diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FastISel.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FastISel.cpp | 2557 |
1 files changed, 2557 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp new file mode 100644 index 000000000000..97f96ab72c24 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp @@ -0,0 +1,2557 @@ +//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the X86-specific support for the FastISel class. Much +// of the target-specific code is generated by tablegen in the file +// X86GenFastISel.inc, which is #included here. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86CallingConv.h" +#include "X86ISelLowering.h" +#include "X86InstrBuilder.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +namespace { + +class X86FastISel : public FastISel { + /// Subtarget - Keep a pointer to the X86Subtarget around so that we can + /// make the right decision when generating code for different targets. + const X86Subtarget *Subtarget; + + /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 + /// floating point ops. + /// When SSE is available, use it for f32 operations. + /// When SSE2 is available, use it for f64 operations. + bool X86ScalarSSEf64; + bool X86ScalarSSEf32; + +public: + explicit X86FastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) + : FastISel(funcInfo, libInfo) { + Subtarget = &TM.getSubtarget<X86Subtarget>(); + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + } + + virtual bool TargetSelectInstruction(const Instruction *I); + + /// \brief The specified machine instr operand is a vreg, and that + /// vreg is being provided by the specified load instruction. If possible, + /// try to fold the load as an operand to the instruction, returning true if + /// possible. + virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, + const LoadInst *LI); + + virtual bool FastLowerArguments(); + +#include "X86GenFastISel.inc" + +private: + bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); + + bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); + + bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM, + bool Aligned = false); + bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM, + bool Aligned = false); + + bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, + unsigned &ResultReg); + + bool X86SelectAddress(const Value *V, X86AddressMode &AM); + bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); + + bool X86SelectLoad(const Instruction *I); + + bool X86SelectStore(const Instruction *I); + + bool X86SelectRet(const Instruction *I); + + bool X86SelectCmp(const Instruction *I); + + bool X86SelectZExt(const Instruction *I); + + bool X86SelectBranch(const Instruction *I); + + bool X86SelectShift(const Instruction *I); + + bool X86SelectDivRem(const Instruction *I); + + bool X86SelectSelect(const Instruction *I); + + bool X86SelectTrunc(const Instruction *I); + + bool X86SelectFPExt(const Instruction *I); + bool X86SelectFPTrunc(const Instruction *I); + + bool X86VisitIntrinsicCall(const IntrinsicInst &I); + bool X86SelectCall(const Instruction *I); + + bool DoSelectCall(const Instruction *I, const char *MemIntName); + + const X86InstrInfo *getInstrInfo() const { + return getTargetMachine()->getInstrInfo(); + } + const X86TargetMachine *getTargetMachine() const { + return static_cast<const X86TargetMachine *>(&TM); + } + + bool handleConstantAddresses(const Value *V, X86AddressMode &AM); + + unsigned TargetMaterializeConstant(const Constant *C); + + unsigned TargetMaterializeAlloca(const AllocaInst *C); + + unsigned TargetMaterializeFloatZero(const ConstantFP *CF); + + /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is + /// computed in an SSE register, not on the X87 floating point stack. + bool isScalarFPTypeInSSEReg(EVT VT) const { + return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 + (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 + } + + bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); + + bool IsMemcpySmall(uint64_t Len); + + bool TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len); +}; + +} // end anonymous namespace. + +bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { + EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true); + if (evt == MVT::Other || !evt.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + VT = evt.getSimpleVT(); + // For now, require SSE/SSE2 for performing floating-point operations, + // since x87 requires additional work. + if (VT == MVT::f64 && !X86ScalarSSEf64) + return false; + if (VT == MVT::f32 && !X86ScalarSSEf32) + return false; + // Similarly, no f80 support yet. + if (VT == MVT::f80) + return false; + // We only handle legal types. For example, on x86-32 the instruction + // selector contains all of the 64-bit instructions from x86-64, + // under the assumption that i64 won't be used if the target doesn't + // support it. + return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); +} + +#include "X86GenCallingConv.inc" + +/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. +/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. +/// Return true and the result register by reference if it is possible. +bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, + unsigned &ResultReg) { + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.getSimpleVT().SimpleTy) { + default: return false; + case MVT::i1: + case MVT::i8: + Opc = X86::MOV8rm; + RC = &X86::GR8RegClass; + break; + case MVT::i16: + Opc = X86::MOV16rm; + RC = &X86::GR16RegClass; + break; + case MVT::i32: + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + break; + case MVT::f32: + if (X86ScalarSSEf32) { + Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; + RC = &X86::FR32RegClass; + } else { + Opc = X86::LD_Fp32m; + RC = &X86::RFP32RegClass; + } + break; + case MVT::f64: + if (X86ScalarSSEf64) { + Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; + RC = &X86::FR64RegClass; + } else { + Opc = X86::LD_Fp64m; + RC = &X86::RFP64RegClass; + } + break; + case MVT::f80: + // No f80 support yet. + return false; + } + + ResultReg = createResultReg(RC); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc), ResultReg), AM); + return true; +} + +/// X86FastEmitStore - Emit a machine instruction to store a value Val of +/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr +/// and a displacement offset, or a GlobalAddress, +/// i.e. V. Return true if it is possible. +bool +X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, + const X86AddressMode &AM, bool Aligned) { + // Get opcode and regclass of the output for the given store instruction. + unsigned Opc = 0; + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f80: // No f80 support yet. + default: return false; + case MVT::i1: { + // Mask out all but lowest bit. + unsigned AndResult = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1); + ValReg = AndResult; + } + // FALLTHROUGH, handling i1 as i8. + case MVT::i8: Opc = X86::MOV8mr; break; + case MVT::i16: Opc = X86::MOV16mr; break; + case MVT::i32: Opc = X86::MOV32mr; break; + case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. + case MVT::f32: + Opc = X86ScalarSSEf32 ? + (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m; + break; + case MVT::f64: + Opc = X86ScalarSSEf64 ? + (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m; + break; + case MVT::v4f32: + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr; + break; + case MVT::v2f64: + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr; + break; + case MVT::v4i32: + case MVT::v2i64: + case MVT::v8i16: + case MVT::v16i8: + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr; + break; + } + + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc)), AM).addReg(ValReg); + return true; +} + +bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, + const X86AddressMode &AM, bool Aligned) { + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Val)) + Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); + + // If this is a store of a simple constant, fold the constant into the store. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { + unsigned Opc = 0; + bool Signed = true; + switch (VT.getSimpleVT().SimpleTy) { + default: break; + case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8. + case MVT::i8: Opc = X86::MOV8mi; break; + case MVT::i16: Opc = X86::MOV16mi; break; + case MVT::i32: Opc = X86::MOV32mi; break; + case MVT::i64: + // Must be a 32-bit sign extended value. + if (isInt<32>(CI->getSExtValue())) + Opc = X86::MOV64mi32; + break; + } + + if (Opc) { + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc)), AM) + .addImm(Signed ? (uint64_t) CI->getSExtValue() : + CI->getZExtValue()); + return true; + } + } + + unsigned ValReg = getRegForValue(Val); + if (ValReg == 0) + return false; + + return X86FastEmitStore(VT, ValReg, AM, Aligned); +} + +/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of +/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. +/// ISD::SIGN_EXTEND). +bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, + unsigned Src, EVT SrcVT, + unsigned &ResultReg) { + unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, + Src, /*TODO: Kill=*/false); + if (RR == 0) + return false; + + ResultReg = RR; + return true; +} + +bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // Can't handle TLS yet. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal()) + return false; + + // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how + // it works...). + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) + if (const GlobalVariable *GVar = + dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false))) + if (GVar->isThreadLocal()) + return false; + + // RIP-relative addresses can't have additional register operands, so if + // we've already folded stuff into the addressing mode, just force the + // global value into its own register, which we can use as the basereg. + if (!Subtarget->isPICStyleRIPRel() || + (AM.Base.Reg == 0 && AM.IndexReg == 0)) { + // Okay, we've committed to selecting this global. Set up the address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } + + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; + } + + // Ok, we need to do a load from a stub. If we've already loaded from + // this stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; + } else { + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + // Prepare for inserting code in the local-value area. + SavePoint SaveInsertPt = enterLocalValueArea(); + + if (TLI.getPointerTy() == MVT::i64) { + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + } + + LoadReg = createResultReg(RC); + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); + + // Ok, back to normal mode. + leaveLocalValueArea(SaveInsertPt); + + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } + + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = 0; + return true; + } + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + +/// X86SelectAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { + SmallVector<const Value *, 32> GEPs; +redo_gep: + const User *U = NULL; + unsigned Opcode = Instruction::UserOp1; + if (const Instruction *I = dyn_cast<Instruction>(V)) { + // Don't walk into other basic blocks; it's possible we haven't + // visited them yet, so the instructions may not yet be assigned + // virtual registers. + if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || + FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { + Opcode = I->getOpcode(); + U = I; + } + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) + if (Ty->getAddressSpace() > 255) + // Fast instruction selection doesn't support the special + // address spaces. + return false; + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts. + return X86SelectAddress(U->getOperand(0), AM); + + case Instruction::IntToPtr: + // Look past no-op inttoptrs. + if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints. + if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::Alloca: { + // Do static allocas. + const AllocaInst *A = cast<AllocaInst>(V); + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(A); + if (SI != FuncInfo.StaticAllocaMap.end()) { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = SI->second; + return true; + } + break; + } + + case Instruction::Add: { + // Adds of constants are common and easy enough. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); + // They have to fit in the 32-bit signed displacement field though. + if (isInt<32>(Disp)) { + AM.Disp = (uint32_t)Disp; + return X86SelectAddress(U->getOperand(0), AM); + } + } + break; + } + + case Instruction::GetElementPtr: { + X86AddressMode SavedAM = AM; + + // Pattern-match simple GEPs. + uint64_t Disp = (int32_t)AM.Disp; + unsigned IndexReg = AM.IndexReg; + unsigned Scale = AM.Scale; + gep_type_iterator GTI = gep_type_begin(U); + // Iterate through the indices, folding what we can. Constants can be + // folded, and one dynamic index can be handled, if the scale is supported. + for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); + i != e; ++i, ++GTI) { + const Value *Op = *i; + if (StructType *STy = dyn_cast<StructType>(*GTI)) { + const StructLayout *SL = TD.getStructLayout(STy); + Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); + continue; + } + + // A array/variable index is always of the form i*S where S is the + // constant scale size. See if we can push the scale into immediates. + uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); + for (;;) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + break; + } + if (canFoldAddIntoGEP(U, Op)) { + // A compatible add with a constant operand. Fold the constant. + ConstantInt *CI = + cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); + Disp += CI->getSExtValue() * S; + // Iterate on the other operand. + Op = cast<AddOperator>(Op)->getOperand(0); + continue; + } + if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + break; + } + // Unsupported. + goto unsupported_gep; + } + } + + // Check for displacement overflow. + if (!isInt<32>(Disp)) + break; + + AM.IndexReg = IndexReg; + AM.Scale = Scale; + AM.Disp = (uint32_t)Disp; + GEPs.push_back(V); + + if (const GetElementPtrInst *GEP = + dyn_cast<GetElementPtrInst>(U->getOperand(0))) { + // Ok, the GEP indices were covered by constant-offset and scaled-index + // addressing. Update the address state and move on to examining the base. + V = GEP; + goto redo_gep; + } else if (X86SelectAddress(U->getOperand(0), AM)) { + return true; + } + + // If we couldn't merge the gep value into this addr mode, revert back to + // our address and just match the value instead of completely failing. + AM = SavedAM; + + for (SmallVectorImpl<const Value *>::reverse_iterator + I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I) + if (handleConstantAddresses(*I, AM)) + return true; + + return false; + unsupported_gep: + // Ok, the GEP indices weren't all covered. + break; + } + } + + return handleConstantAddresses(V, AM); +} + +/// X86SelectCallAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { + const User *U = NULL; + unsigned Opcode = Instruction::UserOp1; + const Instruction *I = dyn_cast<Instruction>(V); + // Record if the value is defined in the same basic block. + // + // This information is crucial to know whether or not folding an + // operand is valid. + // Indeed, FastISel generates or reuses a virtual register for all + // operands of all instructions it selects. Obviously, the definition and + // its uses must use the same virtual register otherwise the produced + // code is incorrect. + // Before instruction selection, FunctionLoweringInfo::set sets the virtual + // registers for values that are alive across basic blocks. This ensures + // that the values are consistently set between across basic block, even + // if different instruction selection mechanisms are used (e.g., a mix of + // SDISel and FastISel). + // For values local to a basic block, the instruction selection process + // generates these virtual registers with whatever method is appropriate + // for its needs. In particular, FastISel and SDISel do not share the way + // local virtual registers are set. + // Therefore, this is impossible (or at least unsafe) to share values + // between basic blocks unless they use the same instruction selection + // method, which is not guarantee for X86. + // Moreover, things like hasOneUse could not be used accurately, if we + // allow to reference values across basic blocks whereas they are not + // alive across basic blocks initially. + bool InMBB = true; + if (I) { + Opcode = I->getOpcode(); + U = I; + InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts if its operand is in the same BB. + if (InMBB) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + + case Instruction::IntToPtr: + // Look past no-op inttoptrs if its operand is in the same BB. + if (InMBB && + TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints if its operand is in the same BB. + if (InMBB && + TLI.getValueType(U->getType()) == TLI.getPointerTy()) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + } + + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // RIP-relative addresses can't have additional register operands. + if (Subtarget->isPICStyleRIPRel() && + (AM.Base.Reg != 0 || AM.IndexReg != 0)) + return false; + + // Can't handle DLLImport. + if (GV->hasDLLImportLinkage()) + return false; + + // Can't handle TLS. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal()) + return false; + + // Okay, we've committed to selecting this global. Set up the basic address. + AM.GV = GV; + + // No ABI requires an extra load for anything other than DLLImport, which + // we rejected above. Return a direct reference to the global. + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } else if (Subtarget->isPICStyleStubPIC()) { + AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET; + } else if (Subtarget->isPICStyleGOT()) { + AM.GVOpFlags = X86II::MO_GOTOFF; + } + + return true; + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + + +/// X86SelectStore - Select and emit code to implement store instructions. +bool X86FastISel::X86SelectStore(const Instruction *I) { + // Atomic stores need special handling. + const StoreInst *S = cast<StoreInst>(I); + + if (S->isAtomic()) + return false; + + unsigned SABIAlignment = + TD.getABITypeAlignment(S->getValueOperand()->getType()); + bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment; + + MVT VT; + if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) + return false; + + X86AddressMode AM; + if (!X86SelectAddress(I->getOperand(1), AM)) + return false; + + return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned); +} + +/// X86SelectRet - Select and emit code to implement ret instructions. +bool X86FastISel::X86SelectRet(const Instruction *I) { + const ReturnInst *Ret = cast<ReturnInst>(I); + const Function &F = *I->getParent()->getParent(); + const X86MachineFunctionInfo *X86MFInfo = + FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); + + if (!FuncInfo.CanLowerReturn) + return false; + + CallingConv::ID CC = F.getCallingConv(); + if (CC != CallingConv::C && + CC != CallingConv::Fast && + CC != CallingConv::X86_FastCall && + CC != CallingConv::X86_64_SysV) + return false; + + if (Subtarget->isCallingConvWin64(CC)) + return false; + + // Don't handle popping bytes on return for now. + if (X86MFInfo->getBytesToPopOnReturn() != 0) + return false; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) + return false; + + // Let SDISel handle vararg functions. + if (F.isVarArg()) + return false; + + // Build a list of return value registers. + SmallVector<unsigned, 4> RetRegs; + + if (Ret->getNumOperands() > 0) { + SmallVector<ISD::OutputArg, 4> Outs; + GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ValLocs; + CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, + I->getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + const Value *RV = Ret->getOperand(0); + unsigned Reg = getRegForValue(RV); + if (Reg == 0) + return false; + + // Only handle a single return value for now. + if (ValLocs.size() != 1) + return false; + + CCValAssign &VA = ValLocs[0]; + + // Don't bother handling odd stuff for now. + if (VA.getLocInfo() != CCValAssign::Full) + return false; + // Only handle register returns for now. + if (!VA.isRegLoc()) + return false; + + // The calling-convention tables for x87 returns don't tell + // the whole story. + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) + return false; + + unsigned SrcReg = Reg + VA.getValNo(); + EVT SrcVT = TLI.getValueType(RV->getType()); + EVT DstVT = VA.getValVT(); + // Special handling for extended integers. + if (SrcVT != DstVT) { + if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) + return false; + + if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) + return false; + + assert(DstVT == MVT::i32 && "X86 should always ext to i32"); + + if (SrcVT == MVT::i1) { + if (Outs[0].Flags.isSExt()) + return false; + SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + } + unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : + ISD::SIGN_EXTEND; + SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, + SrcReg, /*TODO: Kill=*/false); + } + + // Make the copy. + unsigned DstReg = VA.getLocReg(); + const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); + // Avoid a cross-class copy. This is very unlikely. + if (!SrcRC->contains(DstReg)) + return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + DstReg).addReg(SrcReg); + + // Add register to return instruction. + RetRegs.push_back(VA.getLocReg()); + } + + // The x86-64 ABI for returning structs by value requires that we copy + // the sret argument into %rax for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into %rax. We also do the same with %eax for Win32. + if (F.hasStructRetAttr() && + (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { + unsigned Reg = X86MFInfo->getSRetReturnReg(); + assert(Reg && + "SRetReturnReg should have been set in LowerFormalArguments()!"); + unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + RetReg).addReg(Reg); + RetRegs.push_back(RetReg); + } + + // Now emit the RET. + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); + for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) + MIB.addReg(RetRegs[i], RegState::Implicit); + return true; +} + +/// X86SelectLoad - Select and emit code to implement load instructions. +/// +bool X86FastISel::X86SelectLoad(const Instruction *I) { + // Atomic loads need special handling. + if (cast<LoadInst>(I)->isAtomic()) + return false; + + MVT VT; + if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) + return false; + + X86AddressMode AM; + if (!X86SelectAddress(I->getOperand(0), AM)) + return false; + + unsigned ResultReg = 0; + if (X86FastEmitLoad(VT, AM, ResultReg)) { + UpdateValueMap(I, ResultReg); + return true; + } + return false; +} + +static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { + bool HasAVX = Subtarget->hasAVX(); + bool X86ScalarSSEf32 = Subtarget->hasSSE1(); + bool X86ScalarSSEf64 = Subtarget->hasSSE2(); + + switch (VT.getSimpleVT().SimpleTy) { + default: return 0; + case MVT::i8: return X86::CMP8rr; + case MVT::i16: return X86::CMP16rr; + case MVT::i32: return X86::CMP32rr; + case MVT::i64: return X86::CMP64rr; + case MVT::f32: + return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0; + case MVT::f64: + return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0; + } +} + +/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS +/// of the comparison, return an opcode that works for the compare (e.g. +/// CMP32ri) otherwise return 0. +static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { + switch (VT.getSimpleVT().SimpleTy) { + // Otherwise, we can't fold the immediate into this comparison. + default: return 0; + case MVT::i8: return X86::CMP8ri; + case MVT::i16: return X86::CMP16ri; + case MVT::i32: return X86::CMP32ri; + case MVT::i64: + // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext + // field. + if ((int)RHSC->getSExtValue() == RHSC->getSExtValue()) + return X86::CMP64ri32; + return 0; + } +} + +bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, + EVT VT) { + unsigned Op0Reg = getRegForValue(Op0); + if (Op0Reg == 0) return false; + + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Op1)) + Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); + + // We have two options: compare with register or immediate. If the RHS of + // the compare is an immediate that we can fold into this compare, use + // CMPri, otherwise use CMPrr. + if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { + if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc)) + .addReg(Op0Reg) + .addImm(Op1C->getSExtValue()); + return true; + } + } + + unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); + if (CompareOpc == 0) return false; + + unsigned Op1Reg = getRegForValue(Op1); + if (Op1Reg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) + .addReg(Op0Reg) + .addReg(Op1Reg); + + return true; +} + +bool X86FastISel::X86SelectCmp(const Instruction *I) { + const CmpInst *CI = cast<CmpInst>(I); + + MVT VT; + if (!isTypeLegal(I->getOperand(0)->getType(), VT)) + return false; + + unsigned ResultReg = createResultReg(&X86::GR8RegClass); + unsigned SetCCOpc; + bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. + switch (CI->getPredicate()) { + case CmpInst::FCMP_OEQ: { + if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + return false; + + unsigned EReg = createResultReg(&X86::GR8RegClass); + unsigned NPReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::SETNPr), NPReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); + UpdateValueMap(I, ResultReg); + return true; + } + case CmpInst::FCMP_UNE: { + if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + return false; + + unsigned NEReg = createResultReg(&X86::GR8RegClass); + unsigned PReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg) + .addReg(PReg).addReg(NEReg); + UpdateValueMap(I, ResultReg); + return true; + } + case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; + case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; + case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break; + case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break; + case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; + case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break; + case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break; + case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; + case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break; + case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; + case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; + case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; + + case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; + case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; + case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; + case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; + case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; + case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; + case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break; + case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break; + case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break; + case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break; + default: + return false; + } + + const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + if (SwapArgs) + std::swap(Op0, Op1); + + // Emit a compare of Op0/Op1. + if (!X86FastEmitCompare(Op0, Op1, VT)) + return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectZExt(const Instruction *I) { + EVT DstVT = TLI.getValueType(I->getType()); + if (!TLI.isTypeLegal(DstVT)) + return false; + + unsigned ResultReg = getRegForValue(I->getOperand(0)); + if (ResultReg == 0) + return false; + + // Handle zero-extension from i1 to i8, which is common. + MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType()); + if (SrcVT.SimpleTy == MVT::i1) { + // Set the high bits to zero. + ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + + if (ResultReg == 0) + return false; + } + + if (DstVT == MVT::i64) { + // Handle extension to 64-bits via sub-register shenanigans. + unsigned MovInst; + + switch (SrcVT.SimpleTy) { + case MVT::i8: MovInst = X86::MOVZX32rr8; break; + case MVT::i16: MovInst = X86::MOVZX32rr16; break; + case MVT::i32: MovInst = X86::MOV32rr; break; + default: llvm_unreachable("Unexpected zext to i64 source type"); + } + + unsigned Result32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovInst), Result32) + .addReg(ResultReg); + + ResultReg = createResultReg(&X86::GR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::SUBREG_TO_REG), + ResultReg) + .addImm(0).addReg(Result32).addImm(X86::sub_32bit); + } else if (DstVT != MVT::i8) { + ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, + ResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; + } + + UpdateValueMap(I, ResultReg); + return true; +} + + +bool X86FastISel::X86SelectBranch(const Instruction *I) { + // Unconditional branches are selected by tablegen-generated code. + // Handle a conditional branch. + const BranchInst *BI = cast<BranchInst>(I); + MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; + MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; + + // Fold the common case of a conditional branch with a comparison + // in the same block (values defined on other blocks may not have + // initialized registers). + if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { + if (CI->hasOneUse() && CI->getParent() == I->getParent()) { + EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); + + // Try to take advantage of fallthrough opportunities. + CmpInst::Predicate Predicate = CI->getPredicate(); + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + Predicate = CmpInst::getInversePredicate(Predicate); + } + + bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. + unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA" + + switch (Predicate) { + case CmpInst::FCMP_OEQ: + std::swap(TrueMBB, FalseMBB); + Predicate = CmpInst::FCMP_UNE; + // FALL THROUGH + case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break; + case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; + case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break; + case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break; + case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break; + case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break; + case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break; + case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break; + case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; + case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; + case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; + + case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; + case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; + case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; + case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; + case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; + case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break; + case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break; + case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break; + case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break; + default: + return false; + } + + const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + if (SwapArgs) + std::swap(Op0, Op1); + + // Emit a compare of the LHS and RHS, setting the flags. + if (!X86FastEmitCompare(Op0, Op1, VT)) + return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) + .addMBB(TrueMBB); + + if (Predicate == CmpInst::FCMP_UNE) { + // X86 requires a second branch to handle UNE (and OEQ, + // which is mapped to UNE above). + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4)) + .addMBB(TrueMBB); + } + + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); + return true; + } + } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { + // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which + // typically happen for _Bool and C++ bools. + MVT SourceVT; + if (TI->hasOneUse() && TI->getParent() == I->getParent() && + isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { + unsigned TestOpc = 0; + switch (SourceVT.SimpleTy) { + default: break; + case MVT::i8: TestOpc = X86::TEST8ri; break; + case MVT::i16: TestOpc = X86::TEST16ri; break; + case MVT::i32: TestOpc = X86::TEST32ri; break; + case MVT::i64: TestOpc = X86::TEST64ri32; break; + } + if (TestOpc) { + unsigned OpReg = getRegForValue(TI->getOperand(0)); + if (OpReg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc)) + .addReg(OpReg).addImm(1); + + unsigned JmpOpc = X86::JNE_4; + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + JmpOpc = X86::JE_4; + } + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); + return true; + } + } + } + + // Otherwise do a clumsy setcc and re-test it. + // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used + // in an explicit cast, so make sure to handle that correctly. + unsigned OpReg = getRegForValue(BI->getCondition()); + if (OpReg == 0) return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri)) + .addReg(OpReg).addImm(1); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); + return true; +} + +bool X86FastISel::X86SelectShift(const Instruction *I) { + unsigned CReg = 0, OpReg = 0; + const TargetRegisterClass *RC = NULL; + if (I->getType()->isIntegerTy(8)) { + CReg = X86::CL; + RC = &X86::GR8RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR8rCL; break; + case Instruction::AShr: OpReg = X86::SAR8rCL; break; + case Instruction::Shl: OpReg = X86::SHL8rCL; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(16)) { + CReg = X86::CX; + RC = &X86::GR16RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR16rCL; break; + case Instruction::AShr: OpReg = X86::SAR16rCL; break; + case Instruction::Shl: OpReg = X86::SHL16rCL; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(32)) { + CReg = X86::ECX; + RC = &X86::GR32RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR32rCL; break; + case Instruction::AShr: OpReg = X86::SAR32rCL; break; + case Instruction::Shl: OpReg = X86::SHL32rCL; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(64)) { + CReg = X86::RCX; + RC = &X86::GR64RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR64rCL; break; + case Instruction::AShr: OpReg = X86::SAR64rCL; break; + case Instruction::Shl: OpReg = X86::SHL64rCL; break; + default: return false; + } + } else { + return false; + } + + MVT VT; + if (!isTypeLegal(I->getType(), VT)) + return false; + + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) return false; + + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CReg).addReg(Op1Reg); + + // The shift instruction uses X86::CL. If we defined a super-register + // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. + if (CReg != X86::CL) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::KILL), X86::CL) + .addReg(CReg, RegState::Kill); + + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg) + .addReg(Op0Reg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectDivRem(const Instruction *I) { + const static unsigned NumTypes = 4; // i8, i16, i32, i64 + const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem + const static bool S = true; // IsSigned + const static bool U = false; // !IsSigned + const static unsigned Copy = TargetOpcode::COPY; + // For the X86 DIV/IDIV instruction, in most cases the dividend + // (numerator) must be in a specific register pair highreg:lowreg, + // producing the quotient in lowreg and the remainder in highreg. + // For most data types, to set up the instruction, the dividend is + // copied into lowreg, and lowreg is sign-extended or zero-extended + // into highreg. The exception is i8, where the dividend is defined + // as a single register rather than a register pair, and we + // therefore directly sign-extend or zero-extend the dividend into + // lowreg, instead of copying, and ignore the highreg. + const static struct DivRemEntry { + // The following portion depends only on the data type. + const TargetRegisterClass *RC; + unsigned LowInReg; // low part of the register pair + unsigned HighInReg; // high part of the register pair + // The following portion depends on both the data type and the operation. + struct DivRemResult { + unsigned OpDivRem; // The specific DIV/IDIV opcode to use. + unsigned OpSignExtend; // Opcode for sign-extending lowreg into + // highreg, or copying a zero into highreg. + unsigned OpCopy; // Opcode for copying dividend into lowreg, or + // zero/sign-extending into lowreg for i8. + unsigned DivRemResultReg; // Register containing the desired result. + bool IsOpSigned; // Whether to use signed or unsigned form. + } ResultTable[NumOps]; + } OpTable[NumTypes] = { + { &X86::GR8RegClass, X86::AX, 0, { + { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv + { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem + { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv + { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem + } + }, // i8 + { &X86::GR16RegClass, X86::AX, X86::DX, { + { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv + { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem + { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv + { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem + } + }, // i16 + { &X86::GR32RegClass, X86::EAX, X86::EDX, { + { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv + { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem + { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv + { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem + } + }, // i32 + { &X86::GR64RegClass, X86::RAX, X86::RDX, { + { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv + { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem + { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv + { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem + } + }, // i64 + }; + + MVT VT; + if (!isTypeLegal(I->getType(), VT)) + return false; + + unsigned TypeIndex, OpIndex; + switch (VT.SimpleTy) { + default: return false; + case MVT::i8: TypeIndex = 0; break; + case MVT::i16: TypeIndex = 1; break; + case MVT::i32: TypeIndex = 2; break; + case MVT::i64: TypeIndex = 3; + if (!Subtarget->is64Bit()) + return false; + break; + } + + switch (I->getOpcode()) { + default: llvm_unreachable("Unexpected div/rem opcode"); + case Instruction::SDiv: OpIndex = 0; break; + case Instruction::SRem: OpIndex = 1; break; + case Instruction::UDiv: OpIndex = 2; break; + case Instruction::URem: OpIndex = 3; break; + } + + const DivRemEntry &TypeEntry = OpTable[TypeIndex]; + const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) + return false; + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) + return false; + + // Move op0 into low-order input register. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); + // Zero-extend or sign-extend into high-order input register. + if (OpEntry.OpSignExtend) { + if (OpEntry.IsOpSigned) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(OpEntry.OpSignExtend)); + else { + unsigned Zero32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::MOV32r0), Zero32); + + // Copy the zero into the appropriate sub/super/identical physical + // register. Unfortunately the operations needed are not uniform enough to + // fit neatly into the table above. + if (VT.SimpleTy == MVT::i16) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32, 0, X86::sub_16bit); + } else if (VT.SimpleTy == MVT::i32) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32); + } else if (VT.SimpleTy == MVT::i64) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) + .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); + } + } + } + // Generate the DIV/IDIV instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); + // For i8 remainder, we can't reference AH directly, as we'll end + // up with bogus copies like %R9B = COPY %AH. Reference AX + // instead to prevent AH references in a REX instruction. + // + // The current assumption of the fast register allocator is that isel + // won't generate explicit references to the GPR8_NOREX registers. If + // the allocator and/or the backend get enhanced to be more robust in + // that regard, this can be, and should be, removed. + unsigned ResultReg = 0; + if ((I->getOpcode() == Instruction::SRem || + I->getOpcode() == Instruction::URem) && + OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { + unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); + unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), SourceSuperReg).addReg(X86::AX); + + // Shift AX right by 8 bits instead of using AH. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SHR16ri), + ResultSuperReg).addReg(SourceSuperReg).addImm(8); + + // Now reference the 8-bit subreg of the result. + ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, + /*Kill=*/true, X86::sub_8bit); + } + // Copy the result out of the physreg if we haven't already. + if (!ResultReg) { + ResultReg = createResultReg(TypeEntry.RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Copy), ResultReg) + .addReg(OpEntry.DivRemResultReg); + } + UpdateValueMap(I, ResultReg); + + return true; +} + +bool X86FastISel::X86SelectSelect(const Instruction *I) { + MVT VT; + if (!isTypeLegal(I->getType(), VT)) + return false; + + // We only use cmov here, if we don't have a cmov instruction bail. + if (!Subtarget->hasCMov()) return false; + + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + if (VT == MVT::i16) { + Opc = X86::CMOVE16rr; + RC = &X86::GR16RegClass; + } else if (VT == MVT::i32) { + Opc = X86::CMOVE32rr; + RC = &X86::GR32RegClass; + } else if (VT == MVT::i64) { + Opc = X86::CMOVE64rr; + RC = &X86::GR64RegClass; + } else { + return false; + } + + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) return false; + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) return false; + unsigned Op2Reg = getRegForValue(I->getOperand(2)); + if (Op2Reg == 0) return false; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) + .addReg(Op0Reg).addReg(Op0Reg); + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) + .addReg(Op1Reg).addReg(Op2Reg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectFPExt(const Instruction *I) { + // fpext from float to double. + if (X86ScalarSSEf64 && + I->getType()->isDoubleTy()) { + const Value *V = I->getOperand(0); + if (V->getType()->isFloatTy()) { + unsigned OpReg = getRegForValue(V); + if (OpReg == 0) return false; + unsigned ResultReg = createResultReg(&X86::FR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::CVTSS2SDrr), ResultReg) + .addReg(OpReg); + UpdateValueMap(I, ResultReg); + return true; + } + } + + return false; +} + +bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { + if (X86ScalarSSEf64) { + if (I->getType()->isFloatTy()) { + const Value *V = I->getOperand(0); + if (V->getType()->isDoubleTy()) { + unsigned OpReg = getRegForValue(V); + if (OpReg == 0) return false; + unsigned ResultReg = createResultReg(&X86::FR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::CVTSD2SSrr), ResultReg) + .addReg(OpReg); + UpdateValueMap(I, ResultReg); + return true; + } + } + } + + return false; +} + +bool X86FastISel::X86SelectTrunc(const Instruction *I) { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + // This code only handles truncation to byte. + if (DstVT != MVT::i8 && DstVT != MVT::i1) + return false; + if (!TLI.isTypeLegal(SrcVT)) + return false; + + unsigned InputReg = getRegForValue(I->getOperand(0)); + if (!InputReg) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + if (SrcVT == MVT::i8) { + // Truncate from i8 to i1; no code needed. + UpdateValueMap(I, InputReg); + return true; + } + + if (!Subtarget->is64Bit()) { + // If we're on x86-32; we can't extract an i8 from a general register. + // First issue a copy to GR16_ABCD or GR32_ABCD. + const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ? + (const TargetRegisterClass*)&X86::GR16_ABCDRegClass : + (const TargetRegisterClass*)&X86::GR32_ABCDRegClass; + unsigned CopyReg = createResultReg(CopyRC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CopyReg).addReg(InputReg); + InputReg = CopyReg; + } + + // Issue an extract_subreg. + unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, + InputReg, /*Kill=*/true, + X86::sub_8bit); + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::IsMemcpySmall(uint64_t Len) { + return Len <= (Subtarget->is64Bit() ? 32 : 16); +} + +bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len) { + + // Make sure we don't bloat code by inlining very large memcpy's. + if (!IsMemcpySmall(Len)) + return false; + + bool i64Legal = Subtarget->is64Bit(); + + // We don't care about alignment here since we just emit integer accesses. + while (Len) { + MVT VT; + if (Len >= 8 && i64Legal) + VT = MVT::i64; + else if (Len >= 4) + VT = MVT::i32; + else if (Len >= 2) + VT = MVT::i16; + else { + VT = MVT::i8; + } + + unsigned Reg; + bool RV = X86FastEmitLoad(VT, SrcAM, Reg); + RV &= X86FastEmitStore(VT, Reg, DestAM); + assert(RV && "Failed to emit load or store??"); + + unsigned Size = VT.getSizeInBits()/8; + Len -= Size; + DestAM.Disp += Size; + SrcAM.Disp += Size; + } + + return true; +} + +bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { + // FIXME: Handle more intrinsics. + switch (I.getIntrinsicID()) { + default: return false; + case Intrinsic::memcpy: { + const MemCpyInst &MCI = cast<MemCpyInst>(I); + // Don't handle volatile or variable length memcpys. + if (MCI.isVolatile()) + return false; + + if (isa<ConstantInt>(MCI.getLength())) { + // Small memcpy's are common enough that we want to do them + // without a call if possible. + uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue(); + if (IsMemcpySmall(Len)) { + X86AddressMode DestAM, SrcAM; + if (!X86SelectAddress(MCI.getRawDest(), DestAM) || + !X86SelectAddress(MCI.getRawSource(), SrcAM)) + return false; + TryEmitSmallMemcpy(DestAM, SrcAM, Len); + return true; + } + } + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255) + return false; + + return DoSelectCall(&I, "memcpy"); + } + case Intrinsic::memset: { + const MemSetInst &MSI = cast<MemSetInst>(I); + + if (MSI.isVolatile()) + return false; + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MSI.getDestAddressSpace() > 255) + return false; + + return DoSelectCall(&I, "memset"); + } + case Intrinsic::stackprotector: { + // Emit code to store the stack guard onto the stack. + EVT PtrTy = TLI.getPointerTy(); + + const Value *Op1 = I.getArgOperand(0); // The guard's value. + const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); + + // Grab the frame index. + X86AddressMode AM; + if (!X86SelectAddress(Slot, AM)) return false; + if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; + return true; + } + case Intrinsic::dbg_declare: { + const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I); + X86AddressMode AM; + assert(DI->getAddress() && "Null address should be checked earlier!"); + if (!X86SelectAddress(DI->getAddress(), AM)) + return false; + const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + // FIXME may need to add RegState::Debug to any registers produced, + // although ESP/EBP should be the only ones at the moment. + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). + addImm(0).addMetadata(DI->getVariable()); + return true; + } + case Intrinsic::trap: { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP)); + return true; + } + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: { + // FIXME: Should fold immediates. + + // Replace "add with overflow" intrinsics with an "add" instruction followed + // by a seto/setc instruction. + const Function *Callee = I.getCalledFunction(); + Type *RetTy = + cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + const Value *Op1 = I.getArgOperand(0); + const Value *Op2 = I.getArgOperand(1); + unsigned Reg1 = getRegForValue(Op1); + unsigned Reg2 = getRegForValue(Op2); + + if (Reg1 == 0 || Reg2 == 0) + // FIXME: Handle values *not* in registers. + return false; + + unsigned OpC = 0; + if (VT == MVT::i32) + OpC = X86::ADD32rr; + else if (VT == MVT::i64) + OpC = X86::ADD64rr; + else + return false; + + // The call to CreateRegs builds two sequential registers, to store the + // both the returned values. + unsigned ResultReg = FuncInfo.CreateRegs(I.getType()); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) + .addReg(Reg1).addReg(Reg2); + + unsigned Opc = X86::SETBr; + if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) + Opc = X86::SETOr; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1); + + UpdateValueMap(&I, ResultReg, 2); + return true; + } + } +} + +bool X86FastISel::FastLowerArguments() { + if (!FuncInfo.CanLowerReturn) + return false; + + const Function *F = FuncInfo.Fn; + if (F->isVarArg()) + return false; + + CallingConv::ID CC = F->getCallingConv(); + if (CC != CallingConv::C) + return false; + + if (Subtarget->isCallingConvWin64(CC)) + return false; + + if (!Subtarget->is64Bit()) + return false; + + // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. + unsigned Idx = 1; + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I, ++Idx) { + if (Idx > 6) + return false; + + if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || + F->getAttributes().hasAttribute(Idx, Attribute::InReg) || + F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || + F->getAttributes().hasAttribute(Idx, Attribute::Nest)) + return false; + + Type *ArgTy = I->getType(); + if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) + return false; + + EVT ArgVT = TLI.getValueType(ArgTy); + if (!ArgVT.isSimple()) return false; + switch (ArgVT.getSimpleVT().SimpleTy) { + case MVT::i32: + case MVT::i64: + break; + default: + return false; + } + } + + static const uint16_t GPR32ArgRegs[] = { + X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D + }; + static const uint16_t GPR64ArgRegs[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 + }; + + Idx = 0; + const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32); + const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64); + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I, ++Idx) { + bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32; + const TargetRegisterClass *RC = is32Bit ? RC32 : RC64; + unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx]; + unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); + // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. + // Without this, EmitLiveInCopies may eliminate the livein if its only + // use is a bitcast (which isn't turned into an instruction). + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(DstReg, getKillRegState(true)); + UpdateValueMap(I, ResultReg); + } + return true; +} + +bool X86FastISel::X86SelectCall(const Instruction *I) { + const CallInst *CI = cast<CallInst>(I); + const Value *Callee = CI->getCalledValue(); + + // Can't handle inline asm yet. + if (isa<InlineAsm>(Callee)) + return false; + + // Handle intrinsic calls. + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) + return X86VisitIntrinsicCall(*II); + + // Allow SelectionDAG isel to handle tail calls. + if (cast<CallInst>(I)->isTailCall()) + return false; + + return DoSelectCall(I, 0); +} + +static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget, + const ImmutableCallSite &CS) { + if (Subtarget.is64Bit()) + return 0; + if (Subtarget.isTargetWindows()) + return 0; + CallingConv::ID CC = CS.getCallingConv(); + if (CC == CallingConv::Fast || CC == CallingConv::GHC) + return 0; + if (!CS.paramHasAttr(1, Attribute::StructRet)) + return 0; + if (CS.paramHasAttr(1, Attribute::InReg)) + return 0; + return 4; +} + +// Select either a call, or an llvm.memcpy/memmove/memset intrinsic +bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { + const CallInst *CI = cast<CallInst>(I); + const Value *Callee = CI->getCalledValue(); + + // Handle only C and fastcc calling conventions for now. + ImmutableCallSite CS(CI); + CallingConv::ID CC = CS.getCallingConv(); + bool isWin64 = Subtarget->isCallingConvWin64(CC); + if (CC != CallingConv::C && CC != CallingConv::Fast && + CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 && + CC != CallingConv::X86_64_SysV) + return false; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) + return false; + + PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); + FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + bool isVarArg = FTy->isVarArg(); + + // Don't know how to handle Win64 varargs yet. Nothing special needed for + // x86-32. Special handling for x86-64 is implemented. + if (isVarArg && isWin64) + return false; + + // Fast-isel doesn't know about callee-pop yet. + if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg, + TM.Options.GuaranteedTailCallOpt)) + return false; + + // Check whether the function can return without sret-demotion. + SmallVector<ISD::OutputArg, 4> Outs; + GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI); + bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), + *FuncInfo.MF, FTy->isVarArg(), + Outs, FTy->getContext()); + if (!CanLowerReturn) + return false; + + // Materialize callee address in a register. FIXME: GV address can be + // handled with a CALLpcrel32 instead. + X86AddressMode CalleeAM; + if (!X86SelectCallAddress(Callee, CalleeAM)) + return false; + unsigned CalleeOp = 0; + const GlobalValue *GV = 0; + if (CalleeAM.GV != 0) { + GV = CalleeAM.GV; + } else if (CalleeAM.Base.Reg != 0) { + CalleeOp = CalleeAM.Base.Reg; + } else + return false; + + // Deal with call operands first. + SmallVector<const Value *, 8> ArgVals; + SmallVector<unsigned, 8> Args; + SmallVector<MVT, 8> ArgVTs; + SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; + unsigned arg_size = CS.arg_size(); + Args.reserve(arg_size); + ArgVals.reserve(arg_size); + ArgVTs.reserve(arg_size); + ArgFlags.reserve(arg_size); + for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + // If we're lowering a mem intrinsic instead of a regular call, skip the + // last two arguments, which should not passed to the underlying functions. + if (MemIntName && e-i <= 2) + break; + Value *ArgVal = *i; + ISD::ArgFlagsTy Flags; + unsigned AttrInd = i - CS.arg_begin() + 1; + if (CS.paramHasAttr(AttrInd, Attribute::SExt)) + Flags.setSExt(); + if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) + Flags.setZExt(); + + if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) { + PointerType *Ty = cast<PointerType>(ArgVal->getType()); + Type *ElementTy = Ty->getElementType(); + unsigned FrameSize = TD.getTypeAllocSize(ElementTy); + unsigned FrameAlign = CS.getParamAlignment(AttrInd); + if (!FrameAlign) + FrameAlign = TLI.getByValTypeAlignment(ElementTy); + Flags.setByVal(); + Flags.setByValSize(FrameSize); + Flags.setByValAlign(FrameAlign); + if (!IsMemcpySmall(FrameSize)) + return false; + } + + if (CS.paramHasAttr(AttrInd, Attribute::InReg)) + Flags.setInReg(); + if (CS.paramHasAttr(AttrInd, Attribute::Nest)) + Flags.setNest(); + + // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra + // instruction. This is safe because it is common to all fastisel supported + // calling conventions on x86. + if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) { + if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 || + CI->getBitWidth() == 16) { + if (Flags.isSExt()) + ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext())); + else + ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext())); + } + } + + unsigned ArgReg; + + // Passing bools around ends up doing a trunc to i1 and passing it. + // Codegen this as an argument + "and 1". + if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) && + cast<TruncInst>(ArgVal)->getParent() == I->getParent() && + ArgVal->hasOneUse()) { + ArgVal = cast<TruncInst>(ArgVal)->getOperand(0); + ArgReg = getRegForValue(ArgVal); + if (ArgReg == 0) return false; + + MVT ArgVT; + if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false; + + ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg, + ArgVal->hasOneUse(), 1); + } else { + ArgReg = getRegForValue(ArgVal); + } + + if (ArgReg == 0) return false; + + Type *ArgTy = ArgVal->getType(); + MVT ArgVT; + if (!isTypeLegal(ArgTy, ArgVT)) + return false; + if (ArgVT == MVT::x86mmx) + return false; + unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); + Flags.setOrigAlign(OriginalAlignment); + + Args.push_back(ArgReg); + ArgVals.push_back(ArgVal); + ArgVTs.push_back(ArgVT); + ArgFlags.push_back(Flags); + } + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, + I->getParent()->getContext()); + + // Allocate shadow area for Win64 + if (isWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + + // Issue CALLSEQ_START + unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) + .addImm(NumBytes); + + // Process argument: walk the register/memloc assignments, inserting + // copies / loads. + SmallVector<unsigned, 4> RegArgs; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + unsigned Arg = Args[VA.getValNo()]; + EVT ArgVT = ArgVTs[VA.getValNo()]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + case CCValAssign::Full: break; + case CCValAssign::SExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + assert(Emitted && "Failed to emit a sext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::ZExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + assert(Emitted && "Failed to emit a zext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::AExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); + bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + + assert(Emitted && "Failed to emit a aext!"); (void)Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::BCvt: { + unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(), + ISD::BITCAST, Arg, /*TODO: Kill=*/false); + assert(BC != 0 && "Failed to emit a bitcast!"); + Arg = BC; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::VExt: + // VExt has not been implemented, so this should be impossible to reach + // for now. However, fallback to Selection DAG isel once implemented. + return false; + case CCValAssign::Indirect: + // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully + // support this. + return false; + } + + if (VA.isRegLoc()) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + VA.getLocReg()).addReg(Arg); + RegArgs.push_back(VA.getLocReg()); + } else { + unsigned LocMemOffset = VA.getLocMemOffset(); + X86AddressMode AM; + const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>( + getTargetMachine()->getRegisterInfo()); + AM.Base.Reg = RegInfo->getStackRegister(); + AM.Disp = LocMemOffset; + const Value *ArgVal = ArgVals[VA.getValNo()]; + ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()]; + + if (Flags.isByVal()) { + X86AddressMode SrcAM; + SrcAM.Base.Reg = Arg; + bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()); + assert(Res && "memcpy length already checked!"); (void)Res; + } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { + // If this is a really simple value, emit this with the Value* version + // of X86FastEmitStore. If it isn't simple, we don't want to do this, + // as it can cause us to reevaluate the argument. + if (!X86FastEmitStore(ArgVT, ArgVal, AM)) + return false; + } else { + if (!X86FastEmitStore(ArgVT, Arg, AM)) + return false; + } + } + } + + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (Subtarget->isPICStyleGOT()) { + unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + X86::EBX).addReg(Base); + } + + if (Subtarget->is64Bit() && isVarArg && !isWin64) { + // Count the number of XMM registers allocated. + static const uint16_t XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri), + X86::AL).addImm(NumXMMRegs); + } + + // Issue the call. + MachineInstrBuilder MIB; + if (CalleeOp) { + // Register-indirect call. + unsigned CallOpc; + if (Subtarget->is64Bit()) + CallOpc = X86::CALL64r; + else + CallOpc = X86::CALL32r; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) + .addReg(CalleeOp); + + } else { + // Direct call. + assert(GV && "Not a direct call"); + unsigned CallOpc; + if (Subtarget->is64Bit()) + CallOpc = X86::CALL64pcrel32; + else + CallOpc = X86::CALLpcrel32; + + // See if we need any target-specific flags on the GV operand. + unsigned char OpFlags = 0; + + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to + // external symbols most go through the PLT in PIC mode. If the symbol + // has hidden or protected visibility, or if it is static or local, then + // we don't need to use the PLT - we can directly call it. + if (Subtarget->isTargetELF() && + TM.getRelocationModel() == Reloc::PIC_ && + GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (GV->isDeclaration() || GV->isWeakForLinker()) && + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)); + if (MemIntName) + MIB.addExternalSymbol(MemIntName, OpFlags); + else + MIB.addGlobalAddress(GV, 0, OpFlags); + } + + // Add a register mask with the call-preserved registers. + // Proper defs for return values will be added by setPhysRegsDeadExcept(). + MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); + + // Add an implicit use GOT pointer in EBX. + if (Subtarget->isPICStyleGOT()) + MIB.addReg(X86::EBX, RegState::Implicit); + + if (Subtarget->is64Bit() && isVarArg && !isWin64) + MIB.addReg(X86::AL, RegState::Implicit); + + // Add implicit physical register uses to the call. + for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) + MIB.addReg(RegArgs[i], RegState::Implicit); + + // Issue CALLSEQ_END + unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); + const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) + .addImm(NumBytes).addImm(NumBytesCallee); + + // Build info for return calling conv lowering code. + // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo. + SmallVector<ISD::InputArg, 32> Ins; + SmallVector<EVT, 4> RetTys; + ComputeValueVTs(TLI, I->getType(), RetTys); + for (unsigned i = 0, e = RetTys.size(); i != e; ++i) { + EVT VT = RetTys[i]; + MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); + unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT); + for (unsigned j = 0; j != NumRegs; ++j) { + ISD::InputArg MyFlags; + MyFlags.VT = RegisterVT; + MyFlags.Used = !CS.getInstruction()->use_empty(); + if (CS.paramHasAttr(0, Attribute::SExt)) + MyFlags.Flags.setSExt(); + if (CS.paramHasAttr(0, Attribute::ZExt)) + MyFlags.Flags.setZExt(); + if (CS.paramHasAttr(0, Attribute::InReg)) + MyFlags.Flags.setInReg(); + Ins.push_back(MyFlags); + } + } + + // Now handle call return values. + SmallVector<unsigned, 4> UsedRegs; + SmallVector<CCValAssign, 16> RVLocs; + CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs, + I->getParent()->getContext()); + unsigned ResultReg = FuncInfo.CreateRegs(I->getType()); + CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0; i != RVLocs.size(); ++i) { + EVT CopyVT = RVLocs[i].getValVT(); + unsigned CopyReg = ResultReg + i; + + // If this is a call to a function that returns an fp value on the x87 fp + // stack, but where we prefer to use the value in xmm registers, copy it + // out as F80 and use a truncate to move it from fp stack reg to xmm reg. + if ((RVLocs[i].getLocReg() == X86::ST0 || + RVLocs[i].getLocReg() == X86::ST1)) { + if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { + CopyVT = MVT::f80; + CopyReg = createResultReg(&X86::RFP80RegClass); + } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL), + CopyReg); + } else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CopyReg).addReg(RVLocs[i].getLocReg()); + UsedRegs.push_back(RVLocs[i].getLocReg()); + } + + if (CopyVT != RVLocs[i].getValVT()) { + // Round the F80 the right size, which also moves to the appropriate xmm + // register. This is accomplished by storing the F80 value in memory and + // then loading it back. Ewww... + EVT ResVT = RVLocs[i].getValVT(); + unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; + unsigned MemSize = ResVT.getSizeInBits()/8; + int FI = MFI.CreateStackObject(MemSize, MemSize, false); + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc)), FI) + .addReg(CopyReg); + Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg + i), FI); + } + } + + if (RVLocs.size()) + UpdateValueMap(I, ResultReg, RVLocs.size()); + + // Set all unused physreg defs as dead. + static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); + + return true; +} + + +bool +X86FastISel::TargetSelectInstruction(const Instruction *I) { + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + return X86SelectLoad(I); + case Instruction::Store: + return X86SelectStore(I); + case Instruction::Ret: + return X86SelectRet(I); + case Instruction::ICmp: + case Instruction::FCmp: + return X86SelectCmp(I); + case Instruction::ZExt: + return X86SelectZExt(I); + case Instruction::Br: + return X86SelectBranch(I); + case Instruction::Call: + return X86SelectCall(I); + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Shl: + return X86SelectShift(I); + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + return X86SelectDivRem(I); + case Instruction::Select: + return X86SelectSelect(I); + case Instruction::Trunc: + return X86SelectTrunc(I); + case Instruction::FPExt: + return X86SelectFPExt(I); + case Instruction::FPTrunc: + return X86SelectFPTrunc(I); + case Instruction::IntToPtr: // Deliberate fall-through. + case Instruction::PtrToInt: { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + if (DstVT.bitsGT(SrcVT)) + return X86SelectZExt(I); + if (DstVT.bitsLT(SrcVT)) + return X86SelectTrunc(I); + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) return false; + UpdateValueMap(I, Reg); + return true; + } + } + + return false; +} + +unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { + MVT VT; + if (!isTypeLegal(C->getType(), VT)) + return 0; + + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return 0; + + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.SimpleTy) { + default: return 0; + case MVT::i8: + Opc = X86::MOV8rm; + RC = &X86::GR8RegClass; + break; + case MVT::i16: + Opc = X86::MOV16rm; + RC = &X86::GR16RegClass; + break; + case MVT::i32: + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + break; + case MVT::f32: + if (X86ScalarSSEf32) { + Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; + RC = &X86::FR32RegClass; + } else { + Opc = X86::LD_Fp32m; + RC = &X86::RFP32RegClass; + } + break; + case MVT::f64: + if (X86ScalarSSEf64) { + Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; + RC = &X86::FR64RegClass; + } else { + Opc = X86::LD_Fp64m; + RC = &X86::RFP64RegClass; + } + break; + case MVT::f80: + // No f80 support yet. + return 0; + } + + // Materialize addresses with LEA instructions. + if (isa<GlobalValue>(C)) { + X86AddressMode AM; + if (X86SelectAddress(C, AM)) { + // If the expression is just a basereg, then we're done, otherwise we need + // to emit an LEA. + if (AM.BaseType == X86AddressMode::RegBase && + AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0) + return AM.Base.Reg; + + Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; + unsigned ResultReg = createResultReg(RC); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), AM); + return ResultReg; + } + return 0; + } + + // MachineConstantPool wants an explicit alignment. + unsigned Align = TD.getPrefTypeAlignment(C->getType()); + if (Align == 0) { + // Alignment of vector types. FIXME! + Align = TD.getTypeAllocSize(C->getType()); + } + + // x86-32 PIC requires a PIC base register for constant pools. + unsigned PICBase = 0; + unsigned char OpFlag = 0; + if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic + OpFlag = X86II::MO_PIC_BASE_OFFSET; + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } else if (Subtarget->isPICStyleGOT()) { + OpFlag = X86II::MO_GOTOFF; + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } else if (Subtarget->isPICStyleRIPRel() && + TM.getCodeModel() == CodeModel::Small) { + PICBase = X86::RIP; + } + + // Create the load from the constant pool. + unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); + unsigned ResultReg = createResultReg(RC); + addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), + MCPOffset, PICBase, OpFlag); + + return ResultReg; +} + +unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { + // Fail on dynamic allocas. At this point, getRegForValue has already + // checked its CSE maps, so if we're here trying to handle a dynamic + // alloca, we're not going to succeed. X86SelectAddress has a + // check for dynamic allocas, because it's called directly from + // various places, but TargetMaterializeAlloca also needs a check + // in order to avoid recursion between getRegForValue, + // X86SelectAddrss, and TargetMaterializeAlloca. + if (!FuncInfo.StaticAllocaMap.count(C)) + return 0; + + X86AddressMode AM; + if (!X86SelectAddress(C, AM)) + return 0; + unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; + const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); + unsigned ResultReg = createResultReg(RC); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), AM); + return ResultReg; +} + +unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { + MVT VT; + if (!isTypeLegal(CF->getType(), VT)) + return 0; + + // Get opcode and regclass for the given zero. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.SimpleTy) { + default: return 0; + case MVT::f32: + if (X86ScalarSSEf32) { + Opc = X86::FsFLD0SS; + RC = &X86::FR32RegClass; + } else { + Opc = X86::LD_Fp032; + RC = &X86::RFP32RegClass; + } + break; + case MVT::f64: + if (X86ScalarSSEf64) { + Opc = X86::FsFLD0SD; + RC = &X86::FR64RegClass; + } else { + Opc = X86::LD_Fp064; + RC = &X86::RFP64RegClass; + } + break; + case MVT::f80: + // No f80 support yet. + return 0; + } + + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); + return ResultReg; +} + + +bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, + const LoadInst *LI) { + X86AddressMode AM; + if (!X86SelectAddress(LI->getOperand(0), AM)) + return false; + + const X86InstrInfo &XII = (const X86InstrInfo&)TII; + + unsigned Size = TD.getTypeAllocSize(LI->getType()); + unsigned Alignment = LI->getAlignment(); + + SmallVector<MachineOperand, 8> AddrOps; + AM.getFullAddress(AddrOps); + + MachineInstr *Result = + XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment); + if (Result == 0) return false; + + FuncInfo.MBB->insert(FuncInfo.InsertPt, Result); + MI->eraseFromParent(); + return true; +} + + +namespace llvm { + FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) { + return new X86FastISel(funcInfo, libInfo); + } +} |