diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp | 464 |
1 files changed, 464 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp new file mode 100644 index 000000000000..619f7c8d25df --- /dev/null +++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp @@ -0,0 +1,464 @@ +//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Define several functions to decode x86 specific shuffle semantics into a +// generic vector mask. +// +//===----------------------------------------------------------------------===// + +#include "X86ShuffleDecode.h" +#include "llvm/CodeGen/MachineValueType.h" + +//===----------------------------------------------------------------------===// +// Vector Mask Decoding +//===----------------------------------------------------------------------===// + +namespace llvm { + +void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + // Defaults the copying the dest value. + ShuffleMask.push_back(0); + ShuffleMask.push_back(1); + ShuffleMask.push_back(2); + ShuffleMask.push_back(3); + + // Decode the immediate. + unsigned ZMask = Imm & 15; + unsigned CountD = (Imm >> 4) & 3; + unsigned CountS = (Imm >> 6) & 3; + + // CountS selects which input element to use. + unsigned InVal = 4 + CountS; + // CountD specifies which element of destination to update. + ShuffleMask[CountD] = InVal; + // ZMask zaps values, potentially overriding the CountD elt. + if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; + if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; + if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; + if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; +} + +// <3,1> or <6,7,2,3> +void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { + for (unsigned i = NElts / 2; i != NElts; ++i) + ShuffleMask.push_back(NElts + i); + + for (unsigned i = NElts / 2; i != NElts; ++i) + ShuffleMask.push_back(i); +} + +// <0,2> or <0,1,4,5> +void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { + for (unsigned i = 0; i != NElts / 2; ++i) + ShuffleMask.push_back(i); + + for (unsigned i = 0; i != NElts / 2; ++i) + ShuffleMask.push_back(NElts + i); +} + +void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + for (int i = 0, e = NumElts / 2; i < e; ++i) { + ShuffleMask.push_back(2 * i); + ShuffleMask.push_back(2 * i); + } +} + +void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + for (int i = 0, e = NumElts / 2; i < e; ++i) { + ShuffleMask.push_back(2 * i + 1); + ShuffleMask.push_back(2 * i + 1); + } +} + +void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; + unsigned NumLaneSubElts = 64 / ScalarSizeInBits; + + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts) + for (unsigned s = 0; s != NumLaneSubElts; s++) + ShuffleMask.push_back(l + s); +} + +void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned NumElts = VectorSizeInBits / 8; + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; ++i) { + int M = SM_SentinelZero; + if (i >= Imm) M = i - Imm + l; + ShuffleMask.push_back(M); + } +} + +void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned NumElts = VectorSizeInBits / 8; + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; ++i) { + unsigned Base = i + Imm; + int M = Base + l; + if (Base >= NumLaneElts) M = SM_SentinelZero; + ShuffleMask.push_back(M); + } +} + +void DecodePALIGNRMask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); + + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + unsigned Base = i + Offset; + // if i+offset is out of this lane then we actually need the other source + if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; + ShuffleMask.push_back(Base + l); + } + } +} + +/// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*. +/// VT indicates the type of the vector allowing it to handle different +/// datatypes and vector widths. +void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + unsigned NumLanes = VT.getSizeInBits() / 128; + if (NumLanes == 0) NumLanes = 1; // Handle MMX + unsigned NumLaneElts = NumElts / NumLanes; + + unsigned NewImm = Imm; + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + ShuffleMask.push_back(NewImm % NumLaneElts + l); + NewImm /= NumLaneElts; + } + if (NumLaneElts == 4) NewImm = Imm; // reload imm + } +} + +void DecodePSHUFHWMask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + for (unsigned l = 0; l != NumElts; l += 8) { + unsigned NewImm = Imm; + for (unsigned i = 0, e = 4; i != e; ++i) { + ShuffleMask.push_back(l + i); + } + for (unsigned i = 4, e = 8; i != e; ++i) { + ShuffleMask.push_back(l + 4 + (NewImm & 3)); + NewImm >>= 2; + } + } +} + +void DecodePSHUFLWMask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + for (unsigned l = 0; l != NumElts; l += 8) { + unsigned NewImm = Imm; + for (unsigned i = 0, e = 4; i != e; ++i) { + ShuffleMask.push_back(l + (NewImm & 3)); + NewImm >>= 2; + } + for (unsigned i = 4, e = 8; i != e; ++i) { + ShuffleMask.push_back(l + i); + } + } +} + +void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumHalfElts = NumElts / 2; + + for (unsigned l = 0; l != NumHalfElts; ++l) + ShuffleMask.push_back(l + NumHalfElts); + for (unsigned h = 0; h != NumHalfElts; ++h) + ShuffleMask.push_back(h); +} + +/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates +/// the type of the vector allowing it to handle different datatypes and vector +/// widths. +void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + unsigned NewImm = Imm; + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + // each half of a lane comes from different source + for (unsigned s = 0; s != NumElts * 2; s += NumElts) { + for (unsigned i = 0; i != NumLaneElts / 2; ++i) { + ShuffleMask.push_back(NewImm % NumLaneElts + s + l); + NewImm /= NumLaneElts; + } + } + if (NumLaneElts == 4) NewImm = Imm; // reload imm + } +} + +/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd +/// and punpckh*. VT indicates the type of the vector allowing it to handle +/// different datatypes and vector widths. +void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits() / 128; + if (NumLanes == 0) NumLanes = 1; // Handle MMX + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { + ShuffleMask.push_back(i); // Reads from dest/src1 + ShuffleMask.push_back(i + NumElts); // Reads from src/src2 + } + } +} + +/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd +/// and punpckl*. VT indicates the type of the vector allowing it to handle +/// different datatypes and vector widths. +void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits() / 128; + if (NumLanes == 0 ) NumLanes = 1; // Handle MMX + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { + ShuffleMask.push_back(i); // Reads from dest/src1 + ShuffleMask.push_back(i + NumElts); // Reads from src/src2 + } + } +} + +/// \brief Decode a shuffle packed values at 128-bit granularity +/// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) +/// immediate mask into a shuffle mask. +void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits(); + unsigned ControlBitsMask = NumLanes - 1; + unsigned NumControlBits = NumLanes / 2; + + for (unsigned l = 0; l != NumLanes; ++l) { + unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask; + // We actually need the other source. + if (l >= NumLanes / 2) + LaneMask += NumLanes; + for (unsigned i = 0; i != NumElementsInLane; ++i) + ShuffleMask.push_back(LaneMask * NumElementsInLane + i); + } +} + +void DecodeVPERM2X128Mask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned HalfSize = VT.getVectorNumElements() / 2; + + for (unsigned l = 0; l != 2; ++l) { + unsigned HalfMask = Imm >> (l * 4); + unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; + for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) + ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i); + } +} + +void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, + SmallVectorImpl<int> &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + if (M == (uint64_t)SM_SentinelUndef) { + ShuffleMask.push_back(M); + continue; + } + // For AVX vectors with 32 bytes the base of the shuffle is the half of + // the vector we're inside. + int Base = i < 16 ? 0 : 16; + // If the high bit (7) of the byte is set, the element is zeroed. + if (M & (1 << 7)) + ShuffleMask.push_back(SM_SentinelZero); + else { + // Only the least significant 4 bits of the byte are used. + int Index = Base + (M & 0xf); + ShuffleMask.push_back(Index); + } + } +} + +void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + int ElementBits = VT.getScalarSizeInBits(); + int NumElements = VT.getVectorNumElements(); + for (int i = 0; i < NumElements; ++i) { + // If there are more than 8 elements in the vector, then any immediate blend + // mask applies to each 128-bit lane. There can never be more than + // 8 elements in a 128-bit lane with an immediate blend. + int Bit = NumElements > 8 ? i % (128 / ElementBits) : i; + assert(Bit < 8 && + "Immediate blends only operate over 8 elements at a time!"); + ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i); + } +} + +/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. +/// No VT provided since it only works on 256-bit, 4 element vectors. +void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { + for (unsigned i = 0; i != 4; ++i) { + ShuffleMask.push_back((Imm >> (2 * i)) & 3); + } +} + +void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) { + unsigned NumDstElts = DstVT.getVectorNumElements(); + unsigned SrcScalarBits = SrcVT.getScalarSizeInBits(); + unsigned DstScalarBits = DstVT.getScalarSizeInBits(); + unsigned Scale = DstScalarBits / SrcScalarBits; + assert(SrcScalarBits < DstScalarBits && + "Expected zero extension mask to increase scalar size"); + assert(SrcVT.getVectorNumElements() >= NumDstElts && + "Too many zero extension lanes"); + + for (unsigned i = 0; i != NumDstElts; i++) { + Mask.push_back(i); + for (unsigned j = 1; j != Scale; j++) + Mask.push_back(SM_SentinelZero); + } +} + +void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + ShuffleMask.push_back(0); + for (unsigned i = 1; i < NumElts; i++) + ShuffleMask.push_back(SM_SentinelZero); +} + +void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) { + // First element comes from the first element of second source. + // Remaining elements: Load zero extends / Move copies from first source. + unsigned NumElts = VT.getVectorNumElements(); + Mask.push_back(NumElts); + for (unsigned i = 1; i < NumElts; i++) + Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); +} + +void DecodeEXTRQIMask(int Len, int Idx, + SmallVectorImpl<int> &ShuffleMask) { + // Only the bottom 6 bits are valid for each immediate. + Len &= 0x3F; + Idx &= 0x3F; + + // We can only decode this bit extraction instruction as a shuffle if both the + // length and index work with whole bytes. + if (0 != (Len % 8) || 0 != (Idx % 8)) + return; + + // A length of zero is equivalent to a bit length of 64. + if (Len == 0) + Len = 64; + + // If the length + index exceeds the bottom 64 bits the result is undefined. + if ((Len + Idx) > 64) { + ShuffleMask.append(16, SM_SentinelUndef); + return; + } + + // Convert index and index to work with bytes. + Len /= 8; + Idx /= 8; + + // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes + // of the lower 64-bits. The upper 64-bits are undefined. + for (int i = 0; i != Len; ++i) + ShuffleMask.push_back(i + Idx); + for (int i = Len; i != 8; ++i) + ShuffleMask.push_back(SM_SentinelZero); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(SM_SentinelUndef); +} + +void DecodeINSERTQIMask(int Len, int Idx, + SmallVectorImpl<int> &ShuffleMask) { + // Only the bottom 6 bits are valid for each immediate. + Len &= 0x3F; + Idx &= 0x3F; + + // We can only decode this bit insertion instruction as a shuffle if both the + // length and index work with whole bytes. + if (0 != (Len % 8) || 0 != (Idx % 8)) + return; + + // A length of zero is equivalent to a bit length of 64. + if (Len == 0) + Len = 64; + + // If the length + index exceeds the bottom 64 bits the result is undefined. + if ((Len + Idx) > 64) { + ShuffleMask.append(16, SM_SentinelUndef); + return; + } + + // Convert index and index to work with bytes. + Len /= 8; + Idx /= 8; + + // INSERTQ: Extract lowest Len bytes from lower half of second source and + // insert over first source starting at Idx byte. The upper 64-bits are + // undefined. + for (int i = 0; i != Idx; ++i) + ShuffleMask.push_back(i); + for (int i = 0; i != Len; ++i) + ShuffleMask.push_back(i + 16); + for (int i = Idx + Len; i != 8; ++i) + ShuffleMask.push_back(i); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(SM_SentinelUndef); +} + +void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, + SmallVectorImpl<int> &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + ShuffleMask.push_back((int)M); + } +} + +void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, + SmallVectorImpl<int> &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + ShuffleMask.push_back((int)M); + } +} + +} // llvm namespace |