aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86CallingConv.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CallingConv.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.cpp208
1 files changed, 208 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.cpp b/contrib/llvm/lib/Target/X86/X86CallingConv.cpp
new file mode 100644
index 000000000000..59dde982f512
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.cpp
@@ -0,0 +1,208 @@
+//=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of custom routines for the X86
+// Calling Convention that aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "X86Subtarget.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+
+namespace llvm {
+
+bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // List of GPR registers that are available to store values in regcall
+ // calling convention.
+ static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
+ X86::ESI};
+
+ // The vector will save all the available registers for allocation.
+ SmallVector<unsigned, 5> AvailableRegs;
+
+ // searching for the available registers.
+ for (auto Reg : RegList) {
+ if (!State.isAllocated(Reg))
+ AvailableRegs.push_back(Reg);
+ }
+
+ const size_t RequiredGprsUponSplit = 2;
+ if (AvailableRegs.size() < RequiredGprsUponSplit)
+ return false; // Not enough free registers - continue the search.
+
+ // Allocating the available registers.
+ for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
+
+ // Marking the register as located.
+ unsigned Reg = State.AllocateReg(AvailableRegs[I]);
+
+ // Since we previously made sure that 2 registers are available
+ // we expect that a real register number will be returned.
+ assert(Reg && "Expecting a register will be available");
+
+ // Assign the value to the allocated register
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ }
+
+ // Successful in allocating regsiters - stop scanning next rules.
+ return true;
+}
+
+static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
+ if (ValVT.is512BitVector()) {
+ static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
+ X86::ZMM3, X86::ZMM4, X86::ZMM5};
+ return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
+ }
+
+ if (ValVT.is256BitVector()) {
+ static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
+ X86::YMM3, X86::YMM4, X86::YMM5};
+ return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
+ }
+
+ static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
+ X86::XMM3, X86::XMM4, X86::XMM5};
+ return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
+}
+
+static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
+ static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
+ return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
+}
+
+static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+
+ ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
+ bool Is64bit = static_cast<const X86Subtarget &>(
+ State.getMachineFunction().getSubtarget())
+ .is64Bit();
+
+ for (auto Reg : RegList) {
+ // If the register is not marked as allocated - assign to it.
+ if (!State.isAllocated(Reg)) {
+ unsigned AssigedReg = State.AllocateReg(Reg);
+ assert(AssigedReg == Reg && "Expecting a valid register allocation");
+ State.addLoc(
+ CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
+ return true;
+ }
+ // If the register is marked as shadow allocated - assign to it.
+ if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+ }
+
+ llvm_unreachable("Clang should ensure that hva marked vectors will have "
+ "an available register.");
+ return false;
+}
+
+bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // On the second pass, go through the HVAs only.
+ if (ArgFlags.isSecArgPass()) {
+ if (ArgFlags.isHva())
+ return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
+ ArgFlags, State);
+ return true;
+ }
+
+ // Process only vector types as defined by vectorcall spec:
+ // "A vector type is either a floating-point type, for example,
+ // a float or double, or an SIMD vector type, for example, __m128 or __m256".
+ if (!(ValVT.isFloatingPoint() ||
+ (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
+ // If R9 was already assigned it means that we are after the fourth element
+ // and because this is not an HVA / Vector type, we need to allocate
+ // shadow XMM register.
+ if (State.isAllocated(X86::R9)) {
+ // Assign shadow XMM register.
+ (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
+ }
+
+ return false;
+ }
+
+ if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
+ // Assign shadow GPR register.
+ (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
+
+ // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
+ if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
+ // In Vectorcall Calling convention, additional shadow stack can be
+ // created on top of the basic 32 bytes of win64.
+ // It can happen if the fifth or sixth argument is vector type or HVA.
+ // At that case for each argument a shadow stack of 8 bytes is allocated.
+ if (Reg == X86::XMM4 || Reg == X86::XMM5)
+ State.AllocateStack(8, 8);
+
+ if (!ArgFlags.isHva()) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true; // Allocated a register - Stop the search.
+ }
+ }
+ }
+
+ // If this is an HVA - Stop the search,
+ // otherwise continue the search.
+ return ArgFlags.isHva();
+}
+
+bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // On the second pass, go through the HVAs only.
+ if (ArgFlags.isSecArgPass()) {
+ if (ArgFlags.isHva())
+ return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
+ ArgFlags, State);
+ return true;
+ }
+
+ // Process only vector types as defined by vectorcall spec:
+ // "A vector type is either a floating point type, for example,
+ // a float or double, or an SIMD vector type, for example, __m128 or __m256".
+ if (!(ValVT.isFloatingPoint() ||
+ (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
+ return false;
+ }
+
+ if (ArgFlags.isHva())
+ return true; // If this is an HVA - Stop the search.
+
+ // Assign XMM register.
+ if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ // In case we did not find an available XMM register for a vector -
+ // pass it indirectly.
+ // It is similar to CCPassIndirect, with the addition of inreg.
+ if (!ValVT.isFloatingPoint()) {
+ LocVT = MVT::i32;
+ LocInfo = CCValAssign::Indirect;
+ ArgFlags.setInReg();
+ }
+
+ return false; // No register was assigned - Continue the search.
+}
+
+} // End llvm namespace