aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp1419
1 files changed, 1419 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
new file mode 100644
index 000000000000..920b6e430e8f
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -0,0 +1,1419 @@
+//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SystemZ target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "systemz-isel"
+
+namespace {
+// Used to build addressing modes.
+struct SystemZAddressingMode {
+ // The shape of the address.
+ enum AddrForm {
+ // base+displacement
+ FormBD,
+
+ // base+displacement+index for load and store operands
+ FormBDXNormal,
+
+ // base+displacement+index for load address operands
+ FormBDXLA,
+
+ // base+displacement+index+ADJDYNALLOC
+ FormBDXDynAlloc
+ };
+ AddrForm Form;
+
+ // The type of displacement. The enum names here correspond directly
+ // to the definitions in SystemZOperand.td. We could split them into
+ // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
+ enum DispRange {
+ Disp12Only,
+ Disp12Pair,
+ Disp20Only,
+ Disp20Only128,
+ Disp20Pair
+ };
+ DispRange DR;
+
+ // The parts of the address. The address is equivalent to:
+ //
+ // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
+ SDValue Base;
+ int64_t Disp;
+ SDValue Index;
+ bool IncludesDynAlloc;
+
+ SystemZAddressingMode(AddrForm form, DispRange dr)
+ : Form(form), DR(dr), Base(), Disp(0), Index(),
+ IncludesDynAlloc(false) {}
+
+ // True if the address can have an index register.
+ bool hasIndexField() { return Form != FormBD; }
+
+ // True if the address can (and must) include ADJDYNALLOC.
+ bool isDynAlloc() { return Form == FormBDXDynAlloc; }
+
+ void dump() {
+ errs() << "SystemZAddressingMode " << this << '\n';
+
+ errs() << " Base ";
+ if (Base.getNode())
+ Base.getNode()->dump();
+ else
+ errs() << "null\n";
+
+ if (hasIndexField()) {
+ errs() << " Index ";
+ if (Index.getNode())
+ Index.getNode()->dump();
+ else
+ errs() << "null\n";
+ }
+
+ errs() << " Disp " << Disp;
+ if (IncludesDynAlloc)
+ errs() << " + ADJDYNALLOC";
+ errs() << '\n';
+ }
+};
+
+// Return a mask with Count low bits set.
+static uint64_t allOnes(unsigned int Count) {
+ assert(Count <= 64);
+ if (Count > 63)
+ return UINT64_MAX;
+ return (uint64_t(1) << Count) - 1;
+}
+
+// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
+// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
+// Rotate (I5). The combined operand value is effectively:
+//
+// (or (rotl Input, Rotate), ~Mask)
+//
+// for RNSBG and:
+//
+// (and (rotl Input, Rotate), Mask)
+//
+// otherwise. The output value has BitSize bits, although Input may be
+// narrower (in which case the upper bits are don't care), or wider (in which
+// case the result will be truncated as part of the operation).
+struct RxSBGOperands {
+ RxSBGOperands(unsigned Op, SDValue N)
+ : Opcode(Op), BitSize(N.getValueSizeInBits()),
+ Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
+ Rotate(0) {}
+
+ unsigned Opcode;
+ unsigned BitSize;
+ uint64_t Mask;
+ SDValue Input;
+ unsigned Start;
+ unsigned End;
+ unsigned Rotate;
+};
+
+class SystemZDAGToDAGISel : public SelectionDAGISel {
+ const SystemZSubtarget *Subtarget;
+
+ // Used by SystemZOperands.td to create integer constants.
+ inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
+ return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
+ }
+
+ const SystemZTargetMachine &getTargetMachine() const {
+ return static_cast<const SystemZTargetMachine &>(TM);
+ }
+
+ const SystemZInstrInfo *getInstrInfo() const {
+ return Subtarget->getInstrInfo();
+ }
+
+ // Try to fold more of the base or index of AM into AM, where IsBase
+ // selects between the base and index.
+ bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
+
+ // Try to describe N in AM, returning true on success.
+ bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
+
+ // Extract individual target operands from matched address AM.
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp) const;
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp, SDValue &Index) const;
+
+ // Try to match Addr as a FormBD address with displacement type DR.
+ // Return true on success, storing the base and displacement in
+ // Base and Disp respectively.
+ bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp) const;
+
+ // Try to match Addr as a FormBDX address with displacement type DR.
+ // Return true on success and if the result had no index. Store the
+ // base and displacement in Base and Disp respectively.
+ bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp) const;
+
+ // Try to match Addr as a FormBDX* address of form Form with
+ // displacement type DR. Return true on success, storing the base,
+ // displacement and index in Base, Disp and Index respectively.
+ bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) const;
+
+ // PC-relative address matching routines used by SystemZOperands.td.
+ bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
+ if (SystemZISD::isPCREL(Addr.getOpcode())) {
+ Target = Addr.getOperand(0);
+ return true;
+ }
+ return false;
+ }
+
+ // BD matching routines used by SystemZOperands.td.
+ bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
+ }
+
+ // MVI matching routines used by SystemZOperands.td.
+ bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
+ }
+ bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
+ return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
+ }
+
+ // BDX matching routines used by SystemZOperands.td.
+ bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only128,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) const {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+
+ // Try to match Addr as an address with a base, 12-bit displacement
+ // and index, where the index is element Elem of a vector.
+ // Return true on success, storing the base, displacement and vector
+ // in Base, Disp and Index respectively.
+ bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
+ SDValue &Disp, SDValue &Index) const;
+
+ // Check whether (or Op (and X InsertMask)) is effectively an insertion
+ // of X into bits InsertMask of some Y != Op. Return true if so and
+ // set Op to that Y.
+ bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
+
+ // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
+ // Return true on success.
+ bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
+
+ // Try to fold some of RxSBG.Input into other fields of RxSBG.
+ // Return true on success.
+ bool expandRxSBG(RxSBGOperands &RxSBG) const;
+
+ // Return an undefined value of type VT.
+ SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
+
+ // Convert N to VT, if it isn't already.
+ SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
+
+ // Try to implement AND or shift node N using RISBG with the zero flag set.
+ // Return the selected node on success, otherwise return null.
+ bool tryRISBGZero(SDNode *N);
+
+ // Try to use RISBG or Opcode to implement OR or XOR node N.
+ // Return the selected node on success, otherwise return null.
+ bool tryRxSBG(SDNode *N, unsigned Opcode);
+
+ // If Op0 is null, then Node is a constant that can be loaded using:
+ //
+ // (Opcode UpperVal LowerVal)
+ //
+ // If Op0 is nonnull, then Node can be implemented using:
+ //
+ // (Opcode (Opcode Op0 UpperVal) LowerVal)
+ void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
+ uint64_t UpperVal, uint64_t LowerVal);
+
+ // Try to use gather instruction Opcode to implement vector insertion N.
+ bool tryGather(SDNode *N, unsigned Opcode);
+
+ // Try to use scatter instruction Opcode to implement store Store.
+ bool tryScatter(StoreSDNode *Store, unsigned Opcode);
+
+ // Return true if Load and Store are loads and stores of the same size
+ // and are guaranteed not to overlap. Such operations can be implemented
+ // using block (SS-format) instructions.
+ //
+ // Partial overlap would lead to incorrect code, since the block operations
+ // are logically bytewise, even though they have a fast path for the
+ // non-overlapping case. We also need to avoid full overlap (i.e. two
+ // addresses that might be equal at run time) because although that case
+ // would be handled correctly, it might be implemented by millicode.
+ bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
+
+ // N is a (store (load Y), X) pattern. Return true if it can use an MVC
+ // from Y to X.
+ bool storeLoadCanUseMVC(SDNode *N) const;
+
+ // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
+ // if A[1 - I] == X and if N can use a block operation like NC from A[I]
+ // to X.
+ bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
+
+public:
+ SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ Subtarget = &MF.getSubtarget<SystemZSubtarget>();
+ return SelectionDAGISel::runOnMachineFunction(MF);
+ }
+
+ // Override MachineFunctionPass.
+ StringRef getPassName() const override {
+ return "SystemZ DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Override SelectionDAGISel.
+ void Select(SDNode *Node) override;
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
+ std::vector<SDValue> &OutOps) override;
+
+ // Include the pieces autogenerated from the target description.
+ #include "SystemZGenDAGISel.inc"
+};
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new SystemZDAGToDAGISel(TM, OptLevel);
+}
+
+// Return true if Val should be selected as a displacement for an address
+// with range DR. Here we're interested in the range of both the instruction
+// described by DR and of any pairing instruction.
+static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp12Pair:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Pair:
+ return isInt<20>(Val);
+
+ case SystemZAddressingMode::Disp20Only128:
+ return isInt<20>(Val) && isInt<20>(Val + 8);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Change the base or index in AM to Value, where IsBase selects
+// between the base and index.
+static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (IsBase)
+ AM.Base = Value;
+ else
+ AM.Index = Value;
+}
+
+// The base or index of AM is equivalent to Value + ADJDYNALLOC,
+// where IsBase selects between the base and index. Try to fold the
+// ADJDYNALLOC into AM.
+static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
+ changeComponent(AM, IsBase, Value);
+ AM.IncludesDynAlloc = true;
+ return true;
+ }
+ return false;
+}
+
+// The base of AM is equivalent to Base + Index. Try to use Index as
+// the index register.
+static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
+ SDValue Index) {
+ if (AM.hasIndexField() && !AM.Index.getNode()) {
+ AM.Base = Base;
+ AM.Index = Index;
+ return true;
+ }
+ return false;
+}
+
+// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
+// between the base and index. Try to fold Op1 into AM's displacement.
+static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Op0, uint64_t Op1) {
+ // First try adjusting the displacement.
+ int64_t TestDisp = AM.Disp + Op1;
+ if (selectDisp(AM.DR, TestDisp)) {
+ changeComponent(AM, IsBase, Op0);
+ AM.Disp = TestDisp;
+ return true;
+ }
+
+ // We could consider forcing the displacement into a register and
+ // using it as an index, but it would need to be carefully tuned.
+ return false;
+}
+
+bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
+ bool IsBase) const {
+ SDValue N = IsBase ? AM.Base : AM.Index;
+ unsigned Opcode = N.getOpcode();
+ if (Opcode == ISD::TRUNCATE) {
+ N = N.getOperand(0);
+ Opcode = N.getOpcode();
+ }
+ if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
+ SDValue Op0 = N.getOperand(0);
+ SDValue Op1 = N.getOperand(1);
+
+ unsigned Op0Code = Op0->getOpcode();
+ unsigned Op1Code = Op1->getOpcode();
+
+ if (Op0Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op1);
+ if (Op1Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op0);
+
+ if (Op0Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op1,
+ cast<ConstantSDNode>(Op0)->getSExtValue());
+ if (Op1Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op0,
+ cast<ConstantSDNode>(Op1)->getSExtValue());
+
+ if (IsBase && expandIndex(AM, Op0, Op1))
+ return true;
+ }
+ if (Opcode == SystemZISD::PCREL_OFFSET) {
+ SDValue Full = N.getOperand(0);
+ SDValue Base = N.getOperand(1);
+ SDValue Anchor = Base.getOperand(0);
+ uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
+ cast<GlobalAddressSDNode>(Anchor)->getOffset());
+ return expandDisp(AM, IsBase, Base, Offset);
+ }
+ return false;
+}
+
+// Return true if an instruction with displacement range DR should be
+// used for displacement value Val. selectDisp(DR, Val) must already hold.
+static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ assert(selectDisp(DR, Val) && "Invalid displacement");
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Only128:
+ return true;
+
+ case SystemZAddressingMode::Disp12Pair:
+ // Use the other instruction if the displacement is too large.
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp20Pair:
+ // Use the other instruction if the displacement is small enough.
+ return !isUInt<12>(Val);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Return true if Base + Disp + Index should be performed by LA(Y).
+static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
+ // Don't use LA(Y) for constants.
+ if (!Base)
+ return false;
+
+ // Always use LA(Y) for frame addresses, since we know that the destination
+ // register is almost always (perhaps always) going to be different from
+ // the frame register.
+ if (Base->getOpcode() == ISD::FrameIndex)
+ return true;
+
+ if (Disp) {
+ // Always use LA(Y) if there is a base, displacement and index.
+ if (Index)
+ return true;
+
+ // Always use LA if the displacement is small enough. It should always
+ // be no worse than AGHI (and better if it avoids a move).
+ if (isUInt<12>(Disp))
+ return true;
+
+ // For similar reasons, always use LAY if the constant is too big for AGHI.
+ // LAY should be no worse than AGFI.
+ if (!isInt<16>(Disp))
+ return true;
+ } else {
+ // Don't use LA for plain registers.
+ if (!Index)
+ return false;
+
+ // Don't use LA for plain addition if the index operand is only used
+ // once. It should be a natural two-operand addition in that case.
+ if (Index->hasOneUse())
+ return false;
+
+ // Prefer addition if the second operation is sign-extended, in the
+ // hope of using AGF.
+ unsigned IndexOpcode = Index->getOpcode();
+ if (IndexOpcode == ISD::SIGN_EXTEND ||
+ IndexOpcode == ISD::SIGN_EXTEND_INREG)
+ return false;
+ }
+
+ // Don't use LA for two-operand addition if either operand is only
+ // used once. The addition instructions are better in that case.
+ if (Base->hasOneUse())
+ return false;
+
+ return true;
+}
+
+// Return true if Addr is suitable for AM, updating AM if so.
+bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
+ SystemZAddressingMode &AM) const {
+ // Start out assuming that the address will need to be loaded separately,
+ // then try to extend it as much as we can.
+ AM.Base = Addr;
+
+ // First try treating the address as a constant.
+ if (Addr.getOpcode() == ISD::Constant &&
+ expandDisp(AM, true, SDValue(),
+ cast<ConstantSDNode>(Addr)->getSExtValue()))
+ ;
+ // Also see if it's a bare ADJDYNALLOC.
+ else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
+ expandAdjDynAlloc(AM, true, SDValue()))
+ ;
+ else
+ // Otherwise try expanding each component.
+ while (expandAddress(AM, true) ||
+ (AM.Index.getNode() && expandAddress(AM, false)))
+ continue;
+
+ // Reject cases where it isn't profitable to use LA(Y).
+ if (AM.Form == SystemZAddressingMode::FormBDXLA &&
+ !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
+ return false;
+
+ // Reject cases where the other instruction in a pair should be used.
+ if (!isValidDisp(AM.DR, AM.Disp))
+ return false;
+
+ // Make sure that ADJDYNALLOC is included where necessary.
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
+ return false;
+
+ DEBUG(AM.dump());
+ return true;
+}
+
+// Insert a node into the DAG at least before Pos. This will reposition
+// the node as needed, and will assign it a node ID that is <= Pos's ID.
+// Note that this does *not* preserve the uniqueness of node IDs!
+// The selection DAG must no longer depend on their uniqueness when this
+// function is used.
+static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
+ if (N.getNode()->getNodeId() == -1 ||
+ N.getNode()->getNodeId() > Pos->getNodeId()) {
+ DAG->RepositionNode(Pos->getIterator(), N.getNode());
+ N.getNode()->setNodeId(Pos->getNodeId());
+ }
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp) const {
+ Base = AM.Base;
+ if (!Base.getNode())
+ // Register 0 means "no base". This is mostly useful for shifts.
+ Base = CurDAG->getRegister(0, VT);
+ else if (Base.getOpcode() == ISD::FrameIndex) {
+ // Lower a FrameIndex to a TargetFrameIndex.
+ int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
+ } else if (Base.getValueType() != VT) {
+ // Truncate values from i64 to i32, for shifts.
+ assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
+ "Unexpected truncation");
+ SDLoc DL(Base);
+ SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
+ insertDAGNode(CurDAG, Base.getNode(), Trunc);
+ Base = Trunc;
+ }
+
+ // Lower the displacement to a TargetConstant.
+ Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp,
+ SDValue &Index) const {
+ getAddressOperands(AM, VT, Base, Disp);
+
+ Index = AM.Index;
+ if (!Index.getNode())
+ // Register 0 means "no index".
+ Index = CurDAG->getRegister(0, VT);
+}
+
+bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp) const {
+ SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp) const {
+ SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
+ if (!selectAddress(Addr, AM) || AM.Index.getNode())
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp, SDValue &Index) const {
+ SystemZAddressingMode AM(Form, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
+ SDValue &Base,
+ SDValue &Disp,
+ SDValue &Index) const {
+ SDValue Regs[2];
+ if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
+ Regs[0].getNode() && Regs[1].getNode()) {
+ for (unsigned int I = 0; I < 2; ++I) {
+ Base = Regs[I];
+ Index = Regs[1 - I];
+ // We can't tell here whether the index vector has the right type
+ // for the access; the caller needs to do that instead.
+ if (Index.getOpcode() == ISD::ZERO_EXTEND)
+ Index = Index.getOperand(0);
+ if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Index.getOperand(1) == Elem) {
+ Index = Index.getOperand(0);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
+ uint64_t InsertMask) const {
+ // We're only interested in cases where the insertion is into some operand
+ // of Op, rather than into Op itself. The only useful case is an AND.
+ if (Op.getOpcode() != ISD::AND)
+ return false;
+
+ // We need a constant mask.
+ auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ // It's not an insertion of Op.getOperand(0) if the two masks overlap.
+ uint64_t AndMask = MaskNode->getZExtValue();
+ if (InsertMask & AndMask)
+ return false;
+
+ // It's only an insertion if all bits are covered or are known to be zero.
+ // The inner check covers all cases but is more expensive.
+ uint64_t Used = allOnes(Op.getValueSizeInBits());
+ if (Used != (AndMask | InsertMask)) {
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
+ if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
+ return false;
+ }
+
+ Op = Op.getOperand(0);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
+ uint64_t Mask) const {
+ const SystemZInstrInfo *TII = getInstrInfo();
+ if (RxSBG.Rotate != 0)
+ Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
+ Mask &= RxSBG.Mask;
+ if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
+ RxSBG.Mask = Mask;
+ return true;
+ }
+ return false;
+}
+
+// Return true if any bits of (RxSBG.Input & Mask) are significant.
+static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
+ // Rotate the mask in the same way as RxSBG.Input is rotated.
+ if (RxSBG.Rotate != 0)
+ Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
+ return (Mask & RxSBG.Mask) != 0;
+}
+
+bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
+ SDValue N = RxSBG.Input;
+ unsigned Opcode = N.getOpcode();
+ switch (Opcode) {
+ case ISD::TRUNCATE: {
+ if (RxSBG.Opcode == SystemZ::RNSBG)
+ return false;
+ uint64_t BitSize = N.getValueSizeInBits();
+ uint64_t Mask = allOnes(BitSize);
+ if (!refineRxSBGMask(RxSBG, Mask))
+ return false;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+ case ISD::AND: {
+ if (RxSBG.Opcode == SystemZ::RNSBG)
+ return false;
+
+ auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ SDValue Input = N.getOperand(0);
+ uint64_t Mask = MaskNode->getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask)) {
+ // If some bits of Input are already known zeros, those bits will have
+ // been removed from the mask. See if adding them back in makes the
+ // mask suitable.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
+ Mask |= KnownZero.getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask))
+ return false;
+ }
+ RxSBG.Input = Input;
+ return true;
+ }
+
+ case ISD::OR: {
+ if (RxSBG.Opcode != SystemZ::RNSBG)
+ return false;
+
+ auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!MaskNode)
+ return false;
+
+ SDValue Input = N.getOperand(0);
+ uint64_t Mask = ~MaskNode->getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask)) {
+ // If some bits of Input are already known ones, those bits will have
+ // been removed from the mask. See if adding them back in makes the
+ // mask suitable.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
+ Mask &= ~KnownOne.getZExtValue();
+ if (!refineRxSBGMask(RxSBG, Mask))
+ return false;
+ }
+ RxSBG.Input = Input;
+ return true;
+ }
+
+ case ISD::ROTL: {
+ // Any 64-bit rotate left can be merged into the RxSBG.
+ if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
+ return false;
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::ANY_EXTEND:
+ // Bits above the extended operand are don't-care.
+ RxSBG.Input = N.getOperand(0);
+ return true;
+
+ case ISD::ZERO_EXTEND:
+ if (RxSBG.Opcode != SystemZ::RNSBG) {
+ // Restrict the mask to the extended operand.
+ unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
+ if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
+ return false;
+
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+ LLVM_FALLTHROUGH;
+
+ case ISD::SIGN_EXTEND: {
+ // Check that the extension bits are don't-care (i.e. are masked out
+ // by the final mask).
+ unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
+ if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
+ return false;
+
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::SHL: {
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ uint64_t Count = CountNode->getZExtValue();
+ unsigned BitSize = N.getValueSizeInBits();
+ if (Count < 1 || Count >= BitSize)
+ return false;
+
+ if (RxSBG.Opcode == SystemZ::RNSBG) {
+ // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
+ // count bits from RxSBG.Input are ignored.
+ if (maskMatters(RxSBG, allOnes(Count)))
+ return false;
+ } else {
+ // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
+ if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
+ return false;
+ }
+
+ RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+
+ case ISD::SRL:
+ case ISD::SRA: {
+ auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
+ if (!CountNode)
+ return false;
+
+ uint64_t Count = CountNode->getZExtValue();
+ unsigned BitSize = N.getValueSizeInBits();
+ if (Count < 1 || Count >= BitSize)
+ return false;
+
+ if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
+ // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
+ // count bits from RxSBG.Input are ignored.
+ if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
+ return false;
+ } else {
+ // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
+ // which is similar to SLL above.
+ if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
+ return false;
+ }
+
+ RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
+ RxSBG.Input = N.getOperand(0);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
+ SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
+ return SDValue(N, 0);
+}
+
+SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
+ SDValue N) const {
+ if (N.getValueType() == MVT::i32 && VT == MVT::i64)
+ return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
+ DL, VT, getUNDEF(DL, MVT::i64), N);
+ if (N.getValueType() == MVT::i64 && VT == MVT::i32)
+ return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
+ assert(N.getValueType() == VT && "Unexpected value types");
+ return N;
+}
+
+bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ if (!VT.isInteger() || VT.getSizeInBits() > 64)
+ return false;
+ RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
+ unsigned Count = 0;
+ while (expandRxSBG(RISBG))
+ // The widening or narrowing is expected to be free.
+ // Counting widening or narrowing as a saved operation will result in
+ // preferring an R*SBG over a simple shift/logical instruction.
+ if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
+ RISBG.Input.getOpcode() != ISD::TRUNCATE)
+ Count += 1;
+ if (Count == 0)
+ return false;
+
+ // Prefer to use normal shift instructions over RISBG, since they can handle
+ // all cases and are sometimes shorter.
+ if (Count == 1 && N->getOpcode() != ISD::AND)
+ return false;
+
+ // Prefer register extensions like LLC over RISBG. Also prefer to start
+ // out with normal ANDs if one instruction would be enough. We can convert
+ // these ANDs into an RISBG later if a three-address instruction is useful.
+ if (RISBG.Rotate == 0) {
+ bool PreferAnd = false;
+ // Prefer AND for any 32-bit and-immediate operation.
+ if (VT == MVT::i32)
+ PreferAnd = true;
+ // As well as for any 64-bit operation that can be implemented via LLC(R),
+ // LLH(R), LLGT(R), or one of the and-immediate instructions.
+ else if (RISBG.Mask == 0xff ||
+ RISBG.Mask == 0xffff ||
+ RISBG.Mask == 0x7fffffff ||
+ SystemZ::isImmLF(~RISBG.Mask) ||
+ SystemZ::isImmHF(~RISBG.Mask))
+ PreferAnd = true;
+ // And likewise for the LLZRGF instruction, which doesn't have a register
+ // to register version.
+ else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
+ if (Load->getMemoryVT() == MVT::i32 &&
+ (Load->getExtensionType() == ISD::EXTLOAD ||
+ Load->getExtensionType() == ISD::ZEXTLOAD) &&
+ RISBG.Mask == 0xffffff00 &&
+ Subtarget->hasLoadAndZeroRightmostByte())
+ PreferAnd = true;
+ }
+ if (PreferAnd) {
+ // Replace the current node with an AND. Note that the current node
+ // might already be that same AND, in which case it is already CSE'd
+ // with it, and we must not call ReplaceNode.
+ SDValue In = convertTo(DL, VT, RISBG.Input);
+ SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
+ SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
+ if (N != New.getNode()) {
+ insertDAGNode(CurDAG, N, Mask);
+ insertDAGNode(CurDAG, N, New);
+ ReplaceNode(N, New.getNode());
+ N = New.getNode();
+ }
+ // Now, select the machine opcode to implement this operation.
+ SelectCode(N);
+ return true;
+ }
+ }
+
+ unsigned Opcode = SystemZ::RISBG;
+ // Prefer RISBGN if available, since it does not clobber CC.
+ if (Subtarget->hasMiscellaneousExtensions())
+ Opcode = SystemZ::RISBGN;
+ EVT OpcodeVT = MVT::i64;
+ if (VT == MVT::i32 && Subtarget->hasHighWord()) {
+ Opcode = SystemZ::RISBMux;
+ OpcodeVT = MVT::i32;
+ RISBG.Start &= 31;
+ RISBG.End &= 31;
+ }
+ SDValue Ops[5] = {
+ getUNDEF(DL, OpcodeVT),
+ convertTo(DL, OpcodeVT, RISBG.Input),
+ CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
+ CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
+ CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
+ };
+ SDValue New = convertTo(
+ DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
+ ReplaceUses(N, New.getNode());
+ CurDAG->RemoveDeadNode(N);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ if (!VT.isInteger() || VT.getSizeInBits() > 64)
+ return false;
+ // Try treating each operand of N as the second operand of the RxSBG
+ // and see which goes deepest.
+ RxSBGOperands RxSBG[] = {
+ RxSBGOperands(Opcode, N->getOperand(0)),
+ RxSBGOperands(Opcode, N->getOperand(1))
+ };
+ unsigned Count[] = { 0, 0 };
+ for (unsigned I = 0; I < 2; ++I)
+ while (expandRxSBG(RxSBG[I]))
+ // The widening or narrowing is expected to be free.
+ // Counting widening or narrowing as a saved operation will result in
+ // preferring an R*SBG over a simple shift/logical instruction.
+ if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
+ RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
+ Count[I] += 1;
+
+ // Do nothing if neither operand is suitable.
+ if (Count[0] == 0 && Count[1] == 0)
+ return false;
+
+ // Pick the deepest second operand.
+ unsigned I = Count[0] > Count[1] ? 0 : 1;
+ SDValue Op0 = N->getOperand(I ^ 1);
+
+ // Prefer IC for character insertions from memory.
+ if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
+ if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
+ if (Load->getMemoryVT() == MVT::i8)
+ return false;
+
+ // See whether we can avoid an AND in the first operand by converting
+ // ROSBG to RISBG.
+ if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
+ Opcode = SystemZ::RISBG;
+ // Prefer RISBGN if available, since it does not clobber CC.
+ if (Subtarget->hasMiscellaneousExtensions())
+ Opcode = SystemZ::RISBGN;
+ }
+
+ SDValue Ops[5] = {
+ convertTo(DL, MVT::i64, Op0),
+ convertTo(DL, MVT::i64, RxSBG[I].Input),
+ CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
+ CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
+ CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
+ };
+ SDValue New = convertTo(
+ DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
+ ReplaceNode(N, New.getNode());
+ return true;
+}
+
+void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
+ SDValue Op0, uint64_t UpperVal,
+ uint64_t LowerVal) {
+ EVT VT = Node->getValueType(0);
+ SDLoc DL(Node);
+ SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
+ if (Op0.getNode())
+ Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
+
+ {
+ // When we haven't passed in Op0, Upper will be a constant. In order to
+ // prevent folding back to the large immediate in `Or = getNode(...)` we run
+ // SelectCode first and end up with an opaque machine node. This means that
+ // we need to use a handle to keep track of Upper in case it gets CSE'd by
+ // SelectCode.
+ //
+ // Note that in the case where Op0 is passed in we could just call
+ // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
+ // the handle at all, but it's fine to do it here.
+ //
+ // TODO: This is a pretty hacky way to do this. Can we do something that
+ // doesn't require a two paragraph explanation?
+ HandleSDNode Handle(Upper);
+ SelectCode(Upper.getNode());
+ Upper = Handle.getValue();
+ }
+
+ SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
+ SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
+
+ ReplaceUses(Node, Or.getNode());
+ CurDAG->RemoveDeadNode(Node);
+
+ SelectCode(Or.getNode());
+}
+
+bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
+ SDValue ElemV = N->getOperand(2);
+ auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
+ if (!ElemN)
+ return false;
+
+ unsigned Elem = ElemN->getZExtValue();
+ EVT VT = N->getValueType(0);
+ if (Elem >= VT.getVectorNumElements())
+ return false;
+
+ auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
+ if (!Load || !Load->hasOneUse())
+ return false;
+ if (Load->getMemoryVT().getSizeInBits() !=
+ Load->getValueType(0).getSizeInBits())
+ return false;
+
+ SDValue Base, Disp, Index;
+ if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
+ Index.getValueType() != VT.changeVectorElementTypeToInteger())
+ return false;
+
+ SDLoc DL(Load);
+ SDValue Ops[] = {
+ N->getOperand(0), Base, Disp, Index,
+ CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
+ };
+ SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
+ ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
+ ReplaceNode(N, Res);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
+ SDValue Value = Store->getValue();
+ if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return false;
+ if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
+ return false;
+
+ SDValue ElemV = Value.getOperand(1);
+ auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
+ if (!ElemN)
+ return false;
+
+ SDValue Vec = Value.getOperand(0);
+ EVT VT = Vec.getValueType();
+ unsigned Elem = ElemN->getZExtValue();
+ if (Elem >= VT.getVectorNumElements())
+ return false;
+
+ SDValue Base, Disp, Index;
+ if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
+ Index.getValueType() != VT.changeVectorElementTypeToInteger())
+ return false;
+
+ SDLoc DL(Store);
+ SDValue Ops[] = {
+ Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
+ Store->getChain()
+ };
+ ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
+ return true;
+}
+
+bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
+ LoadSDNode *Load) const {
+ // Check that the two memory operands have the same size.
+ if (Load->getMemoryVT() != Store->getMemoryVT())
+ return false;
+
+ // Volatility stops an access from being decomposed.
+ if (Load->isVolatile() || Store->isVolatile())
+ return false;
+
+ // There's no chance of overlap if the load is invariant.
+ if (Load->isInvariant() && Load->isDereferenceable())
+ return true;
+
+ // Otherwise we need to check whether there's an alias.
+ const Value *V1 = Load->getMemOperand()->getValue();
+ const Value *V2 = Store->getMemOperand()->getValue();
+ if (!V1 || !V2)
+ return false;
+
+ // Reject equality.
+ uint64_t Size = Load->getMemoryVT().getStoreSize();
+ int64_t End1 = Load->getSrcValueOffset() + Size;
+ int64_t End2 = Store->getSrcValueOffset() + Size;
+ if (V1 == V2 && End1 == End2)
+ return false;
+
+ return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
+ MemoryLocation(V2, End2, Store->getAAInfo()));
+}
+
+bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
+ auto *Store = cast<StoreSDNode>(N);
+ auto *Load = cast<LoadSDNode>(Store->getValue());
+
+ // Prefer not to use MVC if either address can use ... RELATIVE LONG
+ // instructions.
+ uint64_t Size = Load->getMemoryVT().getStoreSize();
+ if (Size > 1 && Size <= 8) {
+ // Prefer LHRL, LRL and LGRL.
+ if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
+ return false;
+ // Prefer STHRL, STRL and STGRL.
+ if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
+ return false;
+ }
+
+ return canUseBlockOperation(Store, Load);
+}
+
+bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
+ unsigned I) const {
+ auto *StoreA = cast<StoreSDNode>(N);
+ auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
+ auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
+ return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
+}
+
+void SystemZDAGToDAGISel::Select(SDNode *Node) {
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ Node->setNodeId(-1);
+ return;
+ }
+
+ unsigned Opcode = Node->getOpcode();
+ switch (Opcode) {
+ case ISD::OR:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ if (tryRxSBG(Node, SystemZ::ROSBG))
+ return;
+ goto or_xor;
+
+ case ISD::XOR:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ if (tryRxSBG(Node, SystemZ::RXSBG))
+ return;
+ // Fall through.
+ or_xor:
+ // If this is a 64-bit operation in which both 32-bit halves are nonzero,
+ // split the operation into two.
+ if (Node->getValueType(0) == MVT::i64)
+ if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
+ uint64_t Val = Op1->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
+ splitLargeImmediate(Opcode, Node, Node->getOperand(0),
+ Val - uint32_t(Val), uint32_t(Val));
+ return;
+ }
+ }
+ break;
+
+ case ISD::AND:
+ if (Node->getOperand(1).getOpcode() != ISD::Constant)
+ if (tryRxSBG(Node, SystemZ::RNSBG))
+ return;
+ LLVM_FALLTHROUGH;
+ case ISD::ROTL:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::ZERO_EXTEND:
+ if (tryRISBGZero(Node))
+ return;
+ break;
+
+ case ISD::Constant:
+ // If this is a 64-bit constant that is out of the range of LLILF,
+ // LLIHF and LGFI, split it into two 32-bit pieces.
+ if (Node->getValueType(0) == MVT::i64) {
+ uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
+ splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
+ uint32_t(Val));
+ return;
+ }
+ }
+ break;
+
+ case SystemZISD::SELECT_CCMASK: {
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ // Prefer to put any load first, so that it can be matched as a
+ // conditional load. Likewise for constants in range for LOCHI.
+ if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
+ (Subtarget->hasLoadStoreOnCond2() &&
+ Node->getValueType(0).isInteger() &&
+ Op1.getOpcode() == ISD::Constant &&
+ isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
+ !(Op0.getOpcode() == ISD::Constant &&
+ isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
+ SDValue CCValid = Node->getOperand(2);
+ SDValue CCMask = Node->getOperand(3);
+ uint64_t ConstCCValid =
+ cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
+ uint64_t ConstCCMask =
+ cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
+ // Invert the condition.
+ CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
+ CCMask.getValueType());
+ SDValue Op4 = Node->getOperand(4);
+ Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
+ }
+ break;
+ }
+
+ case ISD::INSERT_VECTOR_ELT: {
+ EVT VT = Node->getValueType(0);
+ unsigned ElemBitSize = VT.getScalarSizeInBits();
+ if (ElemBitSize == 32) {
+ if (tryGather(Node, SystemZ::VGEF))
+ return;
+ } else if (ElemBitSize == 64) {
+ if (tryGather(Node, SystemZ::VGEG))
+ return;
+ }
+ break;
+ }
+
+ case ISD::STORE: {
+ auto *Store = cast<StoreSDNode>(Node);
+ unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
+ if (ElemBitSize == 32) {
+ if (tryScatter(Store, SystemZ::VSCEF))
+ return;
+ } else if (ElemBitSize == 64) {
+ if (tryScatter(Store, SystemZ::VSCEG))
+ return;
+ }
+ break;
+ }
+ }
+
+ SelectCode(Node);
+}
+
+bool SystemZDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op,
+ unsigned ConstraintID,
+ std::vector<SDValue> &OutOps) {
+ SystemZAddressingMode::AddrForm Form;
+ SystemZAddressingMode::DispRange DispRange;
+ SDValue Base, Disp, Index;
+
+ switch(ConstraintID) {
+ default:
+ llvm_unreachable("Unexpected asm memory constraint");
+ case InlineAsm::Constraint_i:
+ case InlineAsm::Constraint_Q:
+ // Accept an address with a short displacement, but no index.
+ Form = SystemZAddressingMode::FormBD;
+ DispRange = SystemZAddressingMode::Disp12Only;
+ break;
+ case InlineAsm::Constraint_R:
+ // Accept an address with a short displacement and an index.
+ Form = SystemZAddressingMode::FormBDXNormal;
+ DispRange = SystemZAddressingMode::Disp12Only;
+ break;
+ case InlineAsm::Constraint_S:
+ // Accept an address with a long displacement, but no index.
+ Form = SystemZAddressingMode::FormBD;
+ DispRange = SystemZAddressingMode::Disp20Only;
+ break;
+ case InlineAsm::Constraint_T:
+ case InlineAsm::Constraint_m:
+ // Accept an address with a long displacement and an index.
+ // m works the same as T, as this is the most general case.
+ Form = SystemZAddressingMode::FormBDXNormal;
+ DispRange = SystemZAddressingMode::Disp20Only;
+ break;
+ }
+
+ if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
+ const TargetRegisterClass *TRC =
+ Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
+ SDLoc DL(Base);
+ SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
+
+ // Make sure that the base address doesn't go into %r0.
+ // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
+ if (Base.getOpcode() != ISD::TargetFrameIndex &&
+ Base.getOpcode() != ISD::Register) {
+ Base =
+ SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
+ DL, Base.getValueType(),
+ Base, RC), 0);
+ }
+
+ // Make sure that the index register isn't assigned to %r0 either.
+ if (Index.getOpcode() != ISD::Register) {
+ Index =
+ SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
+ DL, Index.getValueType(),
+ Index, RC), 0);
+ }
+
+ OutOps.push_back(Base);
+ OutOps.push_back(Disp);
+ OutOps.push_back(Index);
+ return false;
+ }
+
+ return true;
+}