aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp3596
1 files changed, 3596 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
new file mode 100644
index 000000000000..9e7e3c6b705a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
@@ -0,0 +1,3596 @@
+//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces that Sparc uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcISelLowering.h"
+#include "MCTargetDesc/SparcMCExpr.h"
+#include "SparcMachineFunctionInfo.h"
+#include "SparcRegisterInfo.h"
+#include "SparcTargetMachine.h"
+#include "SparcTargetObjectFile.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+using namespace llvm;
+
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State)
+{
+ assert (ArgFlags.isSRet());
+
+ // Assign SRet argument.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ 0,
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State)
+{
+ static const MCPhysReg RegList[] = {
+ SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
+ };
+ // Try to get first reg.
+ if (unsigned Reg = State.AllocateReg(RegList)) {
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ } else {
+ // Assign whole thing in stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8,4),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ // Try to get second reg.
+ if (unsigned Reg = State.AllocateReg(RegList))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(4,4),
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State)
+{
+ static const MCPhysReg RegList[] = {
+ SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
+ };
+
+ // Try to get first reg.
+ if (unsigned Reg = State.AllocateReg(RegList))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ return false;
+
+ // Try to get second reg.
+ if (unsigned Reg = State.AllocateReg(RegList))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ return false;
+
+ return true;
+}
+
+// Allocate a full-sized argument for the 64-bit ABI.
+static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ assert((LocVT == MVT::f32 || LocVT == MVT::f128
+ || LocVT.getSizeInBits() == 64) &&
+ "Can't handle non-64 bits locations");
+
+ // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
+ unsigned size = (LocVT == MVT::f128) ? 16 : 8;
+ unsigned alignment = (LocVT == MVT::f128) ? 16 : 8;
+ unsigned Offset = State.AllocateStack(size, alignment);
+ unsigned Reg = 0;
+
+ if (LocVT == MVT::i64 && Offset < 6*8)
+ // Promote integers to %i0-%i5.
+ Reg = SP::I0 + Offset/8;
+ else if (LocVT == MVT::f64 && Offset < 16*8)
+ // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
+ Reg = SP::D0 + Offset/8;
+ else if (LocVT == MVT::f32 && Offset < 16*8)
+ // Promote floats to %f1, %f3, ...
+ Reg = SP::F1 + Offset/4;
+ else if (LocVT == MVT::f128 && Offset < 16*8)
+ // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
+ Reg = SP::Q0 + Offset/16;
+
+ // Promote to register when possible, otherwise use the stack slot.
+ if (Reg) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ // This argument goes on the stack in an 8-byte slot.
+ // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
+ // the right-aligned float. The first 4 bytes of the stack slot are undefined.
+ if (LocVT == MVT::f32)
+ Offset += 4;
+
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+// Allocate a half-sized argument for the 64-bit ABI.
+//
+// This is used when passing { float, int } structs by value in registers.
+static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
+ unsigned Offset = State.AllocateStack(4, 4);
+
+ if (LocVT == MVT::f32 && Offset < 16*8) {
+ // Promote floats to %f0-%f31.
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
+ LocVT, LocInfo));
+ return true;
+ }
+
+ if (LocVT == MVT::i32 && Offset < 6*8) {
+ // Promote integers to %i0-%i5, using half the register.
+ unsigned Reg = SP::I0 + Offset/8;
+ LocVT = MVT::i64;
+ LocInfo = CCValAssign::AExt;
+
+ // Set the Custom bit if this i32 goes in the high bits of a register.
+ if (Offset % 8 == 0)
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
+ LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+#include "SparcGenCallingConv.inc"
+
+// The calling conventions in SparcCallingConv.td are described in terms of the
+// callee's register window. This function translates registers to the
+// corresponding caller window %o register.
+static unsigned toCallerWindow(unsigned Reg) {
+ static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
+ "Unexpected enum");
+ if (Reg >= SP::I0 && Reg <= SP::I7)
+ return Reg - SP::I0 + SP::O0;
+ return Reg;
+}
+
+SDValue
+SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ if (Subtarget->is64Bit())
+ return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
+ return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
+}
+
+SDValue
+SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+ // Make room for the return address offset.
+ RetOps.push_back(SDValue());
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ if (VA.needsCustom()) {
+ assert(VA.getLocVT() == MVT::v2i32);
+ // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
+ // happen by default if this wasn't a legal type)
+
+ SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
+ Arg,
+ DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
+ SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
+ Arg,
+ DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
+ Flag);
+ } else
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
+ // If the function returns a struct, copy the SRetReturnReg to I0
+ if (MF.getFunction()->hasStructRetAttr()) {
+ SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
+ unsigned Reg = SFI->getSRetReturnReg();
+ if (!Reg)
+ llvm_unreachable("sret virtual register not created in the entry block");
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
+ Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
+ RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
+ }
+
+ RetOps[0] = Chain; // Update chain.
+ RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+// Lower return values for the 64-bit ABI.
+// Return values are passed the exactly the same way as function arguments.
+SDValue
+SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // The second operand on the return instruction is the return address offset.
+ // The return address is always %i7+8 with the 64-bit ABI.
+ RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue OutVal = OutVals[i];
+
+ // Integer return values must be sign or zero extended by the callee.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ case CCValAssign::ZExt:
+ OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ case CCValAssign::AExt:
+ OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
+ break;
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ // The custom bit on an i32 return value indicates that it should be passed
+ // in the high bits of the register.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
+ OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
+ DAG.getConstant(32, DL, MVT::i32));
+
+ // The next value may go in the low bits of the same register.
+ // Handle both at once.
+ if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
+ SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
+ OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
+ // Skip the next value, it's already done.
+ ++i;
+ }
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+SDValue SparcTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ if (Subtarget->is64Bit())
+ return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
+ DL, DAG, InVals);
+ return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
+ DL, DAG, InVals);
+}
+
+/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
+/// passed in either one or two GPRs, including FP values. TODO: we should
+/// pass FP values in FP registers for fastcc functions.
+SDValue SparcTargetLowering::LowerFormalArguments_32(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
+
+ const unsigned StackOffset = 92;
+ bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
+
+ unsigned InIdx = 0;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (Ins[InIdx].Flags.isSRet()) {
+ if (InIdx != 0)
+ report_fatal_error("sparc only supports sret on the first parameter");
+ // Get SRet from [%fp+64].
+ int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+ SDValue Arg =
+ DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ if (VA.isRegLoc()) {
+ if (VA.needsCustom()) {
+ assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
+
+ unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
+ SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
+
+ assert(i+1 < e);
+ CCValAssign &NextVA = ArgLocs[++i];
+
+ SDValue LoVal;
+ if (NextVA.isMemLoc()) {
+ int FrameIdx = MF.getFrameInfo().
+ CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+ LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
+ } else {
+ unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
+ &SP::IntRegsRegClass);
+ LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
+ }
+
+ if (IsLittleEndian)
+ std::swap(LoVal, HiVal);
+
+ SDValue WholeValue =
+ DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
+ WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
+ InVals.push_back(WholeValue);
+ continue;
+ }
+ unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
+ SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ if (VA.getLocVT() == MVT::f32)
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
+ else if (VA.getLocVT() != MVT::i32) {
+ Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
+ DAG.getValueType(VA.getLocVT()));
+ Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
+ }
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ unsigned Offset = VA.getLocMemOffset()+StackOffset;
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (VA.needsCustom()) {
+ assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
+ // If it is double-word aligned, just load.
+ if (Offset % 8 == 0) {
+ int FI = MF.getFrameInfo().CreateFixedObject(8,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Load =
+ DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
+ InVals.push_back(Load);
+ continue;
+ }
+
+ int FI = MF.getFrameInfo().CreateFixedObject(4,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
+ SDValue HiVal =
+ DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
+ int FI2 = MF.getFrameInfo().CreateFixedObject(4,
+ Offset+4,
+ true);
+ SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
+
+ SDValue LoVal =
+ DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
+
+ if (IsLittleEndian)
+ std::swap(LoVal, HiVal);
+
+ SDValue WholeValue =
+ DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
+ WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
+ InVals.push_back(WholeValue);
+ continue;
+ }
+
+ int FI = MF.getFrameInfo().CreateFixedObject(4,
+ Offset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Load ;
+ if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
+ Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
+ } else if (VA.getValVT() == MVT::f128) {
+ report_fatal_error("SPARCv8 does not handle f128 in calls; "
+ "pass indirectly");
+ } else {
+ // We shouldn't see any other value types here.
+ llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
+ }
+ InVals.push_back(Load);
+ }
+
+ if (MF.getFunction()->hasStructRetAttr()) {
+ // Copy the SRet Argument to SRetReturnReg.
+ SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
+ unsigned Reg = SFI->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
+ SFI->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ }
+
+ // Store remaining ArgRegs to the stack if this is a varargs function.
+ if (isVarArg) {
+ static const MCPhysReg ArgRegs[] = {
+ SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
+ };
+ unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
+ const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
+ unsigned ArgOffset = CCInfo.getNextStackOffset();
+ if (NumAllocated == 6)
+ ArgOffset += StackOffset;
+ else {
+ assert(!ArgOffset);
+ ArgOffset = 68+4*NumAllocated;
+ }
+
+ // Remember the vararg offset for the va_start implementation.
+ FuncInfo->setVarArgsFrameOffset(ArgOffset);
+
+ std::vector<SDValue> OutChains;
+
+ for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
+ unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+ MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
+ SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
+
+ int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
+ true);
+ SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
+
+ OutChains.push_back(
+ DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
+ ArgOffset += 4;
+ }
+
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ }
+ }
+
+ return Chain;
+}
+
+// Lower formal arguments for the 64 bit ABI.
+SDValue SparcTargetLowering::LowerFormalArguments_64(
+ SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Analyze arguments according to CC_Sparc64.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
+
+ // The argument array begins at %fp+BIAS+128, after the register save area.
+ const unsigned ArgArea = 128;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc()) {
+ // This argument is passed in a register.
+ // All integer register arguments are promoted by the caller to i64.
+
+ // Create a virtual register for the promoted live-in value.
+ unsigned VReg = MF.addLiveIn(VA.getLocReg(),
+ getRegClassFor(VA.getLocVT()));
+ SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
+
+ // Get the high bits for i32 struct elements.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom())
+ Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
+ DAG.getConstant(32, DL, MVT::i32));
+
+ // The caller promoted the argument, so insert an Assert?ext SDNode so we
+ // won't promote the value again in this function.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ default:
+ break;
+ }
+
+ // Truncate the register down to the argument type.
+ if (VA.isExtInLoc())
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
+
+ InVals.push_back(Arg);
+ continue;
+ }
+
+ // The registers are exhausted. This argument was passed on the stack.
+ assert(VA.isMemLoc());
+ // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
+ // beginning of the arguments area at %fp+BIAS+128.
+ unsigned Offset = VA.getLocMemOffset() + ArgArea;
+ unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
+ // Adjust offset for extended arguments, SPARC is big-endian.
+ // The caller will have written the full slot with extended bytes, but we
+ // prefer our own extending loads.
+ if (VA.isExtInLoc())
+ Offset += 8 - ValSize;
+ int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
+ InVals.push_back(
+ DAG.getLoad(VA.getValVT(), DL, Chain,
+ DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ }
+
+ if (!IsVarArg)
+ return Chain;
+
+ // This function takes variable arguments, some of which may have been passed
+ // in registers %i0-%i5. Variable floating point arguments are never passed
+ // in floating point registers. They go on %i0-%i5 or on the stack like
+ // integer arguments.
+ //
+ // The va_start intrinsic needs to know the offset to the first variable
+ // argument.
+ unsigned ArgOffset = CCInfo.getNextStackOffset();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+ // Skip the 128 bytes of register save area.
+ FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
+ Subtarget->getStackPointerBias());
+
+ // Save the variable arguments that were passed in registers.
+ // The caller is required to reserve stack space for 6 arguments regardless
+ // of how many arguments were actually passed.
+ SmallVector<SDValue, 8> OutChains;
+ for (; ArgOffset < 6*8; ArgOffset += 8) {
+ unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
+ SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
+ int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ OutChains.push_back(
+ DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ }
+
+ if (!OutChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
+
+ return Chain;
+}
+
+SDValue
+SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ if (Subtarget->is64Bit())
+ return LowerCall_64(CLI, InVals);
+ return LowerCall_32(CLI, InVals);
+}
+
+static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
+ ImmutableCallSite *CS) {
+ if (CS)
+ return CS->hasFnAttr(Attribute::ReturnsTwice);
+
+ const Function *CalleeFn = nullptr;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ CalleeFn = dyn_cast<Function>(G->getGlobal());
+ } else if (ExternalSymbolSDNode *E =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const Function *Fn = DAG.getMachineFunction().getFunction();
+ const Module *M = Fn->getParent();
+ const char *CalleeName = E->getSymbol();
+ CalleeFn = M->getFunction(CalleeName);
+ }
+
+ if (!CalleeFn)
+ return false;
+ return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
+}
+
+// Lower a call for the 32-bit ABI.
+SDValue
+SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ // Sparc target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
+
+ // Get the size of the outgoing arguments stack space requirement.
+ unsigned ArgsSize = CCInfo.getNextStackOffset();
+
+ // Keep stack frames 8-byte aligned.
+ ArgsSize = (ArgsSize+7) & ~7;
+
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+
+ // Create local copies for byval args.
+ SmallVector<SDValue, 8> ByValArgs;
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (!Flags.isByVal())
+ continue;
+
+ SDValue Arg = OutVals[i];
+ unsigned Size = Flags.getByValSize();
+ unsigned Align = Flags.getByValAlign();
+
+ if (Size > 0U) {
+ int FI = MFI.CreateStackObject(Size, Align, false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
+
+ Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
+ false, // isVolatile,
+ (Size <= 32), // AlwaysInline if size <= 32,
+ false, // isTailCall
+ MachinePointerInfo(), MachinePointerInfo());
+ ByValArgs.push_back(FIPtr);
+ }
+ else {
+ SDValue nullVal;
+ ByValArgs.push_back(nullVal);
+ }
+ }
+
+ Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ const unsigned StackOffset = 92;
+ bool hasStructRetAttr = false;
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+
+ // Use local copy if it is a byval arg.
+ if (Flags.isByVal()) {
+ Arg = ByValArgs[byvalArgIdx++];
+ if (!Arg) {
+ continue;
+ }
+ }
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (Flags.isSRet()) {
+ assert(VA.needsCustom());
+ // store SRet argument in %sp+64
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
+ hasStructRetAttr = true;
+ continue;
+ }
+
+ if (VA.needsCustom()) {
+ assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
+
+ if (VA.isMemLoc()) {
+ unsigned Offset = VA.getLocMemOffset() + StackOffset;
+ // if it is double-word aligned, just store.
+ if (Offset % 8 == 0) {
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
+ continue;
+ }
+ }
+
+ if (VA.getLocVT() == MVT::f64) {
+ // Move from the float value from float registers into the
+ // integer registers.
+
+ // TODO: The f64 -> v2i32 conversion is super-inefficient for
+ // constants: it sticks them in the constant pool, then loads
+ // to a fp register, then stores to temp memory, then loads to
+ // integer registers.
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
+ }
+
+ SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ Arg,
+ DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
+ SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ Arg,
+ DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
+ assert(i+1 != e);
+ CCValAssign &NextVA = ArgLocs[++i];
+ if (NextVA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
+ } else {
+ // Store the second part in stack.
+ unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
+ }
+ } else {
+ unsigned Offset = VA.getLocMemOffset() + StackOffset;
+ // Store the first part.
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
+ // Store the second part.
+ PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
+ }
+ continue;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ if (VA.getLocVT() != MVT::f32) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ // Create a store off the stack pointer for this argument.
+ SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
+ SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
+ dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
+ }
+
+
+ // Emit all stores, make sure the occur before any copies into physregs.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ unsigned Reg = toCallerWindow(RegsToPass[i].first);
+ Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
+ bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
+
+ // Returns a chain & a flag for retval copy to use
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ if (hasStructRetAttr)
+ Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ const uint32_t *Mask =
+ ((hasReturnsTwice)
+ ? TRI->getRTCallPreservedMask(CallConv)
+ : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ if (RVLocs[i].getLocVT() == MVT::v2i32) {
+ SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
+ SDValue Lo = DAG.getCopyFromReg(
+ Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue Hi = DAG.getCopyFromReg(
+ Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
+ DAG.getConstant(1, dl, MVT::i32));
+ InVals.push_back(Vec);
+ } else {
+ Chain =
+ DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
+ RVLocs[i].getValVT(), InFlag)
+ .getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+ }
+
+ return Chain;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned SparcTargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
+ .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
+ .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
+ .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
+ .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
+ .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
+ .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
+ .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
+ .Default(0);
+
+ if (Reg)
+ return Reg;
+
+ report_fatal_error("Invalid register name global variable");
+}
+
+// This functions returns true if CalleeName is a ABI function that returns
+// a long double (fp128).
+static bool isFP128ABICall(const char *CalleeName)
+{
+ static const char *const ABICalls[] =
+ { "_Q_add", "_Q_sub", "_Q_mul", "_Q_div",
+ "_Q_sqrt", "_Q_neg",
+ "_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq",
+ "_Q_lltoq", "_Q_ulltoq",
+ nullptr
+ };
+ for (const char * const *I = ABICalls; *I != nullptr; ++I)
+ if (strcmp(CalleeName, *I) == 0)
+ return true;
+ return false;
+}
+
+unsigned
+SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
+{
+ const Function *CalleeFn = nullptr;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ CalleeFn = dyn_cast<Function>(G->getGlobal());
+ } else if (ExternalSymbolSDNode *E =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const Function *Fn = DAG.getMachineFunction().getFunction();
+ const Module *M = Fn->getParent();
+ const char *CalleeName = E->getSymbol();
+ CalleeFn = M->getFunction(CalleeName);
+ if (!CalleeFn && isFP128ABICall(CalleeName))
+ return 16; // Return sizeof(fp128)
+ }
+
+ if (!CalleeFn)
+ return 0;
+
+ // It would be nice to check for the sret attribute on CalleeFn here,
+ // but since it is not part of the function type, any check will misfire.
+
+ PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
+ Type *ElementTy = Ty->getElementType();
+ return DAG.getDataLayout().getTypeAllocSize(ElementTy);
+}
+
+
+// Fixup floating point arguments in the ... part of a varargs call.
+//
+// The SPARC v9 ABI requires that floating point arguments are treated the same
+// as integers when calling a varargs function. This does not apply to the
+// fixed arguments that are part of the function's prototype.
+//
+// This function post-processes a CCValAssign array created by
+// AnalyzeCallOperands().
+static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
+ ArrayRef<ISD::OutputArg> Outs) {
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = ArgLocs[i];
+ MVT ValTy = VA.getLocVT();
+ // FIXME: What about f32 arguments? C promotes them to f64 when calling
+ // varargs functions.
+ if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
+ continue;
+ // The fixed arguments to a varargs function still go in FP registers.
+ if (Outs[VA.getValNo()].IsFixed)
+ continue;
+
+ // This floating point argument should be reassigned.
+ CCValAssign NewVA;
+
+ // Determine the offset into the argument array.
+ unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
+ unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
+ unsigned Offset = argSize * (VA.getLocReg() - firstReg);
+ assert(Offset < 16*8 && "Offset out of range, bad register enum?");
+
+ if (Offset < 6*8) {
+ // This argument should go in %i0-%i5.
+ unsigned IReg = SP::I0 + Offset/8;
+ if (ValTy == MVT::f64)
+ // Full register, just bitconvert into i64.
+ NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
+ IReg, MVT::i64, CCValAssign::BCvt);
+ else {
+ assert(ValTy == MVT::f128 && "Unexpected type!");
+ // Full register, just bitconvert into i128 -- We will lower this into
+ // two i64s in LowerCall_64.
+ NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
+ IReg, MVT::i128, CCValAssign::BCvt);
+ }
+ } else {
+ // This needs to go to memory, we're out of integer registers.
+ NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
+ Offset, VA.getLocVT(), VA.getLocInfo());
+ }
+ ArgLocs[i] = NewVA;
+ }
+}
+
+// Lower a call for the 64-bit ABI.
+SDValue
+SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc DL = CLI.DL;
+ SDValue Chain = CLI.Chain;
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ // Sparc target does not yet support tail call optimization.
+ CLI.IsTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
+
+ // Get the size of the outgoing arguments stack space requirement.
+ // The stack offset computed by CC_Sparc64 includes all arguments.
+ // Called functions expect 6 argument words to exist in the stack frame, used
+ // or not.
+ unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
+
+ // Keep stack frames 16-byte aligned.
+ ArgsSize = alignTo(ArgsSize, 16);
+
+ // Varargs calls require special treatment.
+ if (CLI.IsVarArg)
+ fixupVariableFloatArgs(ArgLocs, CLI.Outs);
+
+ // Adjust the stack pointer to make room for the arguments.
+ // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
+ // with more than 6 arguments.
+ Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
+
+ // Collect the set of registers to pass to the function and their values.
+ // This will be emitted as a sequence of CopyToReg nodes glued to the call
+ // instruction.
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ // Collect chains from all the memory opeations that copy arguments to the
+ // stack. They must follow the stack pointer adjustment above and precede the
+ // call instruction itself.
+ SmallVector<SDValue, 8> MemOpChains;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = CLI.OutVals[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown location info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
+ // SPARC does not support i128 natively. Lower it into two i64, see below.
+ if (!VA.needsCustom() || VA.getValVT() != MVT::f128
+ || VA.getLocVT() != MVT::i128)
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isRegLoc()) {
+ if (VA.needsCustom() && VA.getValVT() == MVT::f128
+ && VA.getLocVT() == MVT::i128) {
+ // Store and reload into the integer register reg and reg+1.
+ unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
+ unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
+ SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
+ SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
+ HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
+ SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
+ LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
+
+ // Store to %sp+BIAS+128+Offset
+ SDValue Store =
+ DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
+ // Load into Reg and Reg+1
+ SDValue Hi64 =
+ DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
+ SDValue Lo64 =
+ DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
+ Hi64));
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
+ Lo64));
+ continue;
+ }
+
+ // The custom bit on an i32 return value indicates that it should be
+ // passed in the high bits of the register.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
+ Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
+ DAG.getConstant(32, DL, MVT::i32));
+
+ // The next value may go in the low bits of the same register.
+ // Handle both at once.
+ if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
+ ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
+ SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
+ CLI.OutVals[i+1]);
+ Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
+ // Skip the next value, it's already done.
+ ++i;
+ }
+ }
+ RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+
+ // Create a store off the stack pointer for this argument.
+ SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
+ // The argument area starts at %fp+BIAS+128 in the callee frame,
+ // %sp+BIAS+128 in ours.
+ SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
+ Subtarget->getStackPointerBias() +
+ 128, DL);
+ PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
+ }
+
+ // Emit all stores, make sure they occur before the call.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Build a sequence of CopyToReg nodes glued together with token chain and
+ // glue operands which copy the outgoing args into registers. The InGlue is
+ // necessary since all emitted instructions must be stuck together in order
+ // to pass the live physical registers.
+ SDValue InGlue;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, DL,
+ RegsToPass[i].first, RegsToPass[i].second, InGlue);
+ InGlue = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ SDValue Callee = CLI.Callee;
+ bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
+ unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
+
+ // Build the operands for the call instruction itself.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ const uint32_t *Mask =
+ ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
+ : TRI->getCallPreservedMask(DAG.getMachineFunction(),
+ CLI.CallConv));
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ // Make sure the CopyToReg nodes are glued to the call instruction which
+ // consumes the registers.
+ if (InGlue.getNode())
+ Ops.push_back(InGlue);
+
+ // Now the call itself.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
+ InGlue = Chain.getValue(1);
+
+ // Revert the stack pointer immediately after the call.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
+ DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
+ InGlue = Chain.getValue(1);
+
+ // Now extract the return values. This is more or less the same as
+ // LowerFormalArguments_64.
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Set inreg flag manually for codegen generated library calls that
+ // return float.
+ if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && CLI.CS == nullptr)
+ CLI.Ins[0].Flags.setInReg();
+
+ RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ unsigned Reg = toCallerWindow(VA.getLocReg());
+
+ // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
+ // reside in the same register in the high and low bits. Reuse the
+ // CopyFromReg previous node to avoid duplicate copies.
+ SDValue RV;
+ if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
+ if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
+ RV = Chain.getValue(0);
+
+ // But usually we'll create a new CopyFromReg for a different register.
+ if (!RV.getNode()) {
+ RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
+ Chain = RV.getValue(1);
+ InGlue = Chain.getValue(2);
+ }
+
+ // Get the high bits for i32 struct elements.
+ if (VA.getValVT() == MVT::i32 && VA.needsCustom())
+ RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
+ DAG.getConstant(32, DL, MVT::i32));
+
+ // The callee promoted the return value, so insert an Assert?ext SDNode so
+ // we won't promote the value again in this function.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ case CCValAssign::ZExt:
+ RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
+ DAG.getValueType(VA.getValVT()));
+ break;
+ default:
+ break;
+ }
+
+ // Truncate the register down to the return value type.
+ if (VA.isExtInLoc())
+ RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
+
+ InVals.push_back(RV);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===----------------------------------------------------------------------===//
+
+TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ if (AI->getOperation() == AtomicRMWInst::Xchg &&
+ AI->getType()->getPrimitiveSizeInBits() == 32)
+ return AtomicExpansionKind::None; // Uses xchg instruction
+
+ return AtomicExpansionKind::CmpXChg;
+}
+
+/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
+/// condition.
+static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ISD::SETEQ: return SPCC::ICC_E;
+ case ISD::SETNE: return SPCC::ICC_NE;
+ case ISD::SETLT: return SPCC::ICC_L;
+ case ISD::SETGT: return SPCC::ICC_G;
+ case ISD::SETLE: return SPCC::ICC_LE;
+ case ISD::SETGE: return SPCC::ICC_GE;
+ case ISD::SETULT: return SPCC::ICC_CS;
+ case ISD::SETULE: return SPCC::ICC_LEU;
+ case ISD::SETUGT: return SPCC::ICC_GU;
+ case ISD::SETUGE: return SPCC::ICC_CC;
+ }
+}
+
+/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
+/// FCC condition.
+static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown fp condition code!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: return SPCC::FCC_E;
+ case ISD::SETNE:
+ case ISD::SETUNE: return SPCC::FCC_NE;
+ case ISD::SETLT:
+ case ISD::SETOLT: return SPCC::FCC_L;
+ case ISD::SETGT:
+ case ISD::SETOGT: return SPCC::FCC_G;
+ case ISD::SETLE:
+ case ISD::SETOLE: return SPCC::FCC_LE;
+ case ISD::SETGE:
+ case ISD::SETOGE: return SPCC::FCC_GE;
+ case ISD::SETULT: return SPCC::FCC_UL;
+ case ISD::SETULE: return SPCC::FCC_ULE;
+ case ISD::SETUGT: return SPCC::FCC_UG;
+ case ISD::SETUGE: return SPCC::FCC_UGE;
+ case ISD::SETUO: return SPCC::FCC_U;
+ case ISD::SETO: return SPCC::FCC_O;
+ case ISD::SETONE: return SPCC::FCC_LG;
+ case ISD::SETUEQ: return SPCC::FCC_UE;
+ }
+}
+
+SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
+ const SparcSubtarget &STI)
+ : TargetLowering(TM), Subtarget(&STI) {
+ MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
+
+ // Instructions which use registers as conditionals examine all the
+ // bits (as does the pseudo SELECT_CC expansion). I don't think it
+ // matters much whether it's ZeroOrOneBooleanContent, or
+ // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
+ // former.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
+ if (!Subtarget->useSoftFloat()) {
+ addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
+ addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
+ addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
+ }
+ if (Subtarget->is64Bit()) {
+ addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
+ } else {
+ // On 32bit sparc, we define a double-register 32bit register
+ // class, as well. This is modeled in LLVM as a 2-vector of i32.
+ addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
+
+ // ...but almost all operations must be expanded, so set that as
+ // the default.
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
+ setOperationAction(Op, MVT::v2i32, Expand);
+ }
+ // Truncating/extending stores/loads are also not supported.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
+
+ setTruncStoreAction(VT, MVT::v2i32, Expand);
+ setTruncStoreAction(MVT::v2i32, VT, Expand);
+ }
+ // However, load and store *are* legal.
+ setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
+ setOperationAction(ISD::STORE, MVT::v2i32, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
+
+ // And we need to promote i64 loads/stores into vector load/store
+ setOperationAction(ISD::LOAD, MVT::i64, Custom);
+ setOperationAction(ISD::STORE, MVT::i64, Custom);
+
+ // Sadly, this doesn't work:
+ // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
+ // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
+ }
+
+ // Turn FP extload into load/fpextend
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
+ }
+
+ // Sparc doesn't have i1 sign extending load
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+
+ // Turn FP truncstore into trunc + store.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+
+ // Custom legalize GlobalAddress nodes into LO/HI parts.
+ setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
+ setOperationAction(ISD::ConstantPool, PtrVT, Custom);
+ setOperationAction(ISD::BlockAddress, PtrVT, Custom);
+
+ // Sparc doesn't have sext_inreg, replace them with shl/sra
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+
+ // Sparc has no REM or DIVREM operations.
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+
+ // ... nor does SparcV9.
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ }
+
+ // Custom expand fp<->sint
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+
+ // Custom Expand fp<->uint
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+
+ setOperationAction(ISD::BITCAST, MVT::f32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i32, Expand);
+
+ // Sparc has no select or setcc: expand to SELECT_CC.
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f128, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SETCC, MVT::f128, Expand);
+
+ // Sparc doesn't have BRCOND either, it has BR_CC.
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f128, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
+
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ADDC, MVT::i64, Custom);
+ setOperationAction(ISD::ADDE, MVT::i64, Custom);
+ setOperationAction(ISD::SUBC, MVT::i64, Custom);
+ setOperationAction(ISD::SUBE, MVT::i64, Custom);
+ setOperationAction(ISD::BITCAST, MVT::f64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::i64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+
+ setOperationAction(ISD::CTPOP, MVT::i64,
+ Subtarget->usePopc() ? Legal : Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i64, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+ setOperationAction(ISD::ROTL , MVT::i64, Expand);
+ setOperationAction(ISD::ROTR , MVT::i64, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
+ }
+
+ // ATOMICs.
+ // Atomics are supported on SparcV9. 32-bit atomics are also
+ // supported by some Leon SparcV8 variants. Otherwise, atomics
+ // are unsupported.
+ if (Subtarget->isV9())
+ setMaxAtomicSizeInBitsSupported(64);
+ else if (Subtarget->hasLeonCasa())
+ setMaxAtomicSizeInBitsSupported(32);
+ else
+ setMaxAtomicSizeInBitsSupported(0);
+
+ setMinCmpXchgSizeInBits(32);
+
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
+
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
+
+ // Custom Lower Atomic LOAD/STORE
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ }
+
+ if (!Subtarget->isV9()) {
+ // SparcV8 does not have FNEGD and FABSD.
+ setOperationAction(ISD::FNEG, MVT::f64, Custom);
+ setOperationAction(ISD::FABS, MVT::f64, Custom);
+ }
+
+ setOperationAction(ISD::FSIN , MVT::f128, Expand);
+ setOperationAction(ISD::FCOS , MVT::f128, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FREM , MVT::f128, Expand);
+ setOperationAction(ISD::FMA , MVT::f128, Expand);
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FMA , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+ setOperationAction(ISD::FMA , MVT::f32, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i32, Expand);
+ setOperationAction(ISD::ROTL , MVT::i32, Expand);
+ setOperationAction(ISD::ROTR , MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW , MVT::f128, Expand);
+ setOperationAction(ISD::FPOW , MVT::f64, Expand);
+ setOperationAction(ISD::FPOW , MVT::f32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ // Expands to [SU]MUL_LOHI.
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ setOperationAction(ISD::MUL, MVT::i32, Expand);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+
+ setOperationAction(ISD::UMULO, MVT::i64, Custom);
+ setOperationAction(ISD::SMULO, MVT::i64, Custom);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+ }
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ // VAARG needs to be lowered to not do unaligned accesses for doubles.
+ setOperationAction(ISD::VAARG , MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP , MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
+
+ setStackPointerRegisterToSaveRestore(SP::O6);
+
+ setOperationAction(ISD::CTPOP, MVT::i32,
+ Subtarget->usePopc() ? Legal : Expand);
+
+ if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
+ setOperationAction(ISD::LOAD, MVT::f128, Legal);
+ setOperationAction(ISD::STORE, MVT::f128, Legal);
+ } else {
+ setOperationAction(ISD::LOAD, MVT::f128, Custom);
+ setOperationAction(ISD::STORE, MVT::f128, Custom);
+ }
+
+ if (Subtarget->hasHardQuad()) {
+ setOperationAction(ISD::FADD, MVT::f128, Legal);
+ setOperationAction(ISD::FSUB, MVT::f128, Legal);
+ setOperationAction(ISD::FMUL, MVT::f128, Legal);
+ setOperationAction(ISD::FDIV, MVT::f128, Legal);
+ setOperationAction(ISD::FSQRT, MVT::f128, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
+ if (Subtarget->isV9()) {
+ setOperationAction(ISD::FNEG, MVT::f128, Legal);
+ setOperationAction(ISD::FABS, MVT::f128, Legal);
+ } else {
+ setOperationAction(ISD::FNEG, MVT::f128, Custom);
+ setOperationAction(ISD::FABS, MVT::f128, Custom);
+ }
+
+ if (!Subtarget->is64Bit()) {
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
+ }
+
+ } else {
+ // Custom legalize f128 operations.
+
+ setOperationAction(ISD::FADD, MVT::f128, Custom);
+ setOperationAction(ISD::FSUB, MVT::f128, Custom);
+ setOperationAction(ISD::FMUL, MVT::f128, Custom);
+ setOperationAction(ISD::FDIV, MVT::f128, Custom);
+ setOperationAction(ISD::FSQRT, MVT::f128, Custom);
+ setOperationAction(ISD::FNEG, MVT::f128, Custom);
+ setOperationAction(ISD::FABS, MVT::f128, Custom);
+
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+
+ // Setup Runtime library names.
+ if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
+ setLibcallName(RTLIB::ADD_F128, "_Qp_add");
+ setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
+ setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
+ setLibcallName(RTLIB::DIV_F128, "_Qp_div");
+ setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
+ setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
+ setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
+ setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
+ setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
+ setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
+ setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
+ setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
+ setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
+ } else if (!Subtarget->useSoftFloat()) {
+ setLibcallName(RTLIB::ADD_F128, "_Q_add");
+ setLibcallName(RTLIB::SUB_F128, "_Q_sub");
+ setLibcallName(RTLIB::MUL_F128, "_Q_mul");
+ setLibcallName(RTLIB::DIV_F128, "_Q_div");
+ setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
+ setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
+ setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
+ setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
+ setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
+ setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
+ setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
+ setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
+ setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
+ setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
+ setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
+ setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
+ setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
+ }
+ }
+
+ if (Subtarget->fixAllFDIVSQRT()) {
+ // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
+ // the former instructions generate errata on LEON processors.
+ setOperationAction(ISD::FDIV, MVT::f32, Promote);
+ setOperationAction(ISD::FSQRT, MVT::f32, Promote);
+ }
+
+ if (Subtarget->replaceFMULS()) {
+ // Promote FMULS to FMULD instructions instead as
+ // the former instructions generate errata on LEON processors.
+ setOperationAction(ISD::FMUL, MVT::f32, Promote);
+ }
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ setMinFunctionAlignment(2);
+
+ computeRegisterProperties(Subtarget->getRegisterInfo());
+}
+
+bool SparcTargetLowering::useSoftFloat() const {
+ return Subtarget->useSoftFloat();
+}
+
+const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((SPISD::NodeType)Opcode) {
+ case SPISD::FIRST_NUMBER: break;
+ case SPISD::CMPICC: return "SPISD::CMPICC";
+ case SPISD::CMPFCC: return "SPISD::CMPFCC";
+ case SPISD::BRICC: return "SPISD::BRICC";
+ case SPISD::BRXCC: return "SPISD::BRXCC";
+ case SPISD::BRFCC: return "SPISD::BRFCC";
+ case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
+ case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
+ case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
+ case SPISD::EH_SJLJ_SETJMP: return "SPISD::EH_SJLJ_SETJMP";
+ case SPISD::EH_SJLJ_LONGJMP: return "SPISD::EH_SJLJ_LONGJMP";
+ case SPISD::Hi: return "SPISD::Hi";
+ case SPISD::Lo: return "SPISD::Lo";
+ case SPISD::FTOI: return "SPISD::FTOI";
+ case SPISD::ITOF: return "SPISD::ITOF";
+ case SPISD::FTOX: return "SPISD::FTOX";
+ case SPISD::XTOF: return "SPISD::XTOF";
+ case SPISD::CALL: return "SPISD::CALL";
+ case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
+ case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
+ case SPISD::FLUSHW: return "SPISD::FLUSHW";
+ case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
+ case SPISD::TLS_LD: return "SPISD::TLS_LD";
+ case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
+ }
+ return nullptr;
+}
+
+EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
+ EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
+/// be zero. Op is expected to be a target specific node. Used by DAG
+/// combiner.
+void SparcTargetLowering::computeKnownBitsForTargetNode
+ (const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownBits Known2;
+ Known.resetAll();
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case SPISD::SELECT_ICC:
+ case SPISD::SELECT_XCC:
+ case SPISD::SELECT_FCC:
+ DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1);
+ DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1);
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ }
+}
+
+// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
+// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
+static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
+ ISD::CondCode CC, unsigned &SPCC) {
+ if (isNullConstant(RHS) &&
+ CC == ISD::SETNE &&
+ (((LHS.getOpcode() == SPISD::SELECT_ICC ||
+ LHS.getOpcode() == SPISD::SELECT_XCC) &&
+ LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
+ (LHS.getOpcode() == SPISD::SELECT_FCC &&
+ LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
+ isOneConstant(LHS.getOperand(0)) &&
+ isNullConstant(LHS.getOperand(1))) {
+ SDValue CMPCC = LHS.getOperand(3);
+ SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
+ LHS = CMPCC.getOperand(0);
+ RHS = CMPCC.getOperand(1);
+ }
+}
+
+// Convert to a target node and set target flags.
+SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
+ SelectionDAG &DAG) const {
+ if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
+ return DAG.getTargetGlobalAddress(GA->getGlobal(),
+ SDLoc(GA),
+ GA->getValueType(0),
+ GA->getOffset(), TF);
+
+ if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
+ return DAG.getTargetConstantPool(CP->getConstVal(),
+ CP->getValueType(0),
+ CP->getAlignment(),
+ CP->getOffset(), TF);
+
+ if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
+ return DAG.getTargetBlockAddress(BA->getBlockAddress(),
+ Op.getValueType(),
+ 0,
+ TF);
+
+ if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
+ return DAG.getTargetExternalSymbol(ES->getSymbol(),
+ ES->getValueType(0), TF);
+
+ llvm_unreachable("Unhandled address SDNode");
+}
+
+// Split Op into high and low parts according to HiTF and LoTF.
+// Return an ADD node combining the parts.
+SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
+ unsigned HiTF, unsigned LoTF,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
+ return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
+}
+
+// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
+// or ExternalSymbol SDNode.
+SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = getPointerTy(DAG.getDataLayout());
+
+ // Handle PIC mode first. SPARC needs a got load for every variable!
+ if (isPositionIndependent()) {
+ // This is the pic32 code model, the GOT is known to be smaller than 4GB.
+ SDValue HiLo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
+ SparcMCExpr::VK_Sparc_GOT10, DAG);
+ SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
+ SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo);
+ // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
+ // function has calls.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setHasCalls(true);
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+ }
+
+ // This is one of the absolute code models.
+ switch(getTargetMachine().getCodeModel()) {
+ default:
+ llvm_unreachable("Unsupported absolute code model");
+ case CodeModel::Small:
+ // abs32.
+ return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
+ SparcMCExpr::VK_Sparc_LO, DAG);
+ case CodeModel::Medium: {
+ // abs44.
+ SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
+ SparcMCExpr::VK_Sparc_M44, DAG);
+ H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
+ SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
+ L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
+ return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
+ }
+ case CodeModel::Large: {
+ // abs64.
+ SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
+ SparcMCExpr::VK_Sparc_HM, DAG);
+ Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
+ SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
+ SparcMCExpr::VK_Sparc_LO, DAG);
+ return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
+ }
+ }
+}
+
+SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ return makeAddress(Op, DAG);
+}
+
+SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ if (DAG.getTarget().Options.EmulatedTLS)
+ return LowerToTLSEmulatedModel(GA, DAG);
+
+ SDLoc DL(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GV);
+
+ if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
+ unsigned HiTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
+ : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
+ unsigned LoTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
+ : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
+ unsigned addTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
+ : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
+ unsigned callTF = ((model == TLSModel::GeneralDynamic)
+ ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
+ : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
+
+ SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
+ SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
+ SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
+ withTargetFlags(Op, addTF, DAG));
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue InFlag;
+
+ Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
+ Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
+ InFlag = Chain.getValue(1);
+ SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
+ SDValue Symbol = withTargetFlags(Op, callTF, DAG);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
+ DAG.getMachineFunction(), CallingConv::C);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ SDValue Ops[] = {Chain,
+ Callee,
+ Symbol,
+ DAG.getRegister(SP::O0, PtrVT),
+ DAG.getRegisterMask(Mask),
+ InFlag};
+ Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true),
+ DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+ SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
+
+ if (model != TLSModel::LocalDynamic)
+ return Ret;
+
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
+ HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
+ return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
+ }
+
+ if (model == TLSModel::InitialExec) {
+ unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
+ : SparcMCExpr::VK_Sparc_TLS_IE_LD);
+
+ SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
+
+ // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
+ // function has calls.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setHasCalls(true);
+
+ SDValue TGA = makeHiLoPair(Op,
+ SparcMCExpr::VK_Sparc_TLS_IE_HI22,
+ SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
+ SDValue Offset = DAG.getNode(SPISD::TLS_LD,
+ DL, PtrVT, Ptr,
+ withTargetFlags(Op, ldTF, DAG));
+ return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
+ DAG.getRegister(SP::G7, PtrVT), Offset,
+ withTargetFlags(Op,
+ SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
+ }
+
+ assert(model == TLSModel::LocalExec);
+ SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
+ SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
+ withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
+ SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
+
+ return DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getRegister(SP::G7, PtrVT), Offset);
+}
+
+SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
+ ArgListTy &Args, SDValue Arg,
+ const SDLoc &DL,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ ArgListEntry Entry;
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+
+ if (ArgTy->isFP128Ty()) {
+ // Create a stack object and pass the pointer to the library function.
+ int FI = MFI.CreateStackObject(16, 8, false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
+ /* Alignment = */ 8);
+
+ Entry.Node = FIPtr;
+ Entry.Ty = PointerType::getUnqual(ArgTy);
+ }
+ Args.push_back(Entry);
+ return Chain;
+}
+
+SDValue
+SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
+ const char *LibFuncName,
+ unsigned numArgs) const {
+
+ ArgListTy Args;
+
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
+ Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
+ Type *RetTyABI = RetTy;
+ SDValue Chain = DAG.getEntryNode();
+ SDValue RetPtr;
+
+ if (RetTy->isFP128Ty()) {
+ // Create a Stack Object to receive the return value of type f128.
+ ArgListEntry Entry;
+ int RetFI = MFI.CreateStackObject(16, 8, false);
+ RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
+ Entry.Node = RetPtr;
+ Entry.Ty = PointerType::getUnqual(RetTy);
+ if (!Subtarget->is64Bit())
+ Entry.IsSRet = true;
+ Entry.IsReturned = false;
+ Args.push_back(Entry);
+ RetTyABI = Type::getVoidTy(*DAG.getContext());
+ }
+
+ assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
+ for (unsigned i = 0, e = numArgs; i != e; ++i) {
+ Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
+ }
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
+ .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+
+ // chain is in second result.
+ if (RetTyABI == RetTy)
+ return CallInfo.first;
+
+ assert (RetTy->isFP128Ty() && "Unexpected return type!");
+
+ Chain = CallInfo.second;
+
+ // Load RetPtr to get the return value.
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
+ MachinePointerInfo(), /* Alignment = */ 8);
+}
+
+SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
+ unsigned &SPCC, const SDLoc &DL,
+ SelectionDAG &DAG) const {
+
+ const char *LibCall = nullptr;
+ bool is64Bit = Subtarget->is64Bit();
+ switch(SPCC) {
+ default: llvm_unreachable("Unhandled conditional code!");
+ case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
+ case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
+ case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
+ case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
+ case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
+ case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
+ case SPCC::FCC_UL :
+ case SPCC::FCC_ULE:
+ case SPCC::FCC_UG :
+ case SPCC::FCC_UGE:
+ case SPCC::FCC_U :
+ case SPCC::FCC_O :
+ case SPCC::FCC_LG :
+ case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
+ }
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
+ Type *RetTy = Type::getInt32Ty(*DAG.getContext());
+ ArgListTy Args;
+ SDValue Chain = DAG.getEntryNode();
+ Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
+ Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL).setChain(Chain)
+ .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+
+ // result is in first, and chain is in second result.
+ SDValue Result = CallInfo.first;
+
+ switch(SPCC) {
+ default: {
+ SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UL : {
+ SDValue Mask = DAG.getTargetConstant(1, DL, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_ULE: {
+ SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UG : {
+ SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
+ SPCC = SPCC::ICC_G;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UGE: {
+ SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+
+ case SPCC::FCC_U : {
+ SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
+ SPCC = SPCC::ICC_E;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_O : {
+ SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_LG : {
+ SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
+ SPCC = SPCC::ICC_NE;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ case SPCC::FCC_UE : {
+ SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType());
+ Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
+ SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
+ SPCC = SPCC::ICC_E;
+ return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
+ }
+ }
+}
+
+static SDValue
+LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+
+ if (Op.getOperand(0).getValueType() == MVT::f64)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
+
+ if (Op.getOperand(0).getValueType() == MVT::f32)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
+
+ llvm_unreachable("fpextend with non-float operand!");
+ return SDValue();
+}
+
+static SDValue
+LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+ // FP_ROUND on f64 and f32 are legal.
+ if (Op.getOperand(0).getValueType() != MVT::f128)
+ return Op;
+
+ if (Op.getValueType() == MVT::f64)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
+ if (Op.getValueType() == MVT::f32)
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
+
+ llvm_unreachable("fpround to non-float!");
+ return SDValue();
+}
+
+static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ assert(VT == MVT::i32 || VT == MVT::i64);
+
+ // Expand f128 operations to fp128 abi calls.
+ if (Op.getOperand(0).getValueType() == MVT::f128
+ && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
+ const char *libName = TLI.getLibcallName(VT == MVT::i32
+ ? RTLIB::FPTOSINT_F128_I32
+ : RTLIB::FPTOSINT_F128_I64);
+ return TLI.LowerF128Op(Op, DAG, libName, 1);
+ }
+
+ // Expand if the resulting type is illegal.
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
+ // Otherwise, Convert the fp value to integer in an FP register.
+ if (VT == MVT::i32)
+ Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
+ else
+ Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Op);
+}
+
+static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT OpVT = Op.getOperand(0).getValueType();
+ assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
+
+ EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
+
+ // Expand f128 operations to fp128 ABI calls.
+ if (Op.getValueType() == MVT::f128
+ && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
+ const char *libName = TLI.getLibcallName(OpVT == MVT::i32
+ ? RTLIB::SINTTOFP_I32_F128
+ : RTLIB::SINTTOFP_I64_F128);
+ return TLI.LowerF128Op(Op, DAG, libName, 1);
+ }
+
+ // Expand if the operand type is illegal.
+ if (!TLI.isTypeLegal(OpVT))
+ return SDValue();
+
+ // Otherwise, Convert the int value to FP in an FP register.
+ SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
+ unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
+ return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
+}
+
+static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ // Expand if it does not involve f128 or the target has support for
+ // quad floating point instructions and the resulting type is legal.
+ if (Op.getOperand(0).getValueType() != MVT::f128 ||
+ (hasHardQuad && TLI.isTypeLegal(VT)))
+ return SDValue();
+
+ assert(VT == MVT::i32 || VT == MVT::i64);
+
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(VT == MVT::i32
+ ? RTLIB::FPTOUINT_F128_I32
+ : RTLIB::FPTOUINT_F128_I64),
+ 1);
+}
+
+static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDLoc dl(Op);
+ EVT OpVT = Op.getOperand(0).getValueType();
+ assert(OpVT == MVT::i32 || OpVT == MVT::i64);
+
+ // Expand if it does not involve f128 or the target has support for
+ // quad floating point instructions and the operand type is legal.
+ if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
+ return SDValue();
+
+ return TLI.LowerF128Op(Op, DAG,
+ TLI.getLibcallName(OpVT == MVT::i32
+ ? RTLIB::UINTTOFP_I32_F128
+ : RTLIB::UINTTOFP_I64_F128),
+ 1);
+}
+
+static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+ unsigned Opc, SPCC = ~0U;
+
+ // If this is a br_cc of a "setcc", and if the setcc got lowered into
+ // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
+ LookThroughSetCC(LHS, RHS, CC, SPCC);
+
+ // Get the condition flag.
+ SDValue CompareFlag;
+ if (LHS.getValueType().isInteger()) {
+ CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
+ if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
+ // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
+ Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
+ } else {
+ if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
+ Opc = SPISD::BRICC;
+ } else {
+ CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ Opc = SPISD::BRFCC;
+ }
+ }
+ return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
+ DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
+}
+
+static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ bool hasHardQuad) {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ SDLoc dl(Op);
+ unsigned Opc, SPCC = ~0U;
+
+ // If this is a select_cc of a "setcc", and if the setcc got lowered into
+ // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
+ LookThroughSetCC(LHS, RHS, CC, SPCC);
+
+ SDValue CompareFlag;
+ if (LHS.getValueType().isInteger()) {
+ CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
+ Opc = LHS.getValueType() == MVT::i32 ?
+ SPISD::SELECT_ICC : SPISD::SELECT_XCC;
+ if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
+ } else {
+ if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
+ Opc = SPISD::SELECT_ICC;
+ } else {
+ CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
+ Opc = SPISD::SELECT_FCC;
+ if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
+ }
+ }
+ return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
+ DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
+}
+
+SDValue SparcTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) const {
+ SDLoc DL(Op);
+ return DAG.getNode(SPISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1));
+
+}
+
+SDValue SparcTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) const {
+ SDLoc DL(Op);
+ return DAG.getNode(SPISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1));
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
+ auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+
+ // Need frame address to find the address of VarArgsFrameIndex.
+ MF.getFrameInfo().setFrameAddressIsTaken(true);
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDLoc DL(Op);
+ SDValue Offset =
+ DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
+ DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
+ MachinePointerInfo(SV));
+}
+
+static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0);
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ EVT PtrVT = VAListPtr.getValueType();
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc DL(Node);
+ SDValue VAList =
+ DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
+ // Increment the pointer, VAList, to the next vaarg.
+ SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
+ DAG.getIntPtrConstant(VT.getSizeInBits()/8,
+ DL));
+ // Store the incremented VAList to the legalized pointer.
+ InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
+ MachinePointerInfo(SV));
+ // Load the actual argument out of the pointer VAList.
+ // We can't count on greater alignment than the word size.
+ return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
+ std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
+}
+
+static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+ SDValue Chain = Op.getOperand(0); // Legalize the chain.
+ SDValue Size = Op.getOperand(1); // Legalize the size.
+ unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ unsigned StackAlign = Subtarget->getFrameLowering()->getStackAlignment();
+ EVT VT = Size->getValueType(0);
+ SDLoc dl(Op);
+
+ // TODO: implement over-aligned alloca. (Note: also implies
+ // supporting support for overaligned function frames + dynamic
+ // allocations, at all, which currently isn't supported)
+ if (Align > StackAlign) {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
+ "over-aligned dynamic alloca not supported.");
+ }
+
+ // The resultant pointer needs to be above the register spill area
+ // at the bottom of the stack.
+ unsigned regSpillArea;
+ if (Subtarget->is64Bit()) {
+ regSpillArea = 128;
+ } else {
+ // On Sparc32, the size of the spill area is 92. Unfortunately,
+ // that's only 4-byte aligned, not 8-byte aligned (the stack
+ // pointer is 8-byte aligned). So, if the user asked for an 8-byte
+ // aligned dynamic allocation, we actually need to add 96 to the
+ // bottom of the stack, instead of 92, to ensure 8-byte alignment.
+
+ // That also means adding 4 to the size of the allocation --
+ // before applying the 8-byte rounding. Unfortunately, we the
+ // value we get here has already had rounding applied. So, we need
+ // to add 8, instead, wasting a bit more memory.
+
+ // Further, this only actually needs to be done if the required
+ // alignment is > 4, but, we've lost that info by this point, too,
+ // so we always apply it.
+
+ // (An alternative approach would be to always reserve 96 bytes
+ // instead of the required 92, but then we'd waste 4 extra bytes
+ // in every frame, not just those with dynamic stack allocations)
+
+ // TODO: modify code in SelectionDAGBuilder to make this less sad.
+
+ Size = DAG.getNode(ISD::ADD, dl, VT, Size,
+ DAG.getConstant(8, dl, VT));
+ regSpillArea = 96;
+ }
+
+ unsigned SPReg = SP::O6;
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
+
+ regSpillArea += Subtarget->getStackPointerBias();
+
+ SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
+ DAG.getConstant(regSpillArea, dl, VT));
+ SDValue Ops[2] = { NewVal, Chain };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+
+static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ SDValue Chain = DAG.getNode(SPISD::FLUSHW,
+ dl, MVT::Other, DAG.getEntryNode());
+ return Chain;
+}
+
+static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned FrameReg = SP::I6;
+ unsigned stackBias = Subtarget->getStackPointerBias();
+
+ SDValue FrameAddr;
+
+ if (depth == 0) {
+ FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ if (Subtarget->is64Bit())
+ FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(stackBias, dl));
+ return FrameAddr;
+ }
+
+ // flush first to make sure the windowed registers' values are in stack
+ SDValue Chain = getFLUSHW(Op, DAG);
+ FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
+
+ unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
+
+ while (depth--) {
+ SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(Offset, dl));
+ FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
+ }
+ if (Subtarget->is64Bit())
+ FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
+ DAG.getIntPtrConstant(stackBias, dl));
+ return FrameAddr;
+}
+
+
+static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
+ const SparcSubtarget *Subtarget) {
+
+ uint64_t depth = Op.getConstantOperandVal(0);
+
+ return getFRAMEADDR(depth, Op, DAG, Subtarget);
+
+}
+
+static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI,
+ const SparcSubtarget *Subtarget) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setReturnAddressIsTaken(true);
+
+ if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ uint64_t depth = Op.getConstantOperandVal(0);
+
+ SDValue RetAddr;
+ if (depth == 0) {
+ auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+ unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
+ RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
+ return RetAddr;
+ }
+
+ // Need frame address to find return address of the caller.
+ SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget);
+
+ unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
+ SDValue Ptr = DAG.getNode(ISD::ADD,
+ dl, VT,
+ FrameAddr,
+ DAG.getIntPtrConstant(Offset, dl));
+ RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
+
+ return RetAddr;
+}
+
+static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
+ unsigned opcode) {
+ assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
+ assert(opcode == ISD::FNEG || opcode == ISD::FABS);
+
+ // Lower fneg/fabs on f64 to fneg/fabs on f32.
+ // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
+ // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
+
+ // Note: in little-endian, the floating-point value is stored in the
+ // registers are in the opposite order, so the subreg with the sign
+ // bit is the highest-numbered (odd), rather than the
+ // lowest-numbered (even).
+
+ SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
+ SrcReg64);
+ SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
+ SrcReg64);
+
+ if (DAG.getDataLayout().isLittleEndian())
+ Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
+ else
+ Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
+
+ SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f64), 0);
+ DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
+ DstReg64, Hi32);
+ DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
+ DstReg64, Lo32);
+ return DstReg64;
+}
+
+// Lower a f128 load into two f64 loads.
+static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
+{
+ SDLoc dl(Op);
+ LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
+ assert(LdNode && LdNode->getOffset().isUndef()
+ && "Unexpected node type");
+
+ unsigned alignment = LdNode->getAlignment();
+ if (alignment > 8)
+ alignment = 8;
+
+ SDValue Hi64 =
+ DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
+ LdNode->getPointerInfo(), alignment);
+ EVT addrVT = LdNode->getBasePtr().getValueType();
+ SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
+ LdNode->getBasePtr(),
+ DAG.getConstant(8, dl, addrVT));
+ SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
+ LdNode->getPointerInfo(), alignment);
+
+ SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
+ SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
+
+ SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f128);
+ InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ MVT::f128,
+ SDValue(InFP128, 0),
+ Hi64,
+ SubRegEven);
+ InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ MVT::f128,
+ SDValue(InFP128, 0),
+ Lo64,
+ SubRegOdd);
+ SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
+ SDValue(Lo64.getNode(), 1) };
+ SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
+{
+ LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
+
+ EVT MemVT = LdNode->getMemoryVT();
+ if (MemVT == MVT::f128)
+ return LowerF128Load(Op, DAG);
+
+ return Op;
+}
+
+// Lower a f128 store into two f64 stores.
+static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
+ assert(StNode && StNode->getOffset().isUndef()
+ && "Unexpected node type");
+ SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
+ SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
+
+ SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl,
+ MVT::f64,
+ StNode->getValue(),
+ SubRegEven);
+ SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl,
+ MVT::f64,
+ StNode->getValue(),
+ SubRegOdd);
+
+ unsigned alignment = StNode->getAlignment();
+ if (alignment > 8)
+ alignment = 8;
+
+ SDValue OutChains[2];
+ OutChains[0] =
+ DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
+ StNode->getBasePtr(), MachinePointerInfo(), alignment);
+ EVT addrVT = StNode->getBasePtr().getValueType();
+ SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
+ StNode->getBasePtr(),
+ DAG.getConstant(8, dl, addrVT));
+ OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
+ MachinePointerInfo(), alignment);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
+{
+ SDLoc dl(Op);
+ StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
+
+ EVT MemVT = St->getMemoryVT();
+ if (MemVT == MVT::f128)
+ return LowerF128Store(Op, DAG);
+
+ if (MemVT == MVT::i64) {
+ // Custom handling for i64 stores: turn it into a bitcast and a
+ // v2i32 store.
+ SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
+ SDValue Chain = DAG.getStore(
+ St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
+ St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo());
+ return Chain;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
+ assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
+ && "invalid opcode");
+
+ SDLoc dl(Op);
+
+ if (Op.getValueType() == MVT::f64)
+ return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
+ if (Op.getValueType() != MVT::f128)
+ return Op;
+
+ // Lower fabs/fneg on f128 to fabs/fneg on f64
+ // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
+ // (As with LowerF64Op, on little-endian, we need to negate the odd
+ // subreg)
+
+ SDValue SrcReg128 = Op.getOperand(0);
+ SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
+ SrcReg128);
+ SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
+ SrcReg128);
+
+ if (DAG.getDataLayout().isLittleEndian()) {
+ if (isV9)
+ Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
+ else
+ Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
+ } else {
+ if (isV9)
+ Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
+ else
+ Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
+ }
+
+ SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, MVT::f128), 0);
+ DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
+ DstReg128, Hi64);
+ DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
+ DstReg128, Lo64);
+ return DstReg128;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+
+ if (Op.getValueType() != MVT::i64)
+ return Op;
+
+ SDLoc dl(Op);
+ SDValue Src1 = Op.getOperand(0);
+ SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
+ SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
+ DAG.getConstant(32, dl, MVT::i64));
+ Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
+
+ SDValue Src2 = Op.getOperand(1);
+ SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
+ SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
+ DAG.getConstant(32, dl, MVT::i64));
+ Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
+
+
+ bool hasChain = false;
+ unsigned hiOpc = Op.getOpcode();
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case ISD::ADDC: hiOpc = ISD::ADDE; break;
+ case ISD::ADDE: hasChain = true; break;
+ case ISD::SUBC: hiOpc = ISD::SUBE; break;
+ case ISD::SUBE: hasChain = true; break;
+ }
+ SDValue Lo;
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
+ if (hasChain) {
+ Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
+ Op.getOperand(2));
+ } else {
+ Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
+ }
+ SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
+ SDValue Carry = Hi.getValue(1);
+
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
+ DAG.getConstant(32, dl, MVT::i64));
+
+ SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
+ SDValue Ops[2] = { Dst, Carry };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+// Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
+// in LegalizeDAG.cpp except the order of arguments to the library function.
+static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
+ const SparcTargetLowering &TLI)
+{
+ unsigned opcode = Op.getOpcode();
+ assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
+
+ bool isSigned = (opcode == ISD::SMULO);
+ EVT VT = MVT::i64;
+ EVT WideVT = MVT::i128;
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+
+ if (LHS.getValueType() != VT)
+ return Op;
+
+ SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
+
+ SDValue RHS = Op.getOperand(1);
+ SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
+ SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
+ SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
+
+ SDValue MulResult = TLI.makeLibCall(DAG,
+ RTLIB::MUL_I128, WideVT,
+ Args, isSigned, dl).first;
+ SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
+ MulResult, DAG.getIntPtrConstant(0, dl));
+ SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
+ MulResult, DAG.getIntPtrConstant(1, dl));
+ if (isSigned) {
+ SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
+ TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
+ } else {
+ TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
+ ISD::SETNE);
+ }
+ // MulResult is a node with an illegal type. Because such things are not
+ // generally permitted during this phase of legalization, ensure that
+ // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
+ // been folded.
+ assert(MulResult->use_empty() && "Illegally typed node still in use!");
+
+ SDValue Ops[2] = { BottomHalf, TopHalf } ;
+ return DAG.getMergeValues(Ops, dl);
+}
+
+static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
+ if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
+ // Expand with a fence.
+ return SDValue();
+
+ // Monotonic load/stores are legal.
+ return Op;
+}
+
+SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ case Intrinsic::thread_pointer: {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ return DAG.getRegister(SP::G7, PtrVT);
+ }
+ }
+}
+
+SDValue SparcTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+
+ bool hasHardQuad = Subtarget->hasHardQuad();
+ bool isV9 = Subtarget->isV9();
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
+ Subtarget);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
+ Subtarget);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
+ hasHardQuad);
+ case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG, *this);
+ case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG, *this);
+ case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
+ Subtarget);
+
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::FADD: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::ADD_F128), 2);
+ case ISD::FSUB: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::SUB_F128), 2);
+ case ISD::FMUL: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::MUL_F128), 2);
+ case ISD::FDIV: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::DIV_F128), 2);
+ case ISD::FSQRT: return LowerF128Op(Op, DAG,
+ getLibcallName(RTLIB::SQRT_F128),1);
+ case ISD::FABS:
+ case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
+ case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
+ case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::UMULO:
+ case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ }
+}
+
+MachineBasicBlock *
+SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("Unknown SELECT_CC!");
+ case SP::SELECT_CC_Int_ICC:
+ case SP::SELECT_CC_FP_ICC:
+ case SP::SELECT_CC_DFP_ICC:
+ case SP::SELECT_CC_QFP_ICC:
+ return expandSelectCC(MI, BB, SP::BCOND);
+ case SP::SELECT_CC_Int_FCC:
+ case SP::SELECT_CC_FP_FCC:
+ case SP::SELECT_CC_DFP_FCC:
+ case SP::SELECT_CC_QFP_FCC:
+ return expandSelectCC(MI, BB, SP::FBCOND);
+ case SP::EH_SJLJ_SETJMP32ri:
+ case SP::EH_SJLJ_SETJMP32rr:
+ return emitEHSjLjSetJmp(MI, BB);
+ case SP::EH_SJLJ_LONGJMP32rr:
+ case SP::EH_SJLJ_LONGJMP32ri:
+ return emitEHSjLjLongJmp(MI, BB);
+
+ }
+}
+
+MachineBasicBlock *
+SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
+ unsigned BROpcode) const {
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+ unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // [f]bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI.getOperand(0).getReg())
+ .addReg(MI.getOperand(2).getReg())
+ .addMBB(copy0MBB)
+ .addReg(MI.getOperand(1).getReg())
+ .addMBB(thisMBB);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+SparcTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI.getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineInstrBuilder MIB;
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ unsigned RegSize = PVT.getStoreSize();
+ assert(PVT == MVT::i32 && "Invalid Pointer Size!");
+
+ unsigned Buf = MI.getOperand(0).getReg();
+ unsigned JmpLoc = MRI.createVirtualRegister(&SP::IntRegsRegClass);
+
+ // TO DO: If we do 64-bit handling, this perhaps should be FLUSHW, not TA 3
+ MIB = BuildMI(*MBB, MI, DL, TII->get(SP::TRAPri), SP::G0).addImm(3).addImm(SPCC::ICC_A);
+
+ // Instruction to restore FP
+ const unsigned FP = SP::I6;
+ MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
+ .addReg(FP)
+ .addReg(Buf)
+ .addImm(0);
+
+ // Instruction to load jmp location
+ MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
+ .addReg(JmpLoc, RegState::Define)
+ .addReg(Buf)
+ .addImm(RegSize);
+
+ // Instruction to restore SP
+ const unsigned SP = SP::O6;
+ MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
+ .addReg(SP)
+ .addReg(Buf)
+ .addImm(2 * RegSize);
+
+ // Instruction to restore I7
+ MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri))
+ .addReg(SP::I7)
+ .addReg(Buf, RegState::Kill)
+ .addImm(3 * RegSize);
+
+ // Jump to JmpLoc
+ BuildMI(*MBB, MI, DL, TII->get(SP::JMPLrr)).addReg(SP::G0).addReg(JmpLoc, RegState::Kill).addReg(SP::G0);
+
+ MI.eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+SparcTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI.getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineInstrBuilder MIB;
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ unsigned RegSize = PVT.getStoreSize();
+ assert(PVT == MVT::i32 && "Invalid Pointer Size!");
+
+ unsigned DstReg = MI.getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
+ (void)TRI;
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // buf[0] = FP
+ // buf[RegSize] = restoreMBB <-- takes address of restoreMBB
+ // buf[RegSize * 2] = O6
+ // buf[RegSize * 3] = I7
+ // Ensure restoreMBB remains in the relocations list (done using a bn instruction)
+ // b mainMBB
+ //
+ // mainMBB:
+ // v_main = 0
+ // b sinkMBB
+ //
+ // restoreMBB:
+ // v_restore = 1
+ // --fall through--
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator It = ++MBB->getIterator();
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+
+ MF->insert(It, mainMBB);
+ MF->insert(It, restoreMBB);
+ MF->insert(It, sinkMBB);
+ restoreMBB->setHasAddressTaken();
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)),
+ MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ unsigned LabelReg = MRI.createVirtualRegister(&SP::IntRegsRegClass);
+ unsigned LabelReg2 = MRI.createVirtualRegister(&SP::IntRegsRegClass);
+ unsigned BufReg = MI.getOperand(1).getReg();
+
+ // Instruction to store FP
+ const unsigned FP = SP::I6;
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
+ .addReg(BufReg)
+ .addImm(0)
+ .addReg(FP);
+
+ // Instructions to store jmp location
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::SETHIi))
+ .addReg(LabelReg, RegState::Define)
+ .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_HI);
+
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::ORri))
+ .addReg(LabelReg2, RegState::Define)
+ .addReg(LabelReg, RegState::Kill)
+ .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_LO);
+
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
+ .addReg(BufReg)
+ .addImm(RegSize)
+ .addReg(LabelReg2, RegState::Kill);
+
+ // Instruction to store SP
+ const unsigned SP = SP::O6;
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
+ .addReg(BufReg)
+ .addImm(2 * RegSize)
+ .addReg(SP);
+
+ // Instruction to store I7
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::STri))
+ .addReg(BufReg)
+ .addImm(3 * RegSize)
+ .addReg(SP::I7);
+
+
+ // FIX ME: This next instruction ensures that the restoreMBB block address remains
+ // valid through optimization passes and serves no other purpose. The ICC_N ensures
+ // that the branch is never taken. This commented-out code here was an alternative
+ // attempt to achieve this which brought myriad problems.
+ //MIB = BuildMI(thisMBB, DL, TII->get(SP::EH_SjLj_Setup)).addMBB(restoreMBB, SparcMCExpr::VK_Sparc_None);
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND))
+ .addMBB(restoreMBB)
+ .addImm(SPCC::ICC_N);
+
+ MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND))
+ .addMBB(mainMBB)
+ .addImm(SPCC::ICC_A);
+
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(restoreMBB);
+
+
+ // mainMBB:
+ MIB = BuildMI(mainMBB, DL, TII->get(SP::ORrr))
+ .addReg(mainDstReg, RegState::Define)
+ .addReg(SP::G0)
+ .addReg(SP::G0);
+ MIB = BuildMI(mainMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A);
+
+ mainMBB->addSuccessor(sinkMBB);
+
+
+ // restoreMBB:
+ MIB = BuildMI(restoreMBB, DL, TII->get(SP::ORri))
+ .addReg(restoreDstReg, RegState::Define)
+ .addReg(SP::G0)
+ .addImm(1);
+ //MIB = BuildMI(restoreMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A);
+ restoreMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ MIB = BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(SP::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(restoreMBB);
+
+ MI.eraseFromParent();
+ return sinkMBB;
+}
+
+//===----------------------------------------------------------------------===//
+// Sparc Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+SparcTargetLowering::ConstraintType
+SparcTargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r':
+ case 'f':
+ case 'e':
+ return C_RegisterClass;
+ case 'I': // SIMM13
+ return C_Other;
+ }
+ }
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+TargetLowering::ConstraintWeight SparcTargetLowering::
+getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'I': // SIMM13
+ if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
+ if (isInt<13>(C->getSExtValue()))
+ weight = CW_Constant;
+ }
+ break;
+ }
+ return weight;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void SparcTargetLowering::
+LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(nullptr, 0);
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1)
+ return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (isInt<13>(C->getSExtValue())) {
+ Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ return;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ if (VT == MVT::v2i32)
+ return std::make_pair(0U, &SP::IntPairRegClass);
+ else
+ return std::make_pair(0U, &SP::IntRegsRegClass);
+ case 'f':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, &SP::FPRegsRegClass);
+ else if (VT == MVT::f64)
+ return std::make_pair(0U, &SP::LowDFPRegsRegClass);
+ else if (VT == MVT::f128)
+ return std::make_pair(0U, &SP::LowQFPRegsRegClass);
+ llvm_unreachable("Unknown ValueType for f-register-type!");
+ break;
+ case 'e':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, &SP::FPRegsRegClass);
+ else if (VT == MVT::f64)
+ return std::make_pair(0U, &SP::DFPRegsRegClass);
+ else if (VT == MVT::f128)
+ return std::make_pair(0U, &SP::QFPRegsRegClass);
+ llvm_unreachable("Unknown ValueType for e-register-type!");
+ break;
+ }
+ } else if (!Constraint.empty() && Constraint.size() <= 5
+ && Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
+ // constraint = '{r<d>}'
+ // Remove the braces from around the name.
+ StringRef name(Constraint.data()+1, Constraint.size()-2);
+ // Handle register aliases:
+ // r0-r7 -> g0-g7
+ // r8-r15 -> o0-o7
+ // r16-r23 -> l0-l7
+ // r24-r31 -> i0-i7
+ uint64_t intVal = 0;
+ if (name.substr(0, 1).equals("r")
+ && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
+ const char regTypes[] = { 'g', 'o', 'l', 'i' };
+ char regType = regTypes[intVal/8];
+ char regIdx = '0' + (intVal % 8);
+ char tmp[] = { '{', regType, regIdx, '}', 0 };
+ std::string newConstraint = std::string(tmp);
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
+ VT);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+bool
+SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Sparc target isn't yet aware of offsets.
+ return false;
+}
+
+void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>& Results,
+ SelectionDAG &DAG) const {
+
+ SDLoc dl(N);
+
+ RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
+
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ // Custom lower only if it involves f128 or i64.
+ if (N->getOperand(0).getValueType() != MVT::f128
+ || N->getValueType(0) != MVT::i64)
+ return;
+ libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
+ ? RTLIB::FPTOSINT_F128_I64
+ : RTLIB::FPTOUINT_F128_I64);
+
+ Results.push_back(LowerF128Op(SDValue(N, 0),
+ DAG,
+ getLibcallName(libCall),
+ 1));
+ return;
+
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ // Custom lower only if it involves f128 or i64.
+ if (N->getValueType(0) != MVT::f128
+ || N->getOperand(0).getValueType() != MVT::i64)
+ return;
+
+ libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
+ ? RTLIB::SINTTOFP_I64_F128
+ : RTLIB::UINTTOFP_I64_F128);
+
+ Results.push_back(LowerF128Op(SDValue(N, 0),
+ DAG,
+ getLibcallName(libCall),
+ 1));
+ return;
+ case ISD::LOAD: {
+ LoadSDNode *Ld = cast<LoadSDNode>(N);
+ // Custom handling only for i64: turn i64 load into a v2i32 load,
+ // and a bitcast.
+ if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
+ return;
+
+ SDLoc dl(N);
+ SDValue LoadRes = DAG.getExtLoad(
+ Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
+ Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(),
+ Ld->getMemOperand()->getFlags(), Ld->getAAInfo());
+
+ SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
+ Results.push_back(Res);
+ Results.push_back(LoadRes.getValue(1));
+ return;
+ }
+ }
+}
+
+// Override to enable LOAD_STACK_GUARD lowering on Linux.
+bool SparcTargetLowering::useLoadStackGuardNode() const {
+ if (!Subtarget->isTargetLinux())
+ return TargetLowering::useLoadStackGuardNode();
+ return true;
+}
+
+// Override to disable global variable loading on Linux.
+void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
+ if (!Subtarget->isTargetLinux())
+ return TargetLowering::insertSSPDeclarations(M);
+}