aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td')
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td320
1 files changed, 256 insertions, 64 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
index ae10ca0bd413..960261ce9835 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
@@ -29,7 +29,8 @@ def Is64Bit : Predicate<"Subtarget.is64Bit()">;
// HasV9 - This predicate is true when the target processor supports V9
// instructions. Note that the machine may be running in 32-bit mode.
-def HasV9 : Predicate<"Subtarget.isV9()">;
+def HasV9 : Predicate<"Subtarget.isV9()">,
+ AssemblerPredicate<"FeatureV9">;
// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions. Use of this is just a hack for the isel not having proper
@@ -37,7 +38,12 @@ def HasV9 : Predicate<"Subtarget.isV9()">;
def HasNoV9 : Predicate<"!Subtarget.isV9()">;
// HasVIS - This is true when the target processor has VIS extensions.
-def HasVIS : Predicate<"Subtarget.isVIS()">;
+def HasVIS : Predicate<"Subtarget.isVIS()">,
+ AssemblerPredicate<"FeatureVIS">;
+def HasVIS2 : Predicate<"Subtarget.isVIS2()">,
+ AssemblerPredicate<"FeatureVIS2">;
+def HasVIS3 : Predicate<"Subtarget.isVIS3()">,
+ AssemblerPredicate<"FeatureVIS3">;
// HasHardQuad - This is true when the target processor supports quad floating
// point instructions.
@@ -104,8 +110,21 @@ def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
}
+def bprtarget : Operand<OtherVT> {
+ let EncoderMethod = "getBranchPredTargetOpValue";
+}
+
+def bprtarget16 : Operand<OtherVT> {
+ let EncoderMethod = "getBranchOnRegTargetOpValue";
+}
+
def calltarget : Operand<i32> {
let EncoderMethod = "getCallTargetOpValue";
+ let DecoderMethod = "DecodeCall";
+}
+
+def simm13Op : Operand<i32> {
+ let DecoderMethod = "DecodeSIMM13";
}
// Operand for printing out a condition code.
@@ -246,7 +265,7 @@ multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
!strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
def ri : F3_2<2, Op3Val,
- (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
!strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
}
@@ -316,8 +335,8 @@ let isBarrier = 1, isTerminator = 1, rd = 0b1000, rs1 = 0, simm13 = 5 in
def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
let rd = 0 in
- def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
- "unimp $val", []>;
+ def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
+ "unimp $imm22", []>;
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
// instruction selection into a branch sequence. This has to handle all
@@ -344,7 +363,7 @@ let Uses = [ICC], usesCustomInserter = 1 in {
[(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
}
-let usesCustomInserter = 1, Uses = [FCC] in {
+let usesCustomInserter = 1, Uses = [FCC0] in {
def SELECT_CC_Int_FCC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
@@ -366,7 +385,8 @@ let usesCustomInserter = 1, Uses = [FCC] in {
}
// JMPL Instruction.
-let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
+let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ DecoderMethod = "DecodeJMPL" in {
def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
"jmpl $addr, $dst", []>;
def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
@@ -386,29 +406,47 @@ let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
"jmp %i7+$val", []>;
}
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
+ isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
+ def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
+ "rett $addr", []>;
+ def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
+ "rett $addr", []>;
+}
+
// Section B.1 - Load Integer Instructions, p. 90
-defm LDSB : Load<"ldsb", 0b001001, sextloadi8, IntRegs, i32>;
-defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
-defm LDUB : Load<"ldub", 0b000001, zextloadi8, IntRegs, i32>;
-defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
-defm LD : Load<"ld", 0b000000, load, IntRegs, i32>;
+let DecoderMethod = "DecodeLoadInt" in {
+ defm LDSB : Load<"ldsb", 0b001001, sextloadi8, IntRegs, i32>;
+ defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>;
+ defm LDUB : Load<"ldub", 0b000001, zextloadi8, IntRegs, i32>;
+ defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>;
+ defm LD : Load<"ld", 0b000000, load, IntRegs, i32>;
+}
// Section B.2 - Load Floating-point Instructions, p. 92
-defm LDF : Load<"ld", 0b100000, load, FPRegs, f32>;
-defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64>;
-defm LDQF : Load<"ldq", 0b100010, load, QFPRegs, f128>,
- Requires<[HasV9, HasHardQuad]>;
+let DecoderMethod = "DecodeLoadFP" in
+ defm LDF : Load<"ld", 0b100000, load, FPRegs, f32>;
+let DecoderMethod = "DecodeLoadDFP" in
+ defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64>;
+let DecoderMethod = "DecodeLoadQFP" in
+ defm LDQF : Load<"ldq", 0b100010, load, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
// Section B.4 - Store Integer Instructions, p. 95
-defm STB : Store<"stb", 0b000101, truncstorei8, IntRegs, i32>;
-defm STH : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
-defm ST : Store<"st", 0b000100, store, IntRegs, i32>;
+let DecoderMethod = "DecodeStoreInt" in {
+ defm STB : Store<"stb", 0b000101, truncstorei8, IntRegs, i32>;
+ defm STH : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>;
+ defm ST : Store<"st", 0b000100, store, IntRegs, i32>;
+}
// Section B.5 - Store Floating-point Instructions, p. 97
-defm STF : Store<"st", 0b100100, store, FPRegs, f32>;
-defm STDF : Store<"std", 0b100111, store, DFPRegs, f64>;
-defm STQF : Store<"stq", 0b100110, store, QFPRegs, f128>,
- Requires<[HasV9, HasHardQuad]>;
+let DecoderMethod = "DecodeStoreFP" in
+ defm STF : Store<"st", 0b100100, store, FPRegs, f32>;
+let DecoderMethod = "DecodeStoreDFP" in
+ defm STDF : Store<"std", 0b100111, store, DFPRegs, f64>;
+let DecoderMethod = "DecodeStoreQFP" in
+ defm STQF : Store<"stq", 0b100110, store, QFPRegs, f128>,
+ Requires<[HasV9, HasHardQuad]>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
@@ -422,42 +460,51 @@ let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
-defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, i32imm>;
+defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
def ANDNrr : F3_1<2, 0b000101,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"andn $rs1, $rs2, $rd",
[(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
def ANDNri : F3_2<2, 0b000101,
- (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"andn $rs1, $simm13, $rd", []>;
-defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, i32imm>;
+defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
def ORNrr : F3_1<2, 0b000110,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"orn $rs1, $rs2, $rd",
[(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
def ORNri : F3_2<2, 0b000110,
- (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"orn $rs1, $simm13, $rd", []>;
-defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, i32imm>;
+defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
def XNORrr : F3_1<2, 0b000111,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"xnor $rs1, $rs2, $rd",
[(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
def XNORri : F3_2<2, 0b000111,
- (outs IntRegs:$rd), (ins IntRegs:$rs1, i32imm:$simm13),
+ (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"xnor $rs1, $simm13, $rd", []>;
+let Defs = [ICC] in {
+ defm ANDCC : F3_12np<"andcc", 0b010001>;
+ defm ANDNCC : F3_12np<"andncc", 0b010101>;
+ defm ORCC : F3_12np<"orcc", 0b010010>;
+ defm ORNCC : F3_12np<"orncc", 0b010110>;
+ defm XORCC : F3_12np<"xorcc", 0b010011>;
+ defm XNORCC : F3_12np<"xnorcc", 0b010111>;
+}
+
// Section B.12 - Shift Instructions, p. 107
-defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, i32imm>;
-defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, i32imm>;
-defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, i32imm>;
+defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
+defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
+defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
// Section B.13 - Add Instructions, p. 108
-defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, i32imm>;
+defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
// "LEA" forms of add (patterns to make tblgen happy)
let Predicates = [Is32Bit], isCodeGenOnly = 1 in
@@ -467,18 +514,24 @@ let Predicates = [Is32Bit], isCodeGenOnly = 1 in
[(set iPTR:$dst, ADDRri:$addr)]>;
let Defs = [ICC] in
- defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, i32imm>;
+ defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm ADDC : F3_12np<"addx", 0b001000>;
let Uses = [ICC], Defs = [ICC] in
- defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, i32imm>;
+ defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
// Section B.15 - Subtract Instructions, p. 110
-defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, i32imm>;
+defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>;
let Uses = [ICC], Defs = [ICC] in
- defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, i32imm>;
+ defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
let Defs = [ICC] in
- defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, i32imm>;
+ defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
+
+let Uses = [ICC] in
+ defm SUBC : F3_12np <"subx", 0b001100>;
let Defs = [ICC], rd = 0 in {
def CMPrr : F3_1<2, 0b010100,
@@ -486,7 +539,7 @@ let Defs = [ICC], rd = 0 in {
"cmp $rs1, $rs2",
[(SPcmpicc i32:$rs1, i32:$rs2)]>;
def CMPri : F3_2<2, 0b010100,
- (outs), (ins IntRegs:$rs1, i32imm:$simm13),
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"cmp $rs1, $simm13",
[(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
}
@@ -494,7 +547,12 @@ let Defs = [ICC], rd = 0 in {
// Section B.18 - Multiply Instructions, p. 113
let Defs = [Y] in {
defm UMUL : F3_12np<"umul", 0b001010>;
- defm SMUL : F3_12 <"smul", 0b001011, mul, IntRegs, i32, i32imm>;
+ defm SMUL : F3_12 <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
+}
+
+let Defs = [Y, ICC] in {
+ defm UMULCC : F3_12np<"umulcc", 0b011010>;
+ defm SMULCC : F3_12np<"smulcc", 0b011011>;
}
// Section B.19 - Divide Instructions, p. 115
@@ -503,6 +561,11 @@ let Defs = [Y] in {
defm SDIV : F3_12np<"sdiv", 0b001111>;
}
+let Defs = [Y, ICC] in {
+ defm UDIVCC : F3_12np<"udivcc", 0b011110>;
+ defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
+}
+
// Section B.20 - SAVE and RESTORE, p. 117
defm SAVE : F3_12np<"save" , 0b111100>;
defm RESTORE : F3_12np<"restore", 0b111101>;
@@ -511,7 +574,7 @@ defm RESTORE : F3_12np<"restore", 0b111101>;
// unconditional branch class.
class BranchAlways<dag ins, string asmstr, list<dag> pattern>
- : F2_2<0b010, (outs), ins, asmstr, pattern> {
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
@@ -521,14 +584,36 @@ class BranchAlways<dag ins, string asmstr, list<dag> pattern>
let cond = 8 in
def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
+
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
// conditional branch class:
class BranchSP<dag ins, string asmstr, list<dag> pattern>
- : F2_2<0b010, (outs), ins, asmstr, pattern> {
- let isBranch = 1;
- let isTerminator = 1;
- let hasDelaySlot = 1;
+ : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
+
+// conditional branch with annul class:
+class BranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
+
+// Conditional branch class on %icc|%xcc with predication:
+multiclass IPredBranch<string regstr, list<dag> CCPattern> {
+ def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
+ CCPattern>;
+ def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
+ []>;
+ def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
+ []>;
+ def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
+ !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
+ []>;
}
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
+
+
// Indirect branch instructions.
let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1,
isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
@@ -542,33 +627,64 @@ let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1,
[(brind ADDRri:$ptr)]>;
}
-let Uses = [ICC] in
+let Uses = [ICC] in {
def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
"b$cond $imm22",
[(SPbricc bb:$imm22, imm:$cond)]>;
+ def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "b$cond,a $imm22", []>;
+
+ let Predicates = [HasV9], cc = 0b00 in
+ defm BPI : IPredBranch<"%icc", []>;
+}
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
+let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
+
// floating-point conditional branch class:
class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
- : F2_2<0b110, (outs), ins, asmstr, pattern> {
- let isBranch = 1;
- let isTerminator = 1;
- let hasDelaySlot = 1;
+ : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
+
+// floating-point conditional branch with annul class:
+class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
+ : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
+
+// Conditional branch class on %fcc0-%fcc3 with predication:
+multiclass FPredBranch {
+ def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond $cc, $imm19", []>;
+ def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a $cc, $imm19", []>;
+ def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,pn $cc, $imm19", []>;
+ def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
+ FCCRegs:$cc),
+ "fb$cond,a,pn $cc, $imm19", []>;
}
+} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
-let Uses = [FCC] in
+let Uses = [FCC0] in {
def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
"fb$cond $imm22",
[(SPbrfcc bb:$imm22, imm:$cond)]>;
+ def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
+ "fb$cond,a $imm22", []>;
+}
+
+let Predicates = [HasV9] in
+ defm BPF : FPredBranch;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O6],
hasDelaySlot = 1, isCall = 1 in {
- def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
- "call $dst", []> {
+ def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
+ "call $disp", []> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
@@ -596,11 +712,11 @@ let Uses = [Y], rs1 = 0, rs2 = 0 in
// Section B.29 - Write State Register Instructions
let Defs = [Y], rd = 0 in {
def WRYrr : F3_1<2, 0b110000,
- (outs), (ins IntRegs:$b, IntRegs:$c),
- "wr $b, $c, %y", []>;
+ (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
+ "wr $rs1, $rs2, %y", []>;
def WRYri : F3_2<2, 0b110000,
- (outs), (ins IntRegs:$b, i32imm:$c),
- "wr $b, $c, %y", []>;
+ (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
+ "wr $rs1, $simm13, %y", []>;
}
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3u<2, 0b110100, 0b011000100,
@@ -771,7 +887,7 @@ def FDIVQ : F3_3<2, 0b110100, 0b001001111,
// This behavior is modeled with a forced noop after the instruction in
// DelaySlotFiller.
-let Defs = [FCC] in {
+let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
def FCMPS : F3_3c<2, 0b110101, 0b001010001,
(outs), (ins FPRegs:$rs1, FPRegs:$rs2),
"fcmps $rs1, $rs2",
@@ -823,7 +939,7 @@ let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
// V9 Conditional Moves.
let Predicates = [HasV9], Constraints = "$f = $rd" in {
// Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
- let Uses = [ICC], cc = 0b100 in {
+ let Uses = [ICC], intcc = 1, cc = 0b00 in {
def MOVICCrr
: F4_1<0b101100, (outs IntRegs:$rd),
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
@@ -838,7 +954,7 @@ let Predicates = [HasV9], Constraints = "$f = $rd" in {
(SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
}
- let Uses = [FCC], cc = 0b000 in {
+ let Uses = [FCC0], intcc = 0, cc = 0b00 in {
def MOVFCCrr
: F4_1<0b101100, (outs IntRegs:$rd),
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
@@ -852,7 +968,7 @@ let Predicates = [HasV9], Constraints = "$f = $rd" in {
(SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
}
- let Uses = [ICC], opf_cc = 0b100 in {
+ let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
def FMOVS_ICC
: F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
(ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
@@ -871,7 +987,7 @@ let Predicates = [HasV9], Constraints = "$f = $rd" in {
Requires<[HasHardQuad]>;
}
- let Uses = [FCC], opf_cc = 0b000 in {
+ let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
def FMOVS_FCC
: F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
(ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
@@ -921,6 +1037,59 @@ let Predicates = [HasV9] in {
Requires<[HasHardQuad]>;
}
+// Floating-point compare instruction with %fcc0-%fcc3.
+def V9FCMPS : F3_3c<2, 0b110101, 0b001010001,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmps $rd, $rs1, $rs2", []>;
+def V9FCMPD : F3_3c<2, 0b110101, 0b001010010,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmpd $rd, $rs1, $rs2", []>;
+def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+
+let hasSideEffects = 1 in {
+ def V9FCMPES : F3_3c<2, 0b110101, 0b001010101,
+ (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
+ "fcmpes $rd, $rs1, $rs2", []>;
+ def V9FCMPED : F3_3c<2, 0b110101, 0b001010110,
+ (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
+ "fcmped $rd, $rs1, $rs2", []>;
+ def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111,
+ (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
+ "fcmpeq $rd, $rs1, $rs2", []>,
+ Requires<[HasHardQuad]>;
+}
+
+// Floating point conditional move instrucitons with %fcc0-%fcc3.
+let Predicates = [HasV9] in {
+ let Constraints = "$f = $rd", intcc = 0 in {
+ def V9MOVFCCrr
+ : F4_1<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $rs2, $rd", []>;
+ def V9MOVFCCri
+ : F4_2<0b101100, (outs IntRegs:$rd),
+ (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
+ "mov$cond $cc, $simm11, $rd", []>;
+ def V9FMOVS_FCC
+ : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
+ (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
+ "fmovs$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVD_FCC
+ : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
+ "fmovd$cond $opf_cc, $rs2, $rd", []>;
+ def V9FMOVQ_FCC
+ : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
+ (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
+ "fmovq$cond $opf_cc, $rs2, $rd", []>,
+ Requires<[HasHardQuad]>;
+ } // Constraints = "$f = $rd", ...
+} // let Predicates = [hasV9]
+
+
// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
// the top 32-bits before using it. To do this clearing, we use a SRLri X,0.
let rs1 = 0 in
@@ -935,10 +1104,10 @@ let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in
def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
- def MEMBARi : F3_2<2, 0b101000, (outs), (ins i32imm:$simm13),
+ def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
"membar $simm13", []>;
-let Constraints = "$val = $dst" in {
+let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
def SWAPrr : F3_1<3, 0b001111,
(outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
"swap [$addr], $dst",
@@ -957,6 +1126,28 @@ let Predicates = [HasV9], Constraints = "$swap = $rd" in
[(set i32:$rd,
(atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
+let Defs = [ICC] in {
+defm TADDCC : F3_12np<"taddcc", 0b100000>;
+defm TSUBCC : F3_12np<"tsubcc", 0b100001>;
+
+let hasSideEffects = 1 in {
+ defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
+ defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
+}
+}
+
+multiclass TRAP<string regStr> {
+ def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
+ CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
+ def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
+ CCOp:$cond),
+ !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
+}
+
+let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
+ defm TICC : TRAP<"%icc">;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
@@ -1032,4 +1223,5 @@ def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
include "SparcInstr64Bit.td"
+include "SparcInstrVIS.td"
include "SparcInstrAliases.td"