diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZOperands.td')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZOperands.td | 593 |
1 files changed, 593 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td new file mode 100644 index 000000000000..7bb4fe5afb3f --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td @@ -0,0 +1,593 @@ +//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Class definitions +//===----------------------------------------------------------------------===// + +class ImmediateAsmOperand<string name> + : AsmOperandClass { + let Name = name; + let RenderMethod = "addImmOperands"; +} +class ImmediateTLSAsmOperand<string name> + : AsmOperandClass { + let Name = name; + let RenderMethod = "addImmTLSOperands"; +} + +// Constructs both a DAG pattern and instruction operand for an immediate +// of type VT. PRED returns true if a node is acceptable and XFORM returns +// the operand value associated with the node. ASMOP is the name of the +// associated asm operand, and also forms the basis of the asm print method. +class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> + : PatLeaf<(vt imm), pred, xform>, Operand<vt> { + let PrintMethod = "print"##asmop##"Operand"; + let DecoderMethod = "decode"##asmop##"Operand"; + let ParserMatchClass = !cast<AsmOperandClass>(asmop); +} + +// Constructs an asm operand for a PC-relative address. SIZE says how +// many bits there are. +class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> { + let PredicateMethod = "isImm"; + let ParserMethod = "parsePCRel"##size; +} +class PCRelTLSAsmOperand<string size> + : ImmediateTLSAsmOperand<"PCRelTLS"##size> { + let PredicateMethod = "isImmTLS"; + let ParserMethod = "parsePCRelTLS"##size; +} + +// Constructs an operand for a PC-relative address with address type VT. +// ASMOP is the associated asm operand. +class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { + let PrintMethod = "printPCRelOperand"; + let ParserMatchClass = asmop; +} +class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { + let PrintMethod = "printPCRelTLSOperand"; + let ParserMatchClass = asmop; +} + +// Constructs both a DAG pattern and instruction operand for a PC-relative +// address with address size VT. SELF is the name of the operand and +// ASMOP is the associated asm operand. +class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> + : ComplexPattern<vt, 1, "selectPCRelAddress", + [z_pcrel_wrapper, z_pcrel_offset]>, + PCRelOperand<vt, asmop> { + let MIOperandInfo = (ops !cast<Operand>(self)); +} + +// Constructs an AsmOperandClass for addressing mode FORMAT, treating the +// registers as having BITSIZE bits and displacements as having DISPSIZE bits. +// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it +// is "". +class AddressAsmOperand<string format, string bitsize, string dispsize, + string length = ""> + : AsmOperandClass { + let Name = format##bitsize##"Disp"##dispsize##length; + let ParserMethod = "parse"##format##bitsize; + let RenderMethod = "add"##format##"Operands"; +} + +// Constructs an instruction operand for an addressing mode. FORMAT, +// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated +// AddressAsmOperand. OPERANDS is a list of individual operands +// (base register, displacement, etc.). +class AddressOperand<string bitsize, string dispsize, string length, + string format, dag operands> + : Operand<!cast<ValueType>("i"##bitsize)> { + let PrintMethod = "print"##format##"Operand"; + let EncoderMethod = "get"##format##dispsize##length##"Encoding"; + let DecoderMethod = + "decode"##format##bitsize##"Disp"##dispsize##length##"Operand"; + let MIOperandInfo = operands; + let ParserMatchClass = + !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length); +} + +// Constructs both a DAG pattern and instruction operand for an addressing mode. +// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated +// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands +// (base register, displacement, etc.). SELTYPE is the type of the memory +// operand for selection purposes; sometimes we want different selection +// choices for the same underlying addressing mode. SUFFIX is similarly +// a suffix appended to the displacement for selection purposes; +// e.g. we want to reject small 20-bit displacements if a 12-bit form +// also exists, but we want to accept them otherwise. +class AddressingMode<string seltype, string bitsize, string dispsize, + string suffix, string length, int numops, string format, + dag operands> + : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, + "select"##seltype##dispsize##suffix##length, + [add, sub, or, frameindex, z_adjdynalloc]>, + AddressOperand<bitsize, dispsize, length, format, operands>; + +// An addressing mode with a base and displacement but no index. +class BDMode<string type, string bitsize, string dispsize, string suffix> + : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; + +// An addressing mode with a base, displacement and index. +class BDXMode<string type, string bitsize, string dispsize, string suffix> + : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize), + !cast<RegisterOperand>("ADDR"##bitsize))>; + +// A BDMode paired with an immediate length operand of LENSIZE bits. +class BDLMode<string type, string bitsize, string dispsize, string suffix, + string lensize> + : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3, + "BDLAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize), + !cast<Immediate>("imm"##bitsize))>; + +// A BDMode paired with a register length operand. +class BDRMode<string type, string bitsize, string dispsize, string suffix> + : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize), + !cast<RegisterOperand>("GR"##bitsize))>; + +// An addressing mode with a base, displacement and a vector index. +class BDVMode<string bitsize, string dispsize> + : AddressOperand<bitsize, dispsize, "", "BDVAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize), + !cast<RegisterOperand>("VR128"))>; + +//===----------------------------------------------------------------------===// +// Extracting immediate operands from nodes +// These all create MVT::i64 nodes to ensure the value is not sign-extended +// when converted from an SDNode to a MachineOperand later on. +//===----------------------------------------------------------------------===// + +// Bits 0-15 (counting from the lsb). +def LL16 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// Bits 16-31 (counting from the lsb). +def LH16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// Bits 32-47 (counting from the lsb). +def HL16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// Bits 48-63 (counting from the lsb). +def HH16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// Low 32 bits. +def LF32 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// High 32 bits. +def HF32 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() >> 32; + return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); +}]>; + +// Truncate an immediate to a 8-bit signed quantity. +def SIMM8 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 8-bit unsigned quantity. +def UIMM8 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit. +def UIMM8EVEN : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 12-bit unsigned quantity. +def UIMM12 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 16-bit signed quantity. +def SIMM16 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 16-bit unsigned quantity. +def UIMM16 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 32-bit signed quantity. +def SIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 32-bit unsigned quantity. +def UIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +// Truncate an immediate to a 48-bit unsigned quantity. +def UIMM48 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff, + SDLoc(N), MVT::i64); +}]>; + +// Negate and then truncate an immediate to a 32-bit unsigned quantity. +def NEGIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N), + MVT::i64); +}]>; + +//===----------------------------------------------------------------------===// +// Immediate asm operands. +//===----------------------------------------------------------------------===// + +def U1Imm : ImmediateAsmOperand<"U1Imm">; +def U2Imm : ImmediateAsmOperand<"U2Imm">; +def U3Imm : ImmediateAsmOperand<"U3Imm">; +def U4Imm : ImmediateAsmOperand<"U4Imm">; +def U6Imm : ImmediateAsmOperand<"U6Imm">; +def S8Imm : ImmediateAsmOperand<"S8Imm">; +def U8Imm : ImmediateAsmOperand<"U8Imm">; +def U12Imm : ImmediateAsmOperand<"U12Imm">; +def S16Imm : ImmediateAsmOperand<"S16Imm">; +def U16Imm : ImmediateAsmOperand<"U16Imm">; +def S32Imm : ImmediateAsmOperand<"S32Imm">; +def U32Imm : ImmediateAsmOperand<"U32Imm">; +def U48Imm : ImmediateAsmOperand<"U48Imm">; + +//===----------------------------------------------------------------------===// +// i32 immediates +//===----------------------------------------------------------------------===// + +// Immediates for the lower and upper 16 bits of an i32, with the other +// bits of the i32 being zero. +def imm32ll16 : Immediate<i32, [{ + return SystemZ::isImmLL(N->getZExtValue()); +}], LL16, "U16Imm">; + +def imm32lh16 : Immediate<i32, [{ + return SystemZ::isImmLH(N->getZExtValue()); +}], LH16, "U16Imm">; + +// Immediates for the lower and upper 16 bits of an i32, with the other +// bits of the i32 being one. +def imm32ll16c : Immediate<i32, [{ + return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); +}], LL16, "U16Imm">; + +def imm32lh16c : Immediate<i32, [{ + return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); +}], LH16, "U16Imm">; + +// Short immediates +def imm32zx1 : Immediate<i32, [{ + return isUInt<1>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U1Imm">; + +def imm32zx2 : Immediate<i32, [{ + return isUInt<2>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U2Imm">; + +def imm32zx3 : Immediate<i32, [{ + return isUInt<3>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U3Imm">; + +def imm32zx4 : Immediate<i32, [{ + return isUInt<4>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U4Imm">; + +// Note: this enforces an even value during code generation only. +// When used from the assembler, any 4-bit value is allowed. +def imm32zx4even : Immediate<i32, [{ + return isUInt<4>(N->getZExtValue()); +}], UIMM8EVEN, "U4Imm">; + +def imm32zx6 : Immediate<i32, [{ + return isUInt<6>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U6Imm">; + +def imm32sx8 : Immediate<i32, [{ + return isInt<8>(N->getSExtValue()); +}], SIMM8, "S8Imm">; + +def imm32zx8 : Immediate<i32, [{ + return isUInt<8>(N->getZExtValue()); +}], UIMM8, "U8Imm">; + +def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; + +def imm32zx12 : Immediate<i32, [{ + return isUInt<12>(N->getZExtValue()); +}], UIMM12, "U12Imm">; + +def imm32sx16 : Immediate<i32, [{ + return isInt<16>(N->getSExtValue()); +}], SIMM16, "S16Imm">; + +def imm32zx16 : Immediate<i32, [{ + return isUInt<16>(N->getZExtValue()); +}], UIMM16, "U16Imm">; + +def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; + +// Full 32-bit immediates. we need both signed and unsigned versions +// because the assembler is picky. E.g. AFI requires signed operands +// while NILF requires unsigned ones. +def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; +def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; + +def imm32 : ImmLeaf<i32, [{}]>; + +//===----------------------------------------------------------------------===// +// 64-bit immediates +//===----------------------------------------------------------------------===// + +// Immediates for 16-bit chunks of an i64, with the other bits of the +// i32 being zero. +def imm64ll16 : Immediate<i64, [{ + return SystemZ::isImmLL(N->getZExtValue()); +}], LL16, "U16Imm">; + +def imm64lh16 : Immediate<i64, [{ + return SystemZ::isImmLH(N->getZExtValue()); +}], LH16, "U16Imm">; + +def imm64hl16 : Immediate<i64, [{ + return SystemZ::isImmHL(N->getZExtValue()); +}], HL16, "U16Imm">; + +def imm64hh16 : Immediate<i64, [{ + return SystemZ::isImmHH(N->getZExtValue()); +}], HH16, "U16Imm">; + +// Immediates for 16-bit chunks of an i64, with the other bits of the +// i32 being one. +def imm64ll16c : Immediate<i64, [{ + return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); +}], LL16, "U16Imm">; + +def imm64lh16c : Immediate<i64, [{ + return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); +}], LH16, "U16Imm">; + +def imm64hl16c : Immediate<i64, [{ + return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); +}], HL16, "U16Imm">; + +def imm64hh16c : Immediate<i64, [{ + return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); +}], HH16, "U16Imm">; + +// Immediates for the lower and upper 32 bits of an i64, with the other +// bits of the i32 being zero. +def imm64lf32 : Immediate<i64, [{ + return SystemZ::isImmLF(N->getZExtValue()); +}], LF32, "U32Imm">; + +def imm64hf32 : Immediate<i64, [{ + return SystemZ::isImmHF(N->getZExtValue()); +}], HF32, "U32Imm">; + +// Immediates for the lower and upper 32 bits of an i64, with the other +// bits of the i32 being one. +def imm64lf32c : Immediate<i64, [{ + return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); +}], LF32, "U32Imm">; + +def imm64hf32c : Immediate<i64, [{ + return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); +}], HF32, "U32Imm">; + +// Short immediates. +def imm64sx8 : Immediate<i64, [{ + return isInt<8>(N->getSExtValue()); +}], SIMM8, "S8Imm">; + +def imm64zx8 : Immediate<i64, [{ + return isUInt<8>(N->getSExtValue()); +}], UIMM8, "U8Imm">; + +def imm64sx16 : Immediate<i64, [{ + return isInt<16>(N->getSExtValue()); +}], SIMM16, "S16Imm">; + +def imm64zx16 : Immediate<i64, [{ + return isUInt<16>(N->getZExtValue()); +}], UIMM16, "U16Imm">; + +def imm64sx32 : Immediate<i64, [{ + return isInt<32>(N->getSExtValue()); +}], SIMM32, "S32Imm">; + +def imm64zx32 : Immediate<i64, [{ + return isUInt<32>(N->getZExtValue()); +}], UIMM32, "U32Imm">; + +def imm64zx32n : Immediate<i64, [{ + return isUInt<32>(-N->getSExtValue()); +}], NEGIMM32, "U32Imm">; + +def imm64zx48 : Immediate<i64, [{ + return isUInt<64>(N->getZExtValue()); +}], UIMM48, "U48Imm">; + +def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>; + +//===----------------------------------------------------------------------===// +// Floating-point immediates +//===----------------------------------------------------------------------===// + +// Floating-point zero. +def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; + +// Floating point negative zero. +def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; + +//===----------------------------------------------------------------------===// +// Symbolic address operands +//===----------------------------------------------------------------------===// + +// PC-relative asm operands. +def PCRel12 : PCRelAsmOperand<"12">; +def PCRel16 : PCRelAsmOperand<"16">; +def PCRel24 : PCRelAsmOperand<"24">; +def PCRel32 : PCRelAsmOperand<"32">; +def PCRelTLS16 : PCRelTLSAsmOperand<"16">; +def PCRelTLS32 : PCRelTLSAsmOperand<"32">; + +// PC-relative offsets of a basic block. The offset is sign-extended +// and multiplied by 2. +def brtarget16 : PCRelOperand<OtherVT, PCRel16> { + let EncoderMethod = "getPC16DBLEncoding"; + let DecoderMethod = "decodePC16DBLBranchOperand"; +} +def brtarget32 : PCRelOperand<OtherVT, PCRel32> { + let EncoderMethod = "getPC32DBLEncoding"; + let DecoderMethod = "decodePC32DBLBranchOperand"; +} + +// Variants of brtarget for use with branch prediction preload. +def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> { + let EncoderMethod = "getPC12DBLBPPEncoding"; + let DecoderMethod = "decodePC12DBLBranchOperand"; +} +def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> { + let EncoderMethod = "getPC16DBLBPPEncoding"; + let DecoderMethod = "decodePC16DBLBranchOperand"; +} +def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> { + let EncoderMethod = "getPC24DBLBPPEncoding"; + let DecoderMethod = "decodePC24DBLBranchOperand"; +} + +// Variants of brtarget16/32 with an optional additional TLS symbol. +// These are used to annotate calls to __tls_get_offset. +def tlssym : Operand<i64> { } +def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> { + let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym); + let EncoderMethod = "getPC16DBLTLSEncoding"; + let DecoderMethod = "decodePC16DBLBranchOperand"; +} +def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> { + let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym); + let EncoderMethod = "getPC32DBLTLSEncoding"; + let DecoderMethod = "decodePC32DBLBranchOperand"; +} + +// A PC-relative offset of a global value. The offset is sign-extended +// and multiplied by 2. +def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { + let EncoderMethod = "getPC32DBLEncoding"; + let DecoderMethod = "decodePC32DBLOperand"; +} + +//===----------------------------------------------------------------------===// +// Addressing modes +//===----------------------------------------------------------------------===// + +// 12-bit displacement operands. +def disp12imm32 : Operand<i32>; +def disp12imm64 : Operand<i64>; + +// 20-bit displacement operands. +def disp20imm32 : Operand<i32>; +def disp20imm64 : Operand<i64>; + +def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; +def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; +def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; +def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; +def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; +def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; +def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">; +def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">; +def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">; + +// DAG patterns and operands for addressing modes. Each mode has +// the form <type><range><group>[<len>] where: +// +// <type> is one of: +// shift : base + displacement (32-bit) +// bdaddr : base + displacement +// mviaddr : like bdaddr, but reject cases with a natural index +// bdxaddr : base + displacement + index +// laaddr : like bdxaddr, but used for Load Address operations +// dynalloc : base + displacement + index + ADJDYNALLOC +// bdladdr : base + displacement with a length field +// bdvaddr : base + displacement with a vector index +// +// <range> is one of: +// 12 : the displacement is an unsigned 12-bit value +// 20 : the displacement is a signed 20-bit value +// +// <group> is one of: +// pair : used when there is an equivalent instruction with the opposite +// range value (12 or 20) +// only : used when there is no equivalent instruction with the opposite +// range value +// +// <len> is one of: +// +// <empty> : there is no length field +// len8 : the length field is 8 bits, with a range of [1, 0x100]. +def shift12only : BDMode <"BDAddr", "32", "12", "Only">; +def shift20only : BDMode <"BDAddr", "32", "20", "Only">; +def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; +def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; +def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; +def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; +def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">; +def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">; +def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; +def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; +def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; +def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; +def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; +def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; +def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; +def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; +def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">; +def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">; +def bdvaddr12only : BDVMode< "64", "12">; + +//===----------------------------------------------------------------------===// +// Miscellaneous +//===----------------------------------------------------------------------===// + +// A 4-bit condition-code mask. +def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>, + Operand<i32> { + let PrintMethod = "printCond4Operand"; +} |