diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp | 1419 |
1 files changed, 1419 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp new file mode 100644 index 000000000000..920b6e430e8f --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp @@ -0,0 +1,1419 @@ +//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines an instruction selector for the SystemZ target. +// +//===----------------------------------------------------------------------===// + +#include "SystemZTargetMachine.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "systemz-isel" + +namespace { +// Used to build addressing modes. +struct SystemZAddressingMode { + // The shape of the address. + enum AddrForm { + // base+displacement + FormBD, + + // base+displacement+index for load and store operands + FormBDXNormal, + + // base+displacement+index for load address operands + FormBDXLA, + + // base+displacement+index+ADJDYNALLOC + FormBDXDynAlloc + }; + AddrForm Form; + + // The type of displacement. The enum names here correspond directly + // to the definitions in SystemZOperand.td. We could split them into + // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. + enum DispRange { + Disp12Only, + Disp12Pair, + Disp20Only, + Disp20Only128, + Disp20Pair + }; + DispRange DR; + + // The parts of the address. The address is equivalent to: + // + // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) + SDValue Base; + int64_t Disp; + SDValue Index; + bool IncludesDynAlloc; + + SystemZAddressingMode(AddrForm form, DispRange dr) + : Form(form), DR(dr), Base(), Disp(0), Index(), + IncludesDynAlloc(false) {} + + // True if the address can have an index register. + bool hasIndexField() { return Form != FormBD; } + + // True if the address can (and must) include ADJDYNALLOC. + bool isDynAlloc() { return Form == FormBDXDynAlloc; } + + void dump() { + errs() << "SystemZAddressingMode " << this << '\n'; + + errs() << " Base "; + if (Base.getNode()) + Base.getNode()->dump(); + else + errs() << "null\n"; + + if (hasIndexField()) { + errs() << " Index "; + if (Index.getNode()) + Index.getNode()->dump(); + else + errs() << "null\n"; + } + + errs() << " Disp " << Disp; + if (IncludesDynAlloc) + errs() << " + ADJDYNALLOC"; + errs() << '\n'; + } +}; + +// Return a mask with Count low bits set. +static uint64_t allOnes(unsigned int Count) { + assert(Count <= 64); + if (Count > 63) + return UINT64_MAX; + return (uint64_t(1) << Count) - 1; +} + +// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation +// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and +// Rotate (I5). The combined operand value is effectively: +// +// (or (rotl Input, Rotate), ~Mask) +// +// for RNSBG and: +// +// (and (rotl Input, Rotate), Mask) +// +// otherwise. The output value has BitSize bits, although Input may be +// narrower (in which case the upper bits are don't care), or wider (in which +// case the result will be truncated as part of the operation). +struct RxSBGOperands { + RxSBGOperands(unsigned Op, SDValue N) + : Opcode(Op), BitSize(N.getValueSizeInBits()), + Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), + Rotate(0) {} + + unsigned Opcode; + unsigned BitSize; + uint64_t Mask; + SDValue Input; + unsigned Start; + unsigned End; + unsigned Rotate; +}; + +class SystemZDAGToDAGISel : public SelectionDAGISel { + const SystemZSubtarget *Subtarget; + + // Used by SystemZOperands.td to create integer constants. + inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { + return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0)); + } + + const SystemZTargetMachine &getTargetMachine() const { + return static_cast<const SystemZTargetMachine &>(TM); + } + + const SystemZInstrInfo *getInstrInfo() const { + return Subtarget->getInstrInfo(); + } + + // Try to fold more of the base or index of AM into AM, where IsBase + // selects between the base and index. + bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; + + // Try to describe N in AM, returning true on success. + bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; + + // Extract individual target operands from matched address AM. + void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, + SDValue &Base, SDValue &Disp) const; + void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, + SDValue &Base, SDValue &Disp, SDValue &Index) const; + + // Try to match Addr as a FormBD address with displacement type DR. + // Return true on success, storing the base and displacement in + // Base and Disp respectively. + bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, + SDValue &Base, SDValue &Disp) const; + + // Try to match Addr as a FormBDX address with displacement type DR. + // Return true on success and if the result had no index. Store the + // base and displacement in Base and Disp respectively. + bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, + SDValue &Base, SDValue &Disp) const; + + // Try to match Addr as a FormBDX* address of form Form with + // displacement type DR. Return true on success, storing the base, + // displacement and index in Base, Disp and Index respectively. + bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, + SystemZAddressingMode::DispRange DR, SDValue Addr, + SDValue &Base, SDValue &Disp, SDValue &Index) const; + + // PC-relative address matching routines used by SystemZOperands.td. + bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { + if (SystemZISD::isPCREL(Addr.getOpcode())) { + Target = Addr.getOperand(0); + return true; + } + return false; + } + + // BD matching routines used by SystemZOperands.td. + bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); + } + bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); + } + bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); + } + bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); + } + + // MVI matching routines used by SystemZOperands.td. + bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); + } + bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { + return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); + } + + // BDX matching routines used by SystemZOperands.td. + bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, + SystemZAddressingMode::Disp12Only, + Addr, Base, Disp, Index); + } + bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, + SystemZAddressingMode::Disp12Pair, + Addr, Base, Disp, Index); + } + bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, + SystemZAddressingMode::Disp12Only, + Addr, Base, Disp, Index); + } + bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, + SystemZAddressingMode::Disp20Only, + Addr, Base, Disp, Index); + } + bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, + SystemZAddressingMode::Disp20Only128, + Addr, Base, Disp, Index); + } + bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, + SystemZAddressingMode::Disp20Pair, + Addr, Base, Disp, Index); + } + bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXLA, + SystemZAddressingMode::Disp12Pair, + Addr, Base, Disp, Index); + } + bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, + SDValue &Index) const { + return selectBDXAddr(SystemZAddressingMode::FormBDXLA, + SystemZAddressingMode::Disp20Pair, + Addr, Base, Disp, Index); + } + + // Try to match Addr as an address with a base, 12-bit displacement + // and index, where the index is element Elem of a vector. + // Return true on success, storing the base, displacement and vector + // in Base, Disp and Index respectively. + bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, + SDValue &Disp, SDValue &Index) const; + + // Check whether (or Op (and X InsertMask)) is effectively an insertion + // of X into bits InsertMask of some Y != Op. Return true if so and + // set Op to that Y. + bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; + + // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. + // Return true on success. + bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; + + // Try to fold some of RxSBG.Input into other fields of RxSBG. + // Return true on success. + bool expandRxSBG(RxSBGOperands &RxSBG) const; + + // Return an undefined value of type VT. + SDValue getUNDEF(const SDLoc &DL, EVT VT) const; + + // Convert N to VT, if it isn't already. + SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; + + // Try to implement AND or shift node N using RISBG with the zero flag set. + // Return the selected node on success, otherwise return null. + bool tryRISBGZero(SDNode *N); + + // Try to use RISBG or Opcode to implement OR or XOR node N. + // Return the selected node on success, otherwise return null. + bool tryRxSBG(SDNode *N, unsigned Opcode); + + // If Op0 is null, then Node is a constant that can be loaded using: + // + // (Opcode UpperVal LowerVal) + // + // If Op0 is nonnull, then Node can be implemented using: + // + // (Opcode (Opcode Op0 UpperVal) LowerVal) + void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, + uint64_t UpperVal, uint64_t LowerVal); + + // Try to use gather instruction Opcode to implement vector insertion N. + bool tryGather(SDNode *N, unsigned Opcode); + + // Try to use scatter instruction Opcode to implement store Store. + bool tryScatter(StoreSDNode *Store, unsigned Opcode); + + // Return true if Load and Store are loads and stores of the same size + // and are guaranteed not to overlap. Such operations can be implemented + // using block (SS-format) instructions. + // + // Partial overlap would lead to incorrect code, since the block operations + // are logically bytewise, even though they have a fast path for the + // non-overlapping case. We also need to avoid full overlap (i.e. two + // addresses that might be equal at run time) because although that case + // would be handled correctly, it might be implemented by millicode. + bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; + + // N is a (store (load Y), X) pattern. Return true if it can use an MVC + // from Y to X. + bool storeLoadCanUseMVC(SDNode *N) const; + + // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true + // if A[1 - I] == X and if N can use a block operation like NC from A[I] + // to X. + bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; + +public: + SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) + : SelectionDAGISel(TM, OptLevel) {} + + bool runOnMachineFunction(MachineFunction &MF) override { + Subtarget = &MF.getSubtarget<SystemZSubtarget>(); + return SelectionDAGISel::runOnMachineFunction(MF); + } + + // Override MachineFunctionPass. + StringRef getPassName() const override { + return "SystemZ DAG->DAG Pattern Instruction Selection"; + } + + // Override SelectionDAGISel. + void Select(SDNode *Node) override; + bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, + std::vector<SDValue> &OutOps) override; + + // Include the pieces autogenerated from the target description. + #include "SystemZGenDAGISel.inc" +}; +} // end anonymous namespace + +FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, + CodeGenOpt::Level OptLevel) { + return new SystemZDAGToDAGISel(TM, OptLevel); +} + +// Return true if Val should be selected as a displacement for an address +// with range DR. Here we're interested in the range of both the instruction +// described by DR and of any pairing instruction. +static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { + switch (DR) { + case SystemZAddressingMode::Disp12Only: + return isUInt<12>(Val); + + case SystemZAddressingMode::Disp12Pair: + case SystemZAddressingMode::Disp20Only: + case SystemZAddressingMode::Disp20Pair: + return isInt<20>(Val); + + case SystemZAddressingMode::Disp20Only128: + return isInt<20>(Val) && isInt<20>(Val + 8); + } + llvm_unreachable("Unhandled displacement range"); +} + +// Change the base or index in AM to Value, where IsBase selects +// between the base and index. +static void changeComponent(SystemZAddressingMode &AM, bool IsBase, + SDValue Value) { + if (IsBase) + AM.Base = Value; + else + AM.Index = Value; +} + +// The base or index of AM is equivalent to Value + ADJDYNALLOC, +// where IsBase selects between the base and index. Try to fold the +// ADJDYNALLOC into AM. +static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, + SDValue Value) { + if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { + changeComponent(AM, IsBase, Value); + AM.IncludesDynAlloc = true; + return true; + } + return false; +} + +// The base of AM is equivalent to Base + Index. Try to use Index as +// the index register. +static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, + SDValue Index) { + if (AM.hasIndexField() && !AM.Index.getNode()) { + AM.Base = Base; + AM.Index = Index; + return true; + } + return false; +} + +// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects +// between the base and index. Try to fold Op1 into AM's displacement. +static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, + SDValue Op0, uint64_t Op1) { + // First try adjusting the displacement. + int64_t TestDisp = AM.Disp + Op1; + if (selectDisp(AM.DR, TestDisp)) { + changeComponent(AM, IsBase, Op0); + AM.Disp = TestDisp; + return true; + } + + // We could consider forcing the displacement into a register and + // using it as an index, but it would need to be carefully tuned. + return false; +} + +bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, + bool IsBase) const { + SDValue N = IsBase ? AM.Base : AM.Index; + unsigned Opcode = N.getOpcode(); + if (Opcode == ISD::TRUNCATE) { + N = N.getOperand(0); + Opcode = N.getOpcode(); + } + if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { + SDValue Op0 = N.getOperand(0); + SDValue Op1 = N.getOperand(1); + + unsigned Op0Code = Op0->getOpcode(); + unsigned Op1Code = Op1->getOpcode(); + + if (Op0Code == SystemZISD::ADJDYNALLOC) + return expandAdjDynAlloc(AM, IsBase, Op1); + if (Op1Code == SystemZISD::ADJDYNALLOC) + return expandAdjDynAlloc(AM, IsBase, Op0); + + if (Op0Code == ISD::Constant) + return expandDisp(AM, IsBase, Op1, + cast<ConstantSDNode>(Op0)->getSExtValue()); + if (Op1Code == ISD::Constant) + return expandDisp(AM, IsBase, Op0, + cast<ConstantSDNode>(Op1)->getSExtValue()); + + if (IsBase && expandIndex(AM, Op0, Op1)) + return true; + } + if (Opcode == SystemZISD::PCREL_OFFSET) { + SDValue Full = N.getOperand(0); + SDValue Base = N.getOperand(1); + SDValue Anchor = Base.getOperand(0); + uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - + cast<GlobalAddressSDNode>(Anchor)->getOffset()); + return expandDisp(AM, IsBase, Base, Offset); + } + return false; +} + +// Return true if an instruction with displacement range DR should be +// used for displacement value Val. selectDisp(DR, Val) must already hold. +static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { + assert(selectDisp(DR, Val) && "Invalid displacement"); + switch (DR) { + case SystemZAddressingMode::Disp12Only: + case SystemZAddressingMode::Disp20Only: + case SystemZAddressingMode::Disp20Only128: + return true; + + case SystemZAddressingMode::Disp12Pair: + // Use the other instruction if the displacement is too large. + return isUInt<12>(Val); + + case SystemZAddressingMode::Disp20Pair: + // Use the other instruction if the displacement is small enough. + return !isUInt<12>(Val); + } + llvm_unreachable("Unhandled displacement range"); +} + +// Return true if Base + Disp + Index should be performed by LA(Y). +static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { + // Don't use LA(Y) for constants. + if (!Base) + return false; + + // Always use LA(Y) for frame addresses, since we know that the destination + // register is almost always (perhaps always) going to be different from + // the frame register. + if (Base->getOpcode() == ISD::FrameIndex) + return true; + + if (Disp) { + // Always use LA(Y) if there is a base, displacement and index. + if (Index) + return true; + + // Always use LA if the displacement is small enough. It should always + // be no worse than AGHI (and better if it avoids a move). + if (isUInt<12>(Disp)) + return true; + + // For similar reasons, always use LAY if the constant is too big for AGHI. + // LAY should be no worse than AGFI. + if (!isInt<16>(Disp)) + return true; + } else { + // Don't use LA for plain registers. + if (!Index) + return false; + + // Don't use LA for plain addition if the index operand is only used + // once. It should be a natural two-operand addition in that case. + if (Index->hasOneUse()) + return false; + + // Prefer addition if the second operation is sign-extended, in the + // hope of using AGF. + unsigned IndexOpcode = Index->getOpcode(); + if (IndexOpcode == ISD::SIGN_EXTEND || + IndexOpcode == ISD::SIGN_EXTEND_INREG) + return false; + } + + // Don't use LA for two-operand addition if either operand is only + // used once. The addition instructions are better in that case. + if (Base->hasOneUse()) + return false; + + return true; +} + +// Return true if Addr is suitable for AM, updating AM if so. +bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, + SystemZAddressingMode &AM) const { + // Start out assuming that the address will need to be loaded separately, + // then try to extend it as much as we can. + AM.Base = Addr; + + // First try treating the address as a constant. + if (Addr.getOpcode() == ISD::Constant && + expandDisp(AM, true, SDValue(), + cast<ConstantSDNode>(Addr)->getSExtValue())) + ; + // Also see if it's a bare ADJDYNALLOC. + else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && + expandAdjDynAlloc(AM, true, SDValue())) + ; + else + // Otherwise try expanding each component. + while (expandAddress(AM, true) || + (AM.Index.getNode() && expandAddress(AM, false))) + continue; + + // Reject cases where it isn't profitable to use LA(Y). + if (AM.Form == SystemZAddressingMode::FormBDXLA && + !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) + return false; + + // Reject cases where the other instruction in a pair should be used. + if (!isValidDisp(AM.DR, AM.Disp)) + return false; + + // Make sure that ADJDYNALLOC is included where necessary. + if (AM.isDynAlloc() && !AM.IncludesDynAlloc) + return false; + + DEBUG(AM.dump()); + return true; +} + +// Insert a node into the DAG at least before Pos. This will reposition +// the node as needed, and will assign it a node ID that is <= Pos's ID. +// Note that this does *not* preserve the uniqueness of node IDs! +// The selection DAG must no longer depend on their uniqueness when this +// function is used. +static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { + if (N.getNode()->getNodeId() == -1 || + N.getNode()->getNodeId() > Pos->getNodeId()) { + DAG->RepositionNode(Pos->getIterator(), N.getNode()); + N.getNode()->setNodeId(Pos->getNodeId()); + } +} + +void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, + EVT VT, SDValue &Base, + SDValue &Disp) const { + Base = AM.Base; + if (!Base.getNode()) + // Register 0 means "no base". This is mostly useful for shifts. + Base = CurDAG->getRegister(0, VT); + else if (Base.getOpcode() == ISD::FrameIndex) { + // Lower a FrameIndex to a TargetFrameIndex. + int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); + } else if (Base.getValueType() != VT) { + // Truncate values from i64 to i32, for shifts. + assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && + "Unexpected truncation"); + SDLoc DL(Base); + SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); + insertDAGNode(CurDAG, Base.getNode(), Trunc); + Base = Trunc; + } + + // Lower the displacement to a TargetConstant. + Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT); +} + +void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, + EVT VT, SDValue &Base, + SDValue &Disp, + SDValue &Index) const { + getAddressOperands(AM, VT, Base, Disp); + + Index = AM.Index; + if (!Index.getNode()) + // Register 0 means "no index". + Index = CurDAG->getRegister(0, VT); +} + +bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, + SDValue Addr, SDValue &Base, + SDValue &Disp) const { + SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); + if (!selectAddress(Addr, AM)) + return false; + + getAddressOperands(AM, Addr.getValueType(), Base, Disp); + return true; +} + +bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, + SDValue Addr, SDValue &Base, + SDValue &Disp) const { + SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); + if (!selectAddress(Addr, AM) || AM.Index.getNode()) + return false; + + getAddressOperands(AM, Addr.getValueType(), Base, Disp); + return true; +} + +bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, + SystemZAddressingMode::DispRange DR, + SDValue Addr, SDValue &Base, + SDValue &Disp, SDValue &Index) const { + SystemZAddressingMode AM(Form, DR); + if (!selectAddress(Addr, AM)) + return false; + + getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); + return true; +} + +bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, + SDValue &Base, + SDValue &Disp, + SDValue &Index) const { + SDValue Regs[2]; + if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) && + Regs[0].getNode() && Regs[1].getNode()) { + for (unsigned int I = 0; I < 2; ++I) { + Base = Regs[I]; + Index = Regs[1 - I]; + // We can't tell here whether the index vector has the right type + // for the access; the caller needs to do that instead. + if (Index.getOpcode() == ISD::ZERO_EXTEND) + Index = Index.getOperand(0); + if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Index.getOperand(1) == Elem) { + Index = Index.getOperand(0); + return true; + } + } + } + return false; +} + +bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, + uint64_t InsertMask) const { + // We're only interested in cases where the insertion is into some operand + // of Op, rather than into Op itself. The only useful case is an AND. + if (Op.getOpcode() != ISD::AND) + return false; + + // We need a constant mask. + auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); + if (!MaskNode) + return false; + + // It's not an insertion of Op.getOperand(0) if the two masks overlap. + uint64_t AndMask = MaskNode->getZExtValue(); + if (InsertMask & AndMask) + return false; + + // It's only an insertion if all bits are covered or are known to be zero. + // The inner check covers all cases but is more expensive. + uint64_t Used = allOnes(Op.getValueSizeInBits()); + if (Used != (AndMask | InsertMask)) { + APInt KnownZero, KnownOne; + CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne); + if (Used != (AndMask | InsertMask | KnownZero.getZExtValue())) + return false; + } + + Op = Op.getOperand(0); + return true; +} + +bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, + uint64_t Mask) const { + const SystemZInstrInfo *TII = getInstrInfo(); + if (RxSBG.Rotate != 0) + Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); + Mask &= RxSBG.Mask; + if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { + RxSBG.Mask = Mask; + return true; + } + return false; +} + +// Return true if any bits of (RxSBG.Input & Mask) are significant. +static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { + // Rotate the mask in the same way as RxSBG.Input is rotated. + if (RxSBG.Rotate != 0) + Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); + return (Mask & RxSBG.Mask) != 0; +} + +bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { + SDValue N = RxSBG.Input; + unsigned Opcode = N.getOpcode(); + switch (Opcode) { + case ISD::TRUNCATE: { + if (RxSBG.Opcode == SystemZ::RNSBG) + return false; + uint64_t BitSize = N.getValueSizeInBits(); + uint64_t Mask = allOnes(BitSize); + if (!refineRxSBGMask(RxSBG, Mask)) + return false; + RxSBG.Input = N.getOperand(0); + return true; + } + case ISD::AND: { + if (RxSBG.Opcode == SystemZ::RNSBG) + return false; + + auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); + if (!MaskNode) + return false; + + SDValue Input = N.getOperand(0); + uint64_t Mask = MaskNode->getZExtValue(); + if (!refineRxSBGMask(RxSBG, Mask)) { + // If some bits of Input are already known zeros, those bits will have + // been removed from the mask. See if adding them back in makes the + // mask suitable. + APInt KnownZero, KnownOne; + CurDAG->computeKnownBits(Input, KnownZero, KnownOne); + Mask |= KnownZero.getZExtValue(); + if (!refineRxSBGMask(RxSBG, Mask)) + return false; + } + RxSBG.Input = Input; + return true; + } + + case ISD::OR: { + if (RxSBG.Opcode != SystemZ::RNSBG) + return false; + + auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); + if (!MaskNode) + return false; + + SDValue Input = N.getOperand(0); + uint64_t Mask = ~MaskNode->getZExtValue(); + if (!refineRxSBGMask(RxSBG, Mask)) { + // If some bits of Input are already known ones, those bits will have + // been removed from the mask. See if adding them back in makes the + // mask suitable. + APInt KnownZero, KnownOne; + CurDAG->computeKnownBits(Input, KnownZero, KnownOne); + Mask &= ~KnownOne.getZExtValue(); + if (!refineRxSBGMask(RxSBG, Mask)) + return false; + } + RxSBG.Input = Input; + return true; + } + + case ISD::ROTL: { + // Any 64-bit rotate left can be merged into the RxSBG. + if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) + return false; + auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); + if (!CountNode) + return false; + + RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; + RxSBG.Input = N.getOperand(0); + return true; + } + + case ISD::ANY_EXTEND: + // Bits above the extended operand are don't-care. + RxSBG.Input = N.getOperand(0); + return true; + + case ISD::ZERO_EXTEND: + if (RxSBG.Opcode != SystemZ::RNSBG) { + // Restrict the mask to the extended operand. + unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); + if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) + return false; + + RxSBG.Input = N.getOperand(0); + return true; + } + LLVM_FALLTHROUGH; + + case ISD::SIGN_EXTEND: { + // Check that the extension bits are don't-care (i.e. are masked out + // by the final mask). + unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); + if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize))) + return false; + + RxSBG.Input = N.getOperand(0); + return true; + } + + case ISD::SHL: { + auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); + if (!CountNode) + return false; + + uint64_t Count = CountNode->getZExtValue(); + unsigned BitSize = N.getValueSizeInBits(); + if (Count < 1 || Count >= BitSize) + return false; + + if (RxSBG.Opcode == SystemZ::RNSBG) { + // Treat (shl X, count) as (rotl X, size-count) as long as the bottom + // count bits from RxSBG.Input are ignored. + if (maskMatters(RxSBG, allOnes(Count))) + return false; + } else { + // Treat (shl X, count) as (and (rotl X, count), ~0<<count). + if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) + return false; + } + + RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; + RxSBG.Input = N.getOperand(0); + return true; + } + + case ISD::SRL: + case ISD::SRA: { + auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); + if (!CountNode) + return false; + + uint64_t Count = CountNode->getZExtValue(); + unsigned BitSize = N.getValueSizeInBits(); + if (Count < 1 || Count >= BitSize) + return false; + + if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { + // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top + // count bits from RxSBG.Input are ignored. + if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) + return false; + } else { + // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), + // which is similar to SLL above. + if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) + return false; + } + + RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; + RxSBG.Input = N.getOperand(0); + return true; + } + default: + return false; + } +} + +SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { + SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); + return SDValue(N, 0); +} + +SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, + SDValue N) const { + if (N.getValueType() == MVT::i32 && VT == MVT::i64) + return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, + DL, VT, getUNDEF(DL, MVT::i64), N); + if (N.getValueType() == MVT::i64 && VT == MVT::i32) + return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); + assert(N.getValueType() == VT && "Unexpected value types"); + return N; +} + +bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + if (!VT.isInteger() || VT.getSizeInBits() > 64) + return false; + RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); + unsigned Count = 0; + while (expandRxSBG(RISBG)) + // The widening or narrowing is expected to be free. + // Counting widening or narrowing as a saved operation will result in + // preferring an R*SBG over a simple shift/logical instruction. + if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && + RISBG.Input.getOpcode() != ISD::TRUNCATE) + Count += 1; + if (Count == 0) + return false; + + // Prefer to use normal shift instructions over RISBG, since they can handle + // all cases and are sometimes shorter. + if (Count == 1 && N->getOpcode() != ISD::AND) + return false; + + // Prefer register extensions like LLC over RISBG. Also prefer to start + // out with normal ANDs if one instruction would be enough. We can convert + // these ANDs into an RISBG later if a three-address instruction is useful. + if (RISBG.Rotate == 0) { + bool PreferAnd = false; + // Prefer AND for any 32-bit and-immediate operation. + if (VT == MVT::i32) + PreferAnd = true; + // As well as for any 64-bit operation that can be implemented via LLC(R), + // LLH(R), LLGT(R), or one of the and-immediate instructions. + else if (RISBG.Mask == 0xff || + RISBG.Mask == 0xffff || + RISBG.Mask == 0x7fffffff || + SystemZ::isImmLF(~RISBG.Mask) || + SystemZ::isImmHF(~RISBG.Mask)) + PreferAnd = true; + // And likewise for the LLZRGF instruction, which doesn't have a register + // to register version. + else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) { + if (Load->getMemoryVT() == MVT::i32 && + (Load->getExtensionType() == ISD::EXTLOAD || + Load->getExtensionType() == ISD::ZEXTLOAD) && + RISBG.Mask == 0xffffff00 && + Subtarget->hasLoadAndZeroRightmostByte()) + PreferAnd = true; + } + if (PreferAnd) { + // Replace the current node with an AND. Note that the current node + // might already be that same AND, in which case it is already CSE'd + // with it, and we must not call ReplaceNode. + SDValue In = convertTo(DL, VT, RISBG.Input); + SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT); + SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask); + if (N != New.getNode()) { + insertDAGNode(CurDAG, N, Mask); + insertDAGNode(CurDAG, N, New); + ReplaceNode(N, New.getNode()); + N = New.getNode(); + } + // Now, select the machine opcode to implement this operation. + SelectCode(N); + return true; + } + } + + unsigned Opcode = SystemZ::RISBG; + // Prefer RISBGN if available, since it does not clobber CC. + if (Subtarget->hasMiscellaneousExtensions()) + Opcode = SystemZ::RISBGN; + EVT OpcodeVT = MVT::i64; + if (VT == MVT::i32 && Subtarget->hasHighWord()) { + Opcode = SystemZ::RISBMux; + OpcodeVT = MVT::i32; + RISBG.Start &= 31; + RISBG.End &= 31; + } + SDValue Ops[5] = { + getUNDEF(DL, OpcodeVT), + convertTo(DL, OpcodeVT, RISBG.Input), + CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32), + CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32), + CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32) + }; + SDValue New = convertTo( + DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0)); + ReplaceUses(N, New.getNode()); + CurDAG->RemoveDeadNode(N); + return true; +} + +bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + if (!VT.isInteger() || VT.getSizeInBits() > 64) + return false; + // Try treating each operand of N as the second operand of the RxSBG + // and see which goes deepest. + RxSBGOperands RxSBG[] = { + RxSBGOperands(Opcode, N->getOperand(0)), + RxSBGOperands(Opcode, N->getOperand(1)) + }; + unsigned Count[] = { 0, 0 }; + for (unsigned I = 0; I < 2; ++I) + while (expandRxSBG(RxSBG[I])) + // The widening or narrowing is expected to be free. + // Counting widening or narrowing as a saved operation will result in + // preferring an R*SBG over a simple shift/logical instruction. + if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && + RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) + Count[I] += 1; + + // Do nothing if neither operand is suitable. + if (Count[0] == 0 && Count[1] == 0) + return false; + + // Pick the deepest second operand. + unsigned I = Count[0] > Count[1] ? 0 : 1; + SDValue Op0 = N->getOperand(I ^ 1); + + // Prefer IC for character insertions from memory. + if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) + if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) + if (Load->getMemoryVT() == MVT::i8) + return false; + + // See whether we can avoid an AND in the first operand by converting + // ROSBG to RISBG. + if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) { + Opcode = SystemZ::RISBG; + // Prefer RISBGN if available, since it does not clobber CC. + if (Subtarget->hasMiscellaneousExtensions()) + Opcode = SystemZ::RISBGN; + } + + SDValue Ops[5] = { + convertTo(DL, MVT::i64, Op0), + convertTo(DL, MVT::i64, RxSBG[I].Input), + CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32), + CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32), + CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32) + }; + SDValue New = convertTo( + DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0)); + ReplaceNode(N, New.getNode()); + return true; +} + +void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, + SDValue Op0, uint64_t UpperVal, + uint64_t LowerVal) { + EVT VT = Node->getValueType(0); + SDLoc DL(Node); + SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT); + if (Op0.getNode()) + Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); + + { + // When we haven't passed in Op0, Upper will be a constant. In order to + // prevent folding back to the large immediate in `Or = getNode(...)` we run + // SelectCode first and end up with an opaque machine node. This means that + // we need to use a handle to keep track of Upper in case it gets CSE'd by + // SelectCode. + // + // Note that in the case where Op0 is passed in we could just call + // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing + // the handle at all, but it's fine to do it here. + // + // TODO: This is a pretty hacky way to do this. Can we do something that + // doesn't require a two paragraph explanation? + HandleSDNode Handle(Upper); + SelectCode(Upper.getNode()); + Upper = Handle.getValue(); + } + + SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT); + SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); + + ReplaceUses(Node, Or.getNode()); + CurDAG->RemoveDeadNode(Node); + + SelectCode(Or.getNode()); +} + +bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { + SDValue ElemV = N->getOperand(2); + auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); + if (!ElemN) + return false; + + unsigned Elem = ElemN->getZExtValue(); + EVT VT = N->getValueType(0); + if (Elem >= VT.getVectorNumElements()) + return false; + + auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1)); + if (!Load || !Load->hasOneUse()) + return false; + if (Load->getMemoryVT().getSizeInBits() != + Load->getValueType(0).getSizeInBits()) + return false; + + SDValue Base, Disp, Index; + if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) || + Index.getValueType() != VT.changeVectorElementTypeToInteger()) + return false; + + SDLoc DL(Load); + SDValue Ops[] = { + N->getOperand(0), Base, Disp, Index, + CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain() + }; + SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops); + ReplaceUses(SDValue(Load, 1), SDValue(Res, 1)); + ReplaceNode(N, Res); + return true; +} + +bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { + SDValue Value = Store->getValue(); + if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return false; + if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) + return false; + + SDValue ElemV = Value.getOperand(1); + auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); + if (!ElemN) + return false; + + SDValue Vec = Value.getOperand(0); + EVT VT = Vec.getValueType(); + unsigned Elem = ElemN->getZExtValue(); + if (Elem >= VT.getVectorNumElements()) + return false; + + SDValue Base, Disp, Index; + if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) || + Index.getValueType() != VT.changeVectorElementTypeToInteger()) + return false; + + SDLoc DL(Store); + SDValue Ops[] = { + Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32), + Store->getChain() + }; + ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); + return true; +} + +bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, + LoadSDNode *Load) const { + // Check that the two memory operands have the same size. + if (Load->getMemoryVT() != Store->getMemoryVT()) + return false; + + // Volatility stops an access from being decomposed. + if (Load->isVolatile() || Store->isVolatile()) + return false; + + // There's no chance of overlap if the load is invariant. + if (Load->isInvariant() && Load->isDereferenceable()) + return true; + + // Otherwise we need to check whether there's an alias. + const Value *V1 = Load->getMemOperand()->getValue(); + const Value *V2 = Store->getMemOperand()->getValue(); + if (!V1 || !V2) + return false; + + // Reject equality. + uint64_t Size = Load->getMemoryVT().getStoreSize(); + int64_t End1 = Load->getSrcValueOffset() + Size; + int64_t End2 = Store->getSrcValueOffset() + Size; + if (V1 == V2 && End1 == End2) + return false; + + return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()), + MemoryLocation(V2, End2, Store->getAAInfo())); +} + +bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { + auto *Store = cast<StoreSDNode>(N); + auto *Load = cast<LoadSDNode>(Store->getValue()); + + // Prefer not to use MVC if either address can use ... RELATIVE LONG + // instructions. + uint64_t Size = Load->getMemoryVT().getStoreSize(); + if (Size > 1 && Size <= 8) { + // Prefer LHRL, LRL and LGRL. + if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) + return false; + // Prefer STHRL, STRL and STGRL. + if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) + return false; + } + + return canUseBlockOperation(Store, Load); +} + +bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, + unsigned I) const { + auto *StoreA = cast<StoreSDNode>(N); + auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); + auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); + return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); +} + +void SystemZDAGToDAGISel::Select(SDNode *Node) { + // Dump information about the Node being selected + DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n"); + + // If we have a custom node, we already have selected! + if (Node->isMachineOpcode()) { + DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); + Node->setNodeId(-1); + return; + } + + unsigned Opcode = Node->getOpcode(); + switch (Opcode) { + case ISD::OR: + if (Node->getOperand(1).getOpcode() != ISD::Constant) + if (tryRxSBG(Node, SystemZ::ROSBG)) + return; + goto or_xor; + + case ISD::XOR: + if (Node->getOperand(1).getOpcode() != ISD::Constant) + if (tryRxSBG(Node, SystemZ::RXSBG)) + return; + // Fall through. + or_xor: + // If this is a 64-bit operation in which both 32-bit halves are nonzero, + // split the operation into two. + if (Node->getValueType(0) == MVT::i64) + if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { + uint64_t Val = Op1->getZExtValue(); + if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { + splitLargeImmediate(Opcode, Node, Node->getOperand(0), + Val - uint32_t(Val), uint32_t(Val)); + return; + } + } + break; + + case ISD::AND: + if (Node->getOperand(1).getOpcode() != ISD::Constant) + if (tryRxSBG(Node, SystemZ::RNSBG)) + return; + LLVM_FALLTHROUGH; + case ISD::ROTL: + case ISD::SHL: + case ISD::SRL: + case ISD::ZERO_EXTEND: + if (tryRISBGZero(Node)) + return; + break; + + case ISD::Constant: + // If this is a 64-bit constant that is out of the range of LLILF, + // LLIHF and LGFI, split it into two 32-bit pieces. + if (Node->getValueType(0) == MVT::i64) { + uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue(); + if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) { + splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), + uint32_t(Val)); + return; + } + } + break; + + case SystemZISD::SELECT_CCMASK: { + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + // Prefer to put any load first, so that it can be matched as a + // conditional load. Likewise for constants in range for LOCHI. + if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || + (Subtarget->hasLoadStoreOnCond2() && + Node->getValueType(0).isInteger() && + Op1.getOpcode() == ISD::Constant && + isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) && + !(Op0.getOpcode() == ISD::Constant && + isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) { + SDValue CCValid = Node->getOperand(2); + SDValue CCMask = Node->getOperand(3); + uint64_t ConstCCValid = + cast<ConstantSDNode>(CCValid.getNode())->getZExtValue(); + uint64_t ConstCCMask = + cast<ConstantSDNode>(CCMask.getNode())->getZExtValue(); + // Invert the condition. + CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node), + CCMask.getValueType()); + SDValue Op4 = Node->getOperand(4); + Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); + } + break; + } + + case ISD::INSERT_VECTOR_ELT: { + EVT VT = Node->getValueType(0); + unsigned ElemBitSize = VT.getScalarSizeInBits(); + if (ElemBitSize == 32) { + if (tryGather(Node, SystemZ::VGEF)) + return; + } else if (ElemBitSize == 64) { + if (tryGather(Node, SystemZ::VGEG)) + return; + } + break; + } + + case ISD::STORE: { + auto *Store = cast<StoreSDNode>(Node); + unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); + if (ElemBitSize == 32) { + if (tryScatter(Store, SystemZ::VSCEF)) + return; + } else if (ElemBitSize == 64) { + if (tryScatter(Store, SystemZ::VSCEG)) + return; + } + break; + } + } + + SelectCode(Node); +} + +bool SystemZDAGToDAGISel:: +SelectInlineAsmMemoryOperand(const SDValue &Op, + unsigned ConstraintID, + std::vector<SDValue> &OutOps) { + SystemZAddressingMode::AddrForm Form; + SystemZAddressingMode::DispRange DispRange; + SDValue Base, Disp, Index; + + switch(ConstraintID) { + default: + llvm_unreachable("Unexpected asm memory constraint"); + case InlineAsm::Constraint_i: + case InlineAsm::Constraint_Q: + // Accept an address with a short displacement, but no index. + Form = SystemZAddressingMode::FormBD; + DispRange = SystemZAddressingMode::Disp12Only; + break; + case InlineAsm::Constraint_R: + // Accept an address with a short displacement and an index. + Form = SystemZAddressingMode::FormBDXNormal; + DispRange = SystemZAddressingMode::Disp12Only; + break; + case InlineAsm::Constraint_S: + // Accept an address with a long displacement, but no index. + Form = SystemZAddressingMode::FormBD; + DispRange = SystemZAddressingMode::Disp20Only; + break; + case InlineAsm::Constraint_T: + case InlineAsm::Constraint_m: + // Accept an address with a long displacement and an index. + // m works the same as T, as this is the most general case. + Form = SystemZAddressingMode::FormBDXNormal; + DispRange = SystemZAddressingMode::Disp20Only; + break; + } + + if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) { + const TargetRegisterClass *TRC = + Subtarget->getRegisterInfo()->getPointerRegClass(*MF); + SDLoc DL(Base); + SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32); + + // Make sure that the base address doesn't go into %r0. + // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. + if (Base.getOpcode() != ISD::TargetFrameIndex && + Base.getOpcode() != ISD::Register) { + Base = + SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, + DL, Base.getValueType(), + Base, RC), 0); + } + + // Make sure that the index register isn't assigned to %r0 either. + if (Index.getOpcode() != ISD::Register) { + Index = + SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, + DL, Index.getValueType(), + Index, RC), 0); + } + + OutOps.push_back(Base); + OutOps.push_back(Disp); + OutOps.push_back(Index); + return false; + } + + return true; +} |