diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp | 3596 |
1 files changed, 3596 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp new file mode 100644 index 000000000000..9e7e3c6b705a --- /dev/null +++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp @@ -0,0 +1,3596 @@ +//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the interfaces that Sparc uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "SparcISelLowering.h" +#include "MCTargetDesc/SparcMCExpr.h" +#include "SparcMachineFunctionInfo.h" +#include "SparcRegisterInfo.h" +#include "SparcTargetMachine.h" +#include "SparcTargetObjectFile.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +using namespace llvm; + + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) +{ + assert (ArgFlags.isSRet()); + + // Assign SRet argument. + State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, + 0, + LocVT, LocInfo)); + return true; +} + +static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) +{ + static const MCPhysReg RegList[] = { + SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 + }; + // Try to get first reg. + if (unsigned Reg = State.AllocateReg(RegList)) { + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + } else { + // Assign whole thing in stack. + State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, + State.AllocateStack(8,4), + LocVT, LocInfo)); + return true; + } + + // Try to get second reg. + if (unsigned Reg = State.AllocateReg(RegList)) + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + else + State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, + State.AllocateStack(4,4), + LocVT, LocInfo)); + return true; +} + +static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) +{ + static const MCPhysReg RegList[] = { + SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 + }; + + // Try to get first reg. + if (unsigned Reg = State.AllocateReg(RegList)) + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + else + return false; + + // Try to get second reg. + if (unsigned Reg = State.AllocateReg(RegList)) + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + else + return false; + + return true; +} + +// Allocate a full-sized argument for the 64-bit ABI. +static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) { + assert((LocVT == MVT::f32 || LocVT == MVT::f128 + || LocVT.getSizeInBits() == 64) && + "Can't handle non-64 bits locations"); + + // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. + unsigned size = (LocVT == MVT::f128) ? 16 : 8; + unsigned alignment = (LocVT == MVT::f128) ? 16 : 8; + unsigned Offset = State.AllocateStack(size, alignment); + unsigned Reg = 0; + + if (LocVT == MVT::i64 && Offset < 6*8) + // Promote integers to %i0-%i5. + Reg = SP::I0 + Offset/8; + else if (LocVT == MVT::f64 && Offset < 16*8) + // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). + Reg = SP::D0 + Offset/8; + else if (LocVT == MVT::f32 && Offset < 16*8) + // Promote floats to %f1, %f3, ... + Reg = SP::F1 + Offset/4; + else if (LocVT == MVT::f128 && Offset < 16*8) + // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). + Reg = SP::Q0 + Offset/16; + + // Promote to register when possible, otherwise use the stack slot. + if (Reg) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return true; + } + + // This argument goes on the stack in an 8-byte slot. + // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to + // the right-aligned float. The first 4 bytes of the stack slot are undefined. + if (LocVT == MVT::f32) + Offset += 4; + + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return true; +} + +// Allocate a half-sized argument for the 64-bit ABI. +// +// This is used when passing { float, int } structs by value in registers. +static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) { + assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); + unsigned Offset = State.AllocateStack(4, 4); + + if (LocVT == MVT::f32 && Offset < 16*8) { + // Promote floats to %f0-%f31. + State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, + LocVT, LocInfo)); + return true; + } + + if (LocVT == MVT::i32 && Offset < 6*8) { + // Promote integers to %i0-%i5, using half the register. + unsigned Reg = SP::I0 + Offset/8; + LocVT = MVT::i64; + LocInfo = CCValAssign::AExt; + + // Set the Custom bit if this i32 goes in the high bits of a register. + if (Offset % 8 == 0) + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, + LocVT, LocInfo)); + else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return true; + } + + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return true; +} + +#include "SparcGenCallingConv.inc" + +// The calling conventions in SparcCallingConv.td are described in terms of the +// callee's register window. This function translates registers to the +// corresponding caller window %o register. +static unsigned toCallerWindow(unsigned Reg) { + static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, + "Unexpected enum"); + if (Reg >= SP::I0 && Reg <= SP::I7) + return Reg - SP::I0 + SP::O0; + return Reg; +} + +SDValue +SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + if (Subtarget->is64Bit()) + return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); + return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); +} + +SDValue +SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + + // CCValAssign - represent the assignment of the return value to locations. + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analyze return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + // Make room for the return address offset. + RetOps.push_back(SDValue()); + + // Copy the result values into the output registers. + for (unsigned i = 0, realRVLocIdx = 0; + i != RVLocs.size(); + ++i, ++realRVLocIdx) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Arg = OutVals[realRVLocIdx]; + + if (VA.needsCustom()) { + assert(VA.getLocVT() == MVT::v2i32); + // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would + // happen by default if this wasn't a legal type) + + SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Arg, + DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); + SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Arg, + DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + VA = RVLocs[++i]; // skip ahead to next loc + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, + Flag); + } else + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + unsigned RetAddrOffset = 8; // Call Inst + Delay Slot + // If the function returns a struct, copy the SRetReturnReg to I0 + if (MF.getFunction()->hasStructRetAttr()) { + SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); + unsigned Reg = SFI->getSRetReturnReg(); + if (!Reg) + llvm_unreachable("sret virtual register not created in the entry block"); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); + Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); + RetAddrOffset = 12; // CallInst + Delay Slot + Unimp + } + + RetOps[0] = Chain; // Update chain. + RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +// Lower return values for the 64-bit ABI. +// Return values are passed the exactly the same way as function arguments. +SDValue +SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of the return value to locations. + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analyze return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // The second operand on the return instruction is the return address offset. + // The return address is always %i7+8 with the 64-bit ABI. + RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue OutVal = OutVals[i]; + + // Integer return values must be sign or zero extended by the callee. + switch (VA.getLocInfo()) { + case CCValAssign::Full: break; + case CCValAssign::SExt: + OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); + break; + case CCValAssign::ZExt: + OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); + break; + case CCValAssign::AExt: + OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); + break; + default: + llvm_unreachable("Unknown loc info!"); + } + + // The custom bit on an i32 return value indicates that it should be passed + // in the high bits of the register. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { + OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, + DAG.getConstant(32, DL, MVT::i32)); + + // The next value may go in the low bits of the same register. + // Handle both at once. + if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { + SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); + OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); + // Skip the next value, it's already done. + ++i; + } + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +SDValue SparcTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + if (Subtarget->is64Bit()) + return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, + DL, DAG, InVals); + return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, + DL, DAG, InVals); +} + +/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are +/// passed in either one or two GPRs, including FP values. TODO: we should +/// pass FP values in FP registers for fastcc functions. +SDValue SparcTargetLowering::LowerFormalArguments_32( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); + + const unsigned StackOffset = 92; + bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); + + unsigned InIdx = 0; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { + CCValAssign &VA = ArgLocs[i]; + + if (Ins[InIdx].Flags.isSRet()) { + if (InIdx != 0) + report_fatal_error("sparc only supports sret on the first parameter"); + // Get SRet from [%fp+64]. + int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); + SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); + SDValue Arg = + DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); + InVals.push_back(Arg); + continue; + } + + if (VA.isRegLoc()) { + if (VA.needsCustom()) { + assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); + + unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); + MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); + SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); + + assert(i+1 < e); + CCValAssign &NextVA = ArgLocs[++i]; + + SDValue LoVal; + if (NextVA.isMemLoc()) { + int FrameIdx = MF.getFrameInfo(). + CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); + SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); + LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); + } else { + unsigned loReg = MF.addLiveIn(NextVA.getLocReg(), + &SP::IntRegsRegClass); + LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); + } + + if (IsLittleEndian) + std::swap(LoVal, HiVal); + + SDValue WholeValue = + DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); + WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); + InVals.push_back(WholeValue); + continue; + } + unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); + MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); + SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); + if (VA.getLocVT() == MVT::f32) + Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); + else if (VA.getLocVT() != MVT::i32) { + Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, + DAG.getValueType(VA.getLocVT())); + Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); + } + InVals.push_back(Arg); + continue; + } + + assert(VA.isMemLoc()); + + unsigned Offset = VA.getLocMemOffset()+StackOffset; + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (VA.needsCustom()) { + assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); + // If it is double-word aligned, just load. + if (Offset % 8 == 0) { + int FI = MF.getFrameInfo().CreateFixedObject(8, + Offset, + true); + SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); + SDValue Load = + DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); + InVals.push_back(Load); + continue; + } + + int FI = MF.getFrameInfo().CreateFixedObject(4, + Offset, + true); + SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); + SDValue HiVal = + DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); + int FI2 = MF.getFrameInfo().CreateFixedObject(4, + Offset+4, + true); + SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); + + SDValue LoVal = + DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); + + if (IsLittleEndian) + std::swap(LoVal, HiVal); + + SDValue WholeValue = + DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); + WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); + InVals.push_back(WholeValue); + continue; + } + + int FI = MF.getFrameInfo().CreateFixedObject(4, + Offset, + true); + SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); + SDValue Load ; + if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { + Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); + } else if (VA.getValVT() == MVT::f128) { + report_fatal_error("SPARCv8 does not handle f128 in calls; " + "pass indirectly"); + } else { + // We shouldn't see any other value types here. + llvm_unreachable("Unexpected ValVT encountered in frame lowering."); + } + InVals.push_back(Load); + } + + if (MF.getFunction()->hasStructRetAttr()) { + // Copy the SRet Argument to SRetReturnReg. + SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); + unsigned Reg = SFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); + SFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + } + + // Store remaining ArgRegs to the stack if this is a varargs function. + if (isVarArg) { + static const MCPhysReg ArgRegs[] = { + SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 + }; + unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); + const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; + unsigned ArgOffset = CCInfo.getNextStackOffset(); + if (NumAllocated == 6) + ArgOffset += StackOffset; + else { + assert(!ArgOffset); + ArgOffset = 68+4*NumAllocated; + } + + // Remember the vararg offset for the va_start implementation. + FuncInfo->setVarArgsFrameOffset(ArgOffset); + + std::vector<SDValue> OutChains; + + for (; CurArgReg != ArgRegEnd; ++CurArgReg) { + unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); + MF.getRegInfo().addLiveIn(*CurArgReg, VReg); + SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); + + int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, + true); + SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); + + OutChains.push_back( + DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); + ArgOffset += 4; + } + + if (!OutChains.empty()) { + OutChains.push_back(Chain); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + } + } + + return Chain; +} + +// Lower formal arguments for the 64 bit ABI. +SDValue SparcTargetLowering::LowerFormalArguments_64( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + + // Analyze arguments according to CC_Sparc64. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); + + // The argument array begins at %fp+BIAS+128, after the register save area. + const unsigned ArgArea = 128; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) { + // This argument is passed in a register. + // All integer register arguments are promoted by the caller to i64. + + // Create a virtual register for the promoted live-in value. + unsigned VReg = MF.addLiveIn(VA.getLocReg(), + getRegClassFor(VA.getLocVT())); + SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); + + // Get the high bits for i32 struct elements. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) + Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, + DAG.getConstant(32, DL, MVT::i32)); + + // The caller promoted the argument, so insert an Assert?ext SDNode so we + // won't promote the value again in this function. + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, + DAG.getValueType(VA.getValVT())); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, + DAG.getValueType(VA.getValVT())); + break; + default: + break; + } + + // Truncate the register down to the argument type. + if (VA.isExtInLoc()) + Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); + + InVals.push_back(Arg); + continue; + } + + // The registers are exhausted. This argument was passed on the stack. + assert(VA.isMemLoc()); + // The CC_Sparc64_Full/Half functions compute stack offsets relative to the + // beginning of the arguments area at %fp+BIAS+128. + unsigned Offset = VA.getLocMemOffset() + ArgArea; + unsigned ValSize = VA.getValVT().getSizeInBits() / 8; + // Adjust offset for extended arguments, SPARC is big-endian. + // The caller will have written the full slot with extended bytes, but we + // prefer our own extending loads. + if (VA.isExtInLoc()) + Offset += 8 - ValSize; + int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); + InVals.push_back( + DAG.getLoad(VA.getValVT(), DL, Chain, + DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), + MachinePointerInfo::getFixedStack(MF, FI))); + } + + if (!IsVarArg) + return Chain; + + // This function takes variable arguments, some of which may have been passed + // in registers %i0-%i5. Variable floating point arguments are never passed + // in floating point registers. They go on %i0-%i5 or on the stack like + // integer arguments. + // + // The va_start intrinsic needs to know the offset to the first variable + // argument. + unsigned ArgOffset = CCInfo.getNextStackOffset(); + SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); + // Skip the 128 bytes of register save area. + FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + + Subtarget->getStackPointerBias()); + + // Save the variable arguments that were passed in registers. + // The caller is required to reserve stack space for 6 arguments regardless + // of how many arguments were actually passed. + SmallVector<SDValue, 8> OutChains; + for (; ArgOffset < 6*8; ArgOffset += 8) { + unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); + SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); + int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); + auto PtrVT = getPointerTy(MF.getDataLayout()); + OutChains.push_back( + DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), + MachinePointerInfo::getFixedStack(MF, FI))); + } + + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); + + return Chain; +} + +SDValue +SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + if (Subtarget->is64Bit()) + return LowerCall_64(CLI, InVals); + return LowerCall_32(CLI, InVals); +} + +static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, + ImmutableCallSite *CS) { + if (CS) + return CS->hasFnAttr(Attribute::ReturnsTwice); + + const Function *CalleeFn = nullptr; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + CalleeFn = dyn_cast<Function>(G->getGlobal()); + } else if (ExternalSymbolSDNode *E = + dyn_cast<ExternalSymbolSDNode>(Callee)) { + const Function *Fn = DAG.getMachineFunction().getFunction(); + const Module *M = Fn->getParent(); + const char *CalleeName = E->getSymbol(); + CalleeFn = M->getFunction(CalleeName); + } + + if (!CalleeFn) + return false; + return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); +} + +// Lower a call for the 32-bit ABI. +SDValue +SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &dl = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &isTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool isVarArg = CLI.IsVarArg; + + // Sparc target does not yet support tail call optimization. + isTailCall = false; + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); + + // Get the size of the outgoing arguments stack space requirement. + unsigned ArgsSize = CCInfo.getNextStackOffset(); + + // Keep stack frames 8-byte aligned. + ArgsSize = (ArgsSize+7) & ~7; + + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + + // Create local copies for byval args. + SmallVector<SDValue, 8> ByValArgs; + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (!Flags.isByVal()) + continue; + + SDValue Arg = OutVals[i]; + unsigned Size = Flags.getByValSize(); + unsigned Align = Flags.getByValAlign(); + + if (Size > 0U) { + int FI = MFI.CreateStackObject(Size, Align, false); + SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); + + Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align, + false, // isVolatile, + (Size <= 32), // AlwaysInline if size <= 32, + false, // isTailCall + MachinePointerInfo(), MachinePointerInfo()); + ByValArgs.push_back(FIPtr); + } + else { + SDValue nullVal; + ByValArgs.push_back(nullVal); + } + } + + Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + const unsigned StackOffset = 92; + bool hasStructRetAttr = false; + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); + i != e; + ++i, ++realArgIdx) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[realArgIdx]; + + ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; + + // Use local copy if it is a byval arg. + if (Flags.isByVal()) { + Arg = ByValArgs[byvalArgIdx++]; + if (!Arg) { + continue; + } + } + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); + break; + } + + if (Flags.isSRet()) { + assert(VA.needsCustom()); + // store SRet argument in %sp+64 + SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); + SDValue PtrOff = DAG.getIntPtrConstant(64, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); + hasStructRetAttr = true; + continue; + } + + if (VA.needsCustom()) { + assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); + + if (VA.isMemLoc()) { + unsigned Offset = VA.getLocMemOffset() + StackOffset; + // if it is double-word aligned, just store. + if (Offset % 8 == 0) { + SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); + SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); + continue; + } + } + + if (VA.getLocVT() == MVT::f64) { + // Move from the float value from float registers into the + // integer registers. + + // TODO: The f64 -> v2i32 conversion is super-inefficient for + // constants: it sticks them in the constant pool, then loads + // to a fp register, then stores to temp memory, then loads to + // integer registers. + Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); + } + + SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + Arg, + DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); + SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + Arg, + DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); + assert(i+1 != e); + CCValAssign &NextVA = ArgLocs[++i]; + if (NextVA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); + } else { + // Store the second part in stack. + unsigned Offset = NextVA.getLocMemOffset() + StackOffset; + SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); + SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); + } + } else { + unsigned Offset = VA.getLocMemOffset() + StackOffset; + // Store the first part. + SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); + SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); + // Store the second part. + PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); + } + continue; + } + + // Arguments that can be passed on register must be kept at + // RegsToPass vector + if (VA.isRegLoc()) { + if (VA.getLocVT() != MVT::f32) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + assert(VA.isMemLoc()); + + // Create a store off the stack pointer for this argument. + SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); + SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, + dl); + PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); + } + + + // Emit all stores, make sure the occur before any copies into physregs. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emitted instructions must be + // stuck together. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + unsigned Reg = toCallerWindow(RegsToPass[i].first); + Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0; + bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); + + // If the callee is a GlobalAddress node (quite common, every direct call is) + // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. + // Likewise ExternalSymbol -> TargetExternalSymbol. + unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); + else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) + Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); + + // Returns a chain & a flag for retval copy to use + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + if (hasStructRetAttr) + Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); + const uint32_t *Mask = + ((hasReturnsTwice) + ? TRI->getRTCallPreservedMask(CallConv) + : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); + InFlag = Chain.getValue(1); + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), + DAG.getIntPtrConstant(0, dl, true), InFlag, dl); + InFlag = Chain.getValue(1); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + if (RVLocs[i].getLocVT() == MVT::v2i32) { + SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); + SDValue Lo = DAG.getCopyFromReg( + Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); + Chain = Lo.getValue(1); + InFlag = Lo.getValue(2); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, + DAG.getConstant(0, dl, MVT::i32)); + SDValue Hi = DAG.getCopyFromReg( + Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); + Chain = Hi.getValue(1); + InFlag = Hi.getValue(2); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, + DAG.getConstant(1, dl, MVT::i32)); + InVals.push_back(Vec); + } else { + Chain = + DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), + RVLocs[i].getValVT(), InFlag) + .getValue(1); + InFlag = Chain.getValue(2); + InVals.push_back(Chain.getValue(0)); + } + } + + return Chain; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned SparcTargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) + .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) + .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) + .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) + .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) + .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) + .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) + .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) + .Default(0); + + if (Reg) + return Reg; + + report_fatal_error("Invalid register name global variable"); +} + +// This functions returns true if CalleeName is a ABI function that returns +// a long double (fp128). +static bool isFP128ABICall(const char *CalleeName) +{ + static const char *const ABICalls[] = + { "_Q_add", "_Q_sub", "_Q_mul", "_Q_div", + "_Q_sqrt", "_Q_neg", + "_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq", + "_Q_lltoq", "_Q_ulltoq", + nullptr + }; + for (const char * const *I = ABICalls; *I != nullptr; ++I) + if (strcmp(CalleeName, *I) == 0) + return true; + return false; +} + +unsigned +SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const +{ + const Function *CalleeFn = nullptr; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + CalleeFn = dyn_cast<Function>(G->getGlobal()); + } else if (ExternalSymbolSDNode *E = + dyn_cast<ExternalSymbolSDNode>(Callee)) { + const Function *Fn = DAG.getMachineFunction().getFunction(); + const Module *M = Fn->getParent(); + const char *CalleeName = E->getSymbol(); + CalleeFn = M->getFunction(CalleeName); + if (!CalleeFn && isFP128ABICall(CalleeName)) + return 16; // Return sizeof(fp128) + } + + if (!CalleeFn) + return 0; + + // It would be nice to check for the sret attribute on CalleeFn here, + // but since it is not part of the function type, any check will misfire. + + PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType()); + Type *ElementTy = Ty->getElementType(); + return DAG.getDataLayout().getTypeAllocSize(ElementTy); +} + + +// Fixup floating point arguments in the ... part of a varargs call. +// +// The SPARC v9 ABI requires that floating point arguments are treated the same +// as integers when calling a varargs function. This does not apply to the +// fixed arguments that are part of the function's prototype. +// +// This function post-processes a CCValAssign array created by +// AnalyzeCallOperands(). +static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, + ArrayRef<ISD::OutputArg> Outs) { + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + const CCValAssign &VA = ArgLocs[i]; + MVT ValTy = VA.getLocVT(); + // FIXME: What about f32 arguments? C promotes them to f64 when calling + // varargs functions. + if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) + continue; + // The fixed arguments to a varargs function still go in FP registers. + if (Outs[VA.getValNo()].IsFixed) + continue; + + // This floating point argument should be reassigned. + CCValAssign NewVA; + + // Determine the offset into the argument array. + unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; + unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; + unsigned Offset = argSize * (VA.getLocReg() - firstReg); + assert(Offset < 16*8 && "Offset out of range, bad register enum?"); + + if (Offset < 6*8) { + // This argument should go in %i0-%i5. + unsigned IReg = SP::I0 + Offset/8; + if (ValTy == MVT::f64) + // Full register, just bitconvert into i64. + NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), + IReg, MVT::i64, CCValAssign::BCvt); + else { + assert(ValTy == MVT::f128 && "Unexpected type!"); + // Full register, just bitconvert into i128 -- We will lower this into + // two i64s in LowerCall_64. + NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), + IReg, MVT::i128, CCValAssign::BCvt); + } + } else { + // This needs to go to memory, we're out of integer registers. + NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), + Offset, VA.getLocVT(), VA.getLocInfo()); + } + ArgLocs[i] = NewVA; + } +} + +// Lower a call for the 64-bit ABI. +SDValue +SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc DL = CLI.DL; + SDValue Chain = CLI.Chain; + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + // Sparc target does not yet support tail call optimization. + CLI.IsTailCall = false; + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); + + // Get the size of the outgoing arguments stack space requirement. + // The stack offset computed by CC_Sparc64 includes all arguments. + // Called functions expect 6 argument words to exist in the stack frame, used + // or not. + unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); + + // Keep stack frames 16-byte aligned. + ArgsSize = alignTo(ArgsSize, 16); + + // Varargs calls require special treatment. + if (CLI.IsVarArg) + fixupVariableFloatArgs(ArgLocs, CLI.Outs); + + // Adjust the stack pointer to make room for the arguments. + // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls + // with more than 6 arguments. + Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); + + // Collect the set of registers to pass to the function and their values. + // This will be emitted as a sequence of CopyToReg nodes glued to the call + // instruction. + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + + // Collect chains from all the memory opeations that copy arguments to the + // stack. They must follow the stack pointer adjustment above and precede the + // call instruction itself. + SmallVector<SDValue, 8> MemOpChains; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + const CCValAssign &VA = ArgLocs[i]; + SDValue Arg = CLI.OutVals[i]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown location info!"); + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::BCvt: + // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But + // SPARC does not support i128 natively. Lower it into two i64, see below. + if (!VA.needsCustom() || VA.getValVT() != MVT::f128 + || VA.getLocVT() != MVT::i128) + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + } + + if (VA.isRegLoc()) { + if (VA.needsCustom() && VA.getValVT() == MVT::f128 + && VA.getLocVT() == MVT::i128) { + // Store and reload into the integer register reg and reg+1. + unsigned Offset = 8 * (VA.getLocReg() - SP::I0); + unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; + SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); + SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); + HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); + SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); + LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); + + // Store to %sp+BIAS+128+Offset + SDValue Store = + DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); + // Load into Reg and Reg+1 + SDValue Hi64 = + DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); + SDValue Lo64 = + DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); + RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), + Hi64)); + RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), + Lo64)); + continue; + } + + // The custom bit on an i32 return value indicates that it should be + // passed in the high bits of the register. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { + Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, + DAG.getConstant(32, DL, MVT::i32)); + + // The next value may go in the low bits of the same register. + // Handle both at once. + if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && + ArgLocs[i+1].getLocReg() == VA.getLocReg()) { + SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, + CLI.OutVals[i+1]); + Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); + // Skip the next value, it's already done. + ++i; + } + } + RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); + continue; + } + + assert(VA.isMemLoc()); + + // Create a store off the stack pointer for this argument. + SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); + // The argument area starts at %fp+BIAS+128 in the callee frame, + // %sp+BIAS+128 in ours. + SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + + Subtarget->getStackPointerBias() + + 128, DL); + PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); + MemOpChains.push_back( + DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); + } + + // Emit all stores, make sure they occur before the call. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // Build a sequence of CopyToReg nodes glued together with token chain and + // glue operands which copy the outgoing args into registers. The InGlue is + // necessary since all emitted instructions must be stuck together in order + // to pass the live physical registers. + SDValue InGlue; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, DL, + RegsToPass[i].first, RegsToPass[i].second, InGlue); + InGlue = Chain.getValue(1); + } + + // If the callee is a GlobalAddress node (quite common, every direct call is) + // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. + // Likewise ExternalSymbol -> TargetExternalSymbol. + SDValue Callee = CLI.Callee; + bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); + unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); + else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) + Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); + + // Build the operands for the call instruction itself. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); + const uint32_t *Mask = + ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) + : TRI->getCallPreservedMask(DAG.getMachineFunction(), + CLI.CallConv)); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // Make sure the CopyToReg nodes are glued to the call instruction which + // consumes the registers. + if (InGlue.getNode()) + Ops.push_back(InGlue); + + // Now the call itself. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); + InGlue = Chain.getValue(1); + + // Revert the stack pointer immediately after the call. + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), + DAG.getIntPtrConstant(0, DL, true), InGlue, DL); + InGlue = Chain.getValue(1); + + // Now extract the return values. This is more or less the same as + // LowerFormalArguments_64. + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Set inreg flag manually for codegen generated library calls that + // return float. + if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && CLI.CS == nullptr) + CLI.Ins[0].Flags.setInReg(); + + RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + unsigned Reg = toCallerWindow(VA.getLocReg()); + + // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can + // reside in the same register in the high and low bits. Reuse the + // CopyFromReg previous node to avoid duplicate copies. + SDValue RV; + if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) + if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) + RV = Chain.getValue(0); + + // But usually we'll create a new CopyFromReg for a different register. + if (!RV.getNode()) { + RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); + Chain = RV.getValue(1); + InGlue = Chain.getValue(2); + } + + // Get the high bits for i32 struct elements. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) + RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, + DAG.getConstant(32, DL, MVT::i32)); + + // The callee promoted the return value, so insert an Assert?ext SDNode so + // we won't promote the value again in this function. + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, + DAG.getValueType(VA.getValVT())); + break; + case CCValAssign::ZExt: + RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, + DAG.getValueType(VA.getValVT())); + break; + default: + break; + } + + // Truncate the register down to the return value type. + if (VA.isExtInLoc()) + RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); + + InVals.push_back(RV); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// TargetLowering Implementation +//===----------------------------------------------------------------------===// + +TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + if (AI->getOperation() == AtomicRMWInst::Xchg && + AI->getType()->getPrimitiveSizeInBits() == 32) + return AtomicExpansionKind::None; // Uses xchg instruction + + return AtomicExpansionKind::CmpXChg; +} + +/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC +/// condition. +static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ISD::SETEQ: return SPCC::ICC_E; + case ISD::SETNE: return SPCC::ICC_NE; + case ISD::SETLT: return SPCC::ICC_L; + case ISD::SETGT: return SPCC::ICC_G; + case ISD::SETLE: return SPCC::ICC_LE; + case ISD::SETGE: return SPCC::ICC_GE; + case ISD::SETULT: return SPCC::ICC_CS; + case ISD::SETULE: return SPCC::ICC_LEU; + case ISD::SETUGT: return SPCC::ICC_GU; + case ISD::SETUGE: return SPCC::ICC_CC; + } +} + +/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC +/// FCC condition. +static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Unknown fp condition code!"); + case ISD::SETEQ: + case ISD::SETOEQ: return SPCC::FCC_E; + case ISD::SETNE: + case ISD::SETUNE: return SPCC::FCC_NE; + case ISD::SETLT: + case ISD::SETOLT: return SPCC::FCC_L; + case ISD::SETGT: + case ISD::SETOGT: return SPCC::FCC_G; + case ISD::SETLE: + case ISD::SETOLE: return SPCC::FCC_LE; + case ISD::SETGE: + case ISD::SETOGE: return SPCC::FCC_GE; + case ISD::SETULT: return SPCC::FCC_UL; + case ISD::SETULE: return SPCC::FCC_ULE; + case ISD::SETUGT: return SPCC::FCC_UG; + case ISD::SETUGE: return SPCC::FCC_UGE; + case ISD::SETUO: return SPCC::FCC_U; + case ISD::SETO: return SPCC::FCC_O; + case ISD::SETONE: return SPCC::FCC_LG; + case ISD::SETUEQ: return SPCC::FCC_UE; + } +} + +SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, + const SparcSubtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); + + // Instructions which use registers as conditionals examine all the + // bits (as does the pseudo SELECT_CC expansion). I don't think it + // matters much whether it's ZeroOrOneBooleanContent, or + // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the + // former. + setBooleanContents(ZeroOrOneBooleanContent); + setBooleanVectorContents(ZeroOrOneBooleanContent); + + // Set up the register classes. + addRegisterClass(MVT::i32, &SP::IntRegsRegClass); + if (!Subtarget->useSoftFloat()) { + addRegisterClass(MVT::f32, &SP::FPRegsRegClass); + addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); + addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); + } + if (Subtarget->is64Bit()) { + addRegisterClass(MVT::i64, &SP::I64RegsRegClass); + } else { + // On 32bit sparc, we define a double-register 32bit register + // class, as well. This is modeled in LLVM as a 2-vector of i32. + addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); + + // ...but almost all operations must be expanded, so set that as + // the default. + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { + setOperationAction(Op, MVT::v2i32, Expand); + } + // Truncating/extending stores/loads are also not supported. + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); + + setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); + + setTruncStoreAction(VT, MVT::v2i32, Expand); + setTruncStoreAction(MVT::v2i32, VT, Expand); + } + // However, load and store *are* legal. + setOperationAction(ISD::LOAD, MVT::v2i32, Legal); + setOperationAction(ISD::STORE, MVT::v2i32, Legal); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); + + // And we need to promote i64 loads/stores into vector load/store + setOperationAction(ISD::LOAD, MVT::i64, Custom); + setOperationAction(ISD::STORE, MVT::i64, Custom); + + // Sadly, this doesn't work: + // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); + // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); + } + + // Turn FP extload into load/fpextend + for (MVT VT : MVT::fp_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); + } + + // Sparc doesn't have i1 sign extending load + for (MVT VT : MVT::integer_valuetypes()) + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + + // Turn FP truncstore into trunc + store. + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f64, Expand); + + // Custom legalize GlobalAddress nodes into LO/HI parts. + setOperationAction(ISD::GlobalAddress, PtrVT, Custom); + setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); + setOperationAction(ISD::ConstantPool, PtrVT, Custom); + setOperationAction(ISD::BlockAddress, PtrVT, Custom); + + // Sparc doesn't have sext_inreg, replace them with shl/sra + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + + // Sparc has no REM or DIVREM operations. + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::SDIVREM, MVT::i32, Expand); + setOperationAction(ISD::UDIVREM, MVT::i32, Expand); + + // ... nor does SparcV9. + if (Subtarget->is64Bit()) { + setOperationAction(ISD::UREM, MVT::i64, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::SDIVREM, MVT::i64, Expand); + setOperationAction(ISD::UDIVREM, MVT::i64, Expand); + } + + // Custom expand fp<->sint + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + + // Custom Expand fp<->uint + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + + setOperationAction(ISD::BITCAST, MVT::f32, Expand); + setOperationAction(ISD::BITCAST, MVT::i32, Expand); + + // Sparc has no select or setcc: expand to SELECT_CC. + setOperationAction(ISD::SELECT, MVT::i32, Expand); + setOperationAction(ISD::SELECT, MVT::f32, Expand); + setOperationAction(ISD::SELECT, MVT::f64, Expand); + setOperationAction(ISD::SELECT, MVT::f128, Expand); + + setOperationAction(ISD::SETCC, MVT::i32, Expand); + setOperationAction(ISD::SETCC, MVT::f32, Expand); + setOperationAction(ISD::SETCC, MVT::f64, Expand); + setOperationAction(ISD::SETCC, MVT::f128, Expand); + + // Sparc doesn't have BRCOND either, it has BR_CC. + setOperationAction(ISD::BRCOND, MVT::Other, Expand); + setOperationAction(ISD::BRIND, MVT::Other, Expand); + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, MVT::i32, Custom); + setOperationAction(ISD::BR_CC, MVT::f32, Custom); + setOperationAction(ISD::BR_CC, MVT::f64, Custom); + setOperationAction(ISD::BR_CC, MVT::f128, Custom); + + setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); + + setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); + setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::ADDC, MVT::i64, Custom); + setOperationAction(ISD::ADDE, MVT::i64, Custom); + setOperationAction(ISD::SUBC, MVT::i64, Custom); + setOperationAction(ISD::SUBE, MVT::i64, Custom); + setOperationAction(ISD::BITCAST, MVT::f64, Expand); + setOperationAction(ISD::BITCAST, MVT::i64, Expand); + setOperationAction(ISD::SELECT, MVT::i64, Expand); + setOperationAction(ISD::SETCC, MVT::i64, Expand); + setOperationAction(ISD::BR_CC, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); + + setOperationAction(ISD::CTPOP, MVT::i64, + Subtarget->usePopc() ? Legal : Expand); + setOperationAction(ISD::CTTZ , MVT::i64, Expand); + setOperationAction(ISD::CTLZ , MVT::i64, Expand); + setOperationAction(ISD::BSWAP, MVT::i64, Expand); + setOperationAction(ISD::ROTL , MVT::i64, Expand); + setOperationAction(ISD::ROTR , MVT::i64, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); + } + + // ATOMICs. + // Atomics are supported on SparcV9. 32-bit atomics are also + // supported by some Leon SparcV8 variants. Otherwise, atomics + // are unsupported. + if (Subtarget->isV9()) + setMaxAtomicSizeInBitsSupported(64); + else if (Subtarget->hasLeonCasa()) + setMaxAtomicSizeInBitsSupported(32); + else + setMaxAtomicSizeInBitsSupported(0); + + setMinCmpXchgSizeInBits(32); + + setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); + + setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); + + // Custom Lower Atomic LOAD/STORE + setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); + setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); + } + + if (!Subtarget->is64Bit()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, nullptr); + setLibcallName(RTLIB::SRL_I128, nullptr); + setLibcallName(RTLIB::SRA_I128, nullptr); + } + + if (!Subtarget->isV9()) { + // SparcV8 does not have FNEGD and FABSD. + setOperationAction(ISD::FNEG, MVT::f64, Custom); + setOperationAction(ISD::FABS, MVT::f64, Custom); + } + + setOperationAction(ISD::FSIN , MVT::f128, Expand); + setOperationAction(ISD::FCOS , MVT::f128, Expand); + setOperationAction(ISD::FSINCOS, MVT::f128, Expand); + setOperationAction(ISD::FREM , MVT::f128, Expand); + setOperationAction(ISD::FMA , MVT::f128, Expand); + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FREM , MVT::f64, Expand); + setOperationAction(ISD::FMA , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + setOperationAction(ISD::FREM , MVT::f32, Expand); + setOperationAction(ISD::FMA , MVT::f32, Expand); + setOperationAction(ISD::CTTZ , MVT::i32, Expand); + setOperationAction(ISD::CTLZ , MVT::i32, Expand); + setOperationAction(ISD::ROTL , MVT::i32, Expand); + setOperationAction(ISD::ROTR , MVT::i32, Expand); + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + setOperationAction(ISD::FPOW , MVT::f128, Expand); + setOperationAction(ISD::FPOW , MVT::f64, Expand); + setOperationAction(ISD::FPOW , MVT::f32, Expand); + + setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); + + // Expands to [SU]MUL_LOHI. + setOperationAction(ISD::MULHU, MVT::i32, Expand); + setOperationAction(ISD::MULHS, MVT::i32, Expand); + setOperationAction(ISD::MUL, MVT::i32, Expand); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); + setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); + setOperationAction(ISD::MULHU, MVT::i64, Expand); + setOperationAction(ISD::MULHS, MVT::i64, Expand); + + setOperationAction(ISD::UMULO, MVT::i64, Custom); + setOperationAction(ISD::SMULO, MVT::i64, Custom); + + setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); + } + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex. + setOperationAction(ISD::VASTART , MVT::Other, Custom); + // VAARG needs to be lowered to not do unaligned accesses for doubles. + setOperationAction(ISD::VAARG , MVT::Other, Custom); + + setOperationAction(ISD::TRAP , MVT::Other, Legal); + + // Use the default implementation. + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); + + setStackPointerRegisterToSaveRestore(SP::O6); + + setOperationAction(ISD::CTPOP, MVT::i32, + Subtarget->usePopc() ? Legal : Expand); + + if (Subtarget->isV9() && Subtarget->hasHardQuad()) { + setOperationAction(ISD::LOAD, MVT::f128, Legal); + setOperationAction(ISD::STORE, MVT::f128, Legal); + } else { + setOperationAction(ISD::LOAD, MVT::f128, Custom); + setOperationAction(ISD::STORE, MVT::f128, Custom); + } + + if (Subtarget->hasHardQuad()) { + setOperationAction(ISD::FADD, MVT::f128, Legal); + setOperationAction(ISD::FSUB, MVT::f128, Legal); + setOperationAction(ISD::FMUL, MVT::f128, Legal); + setOperationAction(ISD::FDIV, MVT::f128, Legal); + setOperationAction(ISD::FSQRT, MVT::f128, Legal); + setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); + setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); + if (Subtarget->isV9()) { + setOperationAction(ISD::FNEG, MVT::f128, Legal); + setOperationAction(ISD::FABS, MVT::f128, Legal); + } else { + setOperationAction(ISD::FNEG, MVT::f128, Custom); + setOperationAction(ISD::FABS, MVT::f128, Custom); + } + + if (!Subtarget->is64Bit()) { + setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); + setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); + setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); + setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); + } + + } else { + // Custom legalize f128 operations. + + setOperationAction(ISD::FADD, MVT::f128, Custom); + setOperationAction(ISD::FSUB, MVT::f128, Custom); + setOperationAction(ISD::FMUL, MVT::f128, Custom); + setOperationAction(ISD::FDIV, MVT::f128, Custom); + setOperationAction(ISD::FSQRT, MVT::f128, Custom); + setOperationAction(ISD::FNEG, MVT::f128, Custom); + setOperationAction(ISD::FABS, MVT::f128, Custom); + + setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); + + // Setup Runtime library names. + if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { + setLibcallName(RTLIB::ADD_F128, "_Qp_add"); + setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); + setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); + setLibcallName(RTLIB::DIV_F128, "_Qp_div"); + setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); + setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); + setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); + setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); + setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); + setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); + setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); + setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); + setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); + setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); + setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); + setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); + setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); + } else if (!Subtarget->useSoftFloat()) { + setLibcallName(RTLIB::ADD_F128, "_Q_add"); + setLibcallName(RTLIB::SUB_F128, "_Q_sub"); + setLibcallName(RTLIB::MUL_F128, "_Q_mul"); + setLibcallName(RTLIB::DIV_F128, "_Q_div"); + setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); + setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); + setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); + setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); + setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); + setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); + setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); + setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); + setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); + setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); + setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); + setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); + setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); + } + } + + if (Subtarget->fixAllFDIVSQRT()) { + // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as + // the former instructions generate errata on LEON processors. + setOperationAction(ISD::FDIV, MVT::f32, Promote); + setOperationAction(ISD::FSQRT, MVT::f32, Promote); + } + + if (Subtarget->replaceFMULS()) { + // Promote FMULS to FMULD instructions instead as + // the former instructions generate errata on LEON processors. + setOperationAction(ISD::FMUL, MVT::f32, Promote); + } + + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + setMinFunctionAlignment(2); + + computeRegisterProperties(Subtarget->getRegisterInfo()); +} + +bool SparcTargetLowering::useSoftFloat() const { + return Subtarget->useSoftFloat(); +} + +const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((SPISD::NodeType)Opcode) { + case SPISD::FIRST_NUMBER: break; + case SPISD::CMPICC: return "SPISD::CMPICC"; + case SPISD::CMPFCC: return "SPISD::CMPFCC"; + case SPISD::BRICC: return "SPISD::BRICC"; + case SPISD::BRXCC: return "SPISD::BRXCC"; + case SPISD::BRFCC: return "SPISD::BRFCC"; + case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; + case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; + case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; + case SPISD::EH_SJLJ_SETJMP: return "SPISD::EH_SJLJ_SETJMP"; + case SPISD::EH_SJLJ_LONGJMP: return "SPISD::EH_SJLJ_LONGJMP"; + case SPISD::Hi: return "SPISD::Hi"; + case SPISD::Lo: return "SPISD::Lo"; + case SPISD::FTOI: return "SPISD::FTOI"; + case SPISD::ITOF: return "SPISD::ITOF"; + case SPISD::FTOX: return "SPISD::FTOX"; + case SPISD::XTOF: return "SPISD::XTOF"; + case SPISD::CALL: return "SPISD::CALL"; + case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; + case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; + case SPISD::FLUSHW: return "SPISD::FLUSHW"; + case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; + case SPISD::TLS_LD: return "SPISD::TLS_LD"; + case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; + } + return nullptr; +} + +EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, + EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to +/// be zero. Op is expected to be a target specific node. Used by DAG +/// combiner. +void SparcTargetLowering::computeKnownBitsForTargetNode + (const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + KnownBits Known2; + Known.resetAll(); + + switch (Op.getOpcode()) { + default: break; + case SPISD::SELECT_ICC: + case SPISD::SELECT_XCC: + case SPISD::SELECT_FCC: + DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1); + DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1); + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + } +} + +// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so +// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. +static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, + ISD::CondCode CC, unsigned &SPCC) { + if (isNullConstant(RHS) && + CC == ISD::SETNE && + (((LHS.getOpcode() == SPISD::SELECT_ICC || + LHS.getOpcode() == SPISD::SELECT_XCC) && + LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || + (LHS.getOpcode() == SPISD::SELECT_FCC && + LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && + isOneConstant(LHS.getOperand(0)) && + isNullConstant(LHS.getOperand(1))) { + SDValue CMPCC = LHS.getOperand(3); + SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); + LHS = CMPCC.getOperand(0); + RHS = CMPCC.getOperand(1); + } +} + +// Convert to a target node and set target flags. +SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, + SelectionDAG &DAG) const { + if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) + return DAG.getTargetGlobalAddress(GA->getGlobal(), + SDLoc(GA), + GA->getValueType(0), + GA->getOffset(), TF); + + if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) + return DAG.getTargetConstantPool(CP->getConstVal(), + CP->getValueType(0), + CP->getAlignment(), + CP->getOffset(), TF); + + if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) + return DAG.getTargetBlockAddress(BA->getBlockAddress(), + Op.getValueType(), + 0, + TF); + + if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) + return DAG.getTargetExternalSymbol(ES->getSymbol(), + ES->getValueType(0), TF); + + llvm_unreachable("Unhandled address SDNode"); +} + +// Split Op into high and low parts according to HiTF and LoTF. +// Return an ADD node combining the parts. +SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, + unsigned HiTF, unsigned LoTF, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); + SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); + return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); +} + +// Build SDNodes for producing an address from a GlobalAddress, ConstantPool, +// or ExternalSymbol SDNode. +SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = getPointerTy(DAG.getDataLayout()); + + // Handle PIC mode first. SPARC needs a got load for every variable! + if (isPositionIndependent()) { + // This is the pic32 code model, the GOT is known to be smaller than 4GB. + SDValue HiLo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, + SparcMCExpr::VK_Sparc_GOT10, DAG); + SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); + SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo); + // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this + // function has calls. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setHasCalls(true); + return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + } + + // This is one of the absolute code models. + switch(getTargetMachine().getCodeModel()) { + default: + llvm_unreachable("Unsupported absolute code model"); + case CodeModel::Small: + // abs32. + return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, + SparcMCExpr::VK_Sparc_LO, DAG); + case CodeModel::Medium: { + // abs44. + SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, + SparcMCExpr::VK_Sparc_M44, DAG); + H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); + SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); + L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); + return DAG.getNode(ISD::ADD, DL, VT, H44, L44); + } + case CodeModel::Large: { + // abs64. + SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, + SparcMCExpr::VK_Sparc_HM, DAG); + Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); + SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, + SparcMCExpr::VK_Sparc_LO, DAG); + return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); + } + } +} + +SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + return makeAddress(Op, DAG); +} + +SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, + SelectionDAG &DAG) const { + return makeAddress(Op, DAG); +} + +SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + return makeAddress(Op, DAG); +} + +SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(GA, DAG); + + SDLoc DL(GA); + const GlobalValue *GV = GA->getGlobal(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + TLSModel::Model model = getTargetMachine().getTLSModel(GV); + + if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { + unsigned HiTF = ((model == TLSModel::GeneralDynamic) + ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 + : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); + unsigned LoTF = ((model == TLSModel::GeneralDynamic) + ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 + : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); + unsigned addTF = ((model == TLSModel::GeneralDynamic) + ? SparcMCExpr::VK_Sparc_TLS_GD_ADD + : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); + unsigned callTF = ((model == TLSModel::GeneralDynamic) + ? SparcMCExpr::VK_Sparc_TLS_GD_CALL + : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); + + SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); + SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); + SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, + withTargetFlags(Op, addTF, DAG)); + + SDValue Chain = DAG.getEntryNode(); + SDValue InFlag; + + Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); + Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); + InFlag = Chain.getValue(1); + SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); + SDValue Symbol = withTargetFlags(Op, callTF, DAG); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( + DAG.getMachineFunction(), CallingConv::C); + assert(Mask && "Missing call preserved mask for calling convention"); + SDValue Ops[] = {Chain, + Callee, + Symbol, + DAG.getRegister(SP::O0, PtrVT), + DAG.getRegisterMask(Mask), + InFlag}; + Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); + InFlag = Chain.getValue(1); + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), + DAG.getIntPtrConstant(0, DL, true), InFlag, DL); + InFlag = Chain.getValue(1); + SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); + + if (model != TLSModel::LocalDynamic) + return Ret; + + SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, + withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); + SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, + withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); + HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); + return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, + withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); + } + + if (model == TLSModel::InitialExec) { + unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX + : SparcMCExpr::VK_Sparc_TLS_IE_LD); + + SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); + + // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this + // function has calls. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setHasCalls(true); + + SDValue TGA = makeHiLoPair(Op, + SparcMCExpr::VK_Sparc_TLS_IE_HI22, + SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); + SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); + SDValue Offset = DAG.getNode(SPISD::TLS_LD, + DL, PtrVT, Ptr, + withTargetFlags(Op, ldTF, DAG)); + return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, + DAG.getRegister(SP::G7, PtrVT), Offset, + withTargetFlags(Op, + SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); + } + + assert(model == TLSModel::LocalExec); + SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, + withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); + SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, + withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); + SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); + + return DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getRegister(SP::G7, PtrVT), Offset); +} + +SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, + ArgListTy &Args, SDValue Arg, + const SDLoc &DL, + SelectionDAG &DAG) const { + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + EVT ArgVT = Arg.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + + ArgListEntry Entry; + Entry.Node = Arg; + Entry.Ty = ArgTy; + + if (ArgTy->isFP128Ty()) { + // Create a stack object and pass the pointer to the library function. + int FI = MFI.CreateStackObject(16, 8, false); + SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), + /* Alignment = */ 8); + + Entry.Node = FIPtr; + Entry.Ty = PointerType::getUnqual(ArgTy); + } + Args.push_back(Entry); + return Chain; +} + +SDValue +SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, + const char *LibFuncName, + unsigned numArgs) const { + + ArgListTy Args; + + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); + Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); + Type *RetTyABI = RetTy; + SDValue Chain = DAG.getEntryNode(); + SDValue RetPtr; + + if (RetTy->isFP128Ty()) { + // Create a Stack Object to receive the return value of type f128. + ArgListEntry Entry; + int RetFI = MFI.CreateStackObject(16, 8, false); + RetPtr = DAG.getFrameIndex(RetFI, PtrVT); + Entry.Node = RetPtr; + Entry.Ty = PointerType::getUnqual(RetTy); + if (!Subtarget->is64Bit()) + Entry.IsSRet = true; + Entry.IsReturned = false; + Args.push_back(Entry); + RetTyABI = Type::getVoidTy(*DAG.getContext()); + } + + assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); + for (unsigned i = 0, e = numArgs; i != e; ++i) { + Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); + } + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) + .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); + + std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); + + // chain is in second result. + if (RetTyABI == RetTy) + return CallInfo.first; + + assert (RetTy->isFP128Ty() && "Unexpected return type!"); + + Chain = CallInfo.second; + + // Load RetPtr to get the return value. + return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, + MachinePointerInfo(), /* Alignment = */ 8); +} + +SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, + unsigned &SPCC, const SDLoc &DL, + SelectionDAG &DAG) const { + + const char *LibCall = nullptr; + bool is64Bit = Subtarget->is64Bit(); + switch(SPCC) { + default: llvm_unreachable("Unhandled conditional code!"); + case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; + case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; + case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; + case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; + case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; + case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; + case SPCC::FCC_UL : + case SPCC::FCC_ULE: + case SPCC::FCC_UG : + case SPCC::FCC_UGE: + case SPCC::FCC_U : + case SPCC::FCC_O : + case SPCC::FCC_LG : + case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; + } + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); + Type *RetTy = Type::getInt32Ty(*DAG.getContext()); + ArgListTy Args; + SDValue Chain = DAG.getEntryNode(); + Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); + Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(DL).setChain(Chain) + .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); + + std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); + + // result is in first, and chain is in second result. + SDValue Result = CallInfo.first; + + switch(SPCC) { + default: { + SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_UL : { + SDValue Mask = DAG.getTargetConstant(1, DL, Result.getValueType()); + Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); + SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_ULE: { + SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_UG : { + SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); + SPCC = SPCC::ICC_G; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_UGE: { + SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + + case SPCC::FCC_U : { + SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); + SPCC = SPCC::ICC_E; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_O : { + SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_LG : { + SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType()); + Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); + SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); + SPCC = SPCC::ICC_NE; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + case SPCC::FCC_UE : { + SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType()); + Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); + SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); + SPCC = SPCC::ICC_E; + return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); + } + } +} + +static SDValue +LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) { + + if (Op.getOperand(0).getValueType() == MVT::f64) + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); + + if (Op.getOperand(0).getValueType() == MVT::f32) + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); + + llvm_unreachable("fpextend with non-float operand!"); + return SDValue(); +} + +static SDValue +LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) { + // FP_ROUND on f64 and f32 are legal. + if (Op.getOperand(0).getValueType() != MVT::f128) + return Op; + + if (Op.getValueType() == MVT::f64) + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); + if (Op.getValueType() == MVT::f32) + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); + + llvm_unreachable("fpround to non-float!"); + return SDValue(); +} + +static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDLoc dl(Op); + EVT VT = Op.getValueType(); + assert(VT == MVT::i32 || VT == MVT::i64); + + // Expand f128 operations to fp128 abi calls. + if (Op.getOperand(0).getValueType() == MVT::f128 + && (!hasHardQuad || !TLI.isTypeLegal(VT))) { + const char *libName = TLI.getLibcallName(VT == MVT::i32 + ? RTLIB::FPTOSINT_F128_I32 + : RTLIB::FPTOSINT_F128_I64); + return TLI.LowerF128Op(Op, DAG, libName, 1); + } + + // Expand if the resulting type is illegal. + if (!TLI.isTypeLegal(VT)) + return SDValue(); + + // Otherwise, Convert the fp value to integer in an FP register. + if (VT == MVT::i32) + Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); + else + Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); + + return DAG.getNode(ISD::BITCAST, dl, VT, Op); +} + +static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDLoc dl(Op); + EVT OpVT = Op.getOperand(0).getValueType(); + assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); + + EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; + + // Expand f128 operations to fp128 ABI calls. + if (Op.getValueType() == MVT::f128 + && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { + const char *libName = TLI.getLibcallName(OpVT == MVT::i32 + ? RTLIB::SINTTOFP_I32_F128 + : RTLIB::SINTTOFP_I64_F128); + return TLI.LowerF128Op(Op, DAG, libName, 1); + } + + // Expand if the operand type is illegal. + if (!TLI.isTypeLegal(OpVT)) + return SDValue(); + + // Otherwise, Convert the int value to FP in an FP register. + SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); + unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; + return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); +} + +static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + // Expand if it does not involve f128 or the target has support for + // quad floating point instructions and the resulting type is legal. + if (Op.getOperand(0).getValueType() != MVT::f128 || + (hasHardQuad && TLI.isTypeLegal(VT))) + return SDValue(); + + assert(VT == MVT::i32 || VT == MVT::i64); + + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(VT == MVT::i32 + ? RTLIB::FPTOUINT_F128_I32 + : RTLIB::FPTOUINT_F128_I64), + 1); +} + +static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDLoc dl(Op); + EVT OpVT = Op.getOperand(0).getValueType(); + assert(OpVT == MVT::i32 || OpVT == MVT::i64); + + // Expand if it does not involve f128 or the target has support for + // quad floating point instructions and the operand type is legal. + if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) + return SDValue(); + + return TLI.LowerF128Op(Op, DAG, + TLI.getLibcallName(OpVT == MVT::i32 + ? RTLIB::UINTTOFP_I32_F128 + : RTLIB::UINTTOFP_I64_F128), + 1); +} + +static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDValue Chain = Op.getOperand(0); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); + SDValue LHS = Op.getOperand(2); + SDValue RHS = Op.getOperand(3); + SDValue Dest = Op.getOperand(4); + SDLoc dl(Op); + unsigned Opc, SPCC = ~0U; + + // If this is a br_cc of a "setcc", and if the setcc got lowered into + // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. + LookThroughSetCC(LHS, RHS, CC, SPCC); + + // Get the condition flag. + SDValue CompareFlag; + if (LHS.getValueType().isInteger()) { + CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); + if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); + // 32-bit compares use the icc flags, 64-bit uses the xcc flags. + Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; + } else { + if (!hasHardQuad && LHS.getValueType() == MVT::f128) { + if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); + CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); + Opc = SPISD::BRICC; + } else { + CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); + if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); + Opc = SPISD::BRFCC; + } + } + return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, + DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); +} + +static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + bool hasHardQuad) { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + SDValue TrueVal = Op.getOperand(2); + SDValue FalseVal = Op.getOperand(3); + SDLoc dl(Op); + unsigned Opc, SPCC = ~0U; + + // If this is a select_cc of a "setcc", and if the setcc got lowered into + // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. + LookThroughSetCC(LHS, RHS, CC, SPCC); + + SDValue CompareFlag; + if (LHS.getValueType().isInteger()) { + CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); + Opc = LHS.getValueType() == MVT::i32 ? + SPISD::SELECT_ICC : SPISD::SELECT_XCC; + if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); + } else { + if (!hasHardQuad && LHS.getValueType() == MVT::f128) { + if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); + CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); + Opc = SPISD::SELECT_ICC; + } else { + CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); + Opc = SPISD::SELECT_FCC; + if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); + } + } + return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, + DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); +} + +SDValue SparcTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) const { + SDLoc DL(Op); + return DAG.getNode(SPISD::EH_SJLJ_SETJMP, DL, + DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); + +} + +SDValue SparcTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) const { + SDLoc DL(Op); + return DAG.getNode(SPISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); +} + +static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) { + MachineFunction &MF = DAG.getMachineFunction(); + SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); + auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + + // Need frame address to find the address of VarArgsFrameIndex. + MF.getFrameInfo().setFrameAddressIsTaken(true); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + SDLoc DL(Op); + SDValue Offset = + DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), + DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), + MachinePointerInfo(SV)); +} + +static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { + SDNode *Node = Op.getNode(); + EVT VT = Node->getValueType(0); + SDValue InChain = Node->getOperand(0); + SDValue VAListPtr = Node->getOperand(1); + EVT PtrVT = VAListPtr.getValueType(); + const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + SDLoc DL(Node); + SDValue VAList = + DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); + // Increment the pointer, VAList, to the next vaarg. + SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, + DAG.getIntPtrConstant(VT.getSizeInBits()/8, + DL)); + // Store the incremented VAList to the legalized pointer. + InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, + MachinePointerInfo(SV)); + // Load the actual argument out of the pointer VAList. + // We can't count on greater alignment than the word size. + return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), + std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); +} + +static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, + const SparcSubtarget *Subtarget) { + SDValue Chain = Op.getOperand(0); // Legalize the chain. + SDValue Size = Op.getOperand(1); // Legalize the size. + unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + unsigned StackAlign = Subtarget->getFrameLowering()->getStackAlignment(); + EVT VT = Size->getValueType(0); + SDLoc dl(Op); + + // TODO: implement over-aligned alloca. (Note: also implies + // supporting support for overaligned function frames + dynamic + // allocations, at all, which currently isn't supported) + if (Align > StackAlign) { + const MachineFunction &MF = DAG.getMachineFunction(); + report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " + "over-aligned dynamic alloca not supported."); + } + + // The resultant pointer needs to be above the register spill area + // at the bottom of the stack. + unsigned regSpillArea; + if (Subtarget->is64Bit()) { + regSpillArea = 128; + } else { + // On Sparc32, the size of the spill area is 92. Unfortunately, + // that's only 4-byte aligned, not 8-byte aligned (the stack + // pointer is 8-byte aligned). So, if the user asked for an 8-byte + // aligned dynamic allocation, we actually need to add 96 to the + // bottom of the stack, instead of 92, to ensure 8-byte alignment. + + // That also means adding 4 to the size of the allocation -- + // before applying the 8-byte rounding. Unfortunately, we the + // value we get here has already had rounding applied. So, we need + // to add 8, instead, wasting a bit more memory. + + // Further, this only actually needs to be done if the required + // alignment is > 4, but, we've lost that info by this point, too, + // so we always apply it. + + // (An alternative approach would be to always reserve 96 bytes + // instead of the required 92, but then we'd waste 4 extra bytes + // in every frame, not just those with dynamic stack allocations) + + // TODO: modify code in SelectionDAGBuilder to make this less sad. + + Size = DAG.getNode(ISD::ADD, dl, VT, Size, + DAG.getConstant(8, dl, VT)); + regSpillArea = 96; + } + + unsigned SPReg = SP::O6; + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); + SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value + Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain + + regSpillArea += Subtarget->getStackPointerBias(); + + SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, + DAG.getConstant(regSpillArea, dl, VT)); + SDValue Ops[2] = { NewVal, Chain }; + return DAG.getMergeValues(Ops, dl); +} + + +static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + SDValue Chain = DAG.getNode(SPISD::FLUSHW, + dl, MVT::Other, DAG.getEntryNode()); + return Chain; +} + +static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, + const SparcSubtarget *Subtarget) { + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc dl(Op); + unsigned FrameReg = SP::I6; + unsigned stackBias = Subtarget->getStackPointerBias(); + + SDValue FrameAddr; + + if (depth == 0) { + FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); + if (Subtarget->is64Bit()) + FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, + DAG.getIntPtrConstant(stackBias, dl)); + return FrameAddr; + } + + // flush first to make sure the windowed registers' values are in stack + SDValue Chain = getFLUSHW(Op, DAG); + FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); + + unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; + + while (depth--) { + SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, + DAG.getIntPtrConstant(Offset, dl)); + FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); + } + if (Subtarget->is64Bit()) + FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, + DAG.getIntPtrConstant(stackBias, dl)); + return FrameAddr; +} + + +static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, + const SparcSubtarget *Subtarget) { + + uint64_t depth = Op.getConstantOperandVal(0); + + return getFRAMEADDR(depth, Op, DAG, Subtarget); + +} + +static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI, + const SparcSubtarget *Subtarget) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MFI.setReturnAddressIsTaken(true); + + if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + EVT VT = Op.getValueType(); + SDLoc dl(Op); + uint64_t depth = Op.getConstantOperandVal(0); + + SDValue RetAddr; + if (depth == 0) { + auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); + RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); + return RetAddr; + } + + // Need frame address to find return address of the caller. + SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget); + + unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; + SDValue Ptr = DAG.getNode(ISD::ADD, + dl, VT, + FrameAddr, + DAG.getIntPtrConstant(Offset, dl)); + RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); + + return RetAddr; +} + +static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, + unsigned opcode) { + assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); + assert(opcode == ISD::FNEG || opcode == ISD::FABS); + + // Lower fneg/fabs on f64 to fneg/fabs on f32. + // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. + // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. + + // Note: in little-endian, the floating-point value is stored in the + // registers are in the opposite order, so the subreg with the sign + // bit is the highest-numbered (odd), rather than the + // lowest-numbered (even). + + SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, + SrcReg64); + SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, + SrcReg64); + + if (DAG.getDataLayout().isLittleEndian()) + Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); + else + Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); + + SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, MVT::f64), 0); + DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, + DstReg64, Hi32); + DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, + DstReg64, Lo32); + return DstReg64; +} + +// Lower a f128 load into two f64 loads. +static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) +{ + SDLoc dl(Op); + LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); + assert(LdNode && LdNode->getOffset().isUndef() + && "Unexpected node type"); + + unsigned alignment = LdNode->getAlignment(); + if (alignment > 8) + alignment = 8; + + SDValue Hi64 = + DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), + LdNode->getPointerInfo(), alignment); + EVT addrVT = LdNode->getBasePtr().getValueType(); + SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, + LdNode->getBasePtr(), + DAG.getConstant(8, dl, addrVT)); + SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, + LdNode->getPointerInfo(), alignment); + + SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); + SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); + + SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, MVT::f128); + InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, + MVT::f128, + SDValue(InFP128, 0), + Hi64, + SubRegEven); + InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, + MVT::f128, + SDValue(InFP128, 0), + Lo64, + SubRegOdd); + SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), + SDValue(Lo64.getNode(), 1) }; + SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; + return DAG.getMergeValues(Ops, dl); +} + +static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) +{ + LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); + + EVT MemVT = LdNode->getMemoryVT(); + if (MemVT == MVT::f128) + return LowerF128Load(Op, DAG); + + return Op; +} + +// Lower a f128 store into two f64 stores. +static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); + assert(StNode && StNode->getOffset().isUndef() + && "Unexpected node type"); + SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); + SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); + + SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, + dl, + MVT::f64, + StNode->getValue(), + SubRegEven); + SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, + dl, + MVT::f64, + StNode->getValue(), + SubRegOdd); + + unsigned alignment = StNode->getAlignment(); + if (alignment > 8) + alignment = 8; + + SDValue OutChains[2]; + OutChains[0] = + DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), + StNode->getBasePtr(), MachinePointerInfo(), alignment); + EVT addrVT = StNode->getBasePtr().getValueType(); + SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, + StNode->getBasePtr(), + DAG.getConstant(8, dl, addrVT)); + OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, + MachinePointerInfo(), alignment); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) +{ + SDLoc dl(Op); + StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); + + EVT MemVT = St->getMemoryVT(); + if (MemVT == MVT::f128) + return LowerF128Store(Op, DAG); + + if (MemVT == MVT::i64) { + // Custom handling for i64 stores: turn it into a bitcast and a + // v2i32 store. + SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); + SDValue Chain = DAG.getStore( + St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), + St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo()); + return Chain; + } + + return SDValue(); +} + +static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { + assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) + && "invalid opcode"); + + SDLoc dl(Op); + + if (Op.getValueType() == MVT::f64) + return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); + if (Op.getValueType() != MVT::f128) + return Op; + + // Lower fabs/fneg on f128 to fabs/fneg on f64 + // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 + // (As with LowerF64Op, on little-endian, we need to negate the odd + // subreg) + + SDValue SrcReg128 = Op.getOperand(0); + SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, + SrcReg128); + SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, + SrcReg128); + + if (DAG.getDataLayout().isLittleEndian()) { + if (isV9) + Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); + else + Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); + } else { + if (isV9) + Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); + else + Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); + } + + SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, MVT::f128), 0); + DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, + DstReg128, Hi64); + DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, + DstReg128, Lo64); + return DstReg128; +} + +static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { + + if (Op.getValueType() != MVT::i64) + return Op; + + SDLoc dl(Op); + SDValue Src1 = Op.getOperand(0); + SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); + SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, + DAG.getConstant(32, dl, MVT::i64)); + Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); + + SDValue Src2 = Op.getOperand(1); + SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); + SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, + DAG.getConstant(32, dl, MVT::i64)); + Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); + + + bool hasChain = false; + unsigned hiOpc = Op.getOpcode(); + switch (Op.getOpcode()) { + default: llvm_unreachable("Invalid opcode"); + case ISD::ADDC: hiOpc = ISD::ADDE; break; + case ISD::ADDE: hasChain = true; break; + case ISD::SUBC: hiOpc = ISD::SUBE; break; + case ISD::SUBE: hasChain = true; break; + } + SDValue Lo; + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); + if (hasChain) { + Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, + Op.getOperand(2)); + } else { + Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); + } + SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); + SDValue Carry = Hi.getValue(1); + + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); + Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); + Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, + DAG.getConstant(32, dl, MVT::i64)); + + SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); + SDValue Ops[2] = { Dst, Carry }; + return DAG.getMergeValues(Ops, dl); +} + +// Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() +// in LegalizeDAG.cpp except the order of arguments to the library function. +static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, + const SparcTargetLowering &TLI) +{ + unsigned opcode = Op.getOpcode(); + assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); + + bool isSigned = (opcode == ISD::SMULO); + EVT VT = MVT::i64; + EVT WideVT = MVT::i128; + SDLoc dl(Op); + SDValue LHS = Op.getOperand(0); + + if (LHS.getValueType() != VT) + return Op; + + SDValue ShiftAmt = DAG.getConstant(63, dl, VT); + + SDValue RHS = Op.getOperand(1); + SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); + SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); + SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; + + SDValue MulResult = TLI.makeLibCall(DAG, + RTLIB::MUL_I128, WideVT, + Args, isSigned, dl).first; + SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, + MulResult, DAG.getIntPtrConstant(0, dl)); + SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, + MulResult, DAG.getIntPtrConstant(1, dl)); + if (isSigned) { + SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); + TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); + } else { + TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), + ISD::SETNE); + } + // MulResult is a node with an illegal type. Because such things are not + // generally permitted during this phase of legalization, ensure that + // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have + // been folded. + assert(MulResult->use_empty() && "Illegally typed node still in use!"); + + SDValue Ops[2] = { BottomHalf, TopHalf } ; + return DAG.getMergeValues(Ops, dl); +} + +static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { + if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) + // Expand with a fence. + return SDValue(); + + // Monotonic load/stores are legal. + return Op; +} + +SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDLoc dl(Op); + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + case Intrinsic::thread_pointer: { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + return DAG.getRegister(SP::G7, PtrVT); + } + } +} + +SDValue SparcTargetLowering:: +LowerOperation(SDValue Op, SelectionDAG &DAG) const { + + bool hasHardQuad = Subtarget->hasHardQuad(); + bool isV9 = Subtarget->isV9(); + + switch (Op.getOpcode()) { + default: llvm_unreachable("Should not custom lower this!"); + + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, + Subtarget); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, + Subtarget); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, + hasHardQuad); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, + hasHardQuad); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, + hasHardQuad); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, + hasHardQuad); + case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, + hasHardQuad); + case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, + hasHardQuad); + case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG, *this); + case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG, *this); + case ISD::VASTART: return LowerVASTART(Op, DAG, *this); + case ISD::VAARG: return LowerVAARG(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, + Subtarget); + + case ISD::LOAD: return LowerLOAD(Op, DAG); + case ISD::STORE: return LowerSTORE(Op, DAG); + case ISD::FADD: return LowerF128Op(Op, DAG, + getLibcallName(RTLIB::ADD_F128), 2); + case ISD::FSUB: return LowerF128Op(Op, DAG, + getLibcallName(RTLIB::SUB_F128), 2); + case ISD::FMUL: return LowerF128Op(Op, DAG, + getLibcallName(RTLIB::MUL_F128), 2); + case ISD::FDIV: return LowerF128Op(Op, DAG, + getLibcallName(RTLIB::DIV_F128), 2); + case ISD::FSQRT: return LowerF128Op(Op, DAG, + getLibcallName(RTLIB::SQRT_F128),1); + case ISD::FABS: + case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); + case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); + case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); + case ISD::UMULO: + case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + } +} + +MachineBasicBlock * +SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, + MachineBasicBlock *BB) const { + switch (MI.getOpcode()) { + default: llvm_unreachable("Unknown SELECT_CC!"); + case SP::SELECT_CC_Int_ICC: + case SP::SELECT_CC_FP_ICC: + case SP::SELECT_CC_DFP_ICC: + case SP::SELECT_CC_QFP_ICC: + return expandSelectCC(MI, BB, SP::BCOND); + case SP::SELECT_CC_Int_FCC: + case SP::SELECT_CC_FP_FCC: + case SP::SELECT_CC_DFP_FCC: + case SP::SELECT_CC_QFP_FCC: + return expandSelectCC(MI, BB, SP::FBCOND); + case SP::EH_SJLJ_SETJMP32ri: + case SP::EH_SJLJ_SETJMP32rr: + return emitEHSjLjSetJmp(MI, BB); + case SP::EH_SJLJ_LONGJMP32rr: + case SP::EH_SJLJ_LONGJMP32ri: + return emitEHSjLjLongJmp(MI, BB); + + } +} + +MachineBasicBlock * +SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, + unsigned BROpcode) const { + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + DebugLoc dl = MI.getDebugLoc(); + unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); + + // To "insert" a SELECT_CC instruction, we actually have to insert the diamond + // control-flow pattern. The incoming instruction knows the destination vreg + // to set, the condition code register to branch on, the true/false values to + // select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + // thisMBB: + // ... + // TrueVal = ... + // [f]bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), + BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BB = sinkMBB; + BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI.getOperand(0).getReg()) + .addReg(MI.getOperand(2).getReg()) + .addMBB(copy0MBB) + .addReg(MI.getOperand(1).getReg()) + .addMBB(thisMBB); + + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +SparcTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI.getDebugLoc(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + + MachineFunction *MF = MBB->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + MachineInstrBuilder MIB; + + MVT PVT = getPointerTy(MF->getDataLayout()); + unsigned RegSize = PVT.getStoreSize(); + assert(PVT == MVT::i32 && "Invalid Pointer Size!"); + + unsigned Buf = MI.getOperand(0).getReg(); + unsigned JmpLoc = MRI.createVirtualRegister(&SP::IntRegsRegClass); + + // TO DO: If we do 64-bit handling, this perhaps should be FLUSHW, not TA 3 + MIB = BuildMI(*MBB, MI, DL, TII->get(SP::TRAPri), SP::G0).addImm(3).addImm(SPCC::ICC_A); + + // Instruction to restore FP + const unsigned FP = SP::I6; + MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) + .addReg(FP) + .addReg(Buf) + .addImm(0); + + // Instruction to load jmp location + MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) + .addReg(JmpLoc, RegState::Define) + .addReg(Buf) + .addImm(RegSize); + + // Instruction to restore SP + const unsigned SP = SP::O6; + MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) + .addReg(SP) + .addReg(Buf) + .addImm(2 * RegSize); + + // Instruction to restore I7 + MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) + .addReg(SP::I7) + .addReg(Buf, RegState::Kill) + .addImm(3 * RegSize); + + // Jump to JmpLoc + BuildMI(*MBB, MI, DL, TII->get(SP::JMPLrr)).addReg(SP::G0).addReg(JmpLoc, RegState::Kill).addReg(SP::G0); + + MI.eraseFromParent(); + return MBB; +} + +MachineBasicBlock * +SparcTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI.getDebugLoc(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); + + MachineFunction *MF = MBB->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + MachineInstrBuilder MIB; + + MVT PVT = getPointerTy(MF->getDataLayout()); + unsigned RegSize = PVT.getStoreSize(); + assert(PVT == MVT::i32 && "Invalid Pointer Size!"); + + unsigned DstReg = MI.getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(DstReg); + assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); + (void)TRI; + unsigned mainDstReg = MRI.createVirtualRegister(RC); + unsigned restoreDstReg = MRI.createVirtualRegister(RC); + + // For v = setjmp(buf), we generate + // + // thisMBB: + // buf[0] = FP + // buf[RegSize] = restoreMBB <-- takes address of restoreMBB + // buf[RegSize * 2] = O6 + // buf[RegSize * 3] = I7 + // Ensure restoreMBB remains in the relocations list (done using a bn instruction) + // b mainMBB + // + // mainMBB: + // v_main = 0 + // b sinkMBB + // + // restoreMBB: + // v_restore = 1 + // --fall through-- + // + // sinkMBB: + // v = phi(main, restore) + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator It = ++MBB->getIterator(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + + MF->insert(It, mainMBB); + MF->insert(It, restoreMBB); + MF->insert(It, sinkMBB); + restoreMBB->setHasAddressTaken(); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), + MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + unsigned LabelReg = MRI.createVirtualRegister(&SP::IntRegsRegClass); + unsigned LabelReg2 = MRI.createVirtualRegister(&SP::IntRegsRegClass); + unsigned BufReg = MI.getOperand(1).getReg(); + + // Instruction to store FP + const unsigned FP = SP::I6; + MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) + .addReg(BufReg) + .addImm(0) + .addReg(FP); + + // Instructions to store jmp location + MIB = BuildMI(thisMBB, DL, TII->get(SP::SETHIi)) + .addReg(LabelReg, RegState::Define) + .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_HI); + + MIB = BuildMI(thisMBB, DL, TII->get(SP::ORri)) + .addReg(LabelReg2, RegState::Define) + .addReg(LabelReg, RegState::Kill) + .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_LO); + + MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) + .addReg(BufReg) + .addImm(RegSize) + .addReg(LabelReg2, RegState::Kill); + + // Instruction to store SP + const unsigned SP = SP::O6; + MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) + .addReg(BufReg) + .addImm(2 * RegSize) + .addReg(SP); + + // Instruction to store I7 + MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) + .addReg(BufReg) + .addImm(3 * RegSize) + .addReg(SP::I7); + + + // FIX ME: This next instruction ensures that the restoreMBB block address remains + // valid through optimization passes and serves no other purpose. The ICC_N ensures + // that the branch is never taken. This commented-out code here was an alternative + // attempt to achieve this which brought myriad problems. + //MIB = BuildMI(thisMBB, DL, TII->get(SP::EH_SjLj_Setup)).addMBB(restoreMBB, SparcMCExpr::VK_Sparc_None); + MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND)) + .addMBB(restoreMBB) + .addImm(SPCC::ICC_N); + + MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND)) + .addMBB(mainMBB) + .addImm(SPCC::ICC_A); + + thisMBB->addSuccessor(mainMBB); + thisMBB->addSuccessor(restoreMBB); + + + // mainMBB: + MIB = BuildMI(mainMBB, DL, TII->get(SP::ORrr)) + .addReg(mainDstReg, RegState::Define) + .addReg(SP::G0) + .addReg(SP::G0); + MIB = BuildMI(mainMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A); + + mainMBB->addSuccessor(sinkMBB); + + + // restoreMBB: + MIB = BuildMI(restoreMBB, DL, TII->get(SP::ORri)) + .addReg(restoreDstReg, RegState::Define) + .addReg(SP::G0) + .addImm(1); + //MIB = BuildMI(restoreMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A); + restoreMBB->addSuccessor(sinkMBB); + + // sinkMBB: + MIB = BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(SP::PHI), DstReg) + .addReg(mainDstReg).addMBB(mainMBB) + .addReg(restoreDstReg).addMBB(restoreMBB); + + MI.eraseFromParent(); + return sinkMBB; +} + +//===----------------------------------------------------------------------===// +// Sparc Inline Assembly Support +//===----------------------------------------------------------------------===// + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +SparcTargetLowering::ConstraintType +SparcTargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: break; + case 'r': + case 'f': + case 'e': + return C_RegisterClass; + case 'I': // SIMM13 + return C_Other; + } + } + + return TargetLowering::getConstraintType(Constraint); +} + +TargetLowering::ConstraintWeight SparcTargetLowering:: +getSingleConstraintMatchWeight(AsmOperandInfo &info, + const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'I': // SIMM13 + if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { + if (isInt<13>(C->getSExtValue())) + weight = CW_Constant; + } + break; + } + return weight; +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void SparcTargetLowering:: +LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + SDValue Result(nullptr, 0); + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) + return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'I': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (isInt<13>(C->getSExtValue())) { + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + return; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +std::pair<unsigned, const TargetRegisterClass *> +SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + if (VT == MVT::v2i32) + return std::make_pair(0U, &SP::IntPairRegClass); + else + return std::make_pair(0U, &SP::IntRegsRegClass); + case 'f': + if (VT == MVT::f32) + return std::make_pair(0U, &SP::FPRegsRegClass); + else if (VT == MVT::f64) + return std::make_pair(0U, &SP::LowDFPRegsRegClass); + else if (VT == MVT::f128) + return std::make_pair(0U, &SP::LowQFPRegsRegClass); + llvm_unreachable("Unknown ValueType for f-register-type!"); + break; + case 'e': + if (VT == MVT::f32) + return std::make_pair(0U, &SP::FPRegsRegClass); + else if (VT == MVT::f64) + return std::make_pair(0U, &SP::DFPRegsRegClass); + else if (VT == MVT::f128) + return std::make_pair(0U, &SP::QFPRegsRegClass); + llvm_unreachable("Unknown ValueType for e-register-type!"); + break; + } + } else if (!Constraint.empty() && Constraint.size() <= 5 + && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { + // constraint = '{r<d>}' + // Remove the braces from around the name. + StringRef name(Constraint.data()+1, Constraint.size()-2); + // Handle register aliases: + // r0-r7 -> g0-g7 + // r8-r15 -> o0-o7 + // r16-r23 -> l0-l7 + // r24-r31 -> i0-i7 + uint64_t intVal = 0; + if (name.substr(0, 1).equals("r") + && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { + const char regTypes[] = { 'g', 'o', 'l', 'i' }; + char regType = regTypes[intVal/8]; + char regIdx = '0' + (intVal % 8); + char tmp[] = { '{', regType, regIdx, '}', 0 }; + std::string newConstraint = std::string(tmp); + return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, + VT); + } + } + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +bool +SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The Sparc target isn't yet aware of offsets. + return false; +} + +void SparcTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>& Results, + SelectionDAG &DAG) const { + + SDLoc dl(N); + + RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; + + switch (N->getOpcode()) { + default: + llvm_unreachable("Do not know how to custom type legalize this operation!"); + + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + // Custom lower only if it involves f128 or i64. + if (N->getOperand(0).getValueType() != MVT::f128 + || N->getValueType(0) != MVT::i64) + return; + libCall = ((N->getOpcode() == ISD::FP_TO_SINT) + ? RTLIB::FPTOSINT_F128_I64 + : RTLIB::FPTOUINT_F128_I64); + + Results.push_back(LowerF128Op(SDValue(N, 0), + DAG, + getLibcallName(libCall), + 1)); + return; + + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + // Custom lower only if it involves f128 or i64. + if (N->getValueType(0) != MVT::f128 + || N->getOperand(0).getValueType() != MVT::i64) + return; + + libCall = ((N->getOpcode() == ISD::SINT_TO_FP) + ? RTLIB::SINTTOFP_I64_F128 + : RTLIB::UINTTOFP_I64_F128); + + Results.push_back(LowerF128Op(SDValue(N, 0), + DAG, + getLibcallName(libCall), + 1)); + return; + case ISD::LOAD: { + LoadSDNode *Ld = cast<LoadSDNode>(N); + // Custom handling only for i64: turn i64 load into a v2i32 load, + // and a bitcast. + if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) + return; + + SDLoc dl(N); + SDValue LoadRes = DAG.getExtLoad( + Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), + Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(), + Ld->getMemOperand()->getFlags(), Ld->getAAInfo()); + + SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); + Results.push_back(Res); + Results.push_back(LoadRes.getValue(1)); + return; + } + } +} + +// Override to enable LOAD_STACK_GUARD lowering on Linux. +bool SparcTargetLowering::useLoadStackGuardNode() const { + if (!Subtarget->isTargetLinux()) + return TargetLowering::useLoadStackGuardNode(); + return true; +} + +// Override to disable global variable loading on Linux. +void SparcTargetLowering::insertSSPDeclarations(Module &M) const { + if (!Subtarget->isTargetLinux()) + return TargetLowering::insertSSPDeclarations(M); +} |