aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h')
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h803
1 files changed, 803 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
new file mode 100644
index 000000000000..07cc488d047e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -0,0 +1,803 @@
+//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the X86 target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
+#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
+
+#include "X86MCTargetDesc.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+namespace X86 {
+ // Enums for memory operand decoding. Each memory operand is represented with
+ // a 5 operand sequence in the form:
+ // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
+ // These enums help decode this.
+ enum {
+ AddrBaseReg = 0,
+ AddrScaleAmt = 1,
+ AddrIndexReg = 2,
+ AddrDisp = 3,
+
+ /// AddrSegmentReg - The operand # of the segment in the memory operand.
+ AddrSegmentReg = 4,
+
+ /// AddrNumOperands - Total number of operands in a memory reference.
+ AddrNumOperands = 5
+ };
+
+ /// AVX512 static rounding constants. These need to match the values in
+ /// avx512fintrin.h.
+ enum STATIC_ROUNDING {
+ TO_NEAREST_INT = 0,
+ TO_NEG_INF = 1,
+ TO_POS_INF = 2,
+ TO_ZERO = 3,
+ CUR_DIRECTION = 4
+ };
+
+ /// The constants to describe instr prefixes if there are
+ enum IPREFIXES {
+ IP_NO_PREFIX = 0,
+ IP_HAS_OP_SIZE = 1,
+ IP_HAS_AD_SIZE = 2,
+ IP_HAS_REPEAT_NE = 4,
+ IP_HAS_REPEAT = 8,
+ IP_HAS_LOCK = 16,
+ NO_SCHED_INFO = 32 // Don't add sched comment to the current instr because
+ // it was already added
+ };
+} // end namespace X86;
+
+/// X86II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace X86II {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // X86 Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
+ /// relocation of:
+ /// SYMBOL_LABEL + [. - PICBASELABEL]
+ MO_GOT_ABSOLUTE_ADDRESS,
+
+ /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
+ /// immediate should get the value of the symbol minus the PIC base label:
+ /// SYMBOL_LABEL - PICBASELABEL
+ MO_PIC_BASE_OFFSET,
+
+ /// MO_GOT - On a symbol operand this indicates that the immediate is the
+ /// offset to the GOT entry for the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOT
+ MO_GOT,
+
+ /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
+ /// the offset to the location of the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTOFF
+ MO_GOTOFF,
+
+ /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
+ /// offset to the GOT entry for the symbol name from the current code
+ /// location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTPCREL
+ MO_GOTPCREL,
+
+ /// MO_PLT - On a symbol operand this indicates that the immediate is
+ /// offset to the PLT entry of symbol name from the current code location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @PLT
+ MO_PLT,
+
+ /// MO_TLSGD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index structure that contains
+ /// the module number and variable offset for the symbol. Used in the
+ /// general dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSGD
+ MO_TLSGD,
+
+ /// MO_TLSLD - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// __tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLD
+ MO_TLSLD,
+
+ /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS index for the module that
+ /// contains the symbol. When this index is passed to a call to
+ /// ___tls_get_addr, the function will return the base address of the TLS
+ /// block for the symbol. Used in the IA32 local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSLDM
+ MO_TLSLDM,
+
+ /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the thread-pointer offset for the
+ /// symbol. Used in the x86-64 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTTPOFF
+ MO_GOTTPOFF,
+
+ /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the absolute address of the GOT entry with the negative thread-pointer
+ /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
+ /// model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @INDNTPOFF
+ MO_INDNTPOFF,
+
+ /// MO_TPOFF - On a symbol operand this indicates that the immediate is
+ /// the thread-pointer offset for the symbol. Used in the x86-64 local
+ /// exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TPOFF
+ MO_TPOFF,
+
+ /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the TLS offset of the symbol. Used
+ /// in the local dynamic TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @DTPOFF
+ MO_DTPOFF,
+
+ /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
+ /// the negative thread-pointer offset for the symbol. Used in the IA32
+ /// local exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @NTPOFF
+ MO_NTPOFF,
+
+ /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
+ /// the offset of the GOT entry with the negative thread-pointer offset for
+ /// the symbol. Used in the PIC IA32 initial exec TLS access model.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTNTPOFF
+ MO_GOTNTPOFF,
+
+ /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "__imp_FOO" symbol. This is used for
+ /// dllimport linkage on windows.
+ MO_DLLIMPORT,
+
+ /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+ /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY,
+
+ /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+ /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+ /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY_PIC_BASE,
+
+ /// MO_TLVP - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// This is the TLS offset for the Darwin TLS mechanism.
+ MO_TLVP,
+
+ /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
+ /// is some TLS offset from the picbase.
+ ///
+ /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
+ MO_TLVP_PIC_BASE,
+
+ /// MO_SECREL - On a symbol operand this indicates that the immediate is
+ /// the offset from beginning of section.
+ ///
+ /// This is the TLS offset for the COFF/Windows TLS mechanism.
+ MO_SECREL,
+
+ /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
+ /// to be an absolute symbol in range [0,128), so we can use the @ABS8
+ /// symbol modifier.
+ MO_ABS8,
+ };
+
+ enum : uint64_t {
+ //===------------------------------------------------------------------===//
+ // Instruction encodings. These are the standard/most common forms for X86
+ // instructions.
+ //
+
+ // PseudoFrm - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// Raw - This form is for instructions that don't have any operands, so
+ /// they are just a fixed opcode value, like 'leave'.
+ RawFrm = 1,
+
+ /// AddRegFrm - This form is used for instructions like 'push r32' that have
+ /// their one register operand added to their opcode.
+ AddRegFrm = 2,
+
+ /// RawFrmMemOffs - This form is for instructions that store an absolute
+ /// memory offset as an immediate with a possible segment override.
+ RawFrmMemOffs = 3,
+
+ /// RawFrmSrc - This form is for instructions that use the source index
+ /// register SI/ESI/RSI with a possible segment override.
+ RawFrmSrc = 4,
+
+ /// RawFrmDst - This form is for instructions that use the destination index
+ /// register DI/EDI/ESI.
+ RawFrmDst = 5,
+
+ /// RawFrmSrc - This form is for instructions that use the source index
+ /// register SI/ESI/ERI with a possible segment override, and also the
+ /// destination index register DI/ESI/RDI.
+ RawFrmDstSrc = 6,
+
+ /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+ /// immediates, the first of which is a 16-bit immediate (specified by
+ /// the imm encoding) and the second is a 8-bit fixed value.
+ RawFrmImm8 = 7,
+
+ /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+ /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+ /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
+ /// manual, this operand is described as pntr16:32 and pntr16:16
+ RawFrmImm16 = 8,
+
+ /// MRM[0-7][rm] - These forms are used to represent instructions that use
+ /// a Mod/RM byte, and use the middle field to hold extended opcode
+ /// information. In the intel manual these are represented as /0, /1, ...
+ ///
+
+ /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is memory.
+ ///
+ MRMDestMem = 32,
+
+ /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is memory.
+ ///
+ MRMSrcMem = 33,
+
+ /// MRMSrcMem4VOp3 - This form is used for instructions that encode
+ /// operand 3 with VEX.VVVV and load from memory.
+ ///
+ MRMSrcMem4VOp3 = 34,
+
+ /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
+ /// byte to specify the fourth source, which in this case is memory.
+ ///
+ MRMSrcMemOp4 = 35,
+
+ /// MRMXm - This form is used for instructions that use the Mod/RM byte
+ /// to specify a memory source, but doesn't use the middle field.
+ ///
+ MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
+
+ // Next, instructions that operate on a memory r/m operand...
+ MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
+ MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
+
+ /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is a register.
+ ///
+ MRMDestReg = 48,
+
+ /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is a register.
+ ///
+ MRMSrcReg = 49,
+
+ /// MRMSrcReg4VOp3 - This form is used for instructions that encode
+ /// operand 3 with VEX.VVVV and do not load from memory.
+ ///
+ MRMSrcReg4VOp3 = 50,
+
+ /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
+ /// byte to specify the fourth source, which in this case is a register.
+ ///
+ MRMSrcRegOp4 = 51,
+
+ /// MRMXr - This form is used for instructions that use the Mod/RM byte
+ /// to specify a register source, but doesn't use the middle field.
+ ///
+ MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
+
+ // Instructions that operate on a register r/m operand...
+ MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
+ MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
+
+ /// MRM_XX - A mod/rm byte of exactly 0xXX.
+ MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
+ MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
+ MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
+ MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
+ MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
+ MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
+ MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
+ MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
+ MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
+ MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
+ MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
+ MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
+ MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
+ MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
+ MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
+ MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
+
+ FormMask = 127,
+
+ //===------------------------------------------------------------------===//
+ // Actual flags...
+
+ // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+ // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+ // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+ // prefix in 16-bit mode. OpSizeIgnore means that the instruction may
+ // take a optional 0x66 byte but should not emit with one.
+ OpSizeShift = 7,
+ OpSizeMask = 0x3 << OpSizeShift,
+
+ OpSizeFixed = 0 << OpSizeShift,
+ OpSize16 = 1 << OpSizeShift,
+ OpSize32 = 2 << OpSizeShift,
+ OpSizeIgnore = 3 << OpSizeShift,
+
+ // AsSize - AdSizeX implies this instruction determines its need of 0x67
+ // prefix from a normal ModRM memory operand. The other types indicate that
+ // an operand is encoded with a specific width and a prefix is needed if
+ // it differs from the current mode.
+ AdSizeShift = OpSizeShift + 2,
+ AdSizeMask = 0x3 << AdSizeShift,
+
+ AdSizeX = 1 << AdSizeShift,
+ AdSize16 = 1 << AdSizeShift,
+ AdSize32 = 2 << AdSizeShift,
+ AdSize64 = 3 << AdSizeShift,
+
+ //===------------------------------------------------------------------===//
+ // OpPrefix - There are several prefix bytes that are used as opcode
+ // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+ // no prefix.
+ //
+ OpPrefixShift = AdSizeShift + 2,
+ OpPrefixMask = 0x7 << OpPrefixShift,
+
+ // PS, PD - Prefix code for packed single and double precision vector
+ // floating point operations performed in the SSE registers.
+ PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
+
+ // XS, XD - These prefix codes are for single and double precision scalar
+ // floating point operations performed in the SSE registers.
+ XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
+
+ //===------------------------------------------------------------------===//
+ // OpMap - This field determines which opcode map this instruction
+ // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
+ //
+ OpMapShift = OpPrefixShift + 3,
+ OpMapMask = 0x7 << OpMapShift,
+
+ // OB - OneByte - Set if this instruction has a one byte opcode.
+ OB = 0 << OpMapShift,
+
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << OpMapShift,
+
+ // T8, TA - Prefix after the 0x0F prefix.
+ T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
+
+ // XOP8 - Prefix to include use of imm byte.
+ XOP8 = 4 << OpMapShift,
+
+ // XOP9 - Prefix to exclude use of imm byte.
+ XOP9 = 5 << OpMapShift,
+
+ // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+ XOPA = 6 << OpMapShift,
+
+ //===------------------------------------------------------------------===//
+ // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ // They are used to specify GPRs and SSE registers, 64-bit operand size,
+ // etc. We only cares about REX.W and REX.R bits and only the former is
+ // statically determined.
+ //
+ REXShift = OpMapShift + 3,
+ REX_W = 1 << REXShift,
+
+ //===------------------------------------------------------------------===//
+ // This three-bit field describes the size of an immediate operand. Zero is
+ // unused so that we can tell if we forgot to set a value.
+ ImmShift = REXShift + 1,
+ ImmMask = 15 << ImmShift,
+ Imm8 = 1 << ImmShift,
+ Imm8PCRel = 2 << ImmShift,
+ Imm8Reg = 3 << ImmShift,
+ Imm16 = 4 << ImmShift,
+ Imm16PCRel = 5 << ImmShift,
+ Imm32 = 6 << ImmShift,
+ Imm32PCRel = 7 << ImmShift,
+ Imm32S = 8 << ImmShift,
+ Imm64 = 9 << ImmShift,
+
+ //===------------------------------------------------------------------===//
+ // FP Instruction Classification... Zero is non-fp instruction.
+
+ // FPTypeMask - Mask for all of the FP types...
+ FPTypeShift = ImmShift + 4,
+ FPTypeMask = 7 << FPTypeShift,
+
+ // NotFP - The default, set for instructions that do not use FP registers.
+ NotFP = 0 << FPTypeShift,
+
+ // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ ZeroArgFP = 1 << FPTypeShift,
+
+ // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ OneArgFP = 2 << FPTypeShift,
+
+ // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ // result back to ST(0). For example, fcos, fsqrt, etc.
+ //
+ OneArgFPRW = 3 << FPTypeShift,
+
+ // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ // explicit argument, storing the result to either ST(0) or the implicit
+ // argument. For example: fadd, fsub, fmul, etc...
+ TwoArgFP = 4 << FPTypeShift,
+
+ // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ CompareFP = 5 << FPTypeShift,
+
+ // CondMovFP - "2 operand" floating point conditional move instructions.
+ CondMovFP = 6 << FPTypeShift,
+
+ // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ SpecialFP = 7 << FPTypeShift,
+
+ // Lock prefix
+ LOCKShift = FPTypeShift + 3,
+ LOCK = 1 << LOCKShift,
+
+ // REP prefix
+ REPShift = LOCKShift + 1,
+ REP = 1 << REPShift,
+
+ // Execution domain for SSE instructions.
+ // 0 means normal, non-SSE instruction.
+ SSEDomainShift = REPShift + 1,
+
+ // Encoding
+ EncodingShift = SSEDomainShift + 2,
+ EncodingMask = 0x3 << EncodingShift,
+
+ // VEX - encoding using 0xC4/0xC5
+ VEX = 1 << EncodingShift,
+
+ /// XOP - Opcode prefix used by XOP instructions.
+ XOP = 2 << EncodingShift,
+
+ // VEX_EVEX - Specifies that this instruction use EVEX form which provides
+ // syntax support up to 32 512-bit register operands and up to 7 16-bit
+ // mask operands as well as source operand data swizzling/memory operand
+ // conversion, eviction hint, and rounding mode.
+ EVEX = 3 << EncodingShift,
+
+ // Opcode
+ OpcodeShift = EncodingShift + 2,
+
+ /// VEX_W - Has a opcode specific functionality, but is used in the same
+ /// way as REX_W is for regular SSE instructions.
+ VEX_WShift = OpcodeShift + 8,
+ VEX_W = 1ULL << VEX_WShift,
+
+ /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
+ /// address instructions in SSE are represented as 3 address ones in AVX
+ /// and the additional register is encoded in VEX_VVVV prefix.
+ VEX_4VShift = VEX_WShift + 1,
+ VEX_4V = 1ULL << VEX_4VShift,
+
+ /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
+ /// instruction uses 256-bit wide registers. This is usually auto detected
+ /// if a VR256 register is used, but some AVX instructions also have this
+ /// field marked when using a f256 memory references.
+ VEX_LShift = VEX_4VShift + 1,
+ VEX_L = 1ULL << VEX_LShift,
+
+ // EVEX_K - Set if this instruction requires masking
+ EVEX_KShift = VEX_LShift + 1,
+ EVEX_K = 1ULL << EVEX_KShift,
+
+ // EVEX_Z - Set if this instruction has EVEX.Z field set.
+ EVEX_ZShift = EVEX_KShift + 1,
+ EVEX_Z = 1ULL << EVEX_ZShift,
+
+ // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+ EVEX_L2Shift = EVEX_ZShift + 1,
+ EVEX_L2 = 1ULL << EVEX_L2Shift,
+
+ // EVEX_B - Set if this instruction has EVEX.B field set.
+ EVEX_BShift = EVEX_L2Shift + 1,
+ EVEX_B = 1ULL << EVEX_BShift,
+
+ // The scaling factor for the AVX512's 8-bit compressed displacement.
+ CD8_Scale_Shift = EVEX_BShift + 1,
+ CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
+
+ /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
+ /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
+ /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
+ /// storing a classifier in the imm8 field. To simplify our implementation,
+ /// we handle this by storeing the classifier in the opcode field and using
+ /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
+ Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
+ Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
+
+ /// Explicitly specified rounding control
+ EVEX_RCShift = Has3DNow0F0FOpcodeShift + 1,
+ EVEX_RC = 1ULL << EVEX_RCShift
+ };
+
+ // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
+ // specified machine instruction.
+ //
+ inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
+ return TSFlags >> X86II::OpcodeShift;
+ }
+
+ inline bool hasImm(uint64_t TSFlags) {
+ return (TSFlags & X86II::ImmMask) != 0;
+ }
+
+ /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
+ /// of the specified instruction.
+ inline unsigned getSizeOfImm(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm8Reg: return 1;
+ case X86II::Imm16:
+ case X86II::Imm16PCRel: return 2;
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm32PCRel: return 4;
+ case X86II::Imm64: return 8;
+ }
+ }
+
+ /// isImmPCRel - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is pc relative.
+ inline unsigned isImmPCRel(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate size");
+ case X86II::Imm8PCRel:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32PCRel:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8Reg:
+ case X86II::Imm16:
+ case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// isImmSigned - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is signed.
+ inline unsigned isImmSigned(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate signedness");
+ case X86II::Imm32S:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm8Reg:
+ case X86II::Imm16:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32:
+ case X86II::Imm32PCRel:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// getOperandBias - compute any additional adjustment needed to
+ /// the offset to the start of the memory operand
+ /// in this instruction.
+ /// If this is a two-address instruction,skip one of the register operands.
+ /// FIXME: This should be handled during MCInst lowering.
+ inline unsigned getOperandBias(const MCInstrDesc& Desc)
+ {
+ unsigned NumOps = Desc.getNumOperands();
+ if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ return 1;
+ if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
+ // Special case for AVX-512 GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ return 2;
+ if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+ Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ return 2;
+ if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
+ // SCATTER
+ return 1;
+ return 0;
+ }
+
+ /// getMemoryOperandNo - The function returns the MCInst operand # for the
+ /// first field of the memory operand. If the instruction doesn't have a
+ /// memory operand, this returns -1.
+ ///
+ /// Note that this ignores tied operands. If there is a tied register which
+ /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
+ /// counted as one operand.
+ ///
+ inline int getMemoryOperandNo(uint64_t TSFlags) {
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
+ case X86II::Pseudo:
+ case X86II::RawFrm:
+ case X86II::AddRegFrm:
+ case X86II::RawFrmImm8:
+ case X86II::RawFrmImm16:
+ case X86II::RawFrmMemOffs:
+ case X86II::RawFrmSrc:
+ case X86II::RawFrmDst:
+ case X86II::RawFrmDstSrc:
+ return -1;
+ case X86II::MRMDestMem:
+ return 0;
+ case X86II::MRMSrcMem:
+ // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+ // mask register.
+ return 1 + HasVEX_4V + HasEVEX_K;
+ case X86II::MRMSrcMem4VOp3:
+ // Skip registers encoded in reg.
+ return 1 + HasEVEX_K;
+ case X86II::MRMSrcMemOp4:
+ // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
+ return 3;
+ case X86II::MRMDestReg:
+ case X86II::MRMSrcReg:
+ case X86II::MRMSrcReg4VOp3:
+ case X86II::MRMSrcRegOp4:
+ case X86II::MRMXr:
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ return -1;
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
+ return 0 + HasVEX_4V + HasEVEX_K;
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
+ case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
+ case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
+ case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
+ case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
+ case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
+ case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
+ case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
+ case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
+ case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
+ case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
+ case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
+ case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
+ case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
+ case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
+ case X86II::MRM_FF:
+ return -1;
+ }
+ }
+
+ /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
+ /// higher) register? e.g. r8, xmm8, xmm13, etc.
+ inline bool isX86_64ExtendedReg(unsigned RegNo) {
+ if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
+ (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
+ (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
+ return true;
+
+ switch (RegNo) {
+ default: break;
+ case X86::R8: case X86::R9: case X86::R10: case X86::R11:
+ case X86::R12: case X86::R13: case X86::R14: case X86::R15:
+ case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
+ case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
+ case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
+ case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
+ case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
+ case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
+ case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
+ case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
+ case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
+ case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
+ return true;
+ }
+ return false;
+ }
+
+ /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
+ /// registers? e.g. zmm21, etc.
+ static inline bool is32ExtendedReg(unsigned RegNo) {
+ return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
+ (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
+ (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
+ }
+
+
+ inline bool isX86_64NonExtLowByteReg(unsigned reg) {
+ return (reg == X86::SPL || reg == X86::BPL ||
+ reg == X86::SIL || reg == X86::DIL);
+ }
+
+ /// isKMasked - Is this a masked instruction.
+ inline bool isKMasked(uint64_t TSFlags) {
+ return (TSFlags & X86II::EVEX_K) != 0;
+ }
+
+ /// isKMergedMasked - Is this a merge masked instruction.
+ inline bool isKMergeMasked(uint64_t TSFlags) {
+ return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
+ }
+}
+
+} // end namespace llvm;
+
+#endif