diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp | 1706 |
1 files changed, 1706 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp new file mode 100644 index 000000000000..5582526541ba --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp @@ -0,0 +1,1706 @@ +//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which converts floating point instructions from +// pseudo registers into register stack instructions. This pass uses live +// variable information to indicate where the FPn registers are used and their +// lifetimes. +// +// The x87 hardware tracks liveness of the stack registers, so it is necessary +// to implement exact liveness tracking between basic blocks. The CFG edges are +// partitioned into bundles where the same FP registers must be live in +// identical stack positions. Instructions are inserted at the end of each basic +// block to rearrange the live registers to match the outgoing bundle. +// +// This approach avoids splitting critical edges at the potential cost of more +// live register shuffling instructions when critical edges are present. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/EdgeBundles.h" +#include "llvm/CodeGen/LivePhysRegs.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <bitset> +using namespace llvm; + +#define DEBUG_TYPE "x86-codegen" + +STATISTIC(NumFXCH, "Number of fxch instructions inserted"); +STATISTIC(NumFP , "Number of floating point instructions"); + +namespace { + const unsigned ScratchFPReg = 7; + + struct FPS : public MachineFunctionPass { + static char ID; + FPS() : MachineFunctionPass(ID) { + initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); + // This is really only to keep valgrind quiet. + // The logic in isLive() is too much for it. + memset(Stack, 0, sizeof(Stack)); + memset(RegMap, 0, sizeof(RegMap)); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<EdgeBundles>(); + AU.addPreservedID(MachineLoopInfoID); + AU.addPreservedID(MachineDominatorsID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + + StringRef getPassName() const override { return "X86 FP Stackifier"; } + + private: + const TargetInstrInfo *TII; // Machine instruction info. + + // Two CFG edges are related if they leave the same block, or enter the same + // block. The transitive closure of an edge under this relation is a + // LiveBundle. It represents a set of CFG edges where the live FP stack + // registers must be allocated identically in the x87 stack. + // + // A LiveBundle is usually all the edges leaving a block, or all the edges + // entering a block, but it can contain more edges if critical edges are + // present. + // + // The set of live FP registers in a LiveBundle is calculated by bundleCFG, + // but the exact mapping of FP registers to stack slots is fixed later. + struct LiveBundle { + // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. + unsigned Mask; + + // Number of pre-assigned live registers in FixStack. This is 0 when the + // stack order has not yet been fixed. + unsigned FixCount; + + // Assigned stack order for live-in registers. + // FixStack[i] == getStackEntry(i) for all i < FixCount. + unsigned char FixStack[8]; + + LiveBundle() : Mask(0), FixCount(0) {} + + // Have the live registers been assigned a stack order yet? + bool isFixed() const { return !Mask || FixCount; } + }; + + // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges + // with no live FP registers. + SmallVector<LiveBundle, 8> LiveBundles; + + // The edge bundle analysis provides indices into the LiveBundles vector. + EdgeBundles *Bundles; + + // Return a bitmask of FP registers in block's live-in list. + static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { + unsigned Mask = 0; + for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); + I != MBB->livein_end(); ) { + MCPhysReg Reg = I->PhysReg; + static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums"); + if (Reg >= X86::FP0 && Reg <= X86::FP6) { + Mask |= 1 << (Reg - X86::FP0); + if (RemoveFPs) { + I = MBB->removeLiveIn(I); + continue; + } + } + ++I; + } + return Mask; + } + + // Partition all the CFG edges into LiveBundles. + void bundleCFGRecomputeKillFlags(MachineFunction &MF); + + MachineBasicBlock *MBB; // Current basic block + + // The hardware keeps track of how many FP registers are live, so we have + // to model that exactly. Usually, each live register corresponds to an + // FP<n> register, but when dealing with calls, returns, and inline + // assembly, it is sometimes necessary to have live scratch registers. + unsigned Stack[8]; // FP<n> Registers in each stack slot... + unsigned StackTop; // The current top of the FP stack. + + enum { + NumFPRegs = 8 // Including scratch pseudo-registers. + }; + + // For each live FP<n> register, point to its Stack[] entry. + // The first entries correspond to FP0-FP6, the rest are scratch registers + // used when we need slightly different live registers than what the + // register allocator thinks. + unsigned RegMap[NumFPRegs]; + + // Set up our stack model to match the incoming registers to MBB. + void setupBlockStack(); + + // Shuffle live registers to match the expectations of successor blocks. + void finishBlockStack(); + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + void dumpStack() const { + dbgs() << "Stack contents:"; + for (unsigned i = 0; i != StackTop; ++i) { + dbgs() << " FP" << Stack[i]; + assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); + } + } +#endif + + /// getSlot - Return the stack slot number a particular register number is + /// in. + unsigned getSlot(unsigned RegNo) const { + assert(RegNo < NumFPRegs && "Regno out of range!"); + return RegMap[RegNo]; + } + + /// isLive - Is RegNo currently live in the stack? + bool isLive(unsigned RegNo) const { + unsigned Slot = getSlot(RegNo); + return Slot < StackTop && Stack[Slot] == RegNo; + } + + /// getStackEntry - Return the X86::FP<n> register in register ST(i). + unsigned getStackEntry(unsigned STi) const { + if (STi >= StackTop) + report_fatal_error("Access past stack top!"); + return Stack[StackTop-1-STi]; + } + + /// getSTReg - Return the X86::ST(i) register which contains the specified + /// FP<RegNo> register. + unsigned getSTReg(unsigned RegNo) const { + return StackTop - 1 - getSlot(RegNo) + X86::ST0; + } + + // pushReg - Push the specified FP<n> register onto the stack. + void pushReg(unsigned Reg) { + assert(Reg < NumFPRegs && "Register number out of range!"); + if (StackTop >= 8) + report_fatal_error("Stack overflow!"); + Stack[StackTop] = Reg; + RegMap[Reg] = StackTop++; + } + + // popReg - Pop a register from the stack. + void popReg() { + if (StackTop == 0) + report_fatal_error("Cannot pop empty stack!"); + RegMap[Stack[--StackTop]] = ~0; // Update state + } + + bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } + void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { + DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); + if (isAtTop(RegNo)) return; + + unsigned STReg = getSTReg(RegNo); + unsigned RegOnTop = getStackEntry(0); + + // Swap the slots the regs are in. + std::swap(RegMap[RegNo], RegMap[RegOnTop]); + + // Swap stack slot contents. + if (RegMap[RegOnTop] >= StackTop) + report_fatal_error("Access past stack top!"); + std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); + + // Emit an fxch to update the runtime processors version of the state. + BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); + ++NumFXCH; + } + + void duplicateToTop(unsigned RegNo, unsigned AsReg, + MachineBasicBlock::iterator I) { + DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); + unsigned STReg = getSTReg(RegNo); + pushReg(AsReg); // New register on top of stack + + BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); + } + + /// popStackAfter - Pop the current value off of the top of the FP stack + /// after the specified instruction. + void popStackAfter(MachineBasicBlock::iterator &I); + + /// freeStackSlotAfter - Free the specified register from the register + /// stack, so that it is no longer in a register. If the register is + /// currently at the top of the stack, we just pop the current instruction, + /// otherwise we store the current top-of-stack into the specified slot, + /// then pop the top of stack. + void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); + + /// freeStackSlotBefore - Just the pop, no folding. Return the inserted + /// instruction. + MachineBasicBlock::iterator + freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); + + /// Adjust the live registers to be the set in Mask. + void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); + + /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is + /// st(0), FP reg FixStack[1] is st(1) etc. + void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, + MachineBasicBlock::iterator I); + + bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); + + void handleCall(MachineBasicBlock::iterator &I); + void handleReturn(MachineBasicBlock::iterator &I); + void handleZeroArgFP(MachineBasicBlock::iterator &I); + void handleOneArgFP(MachineBasicBlock::iterator &I); + void handleOneArgFPRW(MachineBasicBlock::iterator &I); + void handleTwoArgFP(MachineBasicBlock::iterator &I); + void handleCompareFP(MachineBasicBlock::iterator &I); + void handleCondMovFP(MachineBasicBlock::iterator &I); + void handleSpecialFP(MachineBasicBlock::iterator &I); + + // Check if a COPY instruction is using FP registers. + static bool isFPCopy(MachineInstr &MI) { + unsigned DstReg = MI.getOperand(0).getReg(); + unsigned SrcReg = MI.getOperand(1).getReg(); + + return X86::RFP80RegClass.contains(DstReg) || + X86::RFP80RegClass.contains(SrcReg); + } + + void setKillFlags(MachineBasicBlock &MBB) const; + }; + char FPS::ID = 0; +} + +FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } + +/// getFPReg - Return the X86::FPx register number for the specified operand. +/// For example, this returns 3 for X86::FP3. +static unsigned getFPReg(const MachineOperand &MO) { + assert(MO.isReg() && "Expected an FP register!"); + unsigned Reg = MO.getReg(); + assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); + return Reg - X86::FP0; +} + +/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP +/// register references into FP stack references. +/// +bool FPS::runOnMachineFunction(MachineFunction &MF) { + // We only need to run this pass if there are any FP registers used in this + // function. If it is all integer, there is nothing for us to do! + bool FPIsUsed = false; + + static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + for (unsigned i = 0; i <= 6; ++i) + if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { + FPIsUsed = true; + break; + } + + // Early exit. + if (!FPIsUsed) return false; + + Bundles = &getAnalysis<EdgeBundles>(); + TII = MF.getSubtarget().getInstrInfo(); + + // Prepare cross-MBB liveness. + bundleCFGRecomputeKillFlags(MF); + + StackTop = 0; + + // Process the function in depth first order so that we process at least one + // of the predecessors for every reachable block in the function. + df_iterator_default_set<MachineBasicBlock*> Processed; + MachineBasicBlock *Entry = &MF.front(); + + LiveBundle &Bundle = + LiveBundles[Bundles->getBundle(Entry->getNumber(), false)]; + + // In regcall convention, some FP registers may not be passed through + // the stack, so they will need to be assigned to the stack first + if ((Entry->getParent()->getFunction()->getCallingConv() == + CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { + // In the register calling convention, up to one FP argument could be + // saved in the first FP register. + // If bundle.mask is non-zero and Bundle.FixCount is zero, it means + // that the FP registers contain arguments. + // The actual value is passed in FP0. + // Here we fix the stack and mark FP0 as pre-assigned register. + assert((Bundle.Mask & 0xFE) == 0 && + "Only FP0 could be passed as an argument"); + Bundle.FixCount = 1; + Bundle.FixStack[0] = 0; + } + + bool Changed = false; + for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) + Changed |= processBasicBlock(MF, *BB); + + // Process any unreachable blocks in arbitrary order now. + if (MF.size() != Processed.size()) + for (MachineBasicBlock &BB : MF) + if (Processed.insert(&BB).second) + Changed |= processBasicBlock(MF, BB); + + LiveBundles.clear(); + + return Changed; +} + +/// bundleCFG - Scan all the basic blocks to determine consistent live-in and +/// live-out sets for the FP registers. Consistent means that the set of +/// registers live-out from a block is identical to the live-in set of all +/// successors. This is not enforced by the normal live-in lists since +/// registers may be implicitly defined, or not used by all successors. +void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { + assert(LiveBundles.empty() && "Stale data in LiveBundles"); + LiveBundles.resize(Bundles->getNumBundles()); + + // Gather the actual live-in masks for all MBBs. + for (MachineBasicBlock &MBB : MF) { + setKillFlags(MBB); + + const unsigned Mask = calcLiveInMask(&MBB, false); + if (!Mask) + continue; + // Update MBB ingoing bundle mask. + LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; + } +} + +/// processBasicBlock - Loop over all of the instructions in the basic block, +/// transforming FP instructions into their stack form. +/// +bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { + bool Changed = false; + MBB = &BB; + + setupBlockStack(); + + for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { + MachineInstr &MI = *I; + uint64_t Flags = MI.getDesc().TSFlags; + + unsigned FPInstClass = Flags & X86II::FPTypeMask; + if (MI.isInlineAsm()) + FPInstClass = X86II::SpecialFP; + + if (MI.isCopy() && isFPCopy(MI)) + FPInstClass = X86II::SpecialFP; + + if (MI.isImplicitDef() && + X86::RFP80RegClass.contains(MI.getOperand(0).getReg())) + FPInstClass = X86II::SpecialFP; + + if (MI.isCall()) + FPInstClass = X86II::SpecialFP; + + if (FPInstClass == X86II::NotFP) + continue; // Efficiently ignore non-fp insts! + + MachineInstr *PrevMI = nullptr; + if (I != BB.begin()) + PrevMI = &*std::prev(I); + + ++NumFP; // Keep track of # of pseudo instrs + DEBUG(dbgs() << "\nFPInst:\t" << MI); + + // Get dead variables list now because the MI pointer may be deleted as part + // of processing! + SmallVector<unsigned, 8> DeadRegs; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (MO.isReg() && MO.isDead()) + DeadRegs.push_back(MO.getReg()); + } + + switch (FPInstClass) { + case X86II::ZeroArgFP: handleZeroArgFP(I); break; + case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) + case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) + case X86II::TwoArgFP: handleTwoArgFP(I); break; + case X86II::CompareFP: handleCompareFP(I); break; + case X86II::CondMovFP: handleCondMovFP(I); break; + case X86II::SpecialFP: handleSpecialFP(I); break; + default: llvm_unreachable("Unknown FP Type!"); + } + + // Check to see if any of the values defined by this instruction are dead + // after definition. If so, pop them. + for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { + unsigned Reg = DeadRegs[i]; + // Check if Reg is live on the stack. An inline-asm register operand that + // is in the clobber list and marked dead might not be live on the stack. + static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); + if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { + DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); + freeStackSlotAfter(I, Reg-X86::FP0); + } + } + + // Print out all of the instructions expanded to if -debug + DEBUG({ + MachineBasicBlock::iterator PrevI = PrevMI; + if (I == PrevI) { + dbgs() << "Just deleted pseudo instruction\n"; + } else { + MachineBasicBlock::iterator Start = I; + // Rewind to first instruction newly inserted. + while (Start != BB.begin() && std::prev(Start) != PrevI) + --Start; + dbgs() << "Inserted instructions:\n\t"; + Start->print(dbgs()); + while (++Start != std::next(I)) { + } + } + dumpStack(); + }); + (void)PrevMI; + + Changed = true; + } + + finishBlockStack(); + + return Changed; +} + +/// setupBlockStack - Use the live bundles to set up our model of the stack +/// to match predecessors' live out stack. +void FPS::setupBlockStack() { + DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber() + << " derived from " << MBB->getName() << ".\n"); + StackTop = 0; + // Get the live-in bundle for MBB. + const LiveBundle &Bundle = + LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; + + if (!Bundle.Mask) { + DEBUG(dbgs() << "Block has no FP live-ins.\n"); + return; + } + + // Depth-first iteration should ensure that we always have an assigned stack. + assert(Bundle.isFixed() && "Reached block before any predecessors"); + + // Push the fixed live-in registers. + for (unsigned i = Bundle.FixCount; i > 0; --i) { + DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP" + << unsigned(Bundle.FixStack[i-1]) << '\n'); + pushReg(Bundle.FixStack[i-1]); + } + + // Kill off unwanted live-ins. This can happen with a critical edge. + // FIXME: We could keep these live registers around as zombies. They may need + // to be revived at the end of a short block. It might save a few instrs. + unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); + adjustLiveRegs(Mask, MBB->begin()); + DEBUG(MBB->dump()); +} + +/// finishBlockStack - Revive live-outs that are implicitly defined out of +/// MBB. Shuffle live registers to match the expected fixed stack of any +/// predecessors, and ensure that all predecessors are expecting the same +/// stack. +void FPS::finishBlockStack() { + // The RET handling below takes care of return blocks for us. + if (MBB->succ_empty()) + return; + + DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber() + << " derived from " << MBB->getName() << ".\n"); + + // Get MBB's live-out bundle. + unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); + LiveBundle &Bundle = LiveBundles[BundleIdx]; + + // We may need to kill and define some registers to match successors. + // FIXME: This can probably be combined with the shuffle below. + MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); + adjustLiveRegs(Bundle.Mask, Term); + + if (!Bundle.Mask) { + DEBUG(dbgs() << "No live-outs.\n"); + return; + } + + // Has the stack order been fixed yet? + DEBUG(dbgs() << "LB#" << BundleIdx << ": "); + if (Bundle.isFixed()) { + DEBUG(dbgs() << "Shuffling stack to match.\n"); + shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); + } else { + // Not fixed yet, we get to choose. + DEBUG(dbgs() << "Fixing stack order now.\n"); + Bundle.FixCount = StackTop; + for (unsigned i = 0; i < StackTop; ++i) + Bundle.FixStack[i] = getStackEntry(i); + } +} + + +//===----------------------------------------------------------------------===// +// Efficient Lookup Table Support +//===----------------------------------------------------------------------===// + +namespace { + struct TableEntry { + uint16_t from; + uint16_t to; + bool operator<(const TableEntry &TE) const { return from < TE.from; } + friend bool operator<(const TableEntry &TE, unsigned V) { + return TE.from < V; + } + friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, + const TableEntry &TE) { + return V < TE.from; + } + }; +} + +static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { + const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode); + if (I != Table.end() && I->from == Opcode) + return I->to; + return -1; +} + +#ifdef NDEBUG +#define ASSERT_SORTED(TABLE) +#else +#define ASSERT_SORTED(TABLE) \ + { static bool TABLE##Checked = false; \ + if (!TABLE##Checked) { \ + assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \ + "All lookup tables must be sorted for efficient access!"); \ + TABLE##Checked = true; \ + } \ + } +#endif + +//===----------------------------------------------------------------------===// +// Register File -> Register Stack Mapping Methods +//===----------------------------------------------------------------------===// + +// OpcodeTable - Sorted map of register instructions to their stack version. +// The first element is an register file pseudo instruction, the second is the +// concrete X86 instruction which uses the register stack. +// +static const TableEntry OpcodeTable[] = { + { X86::ABS_Fp32 , X86::ABS_F }, + { X86::ABS_Fp64 , X86::ABS_F }, + { X86::ABS_Fp80 , X86::ABS_F }, + { X86::ADD_Fp32m , X86::ADD_F32m }, + { X86::ADD_Fp64m , X86::ADD_F64m }, + { X86::ADD_Fp64m32 , X86::ADD_F32m }, + { X86::ADD_Fp80m32 , X86::ADD_F32m }, + { X86::ADD_Fp80m64 , X86::ADD_F64m }, + { X86::ADD_FpI16m32 , X86::ADD_FI16m }, + { X86::ADD_FpI16m64 , X86::ADD_FI16m }, + { X86::ADD_FpI16m80 , X86::ADD_FI16m }, + { X86::ADD_FpI32m32 , X86::ADD_FI32m }, + { X86::ADD_FpI32m64 , X86::ADD_FI32m }, + { X86::ADD_FpI32m80 , X86::ADD_FI32m }, + { X86::CHS_Fp32 , X86::CHS_F }, + { X86::CHS_Fp64 , X86::CHS_F }, + { X86::CHS_Fp80 , X86::CHS_F }, + { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, + { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, + { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, + { X86::CMOVB_Fp32 , X86::CMOVB_F }, + { X86::CMOVB_Fp64 , X86::CMOVB_F }, + { X86::CMOVB_Fp80 , X86::CMOVB_F }, + { X86::CMOVE_Fp32 , X86::CMOVE_F }, + { X86::CMOVE_Fp64 , X86::CMOVE_F }, + { X86::CMOVE_Fp80 , X86::CMOVE_F }, + { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, + { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, + { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, + { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, + { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, + { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, + { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, + { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, + { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, + { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, + { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, + { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, + { X86::CMOVP_Fp32 , X86::CMOVP_F }, + { X86::CMOVP_Fp64 , X86::CMOVP_F }, + { X86::CMOVP_Fp80 , X86::CMOVP_F }, + { X86::COS_Fp32 , X86::COS_F }, + { X86::COS_Fp64 , X86::COS_F }, + { X86::COS_Fp80 , X86::COS_F }, + { X86::DIVR_Fp32m , X86::DIVR_F32m }, + { X86::DIVR_Fp64m , X86::DIVR_F64m }, + { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, + { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, + { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, + { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, + { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, + { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, + { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, + { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, + { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, + { X86::DIV_Fp32m , X86::DIV_F32m }, + { X86::DIV_Fp64m , X86::DIV_F64m }, + { X86::DIV_Fp64m32 , X86::DIV_F32m }, + { X86::DIV_Fp80m32 , X86::DIV_F32m }, + { X86::DIV_Fp80m64 , X86::DIV_F64m }, + { X86::DIV_FpI16m32 , X86::DIV_FI16m }, + { X86::DIV_FpI16m64 , X86::DIV_FI16m }, + { X86::DIV_FpI16m80 , X86::DIV_FI16m }, + { X86::DIV_FpI32m32 , X86::DIV_FI32m }, + { X86::DIV_FpI32m64 , X86::DIV_FI32m }, + { X86::DIV_FpI32m80 , X86::DIV_FI32m }, + { X86::ILD_Fp16m32 , X86::ILD_F16m }, + { X86::ILD_Fp16m64 , X86::ILD_F16m }, + { X86::ILD_Fp16m80 , X86::ILD_F16m }, + { X86::ILD_Fp32m32 , X86::ILD_F32m }, + { X86::ILD_Fp32m64 , X86::ILD_F32m }, + { X86::ILD_Fp32m80 , X86::ILD_F32m }, + { X86::ILD_Fp64m32 , X86::ILD_F64m }, + { X86::ILD_Fp64m64 , X86::ILD_F64m }, + { X86::ILD_Fp64m80 , X86::ILD_F64m }, + { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, + { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, + { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, + { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, + { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, + { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, + { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, + { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, + { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, + { X86::IST_Fp16m32 , X86::IST_F16m }, + { X86::IST_Fp16m64 , X86::IST_F16m }, + { X86::IST_Fp16m80 , X86::IST_F16m }, + { X86::IST_Fp32m32 , X86::IST_F32m }, + { X86::IST_Fp32m64 , X86::IST_F32m }, + { X86::IST_Fp32m80 , X86::IST_F32m }, + { X86::IST_Fp64m32 , X86::IST_FP64m }, + { X86::IST_Fp64m64 , X86::IST_FP64m }, + { X86::IST_Fp64m80 , X86::IST_FP64m }, + { X86::LD_Fp032 , X86::LD_F0 }, + { X86::LD_Fp064 , X86::LD_F0 }, + { X86::LD_Fp080 , X86::LD_F0 }, + { X86::LD_Fp132 , X86::LD_F1 }, + { X86::LD_Fp164 , X86::LD_F1 }, + { X86::LD_Fp180 , X86::LD_F1 }, + { X86::LD_Fp32m , X86::LD_F32m }, + { X86::LD_Fp32m64 , X86::LD_F32m }, + { X86::LD_Fp32m80 , X86::LD_F32m }, + { X86::LD_Fp64m , X86::LD_F64m }, + { X86::LD_Fp64m80 , X86::LD_F64m }, + { X86::LD_Fp80m , X86::LD_F80m }, + { X86::MUL_Fp32m , X86::MUL_F32m }, + { X86::MUL_Fp64m , X86::MUL_F64m }, + { X86::MUL_Fp64m32 , X86::MUL_F32m }, + { X86::MUL_Fp80m32 , X86::MUL_F32m }, + { X86::MUL_Fp80m64 , X86::MUL_F64m }, + { X86::MUL_FpI16m32 , X86::MUL_FI16m }, + { X86::MUL_FpI16m64 , X86::MUL_FI16m }, + { X86::MUL_FpI16m80 , X86::MUL_FI16m }, + { X86::MUL_FpI32m32 , X86::MUL_FI32m }, + { X86::MUL_FpI32m64 , X86::MUL_FI32m }, + { X86::MUL_FpI32m80 , X86::MUL_FI32m }, + { X86::SIN_Fp32 , X86::SIN_F }, + { X86::SIN_Fp64 , X86::SIN_F }, + { X86::SIN_Fp80 , X86::SIN_F }, + { X86::SQRT_Fp32 , X86::SQRT_F }, + { X86::SQRT_Fp64 , X86::SQRT_F }, + { X86::SQRT_Fp80 , X86::SQRT_F }, + { X86::ST_Fp32m , X86::ST_F32m }, + { X86::ST_Fp64m , X86::ST_F64m }, + { X86::ST_Fp64m32 , X86::ST_F32m }, + { X86::ST_Fp80m32 , X86::ST_F32m }, + { X86::ST_Fp80m64 , X86::ST_F64m }, + { X86::ST_FpP80m , X86::ST_FP80m }, + { X86::SUBR_Fp32m , X86::SUBR_F32m }, + { X86::SUBR_Fp64m , X86::SUBR_F64m }, + { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, + { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, + { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, + { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, + { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, + { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, + { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, + { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, + { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, + { X86::SUB_Fp32m , X86::SUB_F32m }, + { X86::SUB_Fp64m , X86::SUB_F64m }, + { X86::SUB_Fp64m32 , X86::SUB_F32m }, + { X86::SUB_Fp80m32 , X86::SUB_F32m }, + { X86::SUB_Fp80m64 , X86::SUB_F64m }, + { X86::SUB_FpI16m32 , X86::SUB_FI16m }, + { X86::SUB_FpI16m64 , X86::SUB_FI16m }, + { X86::SUB_FpI16m80 , X86::SUB_FI16m }, + { X86::SUB_FpI32m32 , X86::SUB_FI32m }, + { X86::SUB_FpI32m64 , X86::SUB_FI32m }, + { X86::SUB_FpI32m80 , X86::SUB_FI32m }, + { X86::TST_Fp32 , X86::TST_F }, + { X86::TST_Fp64 , X86::TST_F }, + { X86::TST_Fp80 , X86::TST_F }, + { X86::UCOM_FpIr32 , X86::UCOM_FIr }, + { X86::UCOM_FpIr64 , X86::UCOM_FIr }, + { X86::UCOM_FpIr80 , X86::UCOM_FIr }, + { X86::UCOM_Fpr32 , X86::UCOM_Fr }, + { X86::UCOM_Fpr64 , X86::UCOM_Fr }, + { X86::UCOM_Fpr80 , X86::UCOM_Fr }, +}; + +static unsigned getConcreteOpcode(unsigned Opcode) { + ASSERT_SORTED(OpcodeTable); + int Opc = Lookup(OpcodeTable, Opcode); + assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); + return Opc; +} + +//===----------------------------------------------------------------------===// +// Helper Methods +//===----------------------------------------------------------------------===// + +// PopTable - Sorted map of instructions to their popping version. The first +// element is an instruction, the second is the version which pops. +// +static const TableEntry PopTable[] = { + { X86::ADD_FrST0 , X86::ADD_FPrST0 }, + + { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, + { X86::DIV_FrST0 , X86::DIV_FPrST0 }, + + { X86::IST_F16m , X86::IST_FP16m }, + { X86::IST_F32m , X86::IST_FP32m }, + + { X86::MUL_FrST0 , X86::MUL_FPrST0 }, + + { X86::ST_F32m , X86::ST_FP32m }, + { X86::ST_F64m , X86::ST_FP64m }, + { X86::ST_Frr , X86::ST_FPrr }, + + { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, + { X86::SUB_FrST0 , X86::SUB_FPrST0 }, + + { X86::UCOM_FIr , X86::UCOM_FIPr }, + + { X86::UCOM_FPr , X86::UCOM_FPPr }, + { X86::UCOM_Fr , X86::UCOM_FPr }, +}; + +/// popStackAfter - Pop the current value off of the top of the FP stack after +/// the specified instruction. This attempts to be sneaky and combine the pop +/// into the instruction itself if possible. The iterator is left pointing to +/// the last instruction, be it a new pop instruction inserted, or the old +/// instruction if it was modified in place. +/// +void FPS::popStackAfter(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; + const DebugLoc &dl = MI.getDebugLoc(); + ASSERT_SORTED(PopTable); + + popReg(); + + // Check to see if there is a popping version of this instruction... + int Opcode = Lookup(PopTable, I->getOpcode()); + if (Opcode != -1) { + I->setDesc(TII->get(Opcode)); + if (Opcode == X86::UCOM_FPPr) + I->RemoveOperand(0); + } else { // Insert an explicit pop + I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); + } +} + +/// freeStackSlotAfter - Free the specified register from the register stack, so +/// that it is no longer in a register. If the register is currently at the top +/// of the stack, we just pop the current instruction, otherwise we store the +/// current top-of-stack into the specified slot, then pop the top of stack. +void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { + if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. + popStackAfter(I); + return; + } + + // Otherwise, store the top of stack into the dead slot, killing the operand + // without having to add in an explicit xchg then pop. + // + I = freeStackSlotBefore(++I, FPRegNo); +} + +/// freeStackSlotBefore - Free the specified register without trying any +/// folding. +MachineBasicBlock::iterator +FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { + unsigned STReg = getSTReg(FPRegNo); + unsigned OldSlot = getSlot(FPRegNo); + unsigned TopReg = Stack[StackTop-1]; + Stack[OldSlot] = TopReg; + RegMap[TopReg] = OldSlot; + RegMap[FPRegNo] = ~0; + Stack[--StackTop] = ~0; + return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) + .addReg(STReg) + .getInstr(); +} + +/// adjustLiveRegs - Kill and revive registers such that exactly the FP +/// registers with a bit in Mask are live. +void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { + unsigned Defs = Mask; + unsigned Kills = 0; + for (unsigned i = 0; i < StackTop; ++i) { + unsigned RegNo = Stack[i]; + if (!(Defs & (1 << RegNo))) + // This register is live, but we don't want it. + Kills |= (1 << RegNo); + else + // We don't need to imp-def this live register. + Defs &= ~(1 << RegNo); + } + assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); + + // Produce implicit-defs for free by using killed registers. + while (Kills && Defs) { + unsigned KReg = countTrailingZeros(Kills); + unsigned DReg = countTrailingZeros(Defs); + DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n"); + std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); + std::swap(RegMap[KReg], RegMap[DReg]); + Kills &= ~(1 << KReg); + Defs &= ~(1 << DReg); + } + + // Kill registers by popping. + if (Kills && I != MBB->begin()) { + MachineBasicBlock::iterator I2 = std::prev(I); + while (StackTop) { + unsigned KReg = getStackEntry(0); + if (!(Kills & (1 << KReg))) + break; + DEBUG(dbgs() << "Popping %FP" << KReg << "\n"); + popStackAfter(I2); + Kills &= ~(1 << KReg); + } + } + + // Manually kill the rest. + while (Kills) { + unsigned KReg = countTrailingZeros(Kills); + DEBUG(dbgs() << "Killing %FP" << KReg << "\n"); + freeStackSlotBefore(I, KReg); + Kills &= ~(1 << KReg); + } + + // Load zeros for all the imp-defs. + while(Defs) { + unsigned DReg = countTrailingZeros(Defs); + DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n"); + BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); + pushReg(DReg); + Defs &= ~(1 << DReg); + } + + // Now we should have the correct registers live. + DEBUG(dumpStack()); + assert(StackTop == countPopulation(Mask) && "Live count mismatch"); +} + +/// shuffleStackTop - emit fxch instructions before I to shuffle the top +/// FixCount entries into the order given by FixStack. +/// FIXME: Is there a better algorithm than insertion sort? +void FPS::shuffleStackTop(const unsigned char *FixStack, + unsigned FixCount, + MachineBasicBlock::iterator I) { + // Move items into place, starting from the desired stack bottom. + while (FixCount--) { + // Old register at position FixCount. + unsigned OldReg = getStackEntry(FixCount); + // Desired register at position FixCount. + unsigned Reg = FixStack[FixCount]; + if (Reg == OldReg) + continue; + // (Reg st0) (OldReg st0) = (Reg OldReg st0) + moveToTop(Reg, I); + if (FixCount > 0) + moveToTop(OldReg, I); + } + DEBUG(dumpStack()); +} + + +//===----------------------------------------------------------------------===// +// Instruction transformation implementation +//===----------------------------------------------------------------------===// + +void FPS::handleCall(MachineBasicBlock::iterator &I) { + unsigned STReturns = 0; + const MachineFunction* MF = I->getParent()->getParent(); + + for (const auto &MO : I->operands()) { + if (!MO.isReg()) + continue; + + unsigned R = MO.getReg() - X86::FP0; + + if (R < 8) { + if (MF->getFunction()->getCallingConv() != CallingConv::X86_RegCall) { + assert(MO.isDef() && MO.isImplicit()); + } + + STReturns |= 1 << R; + } + } + + unsigned N = countTrailingOnes(STReturns); + + // FP registers used for function return must be consecutive starting at + // FP0 + assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); + + // Reset the FP Stack - It is required because of possible leftovers from + // passed arguments. The caller should assume that the FP stack is + // returned empty (unless the callee returns values on FP stack). + while (StackTop > 0) + popReg(); + + for (unsigned I = 0; I < N; ++I) + pushReg(N - I - 1); +} + +/// If RET has an FP register use operand, pass the first one in ST(0) and +/// the second one in ST(1). +void FPS::handleReturn(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; + + // Find the register operands. + unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; + unsigned LiveMask = 0; + + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI.getOperand(i); + if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) + continue; + // FP Register uses must be kills unless there are two uses of the same + // register, in which case only one will be a kill. + assert(Op.isUse() && + (Op.isKill() || // Marked kill. + getFPReg(Op) == FirstFPRegOp || // Second instance. + MI.killsRegister(Op.getReg())) && // Later use is marked kill. + "Ret only defs operands, and values aren't live beyond it"); + + if (FirstFPRegOp == ~0U) + FirstFPRegOp = getFPReg(Op); + else { + assert(SecondFPRegOp == ~0U && "More than two fp operands!"); + SecondFPRegOp = getFPReg(Op); + } + LiveMask |= (1 << getFPReg(Op)); + + // Remove the operand so that later passes don't see it. + MI.RemoveOperand(i); + --i; + --e; + } + + // We may have been carrying spurious live-ins, so make sure only the + // returned registers are left live. + adjustLiveRegs(LiveMask, MI); + if (!LiveMask) return; // Quick check to see if any are possible. + + // There are only four possibilities here: + // 1) we are returning a single FP value. In this case, it has to be in + // ST(0) already, so just declare success by removing the value from the + // FP Stack. + if (SecondFPRegOp == ~0U) { + // Assert that the top of stack contains the right FP register. + assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && + "Top of stack not the right register for RET!"); + + // Ok, everything is good, mark the value as not being on the stack + // anymore so that our assertion about the stack being empty at end of + // block doesn't fire. + StackTop = 0; + return; + } + + // Otherwise, we are returning two values: + // 2) If returning the same value for both, we only have one thing in the FP + // stack. Consider: RET FP1, FP1 + if (StackTop == 1) { + assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& + "Stack misconfiguration for RET!"); + + // Duplicate the TOS so that we return it twice. Just pick some other FPx + // register to hold it. + unsigned NewReg = ScratchFPReg; + duplicateToTop(FirstFPRegOp, NewReg, MI); + FirstFPRegOp = NewReg; + } + + /// Okay we know we have two different FPx operands now: + assert(StackTop == 2 && "Must have two values live!"); + + /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently + /// in ST(1). In this case, emit an fxch. + if (getStackEntry(0) == SecondFPRegOp) { + assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); + moveToTop(FirstFPRegOp, MI); + } + + /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in + /// ST(1). Just remove both from our understanding of the stack and return. + assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); + assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); + StackTop = 0; +} + +/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> +/// +void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; + unsigned DestReg = getFPReg(MI.getOperand(0)); + + // Change from the pseudo instruction to the concrete instruction. + MI.RemoveOperand(0); // Remove the explicit ST(0) operand + MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); + + // Result gets pushed on the stack. + pushReg(DestReg); +} + +/// handleOneArgFP - fst <mem>, ST(0) +/// +void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; + unsigned NumOps = MI.getDesc().getNumOperands(); + assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && + "Can only handle fst* & ftst instructions!"); + + // Is this the last use of the source register? + unsigned Reg = getFPReg(MI.getOperand(NumOps - 1)); + bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); + + // FISTP64m is strange because there isn't a non-popping versions. + // If we have one _and_ we don't want to pop the operand, duplicate the value + // on the stack instead of moving it. This ensure that popping the value is + // always ok. + // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. + // + if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || + MI.getOpcode() == X86::ISTT_Fp16m32 || + MI.getOpcode() == X86::ISTT_Fp32m32 || + MI.getOpcode() == X86::ISTT_Fp64m32 || + MI.getOpcode() == X86::IST_Fp64m64 || + MI.getOpcode() == X86::ISTT_Fp16m64 || + MI.getOpcode() == X86::ISTT_Fp32m64 || + MI.getOpcode() == X86::ISTT_Fp64m64 || + MI.getOpcode() == X86::IST_Fp64m80 || + MI.getOpcode() == X86::ISTT_Fp16m80 || + MI.getOpcode() == X86::ISTT_Fp32m80 || + MI.getOpcode() == X86::ISTT_Fp64m80 || + MI.getOpcode() == X86::ST_FpP80m)) { + duplicateToTop(Reg, ScratchFPReg, I); + } else { + moveToTop(Reg, I); // Move to the top of the stack... + } + + // Convert from the pseudo instruction to the concrete instruction. + MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand + MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); + + if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || + MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || + MI.getOpcode() == X86::ST_FP80m) { + if (StackTop == 0) + report_fatal_error("Stack empty??"); + --StackTop; + } else if (KillsSrc) { // Last use of operand? + popStackAfter(I); + } +} + + +/// handleOneArgFPRW: Handle instructions that read from the top of stack and +/// replace the value with a newly computed value. These instructions may have +/// non-fp operands after their FP operands. +/// +/// Examples: +/// R1 = fchs R2 +/// R1 = fadd R2, [mem] +/// +void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; +#ifndef NDEBUG + unsigned NumOps = MI.getDesc().getNumOperands(); + assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); +#endif + + // Is this the last use of the source register? + unsigned Reg = getFPReg(MI.getOperand(1)); + bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); + + if (KillsSrc) { + // If this is the last use of the source register, just make sure it's on + // the top of the stack. + moveToTop(Reg, I); + if (StackTop == 0) + report_fatal_error("Stack cannot be empty!"); + --StackTop; + pushReg(getFPReg(MI.getOperand(0))); + } else { + // If this is not the last use of the source register, _copy_ it to the top + // of the stack. + duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I); + } + + // Change from the pseudo instruction to the concrete instruction. + MI.RemoveOperand(1); // Drop the source operand. + MI.RemoveOperand(0); // Drop the destination operand. + MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); +} + + +//===----------------------------------------------------------------------===// +// Define tables of various ways to map pseudo instructions +// + +// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) +static const TableEntry ForwardST0Table[] = { + { X86::ADD_Fp32 , X86::ADD_FST0r }, + { X86::ADD_Fp64 , X86::ADD_FST0r }, + { X86::ADD_Fp80 , X86::ADD_FST0r }, + { X86::DIV_Fp32 , X86::DIV_FST0r }, + { X86::DIV_Fp64 , X86::DIV_FST0r }, + { X86::DIV_Fp80 , X86::DIV_FST0r }, + { X86::MUL_Fp32 , X86::MUL_FST0r }, + { X86::MUL_Fp64 , X86::MUL_FST0r }, + { X86::MUL_Fp80 , X86::MUL_FST0r }, + { X86::SUB_Fp32 , X86::SUB_FST0r }, + { X86::SUB_Fp64 , X86::SUB_FST0r }, + { X86::SUB_Fp80 , X86::SUB_FST0r }, +}; + +// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) +static const TableEntry ReverseST0Table[] = { + { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative + { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative + { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative + { X86::DIV_Fp32 , X86::DIVR_FST0r }, + { X86::DIV_Fp64 , X86::DIVR_FST0r }, + { X86::DIV_Fp80 , X86::DIVR_FST0r }, + { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative + { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative + { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative + { X86::SUB_Fp32 , X86::SUBR_FST0r }, + { X86::SUB_Fp64 , X86::SUBR_FST0r }, + { X86::SUB_Fp80 , X86::SUBR_FST0r }, +}; + +// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) +static const TableEntry ForwardSTiTable[] = { + { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative + { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative + { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative + { X86::DIV_Fp32 , X86::DIVR_FrST0 }, + { X86::DIV_Fp64 , X86::DIVR_FrST0 }, + { X86::DIV_Fp80 , X86::DIVR_FrST0 }, + { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative + { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative + { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative + { X86::SUB_Fp32 , X86::SUBR_FrST0 }, + { X86::SUB_Fp64 , X86::SUBR_FrST0 }, + { X86::SUB_Fp80 , X86::SUBR_FrST0 }, +}; + +// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) +static const TableEntry ReverseSTiTable[] = { + { X86::ADD_Fp32 , X86::ADD_FrST0 }, + { X86::ADD_Fp64 , X86::ADD_FrST0 }, + { X86::ADD_Fp80 , X86::ADD_FrST0 }, + { X86::DIV_Fp32 , X86::DIV_FrST0 }, + { X86::DIV_Fp64 , X86::DIV_FrST0 }, + { X86::DIV_Fp80 , X86::DIV_FrST0 }, + { X86::MUL_Fp32 , X86::MUL_FrST0 }, + { X86::MUL_Fp64 , X86::MUL_FrST0 }, + { X86::MUL_Fp80 , X86::MUL_FrST0 }, + { X86::SUB_Fp32 , X86::SUB_FrST0 }, + { X86::SUB_Fp64 , X86::SUB_FrST0 }, + { X86::SUB_Fp80 , X86::SUB_FrST0 }, +}; + + +/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual +/// instructions which need to be simplified and possibly transformed. +/// +/// Result: ST(0) = fsub ST(0), ST(i) +/// ST(i) = fsub ST(0), ST(i) +/// ST(0) = fsubr ST(0), ST(i) +/// ST(i) = fsubr ST(0), ST(i) +/// +void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { + ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); + ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); + MachineInstr &MI = *I; + + unsigned NumOperands = MI.getDesc().getNumOperands(); + assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); + unsigned Dest = getFPReg(MI.getOperand(0)); + unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); + unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); + bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); + bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); + DebugLoc dl = MI.getDebugLoc(); + + unsigned TOS = getStackEntry(0); + + // One of our operands must be on the top of the stack. If neither is yet, we + // need to move one. + if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? + // We can choose to move either operand to the top of the stack. If one of + // the operands is killed by this instruction, we want that one so that we + // can update right on top of the old version. + if (KillsOp0) { + moveToTop(Op0, I); // Move dead operand to TOS. + TOS = Op0; + } else if (KillsOp1) { + moveToTop(Op1, I); + TOS = Op1; + } else { + // All of the operands are live after this instruction executes, so we + // cannot update on top of any operand. Because of this, we must + // duplicate one of the stack elements to the top. It doesn't matter + // which one we pick. + // + duplicateToTop(Op0, Dest, I); + Op0 = TOS = Dest; + KillsOp0 = true; + } + } else if (!KillsOp0 && !KillsOp1) { + // If we DO have one of our operands at the top of the stack, but we don't + // have a dead operand, we must duplicate one of the operands to a new slot + // on the stack. + duplicateToTop(Op0, Dest, I); + Op0 = TOS = Dest; + KillsOp0 = true; + } + + // Now we know that one of our operands is on the top of the stack, and at + // least one of our operands is killed by this instruction. + assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && + "Stack conditions not set up right!"); + + // We decide which form to use based on what is on the top of the stack, and + // which operand is killed by this instruction. + ArrayRef<TableEntry> InstTable; + bool isForward = TOS == Op0; + bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); + if (updateST0) { + if (isForward) + InstTable = ForwardST0Table; + else + InstTable = ReverseST0Table; + } else { + if (isForward) + InstTable = ForwardSTiTable; + else + InstTable = ReverseSTiTable; + } + + int Opcode = Lookup(InstTable, MI.getOpcode()); + assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); + + // NotTOS - The register which is not on the top of stack... + unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; + + // Replace the old instruction with a new instruction + MBB->remove(&*I++); + I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); + + // If both operands are killed, pop one off of the stack in addition to + // overwriting the other one. + if (KillsOp0 && KillsOp1 && Op0 != Op1) { + assert(!updateST0 && "Should have updated other operand!"); + popStackAfter(I); // Pop the top of stack + } + + // Update stack information so that we know the destination register is now on + // the stack. + unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); + assert(UpdatedSlot < StackTop && Dest < 7); + Stack[UpdatedSlot] = Dest; + RegMap[Dest] = UpdatedSlot; + MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction +} + +/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP +/// register arguments and no explicit destinations. +/// +void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { + ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); + ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); + MachineInstr &MI = *I; + + unsigned NumOperands = MI.getDesc().getNumOperands(); + assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); + unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); + unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); + bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); + bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); + + // Make sure the first operand is on the top of stack, the other one can be + // anywhere. + moveToTop(Op0, I); + + // Change from the pseudo instruction to the concrete instruction. + MI.getOperand(0).setReg(getSTReg(Op1)); + MI.RemoveOperand(1); + MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); + + // If any of the operands are killed by this instruction, free them. + if (KillsOp0) freeStackSlotAfter(I, Op0); + if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); +} + +/// handleCondMovFP - Handle two address conditional move instructions. These +/// instructions move a st(i) register to st(0) iff a condition is true. These +/// instructions require that the first operand is at the top of the stack, but +/// otherwise don't modify the stack at all. +void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { + MachineInstr &MI = *I; + + unsigned Op0 = getFPReg(MI.getOperand(0)); + unsigned Op1 = getFPReg(MI.getOperand(2)); + bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); + + // The first operand *must* be on the top of the stack. + moveToTop(Op0, I); + + // Change the second operand to the stack register that the operand is in. + // Change from the pseudo instruction to the concrete instruction. + MI.RemoveOperand(0); + MI.RemoveOperand(1); + MI.getOperand(0).setReg(getSTReg(Op1)); + MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); + + // If we kill the second operand, make sure to pop it from the stack. + if (Op0 != Op1 && KillsOp1) { + // Get this value off of the register stack. + freeStackSlotAfter(I, Op1); + } +} + + +/// handleSpecialFP - Handle special instructions which behave unlike other +/// floating point instructions. This is primarily intended for use by pseudo +/// instructions. +/// +void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { + MachineInstr &MI = *Inst; + + if (MI.isCall()) { + handleCall(Inst); + return; + } + + if (MI.isReturn()) { + handleReturn(Inst); + return; + } + + switch (MI.getOpcode()) { + default: llvm_unreachable("Unknown SpecialFP instruction!"); + case TargetOpcode::COPY: { + // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. + const MachineOperand &MO1 = MI.getOperand(1); + const MachineOperand &MO0 = MI.getOperand(0); + bool KillsSrc = MI.killsRegister(MO1.getReg()); + + // FP <- FP copy. + unsigned DstFP = getFPReg(MO0); + unsigned SrcFP = getFPReg(MO1); + assert(isLive(SrcFP) && "Cannot copy dead register"); + if (KillsSrc) { + // If the input operand is killed, we can just change the owner of the + // incoming stack slot into the result. + unsigned Slot = getSlot(SrcFP); + Stack[Slot] = DstFP; + RegMap[DstFP] = Slot; + } else { + // For COPY we just duplicate the specified value to a new stack slot. + // This could be made better, but would require substantial changes. + duplicateToTop(SrcFP, DstFP, Inst); + } + break; + } + + case TargetOpcode::IMPLICIT_DEF: { + // All FP registers must be explicitly defined, so load a 0 instead. + unsigned Reg = MI.getOperand(0).getReg() - X86::FP0; + DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); + BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0)); + pushReg(Reg); + break; + } + + case TargetOpcode::INLINEASM: { + // The inline asm MachineInstr currently only *uses* FP registers for the + // 'f' constraint. These should be turned into the current ST(x) register + // in the machine instr. + // + // There are special rules for x87 inline assembly. The compiler must know + // exactly how many registers are popped and pushed implicitly by the asm. + // Otherwise it is not possible to restore the stack state after the inline + // asm. + // + // There are 3 kinds of input operands: + // + // 1. Popped inputs. These must appear at the stack top in ST0-STn. A + // popped input operand must be in a fixed stack slot, and it is either + // tied to an output operand, or in the clobber list. The MI has ST use + // and def operands for these inputs. + // + // 2. Fixed inputs. These inputs appear in fixed stack slots, but are + // preserved by the inline asm. The fixed stack slots must be STn-STm + // following the popped inputs. A fixed input operand cannot be tied to + // an output or appear in the clobber list. The MI has ST use operands + // and no defs for these inputs. + // + // 3. Preserved inputs. These inputs use the "f" constraint which is + // represented as an FP register. The inline asm won't change these + // stack slots. + // + // Outputs must be in ST registers, FP outputs are not allowed. Clobbered + // registers do not count as output operands. The inline asm changes the + // stack as if it popped all the popped inputs and then pushed all the + // output operands. + + // Scan the assembly for ST registers used, defined and clobbered. We can + // only tell clobbers from defs by looking at the asm descriptor. + unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; + unsigned NumOps = 0; + SmallSet<unsigned, 1> FRegIdx; + unsigned RCID; + + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); + i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { + unsigned Flags = MI.getOperand(i).getImm(); + + NumOps = InlineAsm::getNumOperandRegisters(Flags); + if (NumOps != 1) + continue; + const MachineOperand &MO = MI.getOperand(i + 1); + if (!MO.isReg()) + continue; + unsigned STReg = MO.getReg() - X86::FP0; + if (STReg >= 8) + continue; + + // If the flag has a register class constraint, this must be an operand + // with constraint "f". Record its index and continue. + if (InlineAsm::hasRegClassConstraint(Flags, RCID)) { + FRegIdx.insert(i + 1); + continue; + } + + switch (InlineAsm::getKind(Flags)) { + case InlineAsm::Kind_RegUse: + STUses |= (1u << STReg); + break; + case InlineAsm::Kind_RegDef: + case InlineAsm::Kind_RegDefEarlyClobber: + STDefs |= (1u << STReg); + if (MO.isDead()) + STDeadDefs |= (1u << STReg); + break; + case InlineAsm::Kind_Clobber: + STClobbers |= (1u << STReg); + break; + default: + break; + } + } + + if (STUses && !isMask_32(STUses)) + MI.emitError("fixed input regs must be last on the x87 stack"); + unsigned NumSTUses = countTrailingOnes(STUses); + + // Defs must be contiguous from the stack top. ST0-STn. + if (STDefs && !isMask_32(STDefs)) { + MI.emitError("output regs must be last on the x87 stack"); + STDefs = NextPowerOf2(STDefs) - 1; + } + unsigned NumSTDefs = countTrailingOnes(STDefs); + + // So must the clobbered stack slots. ST0-STm, m >= n. + if (STClobbers && !isMask_32(STDefs | STClobbers)) + MI.emitError("clobbers must be last on the x87 stack"); + + // Popped inputs are the ones that are also clobbered or defined. + unsigned STPopped = STUses & (STDefs | STClobbers); + if (STPopped && !isMask_32(STPopped)) + MI.emitError("implicitly popped regs must be last on the x87 stack"); + unsigned NumSTPopped = countTrailingOnes(STPopped); + + DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " + << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n"); + +#ifndef NDEBUG + // If any input operand uses constraint "f", all output register + // constraints must be early-clobber defs. + for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) + if (FRegIdx.count(I)) { + assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && + "Operands with constraint \"f\" cannot overlap with defs"); + } +#endif + + // Collect all FP registers (register operands with constraints "t", "u", + // and "f") to kill afer the instruction. + unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI.getOperand(i); + if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) + continue; + unsigned FPReg = getFPReg(Op); + + // If we kill this operand, make sure to pop it from the stack after the + // asm. We just remember it for now, and pop them all off at the end in + // a batch. + if (Op.isUse() && Op.isKill()) + FPKills |= 1U << FPReg; + } + + // Do not include registers that are implicitly popped by defs/clobbers. + FPKills &= ~(STDefs | STClobbers); + + // Now we can rearrange the live registers to match what was requested. + unsigned char STUsesArray[8]; + + for (unsigned I = 0; I < NumSTUses; ++I) + STUsesArray[I] = I; + + shuffleStackTop(STUsesArray, NumSTUses, Inst); + DEBUG({dbgs() << "Before asm: "; dumpStack();}); + + // With the stack layout fixed, rewrite the FP registers. + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI.getOperand(i); + if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) + continue; + + unsigned FPReg = getFPReg(Op); + + if (FRegIdx.count(i)) + // Operand with constraint "f". + Op.setReg(getSTReg(FPReg)); + else + // Operand with a single register class constraint ("t" or "u"). + Op.setReg(X86::ST0 + FPReg); + } + + // Simulate the inline asm popping its inputs and pushing its outputs. + StackTop -= NumSTPopped; + + for (unsigned i = 0; i < NumSTDefs; ++i) + pushReg(NumSTDefs - i - 1); + + // If this asm kills any FP registers (is the last use of them) we must + // explicitly emit pop instructions for them. Do this now after the asm has + // executed so that the ST(x) numbers are not off (which would happen if we + // did this inline with operand rewriting). + // + // Note: this might be a non-optimal pop sequence. We might be able to do + // better by trying to pop in stack order or something. + while (FPKills) { + unsigned FPReg = countTrailingZeros(FPKills); + if (isLive(FPReg)) + freeStackSlotAfter(Inst, FPReg); + FPKills &= ~(1U << FPReg); + } + + // Don't delete the inline asm! + return; + } + } + + Inst = MBB->erase(Inst); // Remove the pseudo instruction + + // We want to leave I pointing to the previous instruction, but what if we + // just erased the first instruction? + if (Inst == MBB->begin()) { + DEBUG(dbgs() << "Inserting dummy KILL\n"); + Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); + } else + --Inst; +} + +void FPS::setKillFlags(MachineBasicBlock &MBB) const { + const TargetRegisterInfo &TRI = + *MBB.getParent()->getSubtarget().getRegisterInfo(); + LivePhysRegs LPR(TRI); + + LPR.addLiveOuts(MBB); + + for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); + I != E; ++I) { + if (I->isDebugValue()) + continue; + + std::bitset<8> Defs; + SmallVector<MachineOperand *, 2> Uses; + MachineInstr &MI = *I; + + for (auto &MO : I->operands()) { + if (!MO.isReg()) + continue; + + unsigned Reg = MO.getReg() - X86::FP0; + + if (Reg >= 8) + continue; + + if (MO.isDef()) { + Defs.set(Reg); + if (!LPR.contains(MO.getReg())) + MO.setIsDead(); + } else + Uses.push_back(&MO); + } + + for (auto *MO : Uses) + if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) + MO->setIsKill(); + + LPR.stepBackward(MI); + } +} |