RetVal) + return RetVal; + break; + } + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + // For operations of the form (x << C1) op C2, check if we can use a smaller + // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) + break; + + // i8 is unshrinkable, i16 should be promoted to i32. + if (NVT != MVT::i32 && NVT != MVT::i64) + break; + + ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); + ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + if (!Cst || !ShlCst) + break; + + int64_t Val = Cst->getSExtValue(); + uint64_t ShlVal = ShlCst->getZExtValue(); + + // Make sure that we don't change the operation by removing bits. + // This only matters for OR and XOR, AND is unaffected. + uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; + if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) + break; + + unsigned ShlOp, Op; + MVT CstVT = NVT; + + // Check the minimum bitwidth for the new constant. + // TODO: AND32ri is the same as AND64ri32 with zext imm. + // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr + // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. + if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) + CstVT = MVT::i8; + else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) + CstVT = MVT::i32; + + // Bail if there is no smaller encoding. + if (NVT == CstVT) + break; + + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i32: + assert(CstVT == MVT::i8); + ShlOp = X86::SHL32ri; + + switch (Opcode) { + default: llvm_unreachable("Impossible opcode"); + case ISD::AND: Op = X86::AND32ri8; break; + case ISD::OR: Op = X86::OR32ri8; break; + case ISD::XOR: Op = X86::XOR32ri8; break; + } + break; + case MVT::i64: + assert(CstVT == MVT::i8 || CstVT == MVT::i32); + ShlOp = X86::SHL64ri; + + switch (Opcode) { + default: llvm_unreachable("Impossible opcode"); + case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; + case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; + case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; + } + break; + } + + // Emit the smaller op and the shift. + SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); + SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); + return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), + getI8Imm(ShlVal)); + } + case X86ISD::UMUL: { + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + unsigned LoReg; + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; + case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; + case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; + case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; + } + + SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, + N0, SDValue()).getValue(1); + + SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); + SDValue Ops[] = {N1, InFlag}; + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + + ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); + ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); + ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); + return NULL; + } + + case ISD::SMUL_LOHI: + case ISD::UMUL_LOHI: { + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + bool isSigned = Opcode == ISD::SMUL_LOHI; + bool hasBMI2 = Subtarget->hasBMI2(); + if (!isSigned) { + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; + case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; + case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; + MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; + case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; + MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; + } + } else { + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; + case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; + case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; + case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; + } + } + + unsigned SrcReg, LoReg, HiReg; + switch (Opc) { + default: llvm_unreachable("Unknown MUL opcode!"); + case X86::IMUL8r: + case X86::MUL8r: + SrcReg = LoReg = X86::AL; HiReg = X86::AH; + break; + case X86::IMUL16r: + case X86::MUL16r: + SrcReg = LoReg = X86::AX; HiReg = X86::DX; + break; + case X86::IMUL32r: + case X86::MUL32r: + SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; + break; + case X86::IMUL64r: + case X86::MUL64r: + SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; + break; + case X86::MULX32rr: + SrcReg = X86::EDX; LoReg = HiReg = 0; + break; + case X86::MULX64rr: + SrcReg = X86::RDX; LoReg = HiReg = 0; + break; + } + + SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; + bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); + // Multiply is commmutative. + if (!foldedLoad) { + foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); + if (foldedLoad) + std::swap(N0, N1); + } + + SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, + N0, SDValue()).getValue(1); + SDValue ResHi, ResLo; + + if (foldedLoad) { + SDValue Chain; + SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), + InFlag }; + if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { + SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); + SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + ResLo = SDValue(CNode, 1); + Chain = SDValue(CNode, 2); + InFlag = SDValue(CNode, 3); + } else { + SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); + SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); + Chain = SDValue(CNode, 0); + InFlag = SDValue(CNode, 1); + } + + // Update the chain. + ReplaceUses(N1.getValue(1), Chain); + } else { + SDValue Ops[] = { N1, InFlag }; + if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { + SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + ResLo = SDValue(CNode, 1); + InFlag = SDValue(CNode, 2); + } else { + SDVTList VTs = CurDAG->getVTList(MVT::Glue); + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + InFlag = SDValue(CNode, 0); + } + } + + // Prevent use of AH in a REX instruction by referencing AX instead. + if (HiReg == X86::AH && Subtarget->is64Bit() && + !SDValue(Node, 1).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + X86::AX, MVT::i16, InFlag); + InFlag = Result.getValue(2); + // Get the low part if needed. Don't use getCopyFromReg for aliasing + // registers. + if (!SDValue(Node, 0).use_empty()) + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + + // Shift AX down 8 bits. + Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, + Result, + CurDAG->getTargetConstant(8, MVT::i8)), 0); + // Then truncate it down to i8. + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + } + // Copy the low half of the result, if it is needed. + if (!SDValue(Node, 0).use_empty()) { + if (ResLo.getNode() == 0) { + assert(LoReg && "Register for low half is not defined!"); + ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, + InFlag); + InFlag = ResLo.getValue(2); + } + ReplaceUses(SDValue(Node, 0), ResLo); + DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); + } + // Copy the high half of the result, if it is needed. + if (!SDValue(Node, 1).use_empty()) { + if (ResHi.getNode() == 0) { + assert(HiReg && "Register for high half is not defined!"); + ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, + InFlag); + InFlag = ResHi.getValue(2); + } + ReplaceUses(SDValue(Node, 1), ResHi); + DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); + } + + return NULL; + } + + case ISD::SDIVREM: + case ISD::UDIVREM: { + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + bool isSigned = Opcode == ISD::SDIVREM; + if (!isSigned) { + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; + case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; + case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; + case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; + } + } else { + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; + case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; + case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; + case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; + } + } + + unsigned LoReg, HiReg, ClrReg; + unsigned SExtOpcode; + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i8: + LoReg = X86::AL; ClrReg = HiReg = X86::AH; + SExtOpcode = X86::CBW; + break; + case MVT::i16: + LoReg = X86::AX; HiReg = X86::DX; + ClrReg = X86::DX; + SExtOpcode = X86::CWD; + break; + case MVT::i32: + LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; + SExtOpcode = X86::CDQ; + break; + case MVT::i64: + LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; + SExtOpcode = X86::CQO; + break; + } + + SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; + bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); + bool signBitIsZero = CurDAG->SignBitIsZero(N0); + + SDValue InFlag; + if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { + // Special case for div8, just use a move with zero extension to AX to + // clear the upper 8 bits (AH). + SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; + if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { + SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; + Move = + SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, + MVT::Other, Ops), 0); + Chain = Move.getValue(1); + ReplaceUses(N0.getValue(1), Chain); + } else { + Move = + SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); + Chain = CurDAG->getEntryNode(); + } + Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); + InFlag = Chain.getValue(1); + } else { + InFlag = + CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, + LoReg, N0, SDValue()).getValue(1); + if (isSigned && !signBitIsZero) { + // Sign extend the low part into the high part. + InFlag = + SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); + } else { + // Zero out the high part, effectively zero extending the input. + SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); + switch (NVT.SimpleTy) { + case MVT::i16: + ClrNode = + SDValue(CurDAG->getMachineNode( + TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, + CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)), + 0); + break; + case MVT::i32: + break; + case MVT::i64: + ClrNode = + SDValue(CurDAG->getMachineNode( + TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, + CurDAG->getTargetConstant(0, MVT::i64), ClrNode, + CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), + 0); + break; + default: + llvm_unreachable("Unexpected division source"); + } + + InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, + ClrNode, InFlag).getValue(1); + } + } + + if (foldedLoad) { + SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), + InFlag }; + SDNode *CNode = + CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); + InFlag = SDValue(CNode, 1); + // Update the chain. + ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); + } else { + InFlag = + SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); + } + + // Prevent use of AH in a REX instruction by referencing AX instead. + // Shift it down 8 bits. + // + // The current assumption of the register allocator is that isel + // won't generate explicit references to the GPR8_NOREX registers. If + // the allocator and/or the backend get enhanced to be more robust in + // that regard, this can be, and should be, removed. + if (HiReg == X86::AH && Subtarget->is64Bit() && + !SDValue(Node, 1).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + X86::AX, MVT::i16, InFlag); + InFlag = Result.getValue(2); + + // If we also need AL (the quotient), get it by extracting a subreg from + // Result. The fast register allocator does not like multiple CopyFromReg + // nodes using aliasing registers. + if (!SDValue(Node, 0).use_empty()) + ReplaceUses(SDValue(Node, 0), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + + // Shift AX right by 8 bits instead of using AH. + Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, + Result, + CurDAG->getTargetConstant(8, MVT::i8)), + 0); + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + } + // Copy the division (low) result, if it is needed. + if (!SDValue(Node, 0).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + LoReg, NVT, InFlag); + InFlag = Result.getValue(2); + ReplaceUses(SDValue(Node, 0), Result); + DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); + } + // Copy the remainder (high) result, if it is needed. + if (!SDValue(Node, 1).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + HiReg, NVT, InFlag); + InFlag = Result.getValue(2); + ReplaceUses(SDValue(Node, 1), Result); + DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); + } + return NULL; + } + + case X86ISD::CMP: + case X86ISD::SUB: { + // Sometimes a SUB is used to perform comparison. + if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) + // This node is not a CMP. + break; + SDValue N0 = Node->getOperand(0); + SDValue N1 = Node->getOperand(1); + + // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to + // use a smaller encoding. + if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && + HasNoSignedComparisonUses(Node)) + // Look past the truncate if CMP is the only use of it. + N0 = N0.getOperand(0); + if ((N0.getNode()->getOpcode() == ISD::AND || + (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && + N0.getNode()->hasOneUse() && + N0.getValueType() != MVT::i8 && + X86::isZeroNode(N1)) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); + if (!C) break; + + // For example, convert "testl %eax, $8" to "testb %al, $8" + if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && + (!(C->getZExtValue() & 0x80) || + HasNoSignedComparisonUses(Node))) { + SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); + SDValue Reg = N0.getNode()->getOperand(0); + + // On x86-32, only the ABCD registers have 8-bit subregisters. + if (!Subtarget->is64Bit()) { + const TargetRegisterClass *TRC; + switch (N0.getSimpleValueType().SimpleTy) { + case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; + case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; + default: llvm_unreachable("Unsupported TEST operand type!"); + } + SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); + Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, + Reg.getValueType(), Reg, RC), 0); + } + + // Extract the l-register. + SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, + MVT::i8, Reg); + + // Emit a testb. + SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, + Subreg, Imm); + // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has + // one, do not call ReplaceAllUsesWith. + ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), + SDValue(NewNode, 0)); + return NULL; + } + + // For example, "testl %eax, $2048" to "testb %ah, $8". + if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && + (!(C->getZExtValue() & 0x8000) || + HasNoSignedComparisonUses(Node))) { + // Shift the immediate right by 8 bits. + SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, + MVT::i8); + SDValue Reg = N0.getNode()->getOperand(0); + + // Put the value in an ABCD register. + const TargetRegisterClass *TRC; + switch (N0.getSimpleValueType().SimpleTy) { + case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; + case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; + case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; + default: llvm_unreachable("Unsupported TEST operand type!"); + } + SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); + Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, + Reg.getValueType(), Reg, RC), 0); + + // Extract the h-register. + SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, + MVT::i8, Reg); + + // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only + // target GR8_NOREX registers, so make sure the register class is + // forced. + SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, + MVT::i32, Subreg, ShiftedImm); + // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has + // one, do not call ReplaceAllUsesWith. + ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), + SDValue(NewNode, 0)); + return NULL; + } + + // For example, "testl %eax, $32776" to "testw %ax, $32776". + if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && + N0.getValueType() != MVT::i16 && + (!(C->getZExtValue() & 0x8000) || + HasNoSignedComparisonUses(Node))) { + SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); + SDValue Reg = N0.getNode()->getOperand(0); + + // Extract the 16-bit subregister. + SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, + MVT::i16, Reg); + + // Emit a testw. + SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, + Subreg, Imm); + // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has + // one, do not call ReplaceAllUsesWith. + ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), + SDValue(NewNode, 0)); + return NULL; + } + + // For example, "testq %rax, $268468232" to "testl %eax, $268468232". + if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && + N0.getValueType() == MVT::i64 && + (!(C->getZExtValue() & 0x80000000) || + HasNoSignedComparisonUses(Node))) { + SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); + SDValue Reg = N0.getNode()->getOperand(0); + + // Extract the 32-bit subregister. + SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, + MVT::i32, Reg); + + // Emit a testl. + SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, + Subreg, Imm); + // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has + // one, do not call ReplaceAllUsesWith. + ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), + SDValue(NewNode, 0)); + return NULL; + } + } + break; + } + case ISD::STORE: { + // Change a chain of {load; incr or dec; store} of the same value into + // a simple increment or decrement through memory of that value, if the + // uses of the modified value and its address are suitable. + // The DEC64m tablegen pattern is currently not able to match the case where + // the EFLAGS on the original DEC are used. (This also applies to + // {INC,DEC}X{64,32,16,8}.) + // We'll need to improve tablegen to allow flags to be transferred from a + // node in the pattern to the result node. probably with a new keyword + // for example, we have this + // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", + // [(store (add (loadi64 addr:$dst), -1), addr:$dst), + // (implicit EFLAGS)]>; + // but maybe need something like this + // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", + // [(store (add (loadi64 addr:$dst), -1), addr:$dst), + // (transferrable EFLAGS)]>; + + StoreSDNode *StoreNode = cast<StoreSDNode>(Node); + SDValue StoredVal = StoreNode->getOperand(1); + unsigned Opc = StoredVal->getOpcode(); + + LoadSDNode *LoadNode = 0; + SDValue InputChain; + if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, + LoadNode, InputChain)) + break; + + SDValue Base, Scale, Index, Disp, Segment; + if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), + Base, Scale, Index, Disp, Segment)) + break; + + MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); + MemOp[0] = StoreNode->getMemOperand(); + MemOp[1] = LoadNode->getMemOperand(); + const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; + EVT LdVT = LoadNode->getMemoryVT(); + unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); + MachineSDNode *Result = CurDAG->getMachineNode(newOpc, + SDLoc(Node), + MVT::i32, MVT::Other, Ops); + Result->setMemRefs(MemOp, MemOp + 2); + + ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); + ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); + + return Result; + } + } + + SDNode *ResNode = SelectCode(Node); + + DEBUG(dbgs() << "=> "; + if (ResNode == NULL || ResNode == Node) + Node->dump(CurDAG); + else + ResNode->dump(CurDAG); + dbgs() << '\n'); + + return ResNode; +} + +bool X86DAGToDAGISel:: +SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, + std::vector<SDValue> &OutOps) { + SDValue Op0, Op1, Op2, Op3, Op4; + switch (ConstraintCode) { + case 'o': // offsetable ?? + case 'v': // not offsetable ?? + default: return true; + case 'm': // memory + if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) + return true; + break; + } + + OutOps.push_back(Op0); + OutOps.push_back(Op1); + OutOps.push_back(Op2); + OutOps.push_back(Op3); + OutOps.push_back(Op4); + return false; +} + +/// createX86ISelDag - This pass converts a legalized DAG into a +/// X86-specific DAG, ready for instruction scheduling. +/// +FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, + CodeGenOpt::Level OptLevel) { + return new X86DAGToDAGISel(TM, OptLevel); +} |