aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZOperands.td')
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZOperands.td593
1 files changed, 593 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td
new file mode 100644
index 000000000000..7bb4fe5afb3f
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td
@@ -0,0 +1,593 @@
+//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Class definitions
+//===----------------------------------------------------------------------===//
+
+class ImmediateAsmOperand<string name>
+ : AsmOperandClass {
+ let Name = name;
+ let RenderMethod = "addImmOperands";
+}
+class ImmediateTLSAsmOperand<string name>
+ : AsmOperandClass {
+ let Name = name;
+ let RenderMethod = "addImmTLSOperands";
+}
+
+// Constructs both a DAG pattern and instruction operand for an immediate
+// of type VT. PRED returns true if a node is acceptable and XFORM returns
+// the operand value associated with the node. ASMOP is the name of the
+// associated asm operand, and also forms the basis of the asm print method.
+class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
+ : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
+ let PrintMethod = "print"##asmop##"Operand";
+ let DecoderMethod = "decode"##asmop##"Operand";
+ let ParserMatchClass = !cast<AsmOperandClass>(asmop);
+}
+
+// Constructs an asm operand for a PC-relative address. SIZE says how
+// many bits there are.
+class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
+ let PredicateMethod = "isImm";
+ let ParserMethod = "parsePCRel"##size;
+}
+class PCRelTLSAsmOperand<string size>
+ : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
+ let PredicateMethod = "isImmTLS";
+ let ParserMethod = "parsePCRelTLS"##size;
+}
+
+// Constructs an operand for a PC-relative address with address type VT.
+// ASMOP is the associated asm operand.
+class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
+ let PrintMethod = "printPCRelOperand";
+ let ParserMatchClass = asmop;
+}
+class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
+ let PrintMethod = "printPCRelTLSOperand";
+ let ParserMatchClass = asmop;
+}
+
+// Constructs both a DAG pattern and instruction operand for a PC-relative
+// address with address size VT. SELF is the name of the operand and
+// ASMOP is the associated asm operand.
+class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
+ : ComplexPattern<vt, 1, "selectPCRelAddress",
+ [z_pcrel_wrapper, z_pcrel_offset]>,
+ PCRelOperand<vt, asmop> {
+ let MIOperandInfo = (ops !cast<Operand>(self));
+}
+
+// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
+// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
+// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
+// is "".
+class AddressAsmOperand<string format, string bitsize, string dispsize,
+ string length = "">
+ : AsmOperandClass {
+ let Name = format##bitsize##"Disp"##dispsize##length;
+ let ParserMethod = "parse"##format##bitsize;
+ let RenderMethod = "add"##format##"Operands";
+}
+
+// Constructs an instruction operand for an addressing mode. FORMAT,
+// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
+// AddressAsmOperand. OPERANDS is a list of individual operands
+// (base register, displacement, etc.).
+class AddressOperand<string bitsize, string dispsize, string length,
+ string format, dag operands>
+ : Operand<!cast<ValueType>("i"##bitsize)> {
+ let PrintMethod = "print"##format##"Operand";
+ let EncoderMethod = "get"##format##dispsize##length##"Encoding";
+ let DecoderMethod =
+ "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
+ let MIOperandInfo = operands;
+ let ParserMatchClass =
+ !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
+}
+
+// Constructs both a DAG pattern and instruction operand for an addressing mode.
+// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
+// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
+// (base register, displacement, etc.). SELTYPE is the type of the memory
+// operand for selection purposes; sometimes we want different selection
+// choices for the same underlying addressing mode. SUFFIX is similarly
+// a suffix appended to the displacement for selection purposes;
+// e.g. we want to reject small 20-bit displacements if a 12-bit form
+// also exists, but we want to accept them otherwise.
+class AddressingMode<string seltype, string bitsize, string dispsize,
+ string suffix, string length, int numops, string format,
+ dag operands>
+ : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
+ "select"##seltype##dispsize##suffix##length,
+ [add, sub, or, frameindex, z_adjdynalloc]>,
+ AddressOperand<bitsize, dispsize, length, format, operands>;
+
+// An addressing mode with a base and displacement but no index.
+class BDMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
+
+// An addressing mode with a base, displacement and index.
+class BDXMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<RegisterOperand>("ADDR"##bitsize))>;
+
+// A BDMode paired with an immediate length operand of LENSIZE bits.
+class BDLMode<string type, string bitsize, string dispsize, string suffix,
+ string lensize>
+ : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
+ "BDLAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<Immediate>("imm"##bitsize))>;
+
+// A BDMode paired with a register length operand.
+class BDRMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<RegisterOperand>("GR"##bitsize))>;
+
+// An addressing mode with a base, displacement and a vector index.
+class BDVMode<string bitsize, string dispsize>
+ : AddressOperand<bitsize, dispsize, "", "BDVAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<RegisterOperand>("VR128"))>;
+
+//===----------------------------------------------------------------------===//
+// Extracting immediate operands from nodes
+// These all create MVT::i64 nodes to ensure the value is not sign-extended
+// when converted from an SDNode to a MachineOperand later on.
+//===----------------------------------------------------------------------===//
+
+// Bits 0-15 (counting from the lsb).
+def LL16 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// Bits 16-31 (counting from the lsb).
+def LH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// Bits 32-47 (counting from the lsb).
+def HL16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// Bits 48-63 (counting from the lsb).
+def HH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// Low 32 bits.
+def LF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// High 32 bits.
+def HF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() >> 32;
+ return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit signed quantity.
+def SIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit unsigned quantity.
+def UIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
+def UIMM8EVEN : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 12-bit unsigned quantity.
+def UIMM12 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit signed quantity.
+def SIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit unsigned quantity.
+def UIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit signed quantity.
+def SIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit unsigned quantity.
+def UIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+// Truncate an immediate to a 48-bit unsigned quantity.
+def UIMM48 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
+ SDLoc(N), MVT::i64);
+}]>;
+
+// Negate and then truncate an immediate to a 32-bit unsigned quantity.
+def NEGIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
+ MVT::i64);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Immediate asm operands.
+//===----------------------------------------------------------------------===//
+
+def U1Imm : ImmediateAsmOperand<"U1Imm">;
+def U2Imm : ImmediateAsmOperand<"U2Imm">;
+def U3Imm : ImmediateAsmOperand<"U3Imm">;
+def U4Imm : ImmediateAsmOperand<"U4Imm">;
+def U6Imm : ImmediateAsmOperand<"U6Imm">;
+def S8Imm : ImmediateAsmOperand<"S8Imm">;
+def U8Imm : ImmediateAsmOperand<"U8Imm">;
+def U12Imm : ImmediateAsmOperand<"U12Imm">;
+def S16Imm : ImmediateAsmOperand<"S16Imm">;
+def U16Imm : ImmediateAsmOperand<"U16Imm">;
+def S32Imm : ImmediateAsmOperand<"S32Imm">;
+def U32Imm : ImmediateAsmOperand<"U32Imm">;
+def U48Imm : ImmediateAsmOperand<"U48Imm">;
+
+//===----------------------------------------------------------------------===//
+// i32 immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being zero.
+def imm32ll16 : Immediate<i32, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm32lh16 : Immediate<i32, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being one.
+def imm32ll16c : Immediate<i32, [{
+ return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm32lh16c : Immediate<i32, [{
+ return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+// Short immediates
+def imm32zx1 : Immediate<i32, [{
+ return isUInt<1>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U1Imm">;
+
+def imm32zx2 : Immediate<i32, [{
+ return isUInt<2>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U2Imm">;
+
+def imm32zx3 : Immediate<i32, [{
+ return isUInt<3>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U3Imm">;
+
+def imm32zx4 : Immediate<i32, [{
+ return isUInt<4>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U4Imm">;
+
+// Note: this enforces an even value during code generation only.
+// When used from the assembler, any 4-bit value is allowed.
+def imm32zx4even : Immediate<i32, [{
+ return isUInt<4>(N->getZExtValue());
+}], UIMM8EVEN, "U4Imm">;
+
+def imm32zx6 : Immediate<i32, [{
+ return isUInt<6>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U6Imm">;
+
+def imm32sx8 : Immediate<i32, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm32zx8 : Immediate<i32, [{
+ return isUInt<8>(N->getZExtValue());
+}], UIMM8, "U8Imm">;
+
+def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
+
+def imm32zx12 : Immediate<i32, [{
+ return isUInt<12>(N->getZExtValue());
+}], UIMM12, "U12Imm">;
+
+def imm32sx16 : Immediate<i32, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm32zx16 : Immediate<i32, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
+
+// Full 32-bit immediates. we need both signed and unsigned versions
+// because the assembler is picky. E.g. AFI requires signed operands
+// while NILF requires unsigned ones.
+def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
+def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
+
+def imm32 : ImmLeaf<i32, [{}]>;
+
+//===----------------------------------------------------------------------===//
+// 64-bit immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being zero.
+def imm64ll16 : Immediate<i64, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm64lh16 : Immediate<i64, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+def imm64hl16 : Immediate<i64, [{
+ return SystemZ::isImmHL(N->getZExtValue());
+}], HL16, "U16Imm">;
+
+def imm64hh16 : Immediate<i64, [{
+ return SystemZ::isImmHH(N->getZExtValue());
+}], HH16, "U16Imm">;
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being one.
+def imm64ll16c : Immediate<i64, [{
+ return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm64lh16c : Immediate<i64, [{
+ return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+def imm64hl16c : Immediate<i64, [{
+ return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
+}], HL16, "U16Imm">;
+
+def imm64hh16c : Immediate<i64, [{
+ return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
+}], HH16, "U16Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being zero.
+def imm64lf32 : Immediate<i64, [{
+ return SystemZ::isImmLF(N->getZExtValue());
+}], LF32, "U32Imm">;
+
+def imm64hf32 : Immediate<i64, [{
+ return SystemZ::isImmHF(N->getZExtValue());
+}], HF32, "U32Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being one.
+def imm64lf32c : Immediate<i64, [{
+ return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
+}], LF32, "U32Imm">;
+
+def imm64hf32c : Immediate<i64, [{
+ return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
+}], HF32, "U32Imm">;
+
+// Short immediates.
+def imm64sx8 : Immediate<i64, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm64zx8 : Immediate<i64, [{
+ return isUInt<8>(N->getSExtValue());
+}], UIMM8, "U8Imm">;
+
+def imm64sx16 : Immediate<i64, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm64zx16 : Immediate<i64, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm64sx32 : Immediate<i64, [{
+ return isInt<32>(N->getSExtValue());
+}], SIMM32, "S32Imm">;
+
+def imm64zx32 : Immediate<i64, [{
+ return isUInt<32>(N->getZExtValue());
+}], UIMM32, "U32Imm">;
+
+def imm64zx32n : Immediate<i64, [{
+ return isUInt<32>(-N->getSExtValue());
+}], NEGIMM32, "U32Imm">;
+
+def imm64zx48 : Immediate<i64, [{
+ return isUInt<64>(N->getZExtValue());
+}], UIMM48, "U48Imm">;
+
+def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point immediates
+//===----------------------------------------------------------------------===//
+
+// Floating-point zero.
+def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
+
+// Floating point negative zero.
+def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
+
+//===----------------------------------------------------------------------===//
+// Symbolic address operands
+//===----------------------------------------------------------------------===//
+
+// PC-relative asm operands.
+def PCRel12 : PCRelAsmOperand<"12">;
+def PCRel16 : PCRelAsmOperand<"16">;
+def PCRel24 : PCRelAsmOperand<"24">;
+def PCRel32 : PCRelAsmOperand<"32">;
+def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
+def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
+
+// PC-relative offsets of a basic block. The offset is sign-extended
+// and multiplied by 2.
+def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
+ let EncoderMethod = "getPC16DBLEncoding";
+ let DecoderMethod = "decodePC16DBLBranchOperand";
+}
+def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
+ let EncoderMethod = "getPC32DBLEncoding";
+ let DecoderMethod = "decodePC32DBLBranchOperand";
+}
+
+// Variants of brtarget for use with branch prediction preload.
+def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
+ let EncoderMethod = "getPC12DBLBPPEncoding";
+ let DecoderMethod = "decodePC12DBLBranchOperand";
+}
+def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
+ let EncoderMethod = "getPC16DBLBPPEncoding";
+ let DecoderMethod = "decodePC16DBLBranchOperand";
+}
+def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
+ let EncoderMethod = "getPC24DBLBPPEncoding";
+ let DecoderMethod = "decodePC24DBLBranchOperand";
+}
+
+// Variants of brtarget16/32 with an optional additional TLS symbol.
+// These are used to annotate calls to __tls_get_offset.
+def tlssym : Operand<i64> { }
+def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
+ let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
+ let EncoderMethod = "getPC16DBLTLSEncoding";
+ let DecoderMethod = "decodePC16DBLBranchOperand";
+}
+def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
+ let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
+ let EncoderMethod = "getPC32DBLTLSEncoding";
+ let DecoderMethod = "decodePC32DBLBranchOperand";
+}
+
+// A PC-relative offset of a global value. The offset is sign-extended
+// and multiplied by 2.
+def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
+ let EncoderMethod = "getPC32DBLEncoding";
+ let DecoderMethod = "decodePC32DBLOperand";
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing modes
+//===----------------------------------------------------------------------===//
+
+// 12-bit displacement operands.
+def disp12imm32 : Operand<i32>;
+def disp12imm64 : Operand<i64>;
+
+// 20-bit displacement operands.
+def disp20imm32 : Operand<i32>;
+def disp20imm64 : Operand<i64>;
+
+def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
+def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
+def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
+def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
+def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
+def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
+def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
+def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">;
+def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">;
+
+// DAG patterns and operands for addressing modes. Each mode has
+// the form <type><range><group>[<len>] where:
+//
+// <type> is one of:
+// shift : base + displacement (32-bit)
+// bdaddr : base + displacement
+// mviaddr : like bdaddr, but reject cases with a natural index
+// bdxaddr : base + displacement + index
+// laaddr : like bdxaddr, but used for Load Address operations
+// dynalloc : base + displacement + index + ADJDYNALLOC
+// bdladdr : base + displacement with a length field
+// bdvaddr : base + displacement with a vector index
+//
+// <range> is one of:
+// 12 : the displacement is an unsigned 12-bit value
+// 20 : the displacement is a signed 20-bit value
+//
+// <group> is one of:
+// pair : used when there is an equivalent instruction with the opposite
+// range value (12 or 20)
+// only : used when there is no equivalent instruction with the opposite
+// range value
+//
+// <len> is one of:
+//
+// <empty> : there is no length field
+// len8 : the length field is 8 bits, with a range of [1, 0x100].
+def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
+def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
+def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
+def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
+def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
+def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
+def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
+def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
+def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
+def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
+def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
+def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
+def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
+def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
+def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
+def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
+def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
+def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">;
+def bdvaddr12only : BDVMode< "64", "12">;
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous
+//===----------------------------------------------------------------------===//
+
+// A 4-bit condition-code mask.
+def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
+ Operand<i32> {
+ let PrintMethod = "printCond4Operand";
+}