aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td')
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td1693
1 files changed, 1693 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
new file mode 100644
index 000000000000..ae45c8be6752
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
@@ -0,0 +1,1693 @@
+//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Sparc instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "SparcInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Feature predicates.
+//===----------------------------------------------------------------------===//
+
+// True when generating 32-bit code.
+def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
+
+// True when generating 64-bit code. This also implies HasV9.
+def Is64Bit : Predicate<"Subtarget->is64Bit()">;
+
+// HasV9 - This predicate is true when the target processor supports V9
+// instructions. Note that the machine may be running in 32-bit mode.
+def HasV9 : Predicate<"Subtarget->isV9()">,
+ AssemblerPredicate<"FeatureV9">;
+
+// HasNoV9 - This predicate is true when the target doesn't have V9
+// instructions. Use of this is just a hack for the isel not having proper
+// costs for V8 instructions that are more expensive than their V9 ones.
+def HasNoV9 : Predicate<"!Subtarget->isV9()">;
+
+// HasVIS - This is true when the target processor has VIS extensions.
+def HasVIS : Predicate<"Subtarget->isVIS()">,
+ AssemblerPredicate<"FeatureVIS">;
+def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
+ AssemblerPredicate<"FeatureVIS2">;
+def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
+ AssemblerPredicate<"FeatureVIS3">;
+
+// HasHardQuad - This is true when the target processor supports quad floating
+// point instructions.
+def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
+
+// HasLeonCASA - This is true when the target processor supports the CASA
+// instruction
+def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
+
+// HasUMAC_SMAC - This is true when the target processor supports the
+// UMAC and SMAC instructions
+def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
+
+def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
+def HasNoFmulsFix : Predicate<"!Subtarget->replaceFMULS()">;
+def HasNoFsmuldFix : Predicate<"!Subtarget->fixFSMULD()">;
+
+// UseDeprecatedInsts - This predicate is true when the target processor is a
+// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
+// to use when appropriate. In either of these cases, the instruction selector
+// will pick deprecated instructions.
+def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
+
+//===----------------------------------------------------------------------===//
+// Instruction Pattern Stuff
+//===----------------------------------------------------------------------===//
+
+def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
+
+def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
+
+def LO10 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
+ MVT::i32);
+}]>;
+
+def HI22 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
+ MVT::i32);
+}]>;
+
+def SETHIimm : PatLeaf<(imm), [{
+ return isShiftedUInt<22, 10>(N->getZExtValue());
+}], HI22>;
+
+// Addressing modes.
+def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
+def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
+
+// Address operands
+def SparcMEMrrAsmOperand : AsmOperandClass {
+ let Name = "MEMrr";
+ let ParserMethod = "parseMEMOperand";
+}
+
+def SparcMEMriAsmOperand : AsmOperandClass {
+ let Name = "MEMri";
+ let ParserMethod = "parseMEMOperand";
+}
+
+def MEMrr : Operand<iPTR> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, ptr_rc);
+ let ParserMatchClass = SparcMEMrrAsmOperand;
+}
+def MEMri : Operand<iPTR> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, i32imm);
+ let ParserMatchClass = SparcMEMriAsmOperand;
+}
+
+def TLSSym : Operand<iPTR>;
+
+// Branch targets have OtherVT type.
+def brtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTargetOpValue";
+}
+
+def bprtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchPredTargetOpValue";
+}
+
+def bprtarget16 : Operand<OtherVT> {
+ let EncoderMethod = "getBranchOnRegTargetOpValue";
+}
+
+def calltarget : Operand<i32> {
+ let EncoderMethod = "getCallTargetOpValue";
+ let DecoderMethod = "DecodeCall";
+}
+
+def simm13Op : Operand<i32> {
+ let DecoderMethod = "DecodeSIMM13";
+}
+
+// Operand for printing out a condition code.
+let PrintMethod = "printCCOperand" in
+ def CCOp : Operand<i32>;
+
+def SDTSPcmpicc :
+SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
+def SDTSPcmpfcc :
+SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
+def SDTSPbrcc :
+SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
+def SDTSPselectcc :
+SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
+def SDTSPFTOI :
+SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
+def SDTSPITOF :
+SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
+def SDTSPFTOX :
+SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
+def SDTSPXTOF :
+SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
+
+def SDTSPtlsadd :
+SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
+def SDTSPtlsld :
+SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
+
+def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
+def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+
+def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
+def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
+def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+
+def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
+def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
+
+def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
+def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
+def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>;
+def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>;
+
+def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
+def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
+def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
+
+def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP",
+ SDTSPeh_sjlj_setjmp,
+ [SDNPHasChain, SDNPSideEffect]>;
+def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP",
+ SDTSPeh_sjlj_longjmp,
+ [SDNPHasChain, SDNPSideEffect]>;
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
+def call : SDNode<"SPISD::CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
+ [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
+
+def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
+def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>;
+def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def getPCX : Operand<iPTR> {
+ let PrintMethod = "printGetPCX";
+}
+
+//===----------------------------------------------------------------------===//
+// SPARC Flag Conditions
+//===----------------------------------------------------------------------===//
+
+// Note that these values must be kept in sync with the CCOp::CondCode enum
+// values.
+class ICC_VAL<int N> : PatLeaf<(i32 N)>;
+def ICC_NE : ICC_VAL< 9>; // Not Equal
+def ICC_E : ICC_VAL< 1>; // Equal
+def ICC_G : ICC_VAL<10>; // Greater
+def ICC_LE : ICC_VAL< 2>; // Less or Equal
+def ICC_GE : ICC_VAL<11>; // Greater or Equal
+def ICC_L : ICC_VAL< 3>; // Less
+def ICC_GU : ICC_VAL<12>; // Greater Unsigned
+def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
+def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
+def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
+def ICC_POS : ICC_VAL<14>; // Positive
+def ICC_NEG : ICC_VAL< 6>; // Negative
+def ICC_VC : ICC_VAL<15>; // Overflow Clear
+def ICC_VS : ICC_VAL< 7>; // Overflow Set
+
+class FCC_VAL<int N> : PatLeaf<(i32 N)>;
+def FCC_U : FCC_VAL<23>; // Unordered
+def FCC_G : FCC_VAL<22>; // Greater
+def FCC_UG : FCC_VAL<21>; // Unordered or Greater
+def FCC_L : FCC_VAL<20>; // Less
+def FCC_UL : FCC_VAL<19>; // Unordered or Less
+def FCC_LG : FCC_VAL<18>; // Less or Greater
+def FCC_NE : FCC_VAL<17>; // Not Equal
+def FCC_E : FCC_VAL<25>; // Equal
+def FCC_UE : FCC_VAL<26>; // Unordered or Equal
+def FCC_GE : FCC_VAL<27>; // Greater or Equal
+def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal
+def FCC_LE : FCC_VAL<29>; // Less or Equal
+def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal
+def FCC_O : FCC_VAL<31>; // Ordered
+
+class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
+def CPCC_3 : CPCC_VAL<39>; // 3
+def CPCC_2 : CPCC_VAL<38>; // 2
+def CPCC_23 : CPCC_VAL<37>; // 2 or 3
+def CPCC_1 : CPCC_VAL<36>; // 1
+def CPCC_13 : CPCC_VAL<35>; // 1 or 3
+def CPCC_12 : CPCC_VAL<34>; // 1 or 2
+def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3
+def CPCC_0 : CPCC_VAL<41>; // 0
+def CPCC_03 : CPCC_VAL<42>; // 0 or 3
+def CPCC_02 : CPCC_VAL<43>; // 0 or 2
+def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3
+def CPCC_01 : CPCC_VAL<45>; // 0 or 1
+def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3
+def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
+multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
+ RegisterClass RC, ValueType Ty, Operand immOp,
+ InstrItinClass itin = IIC_iu_instr> {
+ def rr : F3_1<2, Op3Val,
+ (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"),
+ [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
+ itin>;
+ def ri : F3_2<2, Op3Val,
+ (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
+ !strconcat(OpcStr, " $rs1, $simm13, $rd"),
+ [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
+ itin>;
+}
+
+/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
+/// pattern.
+multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
+ def rr : F3_1<2, Op3Val,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
+ itin>;
+ def ri : F3_2<2, Op3Val,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
+ itin>;
+}
+
+// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
+multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
+ RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
+ def rr : F3_1<3, Op3Val,
+ (outs RC:$dst), (ins MEMrr:$addr),
+ !strconcat(OpcStr, " [$addr], $dst"),
+ [(set Ty:$dst, (OpNode ADDRrr:$addr))],
+ itin>;
+ def ri : F3_2<3, Op3Val,
+ (outs RC:$dst), (ins MEMri:$addr),
+ !strconcat(OpcStr, " [$addr], $dst"),
+ [(set Ty:$dst, (OpNode ADDRri:$addr))],
+ itin>;
+}
+
+// TODO: Instructions of the LoadASI class are currently asm only; hooking up
+// CodeGen's address spaces to use these is a future task.
+class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
+ RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
+ F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
+ !strconcat(OpcStr, "a [$addr] $asi, $dst"),
+ []>;
+
+// LoadA multiclass - As above, but also define alternate address space variant
+multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
+ SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
+ InstrItinClass itin = NoItinerary> :
+ Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
+ def Arr : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
+}
+
+// The LDSTUB instruction is supported for asm only.
+// It is unlikely that general-purpose code could make use of it.
+// CAS is preferred for sparc v9.
+def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "ldstub [$addr], $dst", []>;
+def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
+ "ldstub [$addr], $dst", []>;
+def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
+ (ins MEMrr:$addr, i8imm:$asi),
+ "ldstuba [$addr] $asi, $dst", []>;
+
+// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
+multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
+ RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
+ def rr : F3_1<3, Op3Val,
+ (outs), (ins MEMrr:$addr, RC:$rd),
+ !strconcat(OpcStr, " $rd, [$addr]"),
+ [(OpNode Ty:$rd, ADDRrr:$addr)],
+ itin>;
+ def ri : F3_2<3, Op3Val,
+ (outs), (ins MEMri:$addr, RC:$rd),
+ !strconcat(OpcStr, " $rd, [$addr]"),
+ [(OpNode Ty:$rd, ADDRri:$addr)],
+ itin>;
+}
+
+// TODO: Instructions of the StoreASI class are currently asm only; hooking up
+// CodeGen's address spaces to use these is a future task.
+class StoreASI<string OpcStr, bits<6> Op3Val,
+ SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
+ InstrItinClass itin = IIC_st> :
+ F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
+ !strconcat(OpcStr, "a $rd, [$addr] $asi"),
+ [],
+ itin>;
+
+multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
+ SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
+ InstrItinClass itin = IIC_st> :
+ Store<OpcStr, Op3Val, OpNode, RC, Ty> {
+ def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern> {
+ let isCodeGenOnly = 1;
+ let isPseudo = 1;
+}
+
+// GETPCX for PIC
+let Defs = [O7] in {
+ def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
+}
+
+let Defs = [O6], Uses = [O6] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "!ADJCALLSTACKDOWN $amt1, $amt2",
+ [(callseq_start timm:$amt1, timm:$amt2)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "!ADJCALLSTACKUP $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let hasSideEffects = 1, mayStore = 1 in {
+ let rd = 0, rs1 = 0, rs2 = 0 in
+ def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
+ "flushw",
+ [(flushw)]>, Requires<[HasV9]>;
+ let rd = 0, rs1 = 1, simm13 = 3 in
+ def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
+ "ta 3",
+ [(flushw)]>;
+}
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence. This has to handle all
+// permutations of selection between i32/f32/f64 on ICC and FCC.
+// Expanded after instruction selection.
+let Uses = [ICC], usesCustomInserter = 1 in {
+ def SELECT_CC_Int_ICC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_ICC PSEUDO!",
+ [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
+ def SELECT_CC_FP_ICC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_ICC PSEUDO!",
+ [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
+
+ def SELECT_CC_DFP_ICC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_ICC PSEUDO!",
+ [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
+
+ def SELECT_CC_QFP_ICC
+ : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_QFP_ICC PSEUDO!",
+ [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
+}
+
+let usesCustomInserter = 1, Uses = [FCC0] in {
+
+ def SELECT_CC_Int_FCC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_FCC PSEUDO!",
+ [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
+
+ def SELECT_CC_FP_FCC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_FCC PSEUDO!",
+ [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
+ def SELECT_CC_DFP_FCC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_FCC PSEUDO!",
+ [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
+ def SELECT_CC_QFP_FCC
+ : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_QFP_FCC PSEUDO!",
+ [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
+}
+
+let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
+ let Defs = [WIM] in
+ def EH_SJLJ_SETJMP32ri : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>,
+ Requires<[Is32Bit]>;
+ def EH_SJLJ_SETJMP32rr : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>,
+ Requires<[Is32Bit]>;
+ let isTerminator = 1 in
+ def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(SPsjlj_longjmp ADDRri:$buf)]>,
+ Requires<[Is32Bit]>;
+ def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(SPsjlj_longjmp ADDRrr:$buf)]>,
+ Requires<[Is32Bit]>;
+}
+
+// Section B.1 - Load Integer Instructions, p. 90
+let DecoderMethod = "DecodeLoadInt" in {
+ defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>;
+ defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
+ defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>;
+ defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
+ defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>;
+}
+
+let DecoderMethod = "DecodeLoadIntPair" in
+ defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
+
+// Section B.2 - Load Floating-point Instructions, p. 92
+let DecoderMethod = "DecodeLoadFP" in {
+ defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>;
+ def LDFArr : LoadASI<"ld", 0b110000, load, FPRegs, f32, IIC_iu_or_fpu_instr>,
+ Requires<[HasV9]>;
+}
+let DecoderMethod = "DecodeLoadDFP" in {
+ defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>;
+ def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
+ Requires<[HasV9]>;
+}
+let DecoderMethod = "DecodeLoadQFP" in
+ defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
+
+let DecoderMethod = "DecodeLoadCP" in
+ defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>;
+let DecoderMethod = "DecodeLoadCPPair" in
+ defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
+
+let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
+ let rd = 0 in {
+ def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
+ "ld [$addr], %csr", []>;
+ def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
+ "ld [$addr], %csr", []>;
+ }
+}
+
+let DecoderMethod = "DecodeLoadFP" in
+ let Defs = [FSR] in {
+ let rd = 0 in {
+ def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
+ "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
+ def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
+ "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
+ }
+ let rd = 1 in {
+ def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
+ "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
+ def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
+ "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
+ }
+ }
+
+// Section B.4 - Store Integer Instructions, p. 95
+let DecoderMethod = "DecodeStoreInt" in {
+ defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>;
+ defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
+ defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>;
+}
+
+let DecoderMethod = "DecodeStoreIntPair" in
+ defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;
+
+// Section B.5 - Store Floating-point Instructions, p. 97
+let DecoderMethod = "DecodeStoreFP" in {
+ defm STF : Store<"st", 0b100100, store, FPRegs, f32>;
+ def STFArr : StoreASI<"st", 0b110100, store, FPRegs, f32>,
+ Requires<[HasV9]>;
+}
+let DecoderMethod = "DecodeStoreDFP" in {
+ defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>;
+ def STDFArr : StoreASI<"std", 0b110111, store, DFPRegs, f64>,
+ Requires<[HasV9]>;
+}
+let DecoderMethod = "DecodeStoreQFP" in
+ defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
+
+let DecoderMethod = "DecodeStoreCP" in
+ defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>;
+
+let DecoderMethod = "DecodeStoreCPPair" in
+ defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
+
+let DecoderMethod = "DecodeStoreCP", rd = 0 in {
+ let Defs = [CPSR] in {
+ def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
+ "st %csr, [$addr]", [], IIC_st>;
+ def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
+ "st %csr, [$addr]", [], IIC_st>;
+ }
+ let Defs = [CPQ] in {
+ def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
+ "std %cq, [$addr]", [], IIC_std>;
+ def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
+ "std %cq, [$addr]", [], IIC_std>;
+ }
+}
+
+let DecoderMethod = "DecodeStoreFP" in {
+ let rd = 0 in {
+ let Defs = [FSR] in {
+ def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
+ "st %fsr, [$addr]", [], IIC_st>;
+ def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
+ "st %fsr, [$addr]", [], IIC_st>;
+ }
+ let Defs = [FQ] in {
+ def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
+ "std %fq, [$addr]", [], IIC_std>;
+ def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
+ "std %fq, [$addr]", [], IIC_std>;
+ }
+ }
+ let rd = 1, Defs = [FSR] in {
+ def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
+ "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
+ def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
+ "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
+ }
+}
+
+// Section B.8 - SWAP Register with Memory Instruction
+// (Atomic swap)
+let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
+ def SWAPrr : F3_1<3, 0b001111,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
+ "swap [$addr], $dst",
+ [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
+ def SWAPri : F3_2<3, 0b001111,
+ (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
+ "swap [$addr], $dst",
+ [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
+ def SWAPArr : F3_1_asi<3, 0b011111,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
+ "swapa [$addr] $asi, $dst",
+ [/*FIXME: pattern?*/]>;
+}
+
+
+// Section B.9 - SETHI Instruction, p. 104
+def SETHIi: F2_1<0b100,
+ (outs IntRegs:$rd), (ins i32imm:$imm22),
+ "sethi $imm22, $rd",
+ [(set i32:$rd, SETHIimm:$imm22)],
+ IIC_iu_instr>;
+
+// Section B.10 - NOP Instruction, p. 105
+// (It's a special case of SETHI)
+let rd = 0, imm22 = 0 in
+ def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
+
+// Section B.11 - Logical Instructions, p. 106
+defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
+
+def ANDNrr : F3_1<2, 0b000101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "andn $rs1, $rs2, $rd",
+ [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
+def ANDNri : F3_2<2, 0b000101,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "andn $rs1, $simm13, $rd", []>;
+
+defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
+
+def ORNrr : F3_1<2, 0b000110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "orn $rs1, $rs2, $rd",
+ [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
+def ORNri : F3_2<2, 0b000110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "orn $rs1, $simm13, $rd", []>;
+defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
+
+def XNORrr : F3_1<2, 0b000111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "xnor $rs1, $rs2, $rd",
+ [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
+def XNORri : F3_2<2, 0b000111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "xnor $rs1, $simm13, $rd", []>;
+
+let Defs = [ICC] in {
+ defm ANDCC : F3_12np<"andcc", 0b010001>;
+ defm ANDNCC : F3_12np<"andncc", 0b010101>;
+ defm ORCC : F3_12np<"orcc", 0b010010>;
+ defm ORNCC : F3_12np<"orncc", 0b010110>;
+ defm XORCC : F3_12np<"xorcc", 0b010011>;
+ defm XNORCC : F3_12np<"xnorcc", 0b010111>;
+}
+
+// Section B.12 - Shift Instructions, p. 107
+defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
+defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
+defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
+
+// Section B.13 - Add Instructions, p. 108
+defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
+
+// "LEA" forms of add (patterns to make tblgen happy)
+let Predicates = [Is32Bit], isCodeGenOnly = 1 in
+ def LEA_ADDri : F3_2<2, 0b000000,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "add ${addr:arith}, $dst",
+ [(set iPTR:$dst, ADDRri:$addr)]>;
+
+let Defs = [ICC] in
+ defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm ADDC : F3_12np<"addx", 0b001000>;
+
+let Uses = [ICC], Defs = [ICC] in
+ defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
+
+// Section B.15 - Subtract Instructions, p. 110
+defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>;
+let Uses = [ICC], Defs = [ICC] in
+ defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
+
+let Defs = [ICC] in
+ defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm SUBC : F3_12np <"subx", 0b001100>;
+
+// cmp (from Section A.3) is a specialized alias for subcc
+let Defs = [ICC], rd = 0 in {
+ def CMPrr : F3_1<2, 0b010100,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "cmp $rs1, $rs2",
+ [(SPcmpicc i32:$rs1, i32:$rs2)]>;
+ def CMPri : F3_2<2, 0b010100,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "cmp $rs1, $simm13",
+ [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
+}
+
+// Section B.18 - Multiply Instructions, p. 113
+let Defs = [Y] in {
+ defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
+ defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
+}
+
+let Defs = [Y, ICC] in {
+ defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
+ defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
+}
+
+let Defs = [Y, ICC], Uses = [Y, ICC] in {
+ defm MULSCC : F3_12np<"mulscc", 0b100100>;
+}
+
+// Section B.19 - Divide Instructions, p. 115
+let Uses = [Y], Defs = [Y] in {
+ defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
+ defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
+}
+
+let Uses = [Y], Defs = [Y, ICC] in {
+ defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
+ defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
+}
+
+// Section B.20 - SAVE and RESTORE, p. 117
+defm SAVE : F3_12np<"save" , 0b111100>;
+defm RESTORE : F3_12np<"restore", 0b111101>;
+
+// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
+
+// unconditional branch class.
+class BranchAlways<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let isBarrier = 1;
+}
+
+let cond = 8 in
+ def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
+
+
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
+// conditional branch class:
+class BranchSP<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
+
+// conditional branch with annul class:
+class BranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
+
+// Conditional branch class on %icc|%xcc with predication:
+multiclass IPredBranch<string regstr, list<dag> CCPattern> {
+ def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
+ CCPattern,
+ IIC_iu_instr>;
+ def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
+ [],
+ IIC_iu_instr>;
+ def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
+ [],
+ IIC_iu_instr>;
+ def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
+ [],
+ IIC_iu_instr>;
+}
+
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+
+// Indirect branch instructions.
+let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1,
+ isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
+ def BINDrr : F3_1<2, 0b111000,
+ (outs), (ins MEMrr:$ptr),
+ "jmp $ptr",
+ [(brind ADDRrr:$ptr)]>;
+ def BINDri : F3_2<2, 0b111000,
+ (outs), (ins MEMri:$ptr),
+ "jmp $ptr",
+ [(brind ADDRri:$ptr)]>;
+}
+
+let Uses = [ICC] in {
+ def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
+ "b$cond $imm22",
+ [(SPbricc bb:$imm22, imm:$cond)]>;
+ def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "b$cond,a $imm22", []>;
+
+ let Predicates = [HasV9], cc = 0b00 in
+ defm BPI : IPredBranch<"%icc", []>;
+}
+
+// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
+
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
+// floating-point conditional branch class:
+class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
+
+// floating-point conditional branch with annul class:
+class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
+
+// Conditional branch class on %fcc0-%fcc3 with predication:
+multiclass FPredBranch {
+ def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
+ def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
+ def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
+ def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
+}
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+let Uses = [FCC0] in {
+ def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
+ "fb$cond $imm22",
+ [(SPbrfcc bb:$imm22, imm:$cond)]>;
+ def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "fb$cond,a $imm22", []>;
+}
+
+let Predicates = [HasV9] in
+ defm BPF : FPredBranch;
+
+// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
+// co-processor conditional branch class:
+class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
+
+// co-processor conditional branch with annul class:
+class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
+
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
+ "cb$cond $imm22",
+ [(SPbrfcc bb:$imm22, imm:$cond)]>;
+def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "cb$cond,a $imm22", []>;
+
+// Section B.24 - Call and Link Instruction, p. 125
+// This is the only Format 1 instruction
+let Uses = [O6],
+ hasDelaySlot = 1, isCall = 1 in {
+ def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
+ "call $disp",
+ [],
+ IIC_jmp_or_call> {
+ bits<30> disp;
+ let op = 1;
+ let Inst{29-0} = disp;
+ }
+
+ // indirect calls: special cases of JMPL.
+ let isCodeGenOnly = 1, rd = 15 in {
+ def CALLrr : F3_1<2, 0b111000,
+ (outs), (ins MEMrr:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRrr:$ptr)],
+ IIC_jmp_or_call>;
+ def CALLri : F3_2<2, 0b111000,
+ (outs), (ins MEMri:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRri:$ptr)],
+ IIC_jmp_or_call>;
+ }
+}
+
+// Section B.25 - Jump and Link Instruction
+
+// JMPL Instruction.
+let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ DecoderMethod = "DecodeJMPL" in {
+ def JMPLrr: F3_1<2, 0b111000,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "jmpl $addr, $dst",
+ [],
+ IIC_jmp_or_call>;
+ def JMPLri: F3_2<2, 0b111000,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "jmpl $addr, $dst",
+ [],
+ IIC_jmp_or_call>;
+}
+
+// Section A.3 - Synthetic Instructions, p. 85
+// special cases of JMPL:
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ isCodeGenOnly = 1 in {
+ let rd = 0, rs1 = 15 in
+ def RETL: F3_2<2, 0b111000,
+ (outs), (ins i32imm:$val),
+ "jmp %o7+$val",
+ [(retflag simm13:$val)],
+ IIC_jmp_or_call>;
+
+ let rd = 0, rs1 = 31 in
+ def RET: F3_2<2, 0b111000,
+ (outs), (ins i32imm:$val),
+ "jmp %i7+$val",
+ [],
+ IIC_jmp_or_call>;
+}
+
+// Section B.26 - Return from Trap Instruction
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
+ isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
+ def RETTrr : F3_1<2, 0b111001,
+ (outs), (ins MEMrr:$addr),
+ "rett $addr",
+ [],
+ IIC_jmp_or_call>;
+ def RETTri : F3_2<2, 0b111001,
+ (outs), (ins MEMri:$addr),
+ "rett $addr",
+ [],
+ IIC_jmp_or_call>;
+}
+
+
+// Section B.27 - Trap on Integer Condition Codes Instruction
+// conditional branch class:
+let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
+{
+ def TRAPrr : TRAPSPrr<0b111010,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
+ "t$cond $rs1 + $rs2",
+ []>;
+ def TRAPri : TRAPSPri<0b111010,
+ (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
+ "t$cond $rs1 + $imm",
+ []>;
+}
+
+multiclass TRAP<string regStr> {
+ def rr : TRAPSPrr<0b111010,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
+ []>;
+ def ri : TRAPSPri<0b111010,
+ (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
+ []>;
+}
+
+let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
+ defm TICC : TRAP<"%icc">;
+
+
+let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
+ def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
+
+// Section B.28 - Read State Register Instructions
+let rs2 = 0 in
+ def RDASR : F3_1<2, 0b101000,
+ (outs IntRegs:$rd), (ins ASRRegs:$rs1),
+ "rd $rs1, $rd", []>;
+
+// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
+let Predicates = [HasNoV9] in {
+ let rs2 = 0, rs1 = 0, Uses=[PSR] in
+ def RDPSR : F3_1<2, 0b101001,
+ (outs IntRegs:$rd), (ins),
+ "rd %psr, $rd", []>;
+
+ let rs2 = 0, rs1 = 0, Uses=[WIM] in
+ def RDWIM : F3_1<2, 0b101010,
+ (outs IntRegs:$rd), (ins),
+ "rd %wim, $rd", []>;
+
+ let rs2 = 0, rs1 = 0, Uses=[TBR] in
+ def RDTBR : F3_1<2, 0b101011,
+ (outs IntRegs:$rd), (ins),
+ "rd %tbr, $rd", []>;
+}
+
+// Section B.29 - Write State Register Instructions
+def WRASRrr : F3_1<2, 0b110000,
+ (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, $rd", []>;
+def WRASRri : F3_2<2, 0b110000,
+ (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, $rd", []>;
+
+// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
+let Predicates = [HasNoV9] in {
+ let Defs = [PSR], rd=0 in {
+ def WRPSRrr : F3_1<2, 0b110001,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, %psr", []>;
+ def WRPSRri : F3_2<2, 0b110001,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, %psr", []>;
+ }
+
+ let Defs = [WIM], rd=0 in {
+ def WRWIMrr : F3_1<2, 0b110010,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, %wim", []>;
+ def WRWIMri : F3_2<2, 0b110010,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, %wim", []>;
+ }
+
+ let Defs = [TBR], rd=0 in {
+ def WRTBRrr : F3_1<2, 0b110011,
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, %tbr", []>;
+ def WRTBRri : F3_2<2, 0b110011,
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, %tbr", []>;
+ }
+}
+
+// Section B.30 - STBAR Instruction
+let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
+ def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
+
+
+// Section B.31 - Unimplmented Instruction
+let rd = 0 in
+ def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
+ "unimp $imm22", []>;
+
+// Section B.32 - Flush Instruction Memory
+let rd = 0 in {
+ def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
+ "flush $addr", []>;
+ def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
+ "flush $addr", []>;
+
+ // The no-arg FLUSH is only here for the benefit of the InstAlias
+ // "flush", which cannot seem to use FLUSHrr, due to the inability
+ // to construct a MEMrr with fixed G0 registers.
+ let rs1 = 0, rs2 = 0 in
+ def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
+}
+
+// Section B.33 - Floating-point Operate (FPop) Instructions
+
+// Convert Integer to Floating-point Instructions, p. 141
+def FITOS : F3_3u<2, 0b110100, 0b011000100,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fitos $rs2, $rd",
+ [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
+ IIC_fpu_fast_instr>;
+def FITOD : F3_3u<2, 0b110100, 0b011001000,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs2),
+ "fitod $rs2, $rd",
+ [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
+ IIC_fpu_fast_instr>;
+def FITOQ : F3_3u<2, 0b110100, 0b011001100,
+ (outs QFPRegs:$rd), (ins FPRegs:$rs2),
+ "fitoq $rs2, $rd",
+ [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Convert Floating-point to Integer Instructions, p. 142
+def FSTOI : F3_3u<2, 0b110100, 0b011010001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fstoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
+ IIC_fpu_fast_instr>;
+def FDTOI : F3_3u<2, 0b110100, 0b011010010,
+ (outs FPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
+ IIC_fpu_fast_instr>;
+def FQTOI : F3_3u<2, 0b110100, 0b011010011,
+ (outs FPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtoi $rs2, $rd",
+ [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Convert between Floating-point Formats Instructions, p. 143
+def FSTOD : F3_3u<2, 0b110100, 0b011001001,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs2),
+ "fstod $rs2, $rd",
+ [(set f64:$rd, (fpextend f32:$rs2))],
+ IIC_fpu_stod>;
+def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
+ (outs QFPRegs:$rd), (ins FPRegs:$rs2),
+ "fstoq $rs2, $rd",
+ [(set f128:$rd, (fpextend f32:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FDTOS : F3_3u<2, 0b110100, 0b011000110,
+ (outs FPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtos $rs2, $rd",
+ [(set f32:$rd, (fpround f64:$rs2))],
+ IIC_fpu_fast_instr>;
+def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
+ (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fdtoq $rs2, $rd",
+ [(set f128:$rd, (fpextend f64:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FQTOS : F3_3u<2, 0b110100, 0b011000111,
+ (outs FPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtos $rs2, $rd",
+ [(set f32:$rd, (fpround f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+def FQTOD : F3_3u<2, 0b110100, 0b011001011,
+ (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fqtod $rs2, $rd",
+ [(set f64:$rd, (fpround f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Floating-point Move Instructions, p. 144
+def FMOVS : F3_3u<2, 0b110100, 0b000000001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fmovs $rs2, $rd", []>;
+def FNEGS : F3_3u<2, 0b110100, 0b000000101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fnegs $rs2, $rd",
+ [(set f32:$rd, (fneg f32:$rs2))],
+ IIC_fpu_negs>;
+def FABSS : F3_3u<2, 0b110100, 0b000001001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fabss $rs2, $rd",
+ [(set f32:$rd, (fabs f32:$rs2))],
+ IIC_fpu_abs>;
+
+
+// Floating-point Square Root Instructions, p.145
+// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
+// this will be promoted to use FSQRTD with doubles instead.
+let Predicates = [HasNoFdivSqrtFix] in
+def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs2),
+ "fsqrts $rs2, $rd",
+ [(set f32:$rd, (fsqrt f32:$rs2))],
+ IIC_fpu_sqrts>;
+def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fsqrtd $rs2, $rd",
+ [(set f64:$rd, (fsqrt f64:$rs2))],
+ IIC_fpu_sqrtd>;
+def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fsqrtq $rs2, $rd",
+ [(set f128:$rd, (fsqrt f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+
+
+// Floating-point Add and Subtract Instructions, p. 146
+def FADDS : F3_3<2, 0b110100, 0b001000001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fadds $rs1, $rs2, $rd",
+ [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
+ IIC_fpu_fast_instr>;
+def FADDD : F3_3<2, 0b110100, 0b001000010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "faddd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
+ IIC_fpu_fast_instr>;
+def FADDQ : F3_3<2, 0b110100, 0b001000011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "faddq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+def FSUBS : F3_3<2, 0b110100, 0b001000101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fsubs $rs1, $rs2, $rd",
+ [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
+ IIC_fpu_fast_instr>;
+def FSUBD : F3_3<2, 0b110100, 0b001000110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fsubd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
+ IIC_fpu_fast_instr>;
+def FSUBQ : F3_3<2, 0b110100, 0b001000111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fsubq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+
+// Floating-point Multiply and Divide Instructions, p. 147
+// FMULS generates an erratum on LEON processors, so by disabling this instruction
+// this will be promoted to use FMULD with doubles instead.
+let Predicates = [HasNoFmulsFix] in
+def FMULS : F3_3<2, 0b110100, 0b001001001,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fmuls $rs1, $rs2, $rd",
+ [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
+ IIC_fpu_muls>;
+def FMULD : F3_3<2, 0b110100, 0b001001010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fmuld $rs1, $rs2, $rd",
+ [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
+ IIC_fpu_muld>;
+def FMULQ : F3_3<2, 0b110100, 0b001001011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fmulq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+let Predicates = [HasNoFsmuldFix] in
+def FSMULD : F3_3<2, 0b110100, 0b001101001,
+ (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fsmuld $rs1, $rs2, $rd",
+ [(set f64:$rd, (fmul (fpextend f32:$rs1),
+ (fpextend f32:$rs2)))],
+ IIC_fpu_muld>;
+def FDMULQ : F3_3<2, 0b110100, 0b001101110,
+ (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fdmulq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fmul (fpextend f64:$rs1),
+ (fpextend f64:$rs2)))]>,
+ Requires<[HasHardQuad]>;
+
+// FDIVS generates an erratum on LEON processors, so by disabling this instruction
+// this will be promoted to use FDIVD with doubles instead.
+def FDIVS : F3_3<2, 0b110100, 0b001001101,
+ (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fdivs $rs1, $rs2, $rd",
+ [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
+ IIC_fpu_divs>;
+def FDIVD : F3_3<2, 0b110100, 0b001001110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fdivd $rs1, $rs2, $rd",
+ [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
+ IIC_fpu_divd>;
+def FDIVQ : F3_3<2, 0b110100, 0b001001111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fdivq $rs1, $rs2, $rd",
+ [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+
+// Floating-point Compare Instructions, p. 148
+// Note: the 2nd template arg is different for these guys.
+// Note 2: the result of a FCMP is not available until the 2nd cycle
+// after the instr is retired, but there is no interlock in Sparc V8.
+// This behavior is modeled with a forced noop after the instruction in
+// DelaySlotFiller.
+
+let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
+ def FCMPS : F3_3c<2, 0b110101, 0b001010001,
+ (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmps $rs1, $rs2",
+ [(SPcmpfcc f32:$rs1, f32:$rs2)],
+ IIC_fpu_fast_instr>;
+ def FCMPD : F3_3c<2, 0b110101, 0b001010010,
+ (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmpd $rs1, $rs2",
+ [(SPcmpfcc f64:$rs1, f64:$rs2)],
+ IIC_fpu_fast_instr>;
+ def FCMPQ : F3_3c<2, 0b110101, 0b001010011,
+ (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpq $rs1, $rs2",
+ [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
+ Requires<[HasHardQuad]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions for Thread Local Storage(TLS).
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
+def TLS_ADDrr : F3_1<2, 0b000000,
+ (outs IntRegs:$rd),
+ (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
+ "add $rs1, $rs2, $rd, $sym",
+ [(set i32:$rd,
+ (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
+
+let mayLoad = 1 in
+ def TLS_LDrr : F3_1<3, 0b000000,
+ (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
+ "ld [$addr], $dst, $sym",
+ [(set i32:$dst,
+ (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
+
+let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
+ def TLS_CALL : InstSP<(outs),
+ (ins calltarget:$disp, TLSSym:$sym, variable_ops),
+ "call $disp, $sym",
+ [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
+ IIC_jmp_or_call> {
+ bits<30> disp;
+ let op = 1;
+ let Inst{29-0} = disp;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// V9 Instructions
+//===----------------------------------------------------------------------===//
+
+// V9 Conditional Moves.
+let Predicates = [HasV9], Constraints = "$f = $rd" in {
+ // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
+ let Uses = [ICC], intcc = 1, cc = 0b00 in {
+ def MOVICCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %icc, $rs2, $rd",
+ [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
+
+ def MOVICCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond %icc, $simm11, $rd",
+ [(set i32:$rd,
+ (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
+ }
+
+ let Uses = [FCC0], intcc = 0, cc = 0b00 in {
+ def MOVFCCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond %fcc0, $rs2, $rd",
+ [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
+ def MOVFCCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond %fcc0, $simm11, $rd",
+ [(set i32:$rd,
+ (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
+ }
+
+ let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
+ def FMOVS_ICC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond %icc, $rs2, $rd",
+ [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
+ def FMOVD_ICC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond %icc, $rs2, $rd",
+ [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
+ def FMOVQ_ICC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond %icc, $rs2, $rd",
+ [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
+ Requires<[HasHardQuad]>;
+ }
+
+ let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
+ def FMOVS_FCC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond %fcc0, $rs2, $rd",
+ [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
+ def FMOVD_FCC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond %fcc0, $rs2, $rd",
+ [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
+ def FMOVQ_FCC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond %fcc0, $rs2, $rd",
+ [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
+ Requires<[HasHardQuad]>;
+ }
+
+}
+
+// Floating-Point Move Instructions, p. 164 of the V9 manual.
+let Predicates = [HasV9] in {
+ def FMOVD : F3_3u<2, 0b110100, 0b000000010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fmovd $rs2, $rd", []>;
+ def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fmovq $rs2, $rd", []>,
+ Requires<[HasHardQuad]>;
+ def FNEGD : F3_3u<2, 0b110100, 0b000000110,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fnegd $rs2, $rd",
+ [(set f64:$rd, (fneg f64:$rs2))]>;
+ def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fnegq $rs2, $rd",
+ [(set f128:$rd, (fneg f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+ def FABSD : F3_3u<2, 0b110100, 0b000001010,
+ (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
+ "fabsd $rs2, $rd",
+ [(set f64:$rd, (fabs f64:$rs2))]>;
+ def FABSQ : F3_3u<2, 0b110100, 0b000001011,
+ (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
+ "fabsq $rs2, $rd",
+ [(set f128:$rd, (fabs f128:$rs2))]>,
+ Requires<[HasHardQuad]>;
+}
+
+// Floating-point compare instruction with %fcc0-%fcc3.
+def V9FCMPS : F3_3c<2, 0b110101, 0b001010001,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmps $rd, $rs1, $rs2", []>;
+def V9FCMPD : F3_3c<2, 0b110101, 0b001010010,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmpd $rd, $rs1, $rs2", []>;
+def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+
+let hasSideEffects = 1 in {
+ def V9FCMPES : F3_3c<2, 0b110101, 0b001010101,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmpes $rd, $rs1, $rs2", []>;
+ def V9FCMPED : F3_3c<2, 0b110101, 0b001010110,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmped $rd, $rs1, $rs2", []>;
+ def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpeq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+}
+
+// Floating point conditional move instrucitons with %fcc0-%fcc3.
+let Predicates = [HasV9] in {
+ let Constraints = "$f = $rd", intcc = 0 in {
+ def V9MOVFCCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $rs2, $rd", []>;
+ def V9MOVFCCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $simm11, $rd", []>;
+ def V9FMOVS_FCC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVD_FCC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVQ_FCC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond $opf_cc, $rs2, $rd", []>,
+ Requires<[HasHardQuad]>;
+ } // Constraints = "$f = $rd", ...
+} // let Predicates = [hasV9]
+
+
+// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
+// the top 32-bits before using it. To do this clearing, we use a SRLri X,0.
+let rs1 = 0 in
+ def POPCrr : F3_1<2, 0b101110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs2),
+ "popc $rs2, $rd", []>, Requires<[HasV9]>;
+def : Pat<(ctpop i32:$src),
+ (POPCrr (SRLri $src, 0))>;
+
+let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
+ def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
+ "membar $simm13", []>;
+
+// The CAS instruction, unlike other instructions, only comes in a
+// form which requires an ASI be provided. The ASI value hardcoded
+// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
+let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
+ def CASrr: F3_1_asi<3, 0b111100,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
+ IntRegs:$swap),
+ "cas [$rs1], $rs2, $rd",
+ [(set i32:$rd,
+ (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
+
+
+// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
+// This version can be automatically lowered from C code, selecting ASI 10
+let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
+ def CASAasi10: F3_1_asi<3, 0b111100,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
+ IntRegs:$swap),
+ "casa [$rs1] 10, $rs2, $rd",
+ [(set i32:$rd,
+ (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
+
+// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
+// CASrr, above, but with a different ASI. This version is supported for
+// inline assembly lowering only.
+let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
+ def CASArr: F3_1_asi<3, 0b111100,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
+ IntRegs:$swap, i8imm:$asi),
+ "casa [$rs1] $asi, $rs2, $rd", []>;
+
+// TODO: Add DAG sequence to lower these instructions. Currently, only provided
+// as inline assembler-supported instructions.
+let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
+ def SMACrr : F3_1<2, 0b111111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
+ "smac $rs1, $rs2, $rd",
+ [], IIC_smac_umac>;
+
+ def SMACri : F3_2<2, 0b111111,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
+ "smac $rs1, $simm13, $rd",
+ [], IIC_smac_umac>;
+
+ def UMACrr : F3_1<2, 0b111110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
+ "umac $rs1, $rs2, $rd",
+ [], IIC_smac_umac>;
+
+ def UMACri : F3_2<2, 0b111110,
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
+ "umac $rs1, $simm13, $rd",
+ [], IIC_smac_umac>;
+}
+
+let Defs = [ICC] in {
+defm TADDCC : F3_12np<"taddcc", 0b100000>;
+defm TSUBCC : F3_12np<"tsubcc", 0b100001>;
+
+let hasSideEffects = 1 in {
+ defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
+ defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
+}
+}
+
+
+// Section A.43 - Read Privileged Register Instructions
+let Predicates = [HasV9] in {
+let rs2 = 0 in
+ def RDPR : F3_1<2, 0b101010,
+ (outs IntRegs:$rd), (ins PRRegs:$rs1),
+ "rdpr $rs1, $rd", []>;
+}
+
+// Section A.62 - Write Privileged Register Instructions
+let Predicates = [HasV9] in {
+ def WRPRrr : F3_1<2, 0b110010,
+ (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wrpr $rs1, $rs2, $rd", []>;
+ def WRPRri : F3_2<2, 0b110010,
+ (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wrpr $rs1, $simm13, $rd", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Small immediates.
+def : Pat<(i32 simm13:$val),
+ (ORri (i32 G0), imm:$val)>;
+// Arbitrary immediates.
+def : Pat<(i32 imm:$val),
+ (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
+
+
+// Global addresses, constant pool entries
+let Predicates = [Is32Bit] in {
+
+def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
+def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
+def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
+def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
+
+// GlobalTLS addresses
+def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
+def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
+def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
+ (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
+
+// Blockaddress
+def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
+def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
+
+// Add reg, lo. This is used when taking the addr of a global/constpool entry.
+def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>;
+def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
+ (ADDri $r, tblockaddress:$in)>;
+}
+
+// Calls:
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>;
+
+// Map integer extload's to zextloads.
+def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
+
+// zextload bool -> zextload byte
+def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+
+// store 0, addr -> store %g0, addr
+def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
+def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
+
+// store bar for all atomic_fence in V8.
+let Predicates = [HasNoV9] in
+ def : Pat<(atomic_fence imm, imm), (STBAR)>;
+
+// atomic_load addr -> load addr
+def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
+def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
+def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
+def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
+
+// atomic_store val, addr -> store val, addr
+def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
+def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
+def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
+def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
+def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
+def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
+
+// extract_vector
+def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
+ (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
+def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
+ (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
+
+// build_vector
+def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
+ (INSERT_SUBREG
+ (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
+ (i32 IntRegs:$a2), sub_odd)>;
+
+
+include "SparcInstr64Bit.td"
+include "SparcInstrVIS.td"
+include "SparcInstrAliases.td"