diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h')
-rw-r--r-- | contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 803 |
1 files changed, 803 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h new file mode 100644 index 000000000000..07cc488d047e --- /dev/null +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h @@ -0,0 +1,803 @@ +//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains small standalone helper functions and enum definitions for +// the X86 target useful for the compiler back-end and the MC libraries. +// As such, it deliberately does not include references to LLVM core +// code gen types, passes, etc.. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H +#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H + +#include "X86MCTargetDesc.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/Support/ErrorHandling.h" + +namespace llvm { + +namespace X86 { + // Enums for memory operand decoding. Each memory operand is represented with + // a 5 operand sequence in the form: + // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] + // These enums help decode this. + enum { + AddrBaseReg = 0, + AddrScaleAmt = 1, + AddrIndexReg = 2, + AddrDisp = 3, + + /// AddrSegmentReg - The operand # of the segment in the memory operand. + AddrSegmentReg = 4, + + /// AddrNumOperands - Total number of operands in a memory reference. + AddrNumOperands = 5 + }; + + /// AVX512 static rounding constants. These need to match the values in + /// avx512fintrin.h. + enum STATIC_ROUNDING { + TO_NEAREST_INT = 0, + TO_NEG_INF = 1, + TO_POS_INF = 2, + TO_ZERO = 3, + CUR_DIRECTION = 4 + }; + + /// The constants to describe instr prefixes if there are + enum IPREFIXES { + IP_NO_PREFIX = 0, + IP_HAS_OP_SIZE = 1, + IP_HAS_AD_SIZE = 2, + IP_HAS_REPEAT_NE = 4, + IP_HAS_REPEAT = 8, + IP_HAS_LOCK = 16, + NO_SCHED_INFO = 32 // Don't add sched comment to the current instr because + // it was already added + }; +} // end namespace X86; + +/// X86II - This namespace holds all of the target specific flags that +/// instruction info tracks. +/// +namespace X86II { + /// Target Operand Flag enum. + enum TOF { + //===------------------------------------------------------------------===// + // X86 Specific MachineOperand flags. + + MO_NO_FLAG, + + /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a + /// relocation of: + /// SYMBOL_LABEL + [. - PICBASELABEL] + MO_GOT_ABSOLUTE_ADDRESS, + + /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the + /// immediate should get the value of the symbol minus the PIC base label: + /// SYMBOL_LABEL - PICBASELABEL + MO_PIC_BASE_OFFSET, + + /// MO_GOT - On a symbol operand this indicates that the immediate is the + /// offset to the GOT entry for the symbol name from the base of the GOT. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOT + MO_GOT, + + /// MO_GOTOFF - On a symbol operand this indicates that the immediate is + /// the offset to the location of the symbol name from the base of the GOT. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOTOFF + MO_GOTOFF, + + /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is + /// offset to the GOT entry for the symbol name from the current code + /// location. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOTPCREL + MO_GOTPCREL, + + /// MO_PLT - On a symbol operand this indicates that the immediate is + /// offset to the PLT entry of symbol name from the current code location. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @PLT + MO_PLT, + + /// MO_TLSGD - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS index structure that contains + /// the module number and variable offset for the symbol. Used in the + /// general dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSGD + MO_TLSGD, + + /// MO_TLSLD - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS index for the module that + /// contains the symbol. When this index is passed to a call to + /// __tls_get_addr, the function will return the base address of the TLS + /// block for the symbol. Used in the x86-64 local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSLD + MO_TLSLD, + + /// MO_TLSLDM - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS index for the module that + /// contains the symbol. When this index is passed to a call to + /// ___tls_get_addr, the function will return the base address of the TLS + /// block for the symbol. Used in the IA32 local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSLDM + MO_TLSLDM, + + /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the thread-pointer offset for the + /// symbol. Used in the x86-64 initial exec TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @GOTTPOFF + MO_GOTTPOFF, + + /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is + /// the absolute address of the GOT entry with the negative thread-pointer + /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access + /// model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @INDNTPOFF + MO_INDNTPOFF, + + /// MO_TPOFF - On a symbol operand this indicates that the immediate is + /// the thread-pointer offset for the symbol. Used in the x86-64 local + /// exec TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TPOFF + MO_TPOFF, + + /// MO_DTPOFF - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS offset of the symbol. Used + /// in the local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @DTPOFF + MO_DTPOFF, + + /// MO_NTPOFF - On a symbol operand this indicates that the immediate is + /// the negative thread-pointer offset for the symbol. Used in the IA32 + /// local exec TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @NTPOFF + MO_NTPOFF, + + /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the negative thread-pointer offset for + /// the symbol. Used in the PIC IA32 initial exec TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @GOTNTPOFF + MO_GOTNTPOFF, + + /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the + /// reference is actually to the "__imp_FOO" symbol. This is used for + /// dllimport linkage on windows. + MO_DLLIMPORT, + + /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the + /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a + /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. + MO_DARWIN_NONLAZY, + + /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates + /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is + /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. + MO_DARWIN_NONLAZY_PIC_BASE, + + /// MO_TLVP - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// This is the TLS offset for the Darwin TLS mechanism. + MO_TLVP, + + /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate + /// is some TLS offset from the picbase. + /// + /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. + MO_TLVP_PIC_BASE, + + /// MO_SECREL - On a symbol operand this indicates that the immediate is + /// the offset from beginning of section. + /// + /// This is the TLS offset for the COFF/Windows TLS mechanism. + MO_SECREL, + + /// MO_ABS8 - On a symbol operand this indicates that the symbol is known + /// to be an absolute symbol in range [0,128), so we can use the @ABS8 + /// symbol modifier. + MO_ABS8, + }; + + enum : uint64_t { + //===------------------------------------------------------------------===// + // Instruction encodings. These are the standard/most common forms for X86 + // instructions. + // + + // PseudoFrm - This represents an instruction that is a pseudo instruction + // or one that has not been implemented yet. It is illegal to code generate + // it, but tolerated for intermediate implementation stages. + Pseudo = 0, + + /// Raw - This form is for instructions that don't have any operands, so + /// they are just a fixed opcode value, like 'leave'. + RawFrm = 1, + + /// AddRegFrm - This form is used for instructions like 'push r32' that have + /// their one register operand added to their opcode. + AddRegFrm = 2, + + /// RawFrmMemOffs - This form is for instructions that store an absolute + /// memory offset as an immediate with a possible segment override. + RawFrmMemOffs = 3, + + /// RawFrmSrc - This form is for instructions that use the source index + /// register SI/ESI/RSI with a possible segment override. + RawFrmSrc = 4, + + /// RawFrmDst - This form is for instructions that use the destination index + /// register DI/EDI/ESI. + RawFrmDst = 5, + + /// RawFrmSrc - This form is for instructions that use the source index + /// register SI/ESI/ERI with a possible segment override, and also the + /// destination index register DI/ESI/RDI. + RawFrmDstSrc = 6, + + /// RawFrmImm8 - This is used for the ENTER instruction, which has two + /// immediates, the first of which is a 16-bit immediate (specified by + /// the imm encoding) and the second is a 8-bit fixed value. + RawFrmImm8 = 7, + + /// RawFrmImm16 - This is used for CALL FAR instructions, which have two + /// immediates, the first of which is a 16 or 32-bit immediate (specified by + /// the imm encoding) and the second is a 16-bit fixed value. In the AMD + /// manual, this operand is described as pntr16:32 and pntr16:16 + RawFrmImm16 = 8, + + /// MRM[0-7][rm] - These forms are used to represent instructions that use + /// a Mod/RM byte, and use the middle field to hold extended opcode + /// information. In the intel manual these are represented as /0, /1, ... + /// + + /// MRMDestMem - This form is used for instructions that use the Mod/RM byte + /// to specify a destination, which in this case is memory. + /// + MRMDestMem = 32, + + /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte + /// to specify a source, which in this case is memory. + /// + MRMSrcMem = 33, + + /// MRMSrcMem4VOp3 - This form is used for instructions that encode + /// operand 3 with VEX.VVVV and load from memory. + /// + MRMSrcMem4VOp3 = 34, + + /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM + /// byte to specify the fourth source, which in this case is memory. + /// + MRMSrcMemOp4 = 35, + + /// MRMXm - This form is used for instructions that use the Mod/RM byte + /// to specify a memory source, but doesn't use the middle field. + /// + MRMXm = 39, // Instruction that uses Mod/RM but not the middle field. + + // Next, instructions that operate on a memory r/m operand... + MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3 + MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7 + + /// MRMDestReg - This form is used for instructions that use the Mod/RM byte + /// to specify a destination, which in this case is a register. + /// + MRMDestReg = 48, + + /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte + /// to specify a source, which in this case is a register. + /// + MRMSrcReg = 49, + + /// MRMSrcReg4VOp3 - This form is used for instructions that encode + /// operand 3 with VEX.VVVV and do not load from memory. + /// + MRMSrcReg4VOp3 = 50, + + /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM + /// byte to specify the fourth source, which in this case is a register. + /// + MRMSrcRegOp4 = 51, + + /// MRMXr - This form is used for instructions that use the Mod/RM byte + /// to specify a register source, but doesn't use the middle field. + /// + MRMXr = 55, // Instruction that uses Mod/RM but not the middle field. + + // Instructions that operate on a register r/m operand... + MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3 + MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7 + + /// MRM_XX - A mod/rm byte of exactly 0xXX. + MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67, + MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71, + MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75, + MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79, + MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83, + MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87, + MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91, + MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95, + MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99, + MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103, + MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107, + MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111, + MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115, + MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119, + MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123, + MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127, + + FormMask = 127, + + //===------------------------------------------------------------------===// + // Actual flags... + + // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. + // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in + // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 + // prefix in 16-bit mode. OpSizeIgnore means that the instruction may + // take a optional 0x66 byte but should not emit with one. + OpSizeShift = 7, + OpSizeMask = 0x3 << OpSizeShift, + + OpSizeFixed = 0 << OpSizeShift, + OpSize16 = 1 << OpSizeShift, + OpSize32 = 2 << OpSizeShift, + OpSizeIgnore = 3 << OpSizeShift, + + // AsSize - AdSizeX implies this instruction determines its need of 0x67 + // prefix from a normal ModRM memory operand. The other types indicate that + // an operand is encoded with a specific width and a prefix is needed if + // it differs from the current mode. + AdSizeShift = OpSizeShift + 2, + AdSizeMask = 0x3 << AdSizeShift, + + AdSizeX = 1 << AdSizeShift, + AdSize16 = 1 << AdSizeShift, + AdSize32 = 2 << AdSizeShift, + AdSize64 = 3 << AdSizeShift, + + //===------------------------------------------------------------------===// + // OpPrefix - There are several prefix bytes that are used as opcode + // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is + // no prefix. + // + OpPrefixShift = AdSizeShift + 2, + OpPrefixMask = 0x7 << OpPrefixShift, + + // PS, PD - Prefix code for packed single and double precision vector + // floating point operations performed in the SSE registers. + PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift, + + // XS, XD - These prefix codes are for single and double precision scalar + // floating point operations performed in the SSE registers. + XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift, + + //===------------------------------------------------------------------===// + // OpMap - This field determines which opcode map this instruction + // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. + // + OpMapShift = OpPrefixShift + 3, + OpMapMask = 0x7 << OpMapShift, + + // OB - OneByte - Set if this instruction has a one byte opcode. + OB = 0 << OpMapShift, + + // TB - TwoByte - Set if this instruction has a two byte opcode, which + // starts with a 0x0F byte before the real opcode. + TB = 1 << OpMapShift, + + // T8, TA - Prefix after the 0x0F prefix. + T8 = 2 << OpMapShift, TA = 3 << OpMapShift, + + // XOP8 - Prefix to include use of imm byte. + XOP8 = 4 << OpMapShift, + + // XOP9 - Prefix to exclude use of imm byte. + XOP9 = 5 << OpMapShift, + + // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. + XOPA = 6 << OpMapShift, + + //===------------------------------------------------------------------===// + // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. + // They are used to specify GPRs and SSE registers, 64-bit operand size, + // etc. We only cares about REX.W and REX.R bits and only the former is + // statically determined. + // + REXShift = OpMapShift + 3, + REX_W = 1 << REXShift, + + //===------------------------------------------------------------------===// + // This three-bit field describes the size of an immediate operand. Zero is + // unused so that we can tell if we forgot to set a value. + ImmShift = REXShift + 1, + ImmMask = 15 << ImmShift, + Imm8 = 1 << ImmShift, + Imm8PCRel = 2 << ImmShift, + Imm8Reg = 3 << ImmShift, + Imm16 = 4 << ImmShift, + Imm16PCRel = 5 << ImmShift, + Imm32 = 6 << ImmShift, + Imm32PCRel = 7 << ImmShift, + Imm32S = 8 << ImmShift, + Imm64 = 9 << ImmShift, + + //===------------------------------------------------------------------===// + // FP Instruction Classification... Zero is non-fp instruction. + + // FPTypeMask - Mask for all of the FP types... + FPTypeShift = ImmShift + 4, + FPTypeMask = 7 << FPTypeShift, + + // NotFP - The default, set for instructions that do not use FP registers. + NotFP = 0 << FPTypeShift, + + // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 + ZeroArgFP = 1 << FPTypeShift, + + // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst + OneArgFP = 2 << FPTypeShift, + + // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a + // result back to ST(0). For example, fcos, fsqrt, etc. + // + OneArgFPRW = 3 << FPTypeShift, + + // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an + // explicit argument, storing the result to either ST(0) or the implicit + // argument. For example: fadd, fsub, fmul, etc... + TwoArgFP = 4 << FPTypeShift, + + // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an + // explicit argument, but have no destination. Example: fucom, fucomi, ... + CompareFP = 5 << FPTypeShift, + + // CondMovFP - "2 operand" floating point conditional move instructions. + CondMovFP = 6 << FPTypeShift, + + // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. + SpecialFP = 7 << FPTypeShift, + + // Lock prefix + LOCKShift = FPTypeShift + 3, + LOCK = 1 << LOCKShift, + + // REP prefix + REPShift = LOCKShift + 1, + REP = 1 << REPShift, + + // Execution domain for SSE instructions. + // 0 means normal, non-SSE instruction. + SSEDomainShift = REPShift + 1, + + // Encoding + EncodingShift = SSEDomainShift + 2, + EncodingMask = 0x3 << EncodingShift, + + // VEX - encoding using 0xC4/0xC5 + VEX = 1 << EncodingShift, + + /// XOP - Opcode prefix used by XOP instructions. + XOP = 2 << EncodingShift, + + // VEX_EVEX - Specifies that this instruction use EVEX form which provides + // syntax support up to 32 512-bit register operands and up to 7 16-bit + // mask operands as well as source operand data swizzling/memory operand + // conversion, eviction hint, and rounding mode. + EVEX = 3 << EncodingShift, + + // Opcode + OpcodeShift = EncodingShift + 2, + + /// VEX_W - Has a opcode specific functionality, but is used in the same + /// way as REX_W is for regular SSE instructions. + VEX_WShift = OpcodeShift + 8, + VEX_W = 1ULL << VEX_WShift, + + /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 + /// address instructions in SSE are represented as 3 address ones in AVX + /// and the additional register is encoded in VEX_VVVV prefix. + VEX_4VShift = VEX_WShift + 1, + VEX_4V = 1ULL << VEX_4VShift, + + /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current + /// instruction uses 256-bit wide registers. This is usually auto detected + /// if a VR256 register is used, but some AVX instructions also have this + /// field marked when using a f256 memory references. + VEX_LShift = VEX_4VShift + 1, + VEX_L = 1ULL << VEX_LShift, + + // EVEX_K - Set if this instruction requires masking + EVEX_KShift = VEX_LShift + 1, + EVEX_K = 1ULL << EVEX_KShift, + + // EVEX_Z - Set if this instruction has EVEX.Z field set. + EVEX_ZShift = EVEX_KShift + 1, + EVEX_Z = 1ULL << EVEX_ZShift, + + // EVEX_L2 - Set if this instruction has EVEX.L' field set. + EVEX_L2Shift = EVEX_ZShift + 1, + EVEX_L2 = 1ULL << EVEX_L2Shift, + + // EVEX_B - Set if this instruction has EVEX.B field set. + EVEX_BShift = EVEX_L2Shift + 1, + EVEX_B = 1ULL << EVEX_BShift, + + // The scaling factor for the AVX512's 8-bit compressed displacement. + CD8_Scale_Shift = EVEX_BShift + 1, + CD8_Scale_Mask = 127ULL << CD8_Scale_Shift, + + /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the + /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents + /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction + /// storing a classifier in the imm8 field. To simplify our implementation, + /// we handle this by storeing the classifier in the opcode field and using + /// this flag to indicate that the encoder should do the wacky 3DNow! thing. + Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7, + Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift, + + /// Explicitly specified rounding control + EVEX_RCShift = Has3DNow0F0FOpcodeShift + 1, + EVEX_RC = 1ULL << EVEX_RCShift + }; + + // getBaseOpcodeFor - This function returns the "base" X86 opcode for the + // specified machine instruction. + // + inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { + return TSFlags >> X86II::OpcodeShift; + } + + inline bool hasImm(uint64_t TSFlags) { + return (TSFlags & X86II::ImmMask) != 0; + } + + /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field + /// of the specified instruction. + inline unsigned getSizeOfImm(uint64_t TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: llvm_unreachable("Unknown immediate size"); + case X86II::Imm8: + case X86II::Imm8PCRel: + case X86II::Imm8Reg: return 1; + case X86II::Imm16: + case X86II::Imm16PCRel: return 2; + case X86II::Imm32: + case X86II::Imm32S: + case X86II::Imm32PCRel: return 4; + case X86II::Imm64: return 8; + } + } + + /// isImmPCRel - Return true if the immediate of the specified instruction's + /// TSFlags indicates that it is pc relative. + inline unsigned isImmPCRel(uint64_t TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: llvm_unreachable("Unknown immediate size"); + case X86II::Imm8PCRel: + case X86II::Imm16PCRel: + case X86II::Imm32PCRel: + return true; + case X86II::Imm8: + case X86II::Imm8Reg: + case X86II::Imm16: + case X86II::Imm32: + case X86II::Imm32S: + case X86II::Imm64: + return false; + } + } + + /// isImmSigned - Return true if the immediate of the specified instruction's + /// TSFlags indicates that it is signed. + inline unsigned isImmSigned(uint64_t TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: llvm_unreachable("Unknown immediate signedness"); + case X86II::Imm32S: + return true; + case X86II::Imm8: + case X86II::Imm8PCRel: + case X86II::Imm8Reg: + case X86II::Imm16: + case X86II::Imm16PCRel: + case X86II::Imm32: + case X86II::Imm32PCRel: + case X86II::Imm64: + return false; + } + } + + /// getOperandBias - compute any additional adjustment needed to + /// the offset to the start of the memory operand + /// in this instruction. + /// If this is a two-address instruction,skip one of the register operands. + /// FIXME: This should be handled during MCInst lowering. + inline unsigned getOperandBias(const MCInstrDesc& Desc) + { + unsigned NumOps = Desc.getNumOperands(); + if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) + return 1; + if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) + // Special case for AVX-512 GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + return 2; + if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1) + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + return 2; + if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0) + // SCATTER + return 1; + return 0; + } + + /// getMemoryOperandNo - The function returns the MCInst operand # for the + /// first field of the memory operand. If the instruction doesn't have a + /// memory operand, this returns -1. + /// + /// Note that this ignores tied operands. If there is a tied register which + /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only + /// counted as one operand. + /// + inline int getMemoryOperandNo(uint64_t TSFlags) { + bool HasVEX_4V = TSFlags & X86II::VEX_4V; + bool HasEVEX_K = TSFlags & X86II::EVEX_K; + + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); + case X86II::Pseudo: + case X86II::RawFrm: + case X86II::AddRegFrm: + case X86II::RawFrmImm8: + case X86II::RawFrmImm16: + case X86II::RawFrmMemOffs: + case X86II::RawFrmSrc: + case X86II::RawFrmDst: + case X86II::RawFrmDstSrc: + return -1; + case X86II::MRMDestMem: + return 0; + case X86II::MRMSrcMem: + // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a + // mask register. + return 1 + HasVEX_4V + HasEVEX_K; + case X86II::MRMSrcMem4VOp3: + // Skip registers encoded in reg. + return 1 + HasEVEX_K; + case X86II::MRMSrcMemOp4: + // Skip registers encoded in reg, VEX_VVVV, and I8IMM. + return 3; + case X86II::MRMDestReg: + case X86II::MRMSrcReg: + case X86II::MRMSrcReg4VOp3: + case X86II::MRMSrcRegOp4: + case X86II::MRMXr: + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + return -1; + case X86II::MRMXm: + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + // Start from 0, skip registers encoded in VEX_VVVV or a mask register. + return 0 + HasVEX_4V + HasEVEX_K; + case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: + case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: + case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: + case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: + case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: + case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: + case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: + case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: + case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: + case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: + case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: + case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: + case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: + case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: + case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: + case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: + case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: + case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: + case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: + case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: + case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: + case X86II::MRM_FF: + return -1; + } + } + + /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or + /// higher) register? e.g. r8, xmm8, xmm13, etc. + inline bool isX86_64ExtendedReg(unsigned RegNo) { + if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) || + (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) || + (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) + return true; + + switch (RegNo) { + default: break; + case X86::R8: case X86::R9: case X86::R10: case X86::R11: + case X86::R12: case X86::R13: case X86::R14: case X86::R15: + case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: + case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: + case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: + case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: + case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: + case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: + case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: + case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: + case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11: + case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15: + return true; + } + return false; + } + + /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher) + /// registers? e.g. zmm21, etc. + static inline bool is32ExtendedReg(unsigned RegNo) { + return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || + (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || + (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); + } + + + inline bool isX86_64NonExtLowByteReg(unsigned reg) { + return (reg == X86::SPL || reg == X86::BPL || + reg == X86::SIL || reg == X86::DIL); + } + + /// isKMasked - Is this a masked instruction. + inline bool isKMasked(uint64_t TSFlags) { + return (TSFlags & X86II::EVEX_K) != 0; + } + + /// isKMergedMasked - Is this a merge masked instruction. + inline bool isKMergeMasked(uint64_t TSFlags) { + return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; + } +} + +} // end namespace llvm; + +#endif |