diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp | 7938 |
1 files changed, 7938 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp new file mode 100644 index 000000000000..8da5f0563c6a --- /dev/null +++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp @@ -0,0 +1,7938 @@ +//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the PPCISelLowering class. +// +//===----------------------------------------------------------------------===// + +#include "PPCISelLowering.h" +#include "MCTargetDesc/PPCPredicates.h" +#include "PPCMachineFunctionInfo.h" +#include "PPCPerfectShuffle.h" +#include "PPCTargetMachine.h" +#include "PPCTargetObjectFile.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", +cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); + +static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", +cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); + +static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", +cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); + +static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { + if (TM.getSubtargetImpl()->isDarwin()) + return new TargetLoweringObjectFileMachO(); + + if (TM.getSubtargetImpl()->isSVR4ABI()) + return new PPC64LinuxTargetObjectFile(); + + return new TargetLoweringObjectFileELF(); +} + +PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) + : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { + const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); + + setPow2DivIsCheap(); + + // Use _setjmp/_longjmp instead of setjmp/longjmp. + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(true); + + // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all + // arguments are at least 4/8 bytes aligned. + bool isPPC64 = Subtarget->isPPC64(); + setMinStackArgumentAlignment(isPPC64 ? 8:4); + + // Set up the register classes. + addRegisterClass(MVT::i32, &PPC::GPRCRegClass); + addRegisterClass(MVT::f32, &PPC::F4RCRegClass); + addRegisterClass(MVT::f64, &PPC::F8RCRegClass); + + // PowerPC has an i16 but no i8 (or i1) SEXTLOAD + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // PowerPC has pre-inc load and store's. + setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); + setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); + setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); + setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); + setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); + setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); + setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); + setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); + setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); + setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); + + // This is used in the ppcf128->int sequence. Note it has different semantics + // from FP_ROUND: that rounds to nearest, this rounds to zero. + setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); + + // We do not currently implement these libm ops for PowerPC. + setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); + setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); + setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); + setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); + setOperationAction(ISD::FREM, MVT::ppcf128, Expand); + + // PowerPC has no SREM/UREM instructions + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. + setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); + setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); + setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); + setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); + setOperationAction(ISD::UDIVREM, MVT::i32, Expand); + setOperationAction(ISD::SDIVREM, MVT::i32, Expand); + setOperationAction(ISD::UDIVREM, MVT::i64, Expand); + setOperationAction(ISD::SDIVREM, MVT::i64, Expand); + + // We don't support sin/cos/sqrt/fmod/pow + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FREM , MVT::f64, Expand); + setOperationAction(ISD::FPOW , MVT::f64, Expand); + setOperationAction(ISD::FMA , MVT::f64, Legal); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + setOperationAction(ISD::FREM , MVT::f32, Expand); + setOperationAction(ISD::FPOW , MVT::f32, Expand); + setOperationAction(ISD::FMA , MVT::f32, Legal); + + setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); + + // If we're enabling GP optimizations, use hardware square root + if (!Subtarget->hasFSQRT() && + !(TM.Options.UnsafeFPMath && + Subtarget->hasFRSQRTE() && Subtarget->hasFRE())) + setOperationAction(ISD::FSQRT, MVT::f64, Expand); + + if (!Subtarget->hasFSQRT() && + !(TM.Options.UnsafeFPMath && + Subtarget->hasFRSQRTES() && Subtarget->hasFRES())) + setOperationAction(ISD::FSQRT, MVT::f32, Expand); + + if (Subtarget->hasFCPSGN()) { + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); + } else { + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + } + + if (Subtarget->hasFPRND()) { + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + setOperationAction(ISD::FROUND, MVT::f64, Legal); + + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FROUND, MVT::f32, Legal); + } + + // PowerPC does not have BSWAP, CTPOP or CTTZ + setOperationAction(ISD::BSWAP, MVT::i32 , Expand); + setOperationAction(ISD::CTTZ , MVT::i32 , Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::BSWAP, MVT::i64 , Expand); + setOperationAction(ISD::CTTZ , MVT::i64 , Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + + if (Subtarget->hasPOPCNTD()) { + setOperationAction(ISD::CTPOP, MVT::i32 , Legal); + setOperationAction(ISD::CTPOP, MVT::i64 , Legal); + } else { + setOperationAction(ISD::CTPOP, MVT::i32 , Expand); + setOperationAction(ISD::CTPOP, MVT::i64 , Expand); + } + + // PowerPC does not have ROTR + setOperationAction(ISD::ROTR, MVT::i32 , Expand); + setOperationAction(ISD::ROTR, MVT::i64 , Expand); + + // PowerPC does not have Select + setOperationAction(ISD::SELECT, MVT::i32, Expand); + setOperationAction(ISD::SELECT, MVT::i64, Expand); + setOperationAction(ISD::SELECT, MVT::f32, Expand); + setOperationAction(ISD::SELECT, MVT::f64, Expand); + + // PowerPC wants to turn select_cc of FP into fsel when possible. + setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); + + // PowerPC wants to optimize integer setcc a bit + setOperationAction(ISD::SETCC, MVT::i32, Custom); + + // PowerPC does not have BRCOND which requires SetCC + setOperationAction(ISD::BRCOND, MVT::Other, Expand); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + + // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + + // PowerPC does not have [U|S]INT_TO_FP + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + + setOperationAction(ISD::BITCAST, MVT::f32, Expand); + setOperationAction(ISD::BITCAST, MVT::i32, Expand); + setOperationAction(ISD::BITCAST, MVT::i64, Expand); + setOperationAction(ISD::BITCAST, MVT::f64, Expand); + + // We cannot sextinreg(i1). Expand to shifts. + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + + // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support + // SjLj exception handling but a light-weight setjmp/longjmp replacement to + // support continuation, user-level threading, and etc.. As a result, no + // other SjLj exception interfaces are implemented and please don't build + // your own exception handling based on them. + // LLVM/Clang supports zero-cost DWARF exception handling. + setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); + setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); + + // We want to legalize GlobalAddress and ConstantPool nodes into the + // appropriate instructions to materialize the address. + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + setOperationAction(ISD::ConstantPool, MVT::i64, Custom); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + + // TRAP is legal. + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + // TRAMPOLINE is custom lowered. + setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); + setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex + setOperationAction(ISD::VASTART , MVT::Other, Custom); + + if (Subtarget->isSVR4ABI()) { + if (isPPC64) { + // VAARG always uses double-word chunks, so promote anything smaller. + setOperationAction(ISD::VAARG, MVT::i1, Promote); + AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); + setOperationAction(ISD::VAARG, MVT::i8, Promote); + AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); + setOperationAction(ISD::VAARG, MVT::i16, Promote); + AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); + setOperationAction(ISD::VAARG, MVT::i32, Promote); + AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); + setOperationAction(ISD::VAARG, MVT::Other, Expand); + } else { + // VAARG is custom lowered with the 32-bit SVR4 ABI. + setOperationAction(ISD::VAARG, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::i64, Custom); + } + } else + setOperationAction(ISD::VAARG, MVT::Other, Expand); + + if (Subtarget->isSVR4ABI() && !isPPC64) + // VACOPY is custom lowered with the 32-bit SVR4 ABI. + setOperationAction(ISD::VACOPY , MVT::Other, Custom); + else + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + + // Use the default implementation. + setOperationAction(ISD::VAEND , MVT::Other, Expand); + setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); + + // We want to custom lower some of our intrinsics. + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + // To handle counter-based loop conditions. + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); + + // Comparisons that require checking two conditions. + setCondCodeAction(ISD::SETULT, MVT::f32, Expand); + setCondCodeAction(ISD::SETULT, MVT::f64, Expand); + setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); + setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); + setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); + setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); + setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); + setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); + setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); + setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); + setCondCodeAction(ISD::SETONE, MVT::f32, Expand); + setCondCodeAction(ISD::SETONE, MVT::f64, Expand); + + if (Subtarget->has64BitSupport()) { + // They also have instructions for converting between i64 and fp. + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + // This is just the low 32 bits of a (signed) fp->i64 conversion. + // We cannot do this with Promote because i64 is not a legal type. + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); + + if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64()) + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + } else { + // PowerPC does not have FP_TO_UINT on 32-bit implementations. + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); + } + + // With the instructions enabled under FPCVT, we can do everything. + if (PPCSubTarget.hasFPCVT()) { + if (Subtarget->has64BitSupport()) { + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + } + + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); + } + + if (Subtarget->use64BitRegs()) { + // 64-bit PowerPC implementations can support i64 types directly + addRegisterClass(MVT::i64, &PPC::G8RCRegClass); + // BUILD_PAIR can't be handled natively, and should be expanded to shl/or + setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); + // 64-bit PowerPC wants to expand i128 shifts itself. + setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); + } else { + // 32-bit PowerPC wants to expand i64 shifts itself. + setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); + } + + if (Subtarget->hasAltivec()) { + // First set operation action for all vector types to expand. Then we + // will selectively turn on ones that can be effectively codegen'd. + for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; + i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)i; + + // add/sub are legal for all supported vector VT's. + setOperationAction(ISD::ADD , VT, Legal); + setOperationAction(ISD::SUB , VT, Legal); + + // We promote all shuffles to v16i8. + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); + AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); + + // We promote all non-typed operations to v4i32. + setOperationAction(ISD::AND , VT, Promote); + AddPromotedToType (ISD::AND , VT, MVT::v4i32); + setOperationAction(ISD::OR , VT, Promote); + AddPromotedToType (ISD::OR , VT, MVT::v4i32); + setOperationAction(ISD::XOR , VT, Promote); + AddPromotedToType (ISD::XOR , VT, MVT::v4i32); + setOperationAction(ISD::LOAD , VT, Promote); + AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); + setOperationAction(ISD::STORE, VT, Promote); + AddPromotedToType (ISD::STORE, VT, MVT::v4i32); + + // No other operations are legal. + setOperationAction(ISD::MUL , VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::FDIV, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FNEG, VT, Expand); + setOperationAction(ISD::FSQRT, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FABS, VT, Expand); + setOperationAction(ISD::FPOWI, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); + setOperationAction(ISD::BUILD_VECTOR, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); + + for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; + j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) { + MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j; + setTruncStoreAction(VT, InnerVT, Expand); + } + setLoadExtAction(ISD::SEXTLOAD, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, Expand); + } + + // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle + // with merges, splats, etc. + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); + + setOperationAction(ISD::AND , MVT::v4i32, Legal); + setOperationAction(ISD::OR , MVT::v4i32, Legal); + setOperationAction(ISD::XOR , MVT::v4i32, Legal); + setOperationAction(ISD::LOAD , MVT::v4i32, Legal); + setOperationAction(ISD::SELECT, MVT::v4i32, Expand); + setOperationAction(ISD::STORE , MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); + setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); + + addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); + addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); + addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); + addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); + + setOperationAction(ISD::MUL, MVT::v4f32, Legal); + setOperationAction(ISD::FMA, MVT::v4f32, Legal); + + if (TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FDIV, MVT::v4f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); + } + + setOperationAction(ISD::MUL, MVT::v4i32, Custom); + setOperationAction(ISD::MUL, MVT::v8i16, Custom); + setOperationAction(ISD::MUL, MVT::v16i8, Custom); + + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); + + setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); + + // Altivec does not contain unordered floating-point compare instructions + setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand); + + setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); + setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); + } + + if (Subtarget->has64BitSupport()) { + setOperationAction(ISD::PREFETCH, MVT::Other, Legal); + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); + } + + setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); + + setBooleanContents(ZeroOrOneBooleanContent); + // Altivec instructions set fields to all zeros or all ones. + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + if (isPPC64) { + setStackPointerRegisterToSaveRestore(PPC::X1); + setExceptionPointerRegister(PPC::X3); + setExceptionSelectorRegister(PPC::X4); + } else { + setStackPointerRegisterToSaveRestore(PPC::R1); + setExceptionPointerRegister(PPC::R3); + setExceptionSelectorRegister(PPC::R4); + } + + // We have target-specific dag combine patterns for the following nodes: + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::BR_CC); + setTargetDAGCombine(ISD::BSWAP); + setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); + + // Use reciprocal estimates. + if (TM.Options.UnsafeFPMath) { + setTargetDAGCombine(ISD::FDIV); + setTargetDAGCombine(ISD::FSQRT); + } + + // Darwin long double math library functions have $LDBL128 appended. + if (Subtarget->isDarwin()) { + setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); + setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); + setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); + setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); + setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); + setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); + setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); + setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); + setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); + setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); + } + + setMinFunctionAlignment(2); + if (PPCSubTarget.isDarwin()) + setPrefFunctionAlignment(4); + + if (isPPC64 && Subtarget->isJITCodeModel()) + // Temporary workaround for the inability of PPC64 JIT to handle jump + // tables. + setSupportJumpTables(false); + + setInsertFencesForAtomic(true); + + if (Subtarget->enableMachineScheduler()) + setSchedulingPreference(Sched::Source); + else + setSchedulingPreference(Sched::Hybrid); + + computeRegisterProperties(); + + // The Freescale cores does better with aggressive inlining of memcpy and + // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). + if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc || + Subtarget->getDarwinDirective() == PPC::DIR_E5500) { + MaxStoresPerMemset = 32; + MaxStoresPerMemsetOptSize = 16; + MaxStoresPerMemcpy = 32; + MaxStoresPerMemcpyOptSize = 8; + MaxStoresPerMemmove = 32; + MaxStoresPerMemmoveOptSize = 8; + + setPrefFunctionAlignment(4); + } +} + +/// getMaxByValAlign - Helper for getByValTypeAlignment to determine +/// the desired ByVal argument alignment. +static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, + unsigned MaxMaxAlign) { + if (MaxAlign == MaxMaxAlign) + return; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { + if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) + MaxAlign = 32; + else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) + MaxAlign = 16; + } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned EltAlign = 0; + getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + unsigned EltAlign = 0; + getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + if (MaxAlign == MaxMaxAlign) + break; + } + } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. +unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { + // Darwin passes everything on 4 byte boundary. + if (PPCSubTarget.isDarwin()) + return 4; + + // 16byte and wider vectors are passed on 16byte boundary. + // The rest is 8 on PPC64 and 4 on PPC32 boundary. + unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4; + if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX()) + getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16); + return Align; +} + +const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + default: return 0; + case PPCISD::FSEL: return "PPCISD::FSEL"; + case PPCISD::FCFID: return "PPCISD::FCFID"; + case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; + case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; + case PPCISD::FRE: return "PPCISD::FRE"; + case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; + case PPCISD::STFIWX: return "PPCISD::STFIWX"; + case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; + case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; + case PPCISD::VPERM: return "PPCISD::VPERM"; + case PPCISD::Hi: return "PPCISD::Hi"; + case PPCISD::Lo: return "PPCISD::Lo"; + case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; + case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; + case PPCISD::LOAD: return "PPCISD::LOAD"; + case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; + case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; + case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; + case PPCISD::SRL: return "PPCISD::SRL"; + case PPCISD::SRA: return "PPCISD::SRA"; + case PPCISD::SHL: return "PPCISD::SHL"; + case PPCISD::CALL: return "PPCISD::CALL"; + case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; + case PPCISD::MTCTR: return "PPCISD::MTCTR"; + case PPCISD::BCTRL: return "PPCISD::BCTRL"; + case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; + case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; + case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; + case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; + case PPCISD::VCMP: return "PPCISD::VCMP"; + case PPCISD::VCMPo: return "PPCISD::VCMPo"; + case PPCISD::LBRX: return "PPCISD::LBRX"; + case PPCISD::STBRX: return "PPCISD::STBRX"; + case PPCISD::LARX: return "PPCISD::LARX"; + case PPCISD::STCX: return "PPCISD::STCX"; + case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; + case PPCISD::BDNZ: return "PPCISD::BDNZ"; + case PPCISD::BDZ: return "PPCISD::BDZ"; + case PPCISD::MFFS: return "PPCISD::MFFS"; + case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; + case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; + case PPCISD::CR6SET: return "PPCISD::CR6SET"; + case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; + case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA"; + case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L"; + case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L"; + case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; + case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; + case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; + case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; + case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; + case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; + case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; + case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; + case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; + case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; + case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; + case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; + case PPCISD::SC: return "PPCISD::SC"; + } +} + +EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +//===----------------------------------------------------------------------===// +// Node matching predicates, for use by the tblgen matching code. +//===----------------------------------------------------------------------===// + +/// isFloatingPointZero - Return true if this is 0.0 or -0.0. +static bool isFloatingPointZero(SDValue Op) { + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) + return CFP->getValueAPF().isZero(); + else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { + // Maybe this has already been legalized into the constant pool? + if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) + return CFP->getValueAPF().isZero(); + } + return false; +} + +/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return +/// true if Op is undef or if it matches the specified value. +static bool isConstantOrUndef(int Op, int Val) { + return Op < 0 || Op == Val; +} + +/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a +/// VPKUHUM instruction. +bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { + if (!isUnary) { + for (unsigned i = 0; i != 16; ++i) + if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) + return false; + } else { + for (unsigned i = 0; i != 8; ++i) + if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || + !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) + return false; + } + return true; +} + +/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a +/// VPKUWUM instruction. +bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { + if (!isUnary) { + for (unsigned i = 0; i != 16; i += 2) + if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || + !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) + return false; + } else { + for (unsigned i = 0; i != 8; i += 2) + if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || + !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || + !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || + !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) + return false; + } + return true; +} + +/// isVMerge - Common function, used to match vmrg* shuffles. +/// +static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, + unsigned LHSStart, unsigned RHSStart) { + assert(N->getValueType(0) == MVT::v16i8 && + "PPC only supports shuffles by bytes!"); + assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && + "Unsupported merge size!"); + + for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units + for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit + if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), + LHSStart+j+i*UnitSize) || + !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), + RHSStart+j+i*UnitSize)) + return false; + } + return true; +} + +/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for +/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). +bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, + bool isUnary) { + if (!isUnary) + return isVMerge(N, UnitSize, 8, 24); + return isVMerge(N, UnitSize, 8, 8); +} + +/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for +/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). +bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, + bool isUnary) { + if (!isUnary) + return isVMerge(N, UnitSize, 0, 16); + return isVMerge(N, UnitSize, 0, 0); +} + + +/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift +/// amount, otherwise return -1. +int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { + assert(N->getValueType(0) == MVT::v16i8 && + "PPC only supports shuffles by bytes!"); + + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + + // Find the first non-undef value in the shuffle mask. + unsigned i; + for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) + /*search*/; + + if (i == 16) return -1; // all undef. + + // Otherwise, check to see if the rest of the elements are consecutively + // numbered from this value. + unsigned ShiftAmt = SVOp->getMaskElt(i); + if (ShiftAmt < i) return -1; + ShiftAmt -= i; + + if (!isUnary) { + // Check the rest of the elements to see if they are consecutive. + for (++i; i != 16; ++i) + if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) + return -1; + } else { + // Check the rest of the elements to see if they are consecutive. + for (++i; i != 16; ++i) + if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) + return -1; + } + return ShiftAmt; +} + +/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a splat of a single element that is suitable for input to +/// VSPLTB/VSPLTH/VSPLTW. +bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { + assert(N->getValueType(0) == MVT::v16i8 && + (EltSize == 1 || EltSize == 2 || EltSize == 4)); + + // This is a splat operation if each element of the permute is the same, and + // if the value doesn't reference the second vector. + unsigned ElementBase = N->getMaskElt(0); + + // FIXME: Handle UNDEF elements too! + if (ElementBase >= 16) + return false; + + // Check that the indices are consecutive, in the case of a multi-byte element + // splatted with a v16i8 mask. + for (unsigned i = 1; i != EltSize; ++i) + if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) + return false; + + for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { + if (N->getMaskElt(i) < 0) continue; + for (unsigned j = 0; j != EltSize; ++j) + if (N->getMaskElt(i+j) != N->getMaskElt(j)) + return false; + } + return true; +} + +/// isAllNegativeZeroVector - Returns true if all elements of build_vector +/// are -0.0. +bool PPC::isAllNegativeZeroVector(SDNode *N) { + BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); + + APInt APVal, APUndef; + unsigned BitSize; + bool HasAnyUndefs; + + if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + return CFP->getValueAPF().isNegZero(); + + return false; +} + +/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the +/// specified isSplatShuffleMask VECTOR_SHUFFLE mask. +unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + assert(isSplatShuffleMask(SVOp, EltSize)); + return SVOp->getMaskElt(0) / EltSize; +} + +/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed +/// by using a vspltis[bhw] instruction of the specified element size, return +/// the constant being splatted. The ByteSize field indicates the number of +/// bytes of each element [124] -> [bhw]. +SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { + SDValue OpVal(0, 0); + + // If ByteSize of the splat is bigger than the element size of the + // build_vector, then we have a case where we are checking for a splat where + // multiple elements of the buildvector are folded together into a single + // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). + unsigned EltSize = 16/N->getNumOperands(); + if (EltSize < ByteSize) { + unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. + SDValue UniquedVals[4]; + assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); + + // See if all of the elements in the buildvector agree across. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; + // If the element isn't a constant, bail fully out. + if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); + + + if (UniquedVals[i&(Multiple-1)].getNode() == 0) + UniquedVals[i&(Multiple-1)] = N->getOperand(i); + else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) + return SDValue(); // no match. + } + + // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains + // either constant or undef values that are identical for each chunk. See + // if these chunks can form into a larger vspltis*. + + // Check to see if all of the leading entries are either 0 or -1. If + // neither, then this won't fit into the immediate field. + bool LeadingZero = true; + bool LeadingOnes = true; + for (unsigned i = 0; i != Multiple-1; ++i) { + if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. + + LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); + LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); + } + // Finally, check the least significant entry. + if (LeadingZero) { + if (UniquedVals[Multiple-1].getNode() == 0) + return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef + int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); + if (Val < 16) + return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) + } + if (LeadingOnes) { + if (UniquedVals[Multiple-1].getNode() == 0) + return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef + int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); + if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) + return DAG.getTargetConstant(Val, MVT::i32); + } + + return SDValue(); + } + + // Check to see if this buildvec has a single non-undef value in its elements. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; + if (OpVal.getNode() == 0) + OpVal = N->getOperand(i); + else if (OpVal != N->getOperand(i)) + return SDValue(); + } + + if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. + + unsigned ValSizeInBytes = EltSize; + uint64_t Value = 0; + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { + Value = CN->getZExtValue(); + } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { + assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); + Value = FloatToBits(CN->getValueAPF().convertToFloat()); + } + + // If the splat value is larger than the element value, then we can never do + // this splat. The only case that we could fit the replicated bits into our + // immediate field for would be zero, and we prefer to use vxor for it. + if (ValSizeInBytes < ByteSize) return SDValue(); + + // If the element value is larger than the splat value, cut it in half and + // check to see if the two halves are equal. Continue doing this until we + // get to ByteSize. This allows us to handle 0x01010101 as 0x01. + while (ValSizeInBytes > ByteSize) { + ValSizeInBytes >>= 1; + + // If the top half equals the bottom half, we're still ok. + if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != + (Value & ((1 << (8*ValSizeInBytes))-1))) + return SDValue(); + } + + // Properly sign extend the value. + int MaskVal = SignExtend32(Value, ByteSize * 8); + + // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. + if (MaskVal == 0) return SDValue(); + + // Finally, if this value fits in a 5 bit sext field, return it + if (SignExtend32<5>(MaskVal) == MaskVal) + return DAG.getTargetConstant(MaskVal, MVT::i32); + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Addressing Mode Selection +//===----------------------------------------------------------------------===// + +/// isIntS16Immediate - This method tests to see if the node is either a 32-bit +/// or 64-bit immediate, and if the value can be accurately represented as a +/// sign extension from a 16-bit value. If so, this returns true and the +/// immediate. +static bool isIntS16Immediate(SDNode *N, short &Imm) { + if (N->getOpcode() != ISD::Constant) + return false; + + Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); + if (N->getValueType(0) == MVT::i32) + return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); + else + return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); +} +static bool isIntS16Immediate(SDValue Op, short &Imm) { + return isIntS16Immediate(Op.getNode(), Imm); +} + + +/// SelectAddressRegReg - Given the specified addressed, check to see if it +/// can be represented as an indexed [r+r] operation. Returns false if it +/// can be more efficiently represented with [r+imm]. +bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, + SDValue &Index, + SelectionDAG &DAG) const { + short imm = 0; + if (N.getOpcode() == ISD::ADD) { + if (isIntS16Immediate(N.getOperand(1), imm)) + return false; // r+i + if (N.getOperand(1).getOpcode() == PPCISD::Lo) + return false; // r+i + + Base = N.getOperand(0); + Index = N.getOperand(1); + return true; + } else if (N.getOpcode() == ISD::OR) { + if (isIntS16Immediate(N.getOperand(1), imm)) + return false; // r+i can fold it if we can. + + // If this is an or of disjoint bitfields, we can codegen this as an add + // (for better address arithmetic) if the LHS and RHS of the OR are provably + // disjoint. + APInt LHSKnownZero, LHSKnownOne; + APInt RHSKnownZero, RHSKnownOne; + DAG.ComputeMaskedBits(N.getOperand(0), + LHSKnownZero, LHSKnownOne); + + if (LHSKnownZero.getBoolValue()) { + DAG.ComputeMaskedBits(N.getOperand(1), + RHSKnownZero, RHSKnownOne); + // If all of the bits are known zero on the LHS or RHS, the add won't + // carry. + if (~(LHSKnownZero | RHSKnownZero) == 0) { + Base = N.getOperand(0); + Index = N.getOperand(1); + return true; + } + } + } + + return false; +} + +// If we happen to be doing an i64 load or store into a stack slot that has +// less than a 4-byte alignment, then the frame-index elimination may need to +// use an indexed load or store instruction (because the offset may not be a +// multiple of 4). The extra register needed to hold the offset comes from the +// register scavenger, and it is possible that the scavenger will need to use +// an emergency spill slot. As a result, we need to make sure that a spill slot +// is allocated when doing an i64 load/store into a less-than-4-byte-aligned +// stack slot. +static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { + // FIXME: This does not handle the LWA case. + if (VT != MVT::i64) + return; + + // NOTE: We'll exclude negative FIs here, which come from argument + // lowering, because there are no known test cases triggering this problem + // using packed structures (or similar). We can remove this exclusion if + // we find such a test case. The reason why this is so test-case driven is + // because this entire 'fixup' is only to prevent crashes (from the + // register scavenger) on not-really-valid inputs. For example, if we have: + // %a = alloca i1 + // %b = bitcast i1* %a to i64* + // store i64* a, i64 b + // then the store should really be marked as 'align 1', but is not. If it + // were marked as 'align 1' then the indexed form would have been + // instruction-selected initially, and the problem this 'fixup' is preventing + // won't happen regardless. + if (FrameIdx < 0) + return; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + + unsigned Align = MFI->getObjectAlignment(FrameIdx); + if (Align >= 4) + return; + + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setHasNonRISpills(); +} + +/// Returns true if the address N can be represented by a base register plus +/// a signed 16-bit displacement [r+imm], and if it is not better +/// represented as reg+reg. If Aligned is true, only accept displacements +/// suitable for STD and friends, i.e. multiples of 4. +bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, + SDValue &Base, + SelectionDAG &DAG, + bool Aligned) const { + // FIXME dl should come from parent load or store, not from address + SDLoc dl(N); + // If this can be more profitably realized as r+r, fail. + if (SelectAddressRegReg(N, Disp, Base, DAG)) + return false; + + if (N.getOpcode() == ISD::ADD) { + short imm = 0; + if (isIntS16Immediate(N.getOperand(1), imm) && + (!Aligned || (imm & 3) == 0)) { + Disp = DAG.getTargetConstant(imm, N.getValueType()); + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { + Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); + fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); + } else { + Base = N.getOperand(0); + } + return true; // [r+i] + } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { + // Match LOAD (ADD (X, Lo(G))). + assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() + && "Cannot handle constant offsets yet!"); + Disp = N.getOperand(1).getOperand(0); // The global address. + assert(Disp.getOpcode() == ISD::TargetGlobalAddress || + Disp.getOpcode() == ISD::TargetGlobalTLSAddress || + Disp.getOpcode() == ISD::TargetConstantPool || + Disp.getOpcode() == ISD::TargetJumpTable); + Base = N.getOperand(0); + return true; // [&g+r] + } + } else if (N.getOpcode() == ISD::OR) { + short imm = 0; + if (isIntS16Immediate(N.getOperand(1), imm) && + (!Aligned || (imm & 3) == 0)) { + // If this is an or of disjoint bitfields, we can codegen this as an add + // (for better address arithmetic) if the LHS and RHS of the OR are + // provably disjoint. + APInt LHSKnownZero, LHSKnownOne; + DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); + + if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { + // If all of the bits are known zero on the LHS or RHS, the add won't + // carry. + Base = N.getOperand(0); + Disp = DAG.getTargetConstant(imm, N.getValueType()); + return true; + } + } + } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { + // Loading from a constant address. + + // If this address fits entirely in a 16-bit sext immediate field, codegen + // this as "d, 0" + short Imm; + if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { + Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); + Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, + CN->getValueType(0)); + return true; + } + + // Handle 32-bit sext immediates with LIS + addr mode. + if ((CN->getValueType(0) == MVT::i32 || + (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && + (!Aligned || (CN->getZExtValue() & 3) == 0)) { + int Addr = (int)CN->getZExtValue(); + + // Otherwise, break this down into an LIS + disp. + Disp = DAG.getTargetConstant((short)Addr, MVT::i32); + + Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); + unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; + Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); + return true; + } + } + + Disp = DAG.getTargetConstant(0, getPointerTy()); + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { + Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); + fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); + } else + Base = N; + return true; // [r+0] +} + +/// SelectAddressRegRegOnly - Given the specified addressed, force it to be +/// represented as an indexed [r+r] operation. +bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, + SDValue &Index, + SelectionDAG &DAG) const { + // Check to see if we can easily represent this as an [r+r] address. This + // will fail if it thinks that the address is more profitably represented as + // reg+imm, e.g. where imm = 0. + if (SelectAddressRegReg(N, Base, Index, DAG)) + return true; + + // If the operand is an addition, always emit this as [r+r], since this is + // better (for code size, and execution, as the memop does the add for free) + // than emitting an explicit add. + if (N.getOpcode() == ISD::ADD) { + Base = N.getOperand(0); + Index = N.getOperand(1); + return true; + } + + // Otherwise, do it the hard way, using R0 as the base register. + Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, + N.getValueType()); + Index = N; + return true; +} + +/// getPreIndexedAddressParts - returns true by value, base pointer and +/// offset pointer and addressing mode by reference if the node's address +/// can be legally represented as pre-indexed load / store address. +bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, + SDValue &Offset, + ISD::MemIndexedMode &AM, + SelectionDAG &DAG) const { + if (DisablePPCPreinc) return false; + + bool isLoad = true; + SDValue Ptr; + EVT VT; + unsigned Alignment; + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + Ptr = LD->getBasePtr(); + VT = LD->getMemoryVT(); + Alignment = LD->getAlignment(); + } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + Ptr = ST->getBasePtr(); + VT = ST->getMemoryVT(); + Alignment = ST->getAlignment(); + isLoad = false; + } else + return false; + + // PowerPC doesn't have preinc load/store instructions for vectors. + if (VT.isVector()) + return false; + + if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { + + // Common code will reject creating a pre-inc form if the base pointer + // is a frame index, or if N is a store and the base pointer is either + // the same as or a predecessor of the value being stored. Check for + // those situations here, and try with swapped Base/Offset instead. + bool Swap = false; + + if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) + Swap = true; + else if (!isLoad) { + SDValue Val = cast<StoreSDNode>(N)->getValue(); + if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) + Swap = true; + } + + if (Swap) + std::swap(Base, Offset); + + AM = ISD::PRE_INC; + return true; + } + + // LDU/STU can only handle immediates that are a multiple of 4. + if (VT != MVT::i64) { + if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) + return false; + } else { + // LDU/STU need an address with at least 4-byte alignment. + if (Alignment < 4) + return false; + + if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) + return false; + } + + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of + // sext i32 to i64 when addr mode is r+i. + if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && + LD->getExtensionType() == ISD::SEXTLOAD && + isa<ConstantSDNode>(Offset)) + return false; + } + + AM = ISD::PRE_INC; + return true; +} + +//===----------------------------------------------------------------------===// +// LowerOperation implementation +//===----------------------------------------------------------------------===// + +/// GetLabelAccessInfo - Return true if we should reference labels using a +/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. +static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, + unsigned &LoOpFlags, const GlobalValue *GV = 0) { + HiOpFlags = PPCII::MO_HA; + LoOpFlags = PPCII::MO_LO; + + // Don't use the pic base if not in PIC relocation model. Or if we are on a + // non-darwin platform. We don't support PIC on other platforms yet. + bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && + TM.getSubtarget<PPCSubtarget>().isDarwin(); + if (isPIC) { + HiOpFlags |= PPCII::MO_PIC_FLAG; + LoOpFlags |= PPCII::MO_PIC_FLAG; + } + + // If this is a reference to a global value that requires a non-lazy-ptr, make + // sure that instruction lowering adds it. + if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { + HiOpFlags |= PPCII::MO_NLP_FLAG; + LoOpFlags |= PPCII::MO_NLP_FLAG; + + if (GV->hasHiddenVisibility()) { + HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; + LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; + } + } + + return isPIC; +} + +static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, + SelectionDAG &DAG) { + EVT PtrVT = HiPart.getValueType(); + SDValue Zero = DAG.getConstant(0, PtrVT); + SDLoc DL(HiPart); + + SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); + SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); + + // With PIC, the first instruction is actually "GR+hi(&G)". + if (isPIC) + Hi = DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); + + // Generate non-pic code that has direct accesses to the constant pool. + // The address of the global is just (hi(&g)+lo(&g)). + return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); +} + +SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, + SelectionDAG &DAG) const { + EVT PtrVT = Op.getValueType(); + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + const Constant *C = CP->getConstVal(); + + // 64-bit SVR4 ABI code is always position-independent. + // The actual address of the GlobalValue is stored in the TOC. + if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { + SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); + return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA, + DAG.getRegister(PPC::X2, MVT::i64)); + } + + unsigned MOHiFlag, MOLoFlag; + bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); + SDValue CPIHi = + DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); + SDValue CPILo = + DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); + return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); +} + +SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + EVT PtrVT = Op.getValueType(); + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // 64-bit SVR4 ABI code is always position-independent. + // The actual address of the GlobalValue is stored in the TOC. + if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { + SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); + return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA, + DAG.getRegister(PPC::X2, MVT::i64)); + } + + unsigned MOHiFlag, MOLoFlag; + bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); + SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); + SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); + return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); +} + +SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + EVT PtrVT = Op.getValueType(); + + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + + unsigned MOHiFlag, MOLoFlag; + bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); + SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); + SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); + return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); +} + +SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + + // FIXME: TLS addresses currently use medium model code sequences, + // which is the most useful form. Eventually support for small and + // large models could be added if users need it, at the cost of + // additional complexity. + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + SDLoc dl(GA); + const GlobalValue *GV = GA->getGlobal(); + EVT PtrVT = getPointerTy(); + bool is64bit = PPCSubTarget.isPPC64(); + + TLSModel::Model Model = getTargetMachine().getTLSModel(GV); + + if (Model == TLSModel::LocalExec) { + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + PPCII::MO_TPREL_HA); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + PPCII::MO_TPREL_LO); + SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, + is64bit ? MVT::i64 : MVT::i32); + SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); + return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); + } + + if (!is64bit) + llvm_unreachable("only local-exec is currently supported for ppc32"); + + if (Model == TLSModel::InitialExec) { + SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); + SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + PPCII::MO_TLS); + SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); + SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, + PtrVT, GOTReg, TGA); + SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, + PtrVT, TGA, TPOffsetHi); + return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); + } + + if (Model == TLSModel::GeneralDynamic) { + SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); + SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); + SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, + GOTReg, TGA); + SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, + GOTEntryHi, TGA); + + // We need a chain node, and don't have one handy. The underlying + // call has no side effects, so using the function entry node + // suffices. + SDValue Chain = DAG.getEntryNode(); + Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); + SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); + SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl, + PtrVT, ParmReg, TGA); + // The return value from GET_TLS_ADDR really is in X3 already, but + // some hacks are needed here to tie everything together. The extra + // copies dissolve during subsequent transforms. + Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); + return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT); + } + + if (Model == TLSModel::LocalDynamic) { + SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); + SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); + SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, + GOTReg, TGA); + SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, + GOTEntryHi, TGA); + + // We need a chain node, and don't have one handy. The underlying + // call has no side effects, so using the function entry node + // suffices. + SDValue Chain = DAG.getEntryNode(); + Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); + SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); + SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl, + PtrVT, ParmReg, TGA); + // The return value from GET_TLSLD_ADDR really is in X3 already, but + // some hacks are needed here to tie everything together. The extra + // copies dissolve during subsequent transforms. + Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); + SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, + Chain, ParmReg, TGA); + return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); + } + + llvm_unreachable("Unknown TLS model!"); +} + +SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + EVT PtrVT = Op.getValueType(); + GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); + SDLoc DL(GSDN); + const GlobalValue *GV = GSDN->getGlobal(); + + // 64-bit SVR4 ABI code is always position-independent. + // The actual address of the GlobalValue is stored in the TOC. + if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { + SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); + return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, + DAG.getRegister(PPC::X2, MVT::i64)); + } + + unsigned MOHiFlag, MOLoFlag; + bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); + + SDValue GAHi = + DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); + SDValue GALo = + DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); + + SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); + + // If the global reference is actually to a non-lazy-pointer, we have to do an + // extra load to get the address of the global. + if (MOHiFlag & PPCII::MO_NLP_FLAG) + Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), + false, false, false, 0); + return Ptr; +} + +SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc dl(Op); + + // If we're comparing for equality to zero, expose the fact that this is + // implented as a ctlz/srl pair on ppc, so that the dag combiner can + // fold the new nodes. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + if (C->isNullValue() && CC == ISD::SETEQ) { + EVT VT = Op.getOperand(0).getValueType(); + SDValue Zext = Op.getOperand(0); + if (VT.bitsLT(MVT::i32)) { + VT = MVT::i32; + Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); + } + unsigned Log2b = Log2_32(VT.getSizeInBits()); + SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); + SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, + DAG.getConstant(Log2b, MVT::i32)); + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); + } + // Leave comparisons against 0 and -1 alone for now, since they're usually + // optimized. FIXME: revisit this when we can custom lower all setcc + // optimizations. + if (C->isAllOnesValue() || C->isNullValue()) + return SDValue(); + } + + // If we have an integer seteq/setne, turn it into a compare against zero + // by xor'ing the rhs with the lhs, which is faster than setting a + // condition register, reading it back out, and masking the correct bit. The + // normal approach here uses sub to do this instead of xor. Using xor exposes + // the result to other bit-twiddling opportunities. + EVT LHSVT = Op.getOperand(0).getValueType(); + if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { + EVT VT = Op.getValueType(); + SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), + Op.getOperand(1)); + return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); + } + return SDValue(); +} + +SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, + const PPCSubtarget &Subtarget) const { + SDNode *Node = Op.getNode(); + EVT VT = Node->getValueType(0); + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + SDValue InChain = Node->getOperand(0); + SDValue VAListPtr = Node->getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + SDLoc dl(Node); + + assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); + + // gpr_index + SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, + VAListPtr, MachinePointerInfo(SV), MVT::i8, + false, false, 0); + InChain = GprIndex.getValue(1); + + if (VT == MVT::i64) { + // Check if GprIndex is even + SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, + DAG.getConstant(1, MVT::i32)); + SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, + DAG.getConstant(0, MVT::i32), ISD::SETNE); + SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, + DAG.getConstant(1, MVT::i32)); + // Align GprIndex to be even if it isn't + GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, + GprIndex); + } + + // fpr index is 1 byte after gpr + SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, + DAG.getConstant(1, MVT::i32)); + + // fpr + SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, + FprPtr, MachinePointerInfo(SV), MVT::i8, + false, false, 0); + InChain = FprIndex.getValue(1); + + SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, + DAG.getConstant(8, MVT::i32)); + + SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, + DAG.getConstant(4, MVT::i32)); + + // areas + SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, + MachinePointerInfo(), false, false, + false, 0); + InChain = OverflowArea.getValue(1); + + SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, + MachinePointerInfo(), false, false, + false, 0); + InChain = RegSaveArea.getValue(1); + + // select overflow_area if index > 8 + SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, + DAG.getConstant(8, MVT::i32), ISD::SETLT); + + // adjustment constant gpr_index * 4/8 + SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, + VT.isInteger() ? GprIndex : FprIndex, + DAG.getConstant(VT.isInteger() ? 4 : 8, + MVT::i32)); + + // OurReg = RegSaveArea + RegConstant + SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, + RegConstant); + + // Floating types are 32 bytes into RegSaveArea + if (VT.isFloatingPoint()) + OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, + DAG.getConstant(32, MVT::i32)); + + // increase {f,g}pr_index by 1 (or 2 if VT is i64) + SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, + VT.isInteger() ? GprIndex : FprIndex, + DAG.getConstant(VT == MVT::i64 ? 2 : 1, + MVT::i32)); + + InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, + VT.isInteger() ? VAListPtr : FprPtr, + MachinePointerInfo(SV), + MVT::i8, false, false, 0); + + // determine if we should load from reg_save_area or overflow_area + SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); + + // increase overflow_area by 4/8 if gpr/fpr > 8 + SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, + DAG.getConstant(VT.isInteger() ? 4 : 8, + MVT::i32)); + + OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, + OverflowAreaPlusN); + + InChain = DAG.getTruncStore(InChain, dl, OverflowArea, + OverflowAreaPtr, + MachinePointerInfo(), + MVT::i32, false, false, 0); + + return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), + false, false, false, 0); +} + +SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, + const PPCSubtarget &Subtarget) const { + assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); + + // We have to copy the entire va_list struct: + // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte + return DAG.getMemcpy(Op.getOperand(0), Op, + Op.getOperand(1), Op.getOperand(2), + DAG.getConstant(12, MVT::i32), 8, false, true, + MachinePointerInfo(), MachinePointerInfo()); +} + +SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + return Op.getOperand(0); +} + +SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Trmp = Op.getOperand(1); // trampoline + SDValue FPtr = Op.getOperand(2); // nested function + SDValue Nest = Op.getOperand(3); // 'nest' parameter value + SDLoc dl(Op); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + bool isPPC64 = (PtrVT == MVT::i64); + Type *IntPtrTy = + DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( + *DAG.getContext()); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + + Entry.Ty = IntPtrTy; + Entry.Node = Trmp; Args.push_back(Entry); + + // TrampSize == (isPPC64 ? 48 : 40); + Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, + isPPC64 ? MVT::i64 : MVT::i32); + Args.push_back(Entry); + + Entry.Node = FPtr; Args.push_back(Entry); + Entry.Node = Nest; Args.push_back(Entry); + + // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) + TargetLowering::CallLoweringInfo CLI(Chain, + Type::getVoidTy(*DAG.getContext()), + false, false, false, false, 0, + CallingConv::C, + /*isTailCall=*/false, + /*doesNotRet=*/false, + /*isReturnValueUsed=*/true, + DAG.getExternalSymbol("__trampoline_setup", PtrVT), + Args, DAG, dl); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + + return CallResult.second; +} + +SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, + const PPCSubtarget &Subtarget) const { + MachineFunction &MF = DAG.getMachineFunction(); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + SDLoc dl(Op); + + if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), + MachinePointerInfo(SV), + false, false, 0); + } + + // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. + // We suppose the given va_list is already allocated. + // + // typedef struct { + // char gpr; /* index into the array of 8 GPRs + // * stored in the register save area + // * gpr=0 corresponds to r3, + // * gpr=1 to r4, etc. + // */ + // char fpr; /* index into the array of 8 FPRs + // * stored in the register save area + // * fpr=0 corresponds to f1, + // * fpr=1 to f2, etc. + // */ + // char *overflow_arg_area; + // /* location on stack that holds + // * the next overflow argument + // */ + // char *reg_save_area; + // /* where r3:r10 and f1:f8 (if saved) + // * are stored + // */ + // } va_list[1]; + + + SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); + SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); + + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + + SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), + PtrVT); + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + PtrVT); + + uint64_t FrameOffset = PtrVT.getSizeInBits()/8; + SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); + + uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; + SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); + + uint64_t FPROffset = 1; + SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); + + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + + // Store first byte : number of int regs + SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, + Op.getOperand(1), + MachinePointerInfo(SV), + MVT::i8, false, false, 0); + uint64_t nextOffset = FPROffset; + SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), + ConstFPROffset); + + // Store second byte : number of float regs + SDValue secondStore = + DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, + MachinePointerInfo(SV, nextOffset), MVT::i8, + false, false, 0); + nextOffset += StackOffset; + nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); + + // Store second word : arguments given on stack + SDValue thirdStore = + DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, + MachinePointerInfo(SV, nextOffset), + false, false, 0); + nextOffset += FrameOffset; + nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); + + // Store third word : arguments given in registers + return DAG.getStore(thirdStore, dl, FR, nextPtr, + MachinePointerInfo(SV, nextOffset), + false, false, 0); + +} + +#include "PPCGenCallingConv.inc" + +// Function whose sole purpose is to kill compiler warnings +// stemming from unused functions included from PPCGenCallingConv.inc. +CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { + return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; +} + +bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, + CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, + CCState &State) { + return true; +} + +bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, + CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, + CCState &State) { + static const uint16_t ArgRegs[] = { + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + const unsigned NumArgRegs = array_lengthof(ArgRegs); + + unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); + + // Skip one register if the first unallocated register has an even register + // number and there are still argument registers available which have not been + // allocated yet. RegNum is actually an index into ArgRegs, which means we + // need to skip a register if RegNum is odd. + if (RegNum != NumArgRegs && RegNum % 2 == 1) { + State.AllocateReg(ArgRegs[RegNum]); + } + + // Always return false here, as this function only makes sure that the first + // unallocated register has an odd register number and does not actually + // allocate a register for the current argument. + return false; +} + +bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, + CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, + CCState &State) { + static const uint16_t ArgRegs[] = { + PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, + PPC::F8 + }; + + const unsigned NumArgRegs = array_lengthof(ArgRegs); + + unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); + + // If there is only one Floating-point register left we need to put both f64 + // values of a split ppc_fp128 value on the stack. + if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { + State.AllocateReg(ArgRegs[RegNum]); + } + + // Always return false here, as this function only makes sure that the two f64 + // values a ppc_fp128 value is split into are both passed in registers or both + // passed on the stack and does not actually allocate a register for the + // current argument. + return false; +} + +/// GetFPR - Get the set of FP registers that should be allocated for arguments, +/// on Darwin. +static const uint16_t *GetFPR() { + static const uint16_t FPR[] = { + PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, + PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 + }; + + return FPR; +} + +/// CalculateStackSlotSize - Calculates the size reserved for this argument on +/// the stack. +static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, + unsigned PtrByteSize) { + unsigned ArgSize = ArgVT.getSizeInBits()/8; + if (Flags.isByVal()) + ArgSize = Flags.getByValSize(); + ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; + + return ArgSize; +} + +SDValue +PPCTargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> + &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) + const { + if (PPCSubTarget.isSVR4ABI()) { + if (PPCSubTarget.isPPC64()) + return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, + dl, DAG, InVals); + else + return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, + dl, DAG, InVals); + } else { + return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, + dl, DAG, InVals); + } +} + +SDValue +PPCTargetLowering::LowerFormalArguments_32SVR4( + SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> + &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + // 32-bit SVR4 ABI Stack Frame Layout: + // +-----------------------------------+ + // +--> | Back chain | + // | +-----------------------------------+ + // | | Floating-point register save area | + // | +-----------------------------------+ + // | | General register save area | + // | +-----------------------------------+ + // | | CR save word | + // | +-----------------------------------+ + // | | VRSAVE save word | + // | +-----------------------------------+ + // | | Alignment padding | + // | +-----------------------------------+ + // | | Vector register save area | + // | +-----------------------------------+ + // | | Local variable space | + // | +-----------------------------------+ + // | | Parameter list area | + // | +-----------------------------------+ + // | | LR save word | + // | +-----------------------------------+ + // SP--> +--- | Back chain | + // +-----------------------------------+ + // + // Specifications: + // System V Application Binary Interface PowerPC Processor Supplement + // AltiVec Technology Programming Interface Manual + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + // Potential tail calls could cause overwriting of argument stack slots. + bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && + (CallConv == CallingConv::Fast)); + unsigned PtrByteSize = 4; + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + // Reserve space for the linkage area on the stack. + CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); + + CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + + // Arguments stored in registers. + if (VA.isRegLoc()) { + const TargetRegisterClass *RC; + EVT ValVT = VA.getValVT(); + + switch (ValVT.getSimpleVT().SimpleTy) { + default: + llvm_unreachable("ValVT not supported by formal arguments Lowering"); + case MVT::i32: + RC = &PPC::GPRCRegClass; + break; + case MVT::f32: + RC = &PPC::F4RCRegClass; + break; + case MVT::f64: + RC = &PPC::F8RCRegClass; + break; + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v4f32: + RC = &PPC::VRRCRegClass; + break; + } + + // Transform the arguments stored in physical registers into virtual ones. + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); + + InVals.push_back(ArgValue); + } else { + // Argument stored in memory. + assert(VA.isMemLoc()); + + unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; + int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), + isImmutable); + + // Create load nodes to retrieve arguments from the stack. + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, + MachinePointerInfo(), + false, false, false, 0)); + } + } + + // Assign locations to all of the incoming aggregate by value arguments. + // Aggregates passed by value are stored in the local variable space of the + // caller's stack frame, right above the parameter list area. + SmallVector<CCValAssign, 16> ByValArgLocs; + CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ByValArgLocs, *DAG.getContext()); + + // Reserve stack space for the allocations in CCInfo. + CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); + + CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); + + // Area that is at least reserved in the caller of this function. + unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); + + // Set the size that is at least reserved in caller of this function. Tail + // call optimized function's reserved stack space needs to be aligned so that + // taking the difference between two stack areas will result in an aligned + // stack. + PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); + + MinReservedArea = + std::max(MinReservedArea, + PPCFrameLowering::getMinCallFrameSize(false, false)); + + unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> + getStackAlignment(); + unsigned AlignMask = TargetAlign-1; + MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; + + FI->setMinReservedArea(MinReservedArea); + + SmallVector<SDValue, 8> MemOps; + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (isVarArg) { + static const uint16_t GPArgRegs[] = { + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); + + static const uint16_t FPArgRegs[] = { + PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, + PPC::F8 + }; + const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); + + FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, + NumGPArgRegs)); + FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, + NumFPArgRegs)); + + // Make room for NumGPArgRegs and NumFPArgRegs. + int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + + NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; + + FuncInfo->setVarArgsStackOffset( + MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, + CCInfo.getNextStackOffset(), true)); + + FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); + SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + + // The fixed integer arguments of a variadic function are stored to the + // VarArgsFrameIndex on the stack so that they may be loaded by deferencing + // the result of va_next. + for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { + // Get an existing live-in vreg, or add a new one. + unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); + if (!VReg) + VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); + + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(), false, false, 0); + MemOps.push_back(Store); + // Increment the address by four for the next argument to store + SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); + FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); + } + + // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 + // is set. + // The double arguments are stored to the VarArgsFrameIndex + // on the stack. + for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { + // Get an existing live-in vreg, or add a new one. + unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); + if (!VReg) + VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); + + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(), false, false, 0); + MemOps.push_back(Store); + // Increment the address by eight for the next argument to store + SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, + PtrVT); + FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); + } + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, + MVT::Other, &MemOps[0], MemOps.size()); + + return Chain; +} + +// PPC64 passes i8, i16, and i32 values in i64 registers. Promote +// value to MVT::i64 and then truncate to the correct register size. +SDValue +PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, + SelectionDAG &DAG, SDValue ArgVal, + SDLoc dl) const { + if (Flags.isSExt()) + ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, + DAG.getValueType(ObjectVT)); + else if (Flags.isZExt()) + ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, + DAG.getValueType(ObjectVT)); + + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); +} + +// Set the size that is at least reserved in caller of this function. Tail +// call optimized functions' reserved stack space needs to be aligned so that +// taking the difference between two stack areas will result in an aligned +// stack. +void +PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG, + unsigned nAltivecParamsAtEnd, + unsigned MinReservedArea, + bool isPPC64) const { + PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); + // Add the Altivec parameters at the end, if needed. + if (nAltivecParamsAtEnd) { + MinReservedArea = ((MinReservedArea+15)/16)*16; + MinReservedArea += 16*nAltivecParamsAtEnd; + } + MinReservedArea = + std::max(MinReservedArea, + PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); + unsigned TargetAlign + = DAG.getMachineFunction().getTarget().getFrameLowering()-> + getStackAlignment(); + unsigned AlignMask = TargetAlign-1; + MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; + FI->setMinReservedArea(MinReservedArea); +} + +SDValue +PPCTargetLowering::LowerFormalArguments_64SVR4( + SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> + &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // TODO: add description of PPC stack frame format, or at least some docs. + // + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + // Potential tail calls could cause overwriting of argument stack slots. + bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && + (CallConv == CallingConv::Fast)); + unsigned PtrByteSize = 8; + + unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); + // Area that is at least reserved in caller of this function. + unsigned MinReservedArea = ArgOffset; + + static const uint16_t GPR[] = { + PPC::X3, PPC::X4, PPC::X5, PPC::X6, + PPC::X7, PPC::X8, PPC::X9, PPC::X10, + }; + + static const uint16_t *FPR = GetFPR(); + + static const uint16_t VR[] = { + PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, + PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 + }; + + const unsigned Num_GPR_Regs = array_lengthof(GPR); + const unsigned Num_FPR_Regs = 13; + const unsigned Num_VR_Regs = array_lengthof(VR); + + unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; + + // Add DAG nodes to load the arguments or copy them out of registers. On + // entry to a function on PPC, the arguments start after the linkage area, + // although the first ones are often in registers. + + SmallVector<SDValue, 8> MemOps; + unsigned nAltivecParamsAtEnd = 0; + Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); + unsigned CurArgIdx = 0; + for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { + SDValue ArgVal; + bool needsLoad = false; + EVT ObjectVT = Ins[ArgNo].VT; + unsigned ObjSize = ObjectVT.getSizeInBits()/8; + unsigned ArgSize = ObjSize; + ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; + std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); + CurArgIdx = Ins[ArgNo].OrigArgIndex; + + unsigned CurArgOffset = ArgOffset; + + // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. + if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || + ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { + if (isVarArg) { + MinReservedArea = ((MinReservedArea+15)/16)*16; + MinReservedArea += CalculateStackSlotSize(ObjectVT, + Flags, + PtrByteSize); + } else + nAltivecParamsAtEnd++; + } else + // Calculate min reserved area. + MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, + Flags, + PtrByteSize); + + // FIXME the codegen can be much improved in some cases. + // We do not have to keep everything in memory. + if (Flags.isByVal()) { + // ObjSize is the true size, ArgSize rounded up to multiple of registers. + ObjSize = Flags.getByValSize(); + ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; + // Empty aggregate parameters do not take up registers. Examples: + // struct { } a; + // union { } b; + // int c[0]; + // etc. However, we have to provide a place-holder in InVals, so + // pretend we have an 8-byte item at the current address for that + // purpose. + if (!ObjSize) { + int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + InVals.push_back(FIN); + continue; + } + + unsigned BVAlign = Flags.getByValAlign(); + if (BVAlign > 8) { + ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign; + CurArgOffset = ArgOffset; + } + + // All aggregates smaller than 8 bytes must be passed right-justified. + if (ObjSize < PtrByteSize) + CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize); + // The value of the object is its address. + int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + InVals.push_back(FIN); + + if (ObjSize < 8) { + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store; + + if (ObjSize==1 || ObjSize==2 || ObjSize==4) { + EVT ObjType = (ObjSize == 1 ? MVT::i8 : + (ObjSize == 2 ? MVT::i16 : MVT::i32)); + Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(FuncArg, CurArgOffset), + ObjType, false, false, 0); + } else { + // For sizes that don't fit a truncating store (3, 5, 6, 7), + // store the whole register as-is to the parameter save area + // slot. The address of the parameter was already calculated + // above (InVals.push_back(FIN)) to be the right-justified + // offset within the slot. For this store, we need a new + // frame index that points at the beginning of the slot. + int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(FuncArg, ArgOffset), + false, false, 0); + } + + MemOps.push_back(Store); + ++GPR_idx; + } + // Whether we copied from a register or not, advance the offset + // into the parameter save area by a full doubleword. + ArgOffset += PtrByteSize; + continue; + } + + for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { + // Store whatever pieces of the object are in registers + // to memory. ArgOffset will be the address of the beginning + // of the object. + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg; + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(FuncArg, ArgOffset), + false, false, 0); + MemOps.push_back(Store); + ++GPR_idx; + ArgOffset += PtrByteSize; + } else { + ArgOffset += ArgSize - j; + break; + } + } + continue; + } + + switch (ObjectVT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unhandled argument type!"); + case MVT::i32: + case MVT::i64: + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); + + if (ObjectVT == MVT::i32) + // PPC64 passes i8, i16, and i32 values in i64 registers. Promote + // value to MVT::i64 and then truncate to the correct register size. + ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); + + ++GPR_idx; + } else { + needsLoad = true; + ArgSize = PtrByteSize; + } + ArgOffset += 8; + break; + + case MVT::f32: + case MVT::f64: + // Every 8 bytes of argument space consumes one of the GPRs available for + // argument passing. + if (GPR_idx != Num_GPR_Regs) { + ++GPR_idx; + } + if (FPR_idx != Num_FPR_Regs) { + unsigned VReg; + + if (ObjectVT == MVT::f32) + VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); + else + VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); + + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); + ++FPR_idx; + } else { + needsLoad = true; + ArgSize = PtrByteSize; + } + + ArgOffset += 8; + break; + case MVT::v4f32: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v16i8: + // Note that vector arguments in registers don't reserve stack space, + // except in varargs functions. + if (VR_idx != Num_VR_Regs) { + unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); + if (isVarArg) { + while ((ArgOffset % 16) != 0) { + ArgOffset += PtrByteSize; + if (GPR_idx != Num_GPR_Regs) + GPR_idx++; + } + ArgOffset += 16; + GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? + } + ++VR_idx; + } else { + // Vectors are aligned. + ArgOffset = ((ArgOffset+15)/16)*16; + CurArgOffset = ArgOffset; + ArgOffset += 16; + needsLoad = true; + } + break; + } + + // We need to load the argument to a virtual register if we determined + // above that we ran out of physical registers of the appropriate type. + if (needsLoad) { + int FI = MFI->CreateFixedObject(ObjSize, + CurArgOffset + (ArgSize - ObjSize), + isImmutable); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), + false, false, false, 0); + } + + InVals.push_back(ArgVal); + } + + // Set the size that is at least reserved in caller of this function. Tail + // call optimized functions' reserved stack space needs to be aligned so that + // taking the difference between two stack areas will result in an aligned + // stack. + setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (isVarArg) { + int Depth = ArgOffset; + + FuncInfo->setVarArgsFrameIndex( + MFI->CreateFixedObject(PtrByteSize, Depth, true)); + SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + + // If this function is vararg, store any remaining integer argument regs + // to their spots on the stack so that they may be loaded by deferencing the + // result of va_next. + for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { + unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(), false, false, 0); + MemOps.push_back(Store); + // Increment the address by four for the next argument to store + SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); + FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); + } + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, + MVT::Other, &MemOps[0], MemOps.size()); + + return Chain; +} + +SDValue +PPCTargetLowering::LowerFormalArguments_Darwin( + SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> + &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // TODO: add description of PPC stack frame format, or at least some docs. + // + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + bool isPPC64 = PtrVT == MVT::i64; + // Potential tail calls could cause overwriting of argument stack slots. + bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && + (CallConv == CallingConv::Fast)); + unsigned PtrByteSize = isPPC64 ? 8 : 4; + + unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); + // Area that is at least reserved in caller of this function. + unsigned MinReservedArea = ArgOffset; + + static const uint16_t GPR_32[] = { // 32-bit registers. + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + static const uint16_t GPR_64[] = { // 64-bit registers. + PPC::X3, PPC::X4, PPC::X5, PPC::X6, + PPC::X7, PPC::X8, PPC::X9, PPC::X10, + }; + + static const uint16_t *FPR = GetFPR(); + + static const uint16_t VR[] = { + PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, + PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 + }; + + const unsigned Num_GPR_Regs = array_lengthof(GPR_32); + const unsigned Num_FPR_Regs = 13; + const unsigned Num_VR_Regs = array_lengthof( VR); + + unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; + + const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; + + // In 32-bit non-varargs functions, the stack space for vectors is after the + // stack space for non-vectors. We do not use this space unless we have + // too many vectors to fit in registers, something that only occurs in + // constructed examples:), but we have to walk the arglist to figure + // that out...for the pathological case, compute VecArgOffset as the + // start of the vector parameter area. Computing VecArgOffset is the + // entire point of the following loop. + unsigned VecArgOffset = ArgOffset; + if (!isVarArg && !isPPC64) { + for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; + ++ArgNo) { + EVT ObjectVT = Ins[ArgNo].VT; + ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; + + if (Flags.isByVal()) { + // ObjSize is the true size, ArgSize rounded up to multiple of regs. + unsigned ObjSize = Flags.getByValSize(); + unsigned ArgSize = + ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; + VecArgOffset += ArgSize; + continue; + } + + switch(ObjectVT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unhandled argument type!"); + case MVT::i32: + case MVT::f32: + VecArgOffset += 4; + break; + case MVT::i64: // PPC64 + case MVT::f64: + // FIXME: We are guaranteed to be !isPPC64 at this point. + // Does MVT::i64 apply? + VecArgOffset += 8; + break; + case MVT::v4f32: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v16i8: + // Nothing to do, we're only looking at Nonvector args here. + break; + } + } + } + // We've found where the vector parameter area in memory is. Skip the + // first 12 parameters; these don't use that memory. + VecArgOffset = ((VecArgOffset+15)/16)*16; + VecArgOffset += 12*16; + + // Add DAG nodes to load the arguments or copy them out of registers. On + // entry to a function on PPC, the arguments start after the linkage area, + // although the first ones are often in registers. + + SmallVector<SDValue, 8> MemOps; + unsigned nAltivecParamsAtEnd = 0; + Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); + unsigned CurArgIdx = 0; + for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { + SDValue ArgVal; + bool needsLoad = false; + EVT ObjectVT = Ins[ArgNo].VT; + unsigned ObjSize = ObjectVT.getSizeInBits()/8; + unsigned ArgSize = ObjSize; + ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; + std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); + CurArgIdx = Ins[ArgNo].OrigArgIndex; + + unsigned CurArgOffset = ArgOffset; + + // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. + if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || + ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { + if (isVarArg || isPPC64) { + MinReservedArea = ((MinReservedArea+15)/16)*16; + MinReservedArea += CalculateStackSlotSize(ObjectVT, + Flags, + PtrByteSize); + } else nAltivecParamsAtEnd++; + } else + // Calculate min reserved area. + MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, + Flags, + PtrByteSize); + + // FIXME the codegen can be much improved in some cases. + // We do not have to keep everything in memory. + if (Flags.isByVal()) { + // ObjSize is the true size, ArgSize rounded up to multiple of registers. + ObjSize = Flags.getByValSize(); + ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; + // Objects of size 1 and 2 are right justified, everything else is + // left justified. This means the memory address is adjusted forwards. + if (ObjSize==1 || ObjSize==2) { + CurArgOffset = CurArgOffset + (4 - ObjSize); + } + // The value of the object is its address. + int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + InVals.push_back(FIN); + if (ObjSize==1 || ObjSize==2) { + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg; + if (isPPC64) + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + else + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; + SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(FuncArg, + CurArgOffset), + ObjType, false, false, 0); + MemOps.push_back(Store); + ++GPR_idx; + } + + ArgOffset += PtrByteSize; + + continue; + } + for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { + // Store whatever pieces of the object are in registers + // to memory. ArgOffset will be the address of the beginning + // of the object. + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg; + if (isPPC64) + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + else + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); + int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(FuncArg, ArgOffset), + false, false, 0); + MemOps.push_back(Store); + ++GPR_idx; + ArgOffset += PtrByteSize; + } else { + ArgOffset += ArgSize - (ArgOffset-CurArgOffset); + break; + } + } + continue; + } + + switch (ObjectVT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Unhandled argument type!"); + case MVT::i32: + if (!isPPC64) { + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); + ++GPR_idx; + } else { + needsLoad = true; + ArgSize = PtrByteSize; + } + // All int arguments reserve stack space in the Darwin ABI. + ArgOffset += PtrByteSize; + break; + } + // FALLTHROUGH + case MVT::i64: // PPC64 + if (GPR_idx != Num_GPR_Regs) { + unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); + + if (ObjectVT == MVT::i32) + // PPC64 passes i8, i16, and i32 values in i64 registers. Promote + // value to MVT::i64 and then truncate to the correct register size. + ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); + + ++GPR_idx; + } else { + needsLoad = true; + ArgSize = PtrByteSize; + } + // All int arguments reserve stack space in the Darwin ABI. + ArgOffset += 8; + break; + + case MVT::f32: + case MVT::f64: + // Every 4 bytes of argument space consumes one of the GPRs available for + // argument passing. + if (GPR_idx != Num_GPR_Regs) { + ++GPR_idx; + if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) + ++GPR_idx; + } + if (FPR_idx != Num_FPR_Regs) { + unsigned VReg; + + if (ObjectVT == MVT::f32) + VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); + else + VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); + + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); + ++FPR_idx; + } else { + needsLoad = true; + } + + // All FP arguments reserve stack space in the Darwin ABI. + ArgOffset += isPPC64 ? 8 : ObjSize; + break; + case MVT::v4f32: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v16i8: + // Note that vector arguments in registers don't reserve stack space, + // except in varargs functions. + if (VR_idx != Num_VR_Regs) { + unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); + ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); + if (isVarArg) { + while ((ArgOffset % 16) != 0) { + ArgOffset += PtrByteSize; + if (GPR_idx != Num_GPR_Regs) + GPR_idx++; + } + ArgOffset += 16; + GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? + } + ++VR_idx; + } else { + if (!isVarArg && !isPPC64) { + // Vectors go after all the nonvectors. + CurArgOffset = VecArgOffset; + VecArgOffset += 16; + } else { + // Vectors are aligned. + ArgOffset = ((ArgOffset+15)/16)*16; + CurArgOffset = ArgOffset; + ArgOffset += 16; + } + needsLoad = true; + } + break; + } + + // We need to load the argument to a virtual register if we determined above + // that we ran out of physical registers of the appropriate type. + if (needsLoad) { + int FI = MFI->CreateFixedObject(ObjSize, + CurArgOffset + (ArgSize - ObjSize), + isImmutable); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), + false, false, false, 0); + } + + InVals.push_back(ArgVal); + } + + // Set the size that is at least reserved in caller of this function. Tail + // call optimized functions' reserved stack space needs to be aligned so that + // taking the difference between two stack areas will result in an aligned + // stack. + setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (isVarArg) { + int Depth = ArgOffset; + + FuncInfo->setVarArgsFrameIndex( + MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, + Depth, true)); + SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + + // If this function is vararg, store any remaining integer argument regs + // to their spots on the stack so that they may be loaded by deferencing the + // result of va_next. + for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { + unsigned VReg; + + if (isPPC64) + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); + else + VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); + + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); + SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo(), false, false, 0); + MemOps.push_back(Store); + // Increment the address by four for the next argument to store + SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); + FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); + } + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, + MVT::Other, &MemOps[0], MemOps.size()); + + return Chain; +} + +/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus +/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI. +static unsigned +CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, + bool isPPC64, + bool isVarArg, + unsigned CC, + const SmallVectorImpl<ISD::OutputArg> + &Outs, + const SmallVectorImpl<SDValue> &OutVals, + unsigned &nAltivecParamsAtEnd) { + // Count how many bytes are to be pushed on the stack, including the linkage + // area, and parameter passing area. We start with 24/48 bytes, which is + // prereserved space for [SP][CR][LR][3 x unused]. + unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); + unsigned NumOps = Outs.size(); + unsigned PtrByteSize = isPPC64 ? 8 : 4; + + // Add up all the space actually used. + // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually + // they all go in registers, but we must reserve stack space for them for + // possible use by the caller. In varargs or 64-bit calls, parameters are + // assigned stack space in order, with padding so Altivec parameters are + // 16-byte aligned. + nAltivecParamsAtEnd = 0; + for (unsigned i = 0; i != NumOps; ++i) { + ISD::ArgFlagsTy Flags = Outs[i].Flags; + EVT ArgVT = Outs[i].VT; + // Varargs Altivec parameters are padded to a 16 byte boundary. + if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || + ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { + if (!isVarArg && !isPPC64) { + // Non-varargs Altivec parameters go after all the non-Altivec + // parameters; handle those later so we know how much padding we need. + nAltivecParamsAtEnd++; + continue; + } + // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. + NumBytes = ((NumBytes+15)/16)*16; + } + NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); + } + + // Allow for Altivec parameters at the end, if needed. + if (nAltivecParamsAtEnd) { + NumBytes = ((NumBytes+15)/16)*16; + NumBytes += 16*nAltivecParamsAtEnd; + } + + // The prolog code of the callee may store up to 8 GPR argument registers to + // the stack, allowing va_start to index over them in memory if its varargs. + // Because we cannot tell if this is needed on the caller side, we have to + // conservatively assume that it is needed. As such, make sure we have at + // least enough stack space for the caller to store the 8 GPRs. + NumBytes = std::max(NumBytes, + PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); + + // Tail call needs the stack to be aligned. + if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ + unsigned TargetAlign = DAG.getMachineFunction().getTarget(). + getFrameLowering()->getStackAlignment(); + unsigned AlignMask = TargetAlign-1; + NumBytes = (NumBytes + AlignMask) & ~AlignMask; + } + + return NumBytes; +} + +/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be +/// adjusted to accommodate the arguments for the tailcall. +static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, + unsigned ParamSize) { + + if (!isTailCall) return 0; + + PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); + unsigned CallerMinReservedArea = FI->getMinReservedArea(); + int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; + // Remember only if the new adjustement is bigger. + if (SPDiff < FI->getTailCallSPDelta()) + FI->setTailCallSPDelta(SPDiff); + + return SPDiff; +} + +/// IsEligibleForTailCallOptimization - Check whether the call is eligible +/// for tail call optimization. Targets which want to do tail call +/// optimization should implement this function. +bool +PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, + CallingConv::ID CalleeCC, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + SelectionDAG& DAG) const { + if (!getTargetMachine().Options.GuaranteedTailCallOpt) + return false; + + // Variable argument functions are not supported. + if (isVarArg) + return false; + + MachineFunction &MF = DAG.getMachineFunction(); + CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); + if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { + // Functions containing by val parameters are not supported. + for (unsigned i = 0; i != Ins.size(); i++) { + ISD::ArgFlagsTy Flags = Ins[i].Flags; + if (Flags.isByVal()) return false; + } + + // Non PIC/GOT tail calls are supported. + if (getTargetMachine().getRelocationModel() != Reloc::PIC_) + return true; + + // At the moment we can only do local tail calls (in same module, hidden + // or protected) if we are generating PIC. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + return G->getGlobal()->hasHiddenVisibility() + || G->getGlobal()->hasProtectedVisibility(); + } + + return false; +} + +/// isCallCompatibleAddress - Return the immediate to use if the specified +/// 32-bit value is representable in the immediate field of a BxA instruction. +static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); + if (!C) return 0; + + int Addr = C->getZExtValue(); + if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. + SignExtend32<26>(Addr) != Addr) + return 0; // Top 6 bits have to be sext of immediate. + + return DAG.getConstant((int)C->getZExtValue() >> 2, + DAG.getTargetLoweringInfo().getPointerTy()).getNode(); +} + +namespace { + +struct TailCallArgumentInfo { + SDValue Arg; + SDValue FrameIdxOp; + int FrameIdx; + + TailCallArgumentInfo() : FrameIdx(0) {} +}; + +} + +/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. +static void +StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, + SDValue Chain, + const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, + SmallVectorImpl<SDValue> &MemOpChains, + SDLoc dl) { + for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { + SDValue Arg = TailCallArgs[i].Arg; + SDValue FIN = TailCallArgs[i].FrameIdxOp; + int FI = TailCallArgs[i].FrameIdx; + // Store relative to framepointer. + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, + MachinePointerInfo::getFixedStack(FI), + false, false, 0)); + } +} + +/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to +/// the appropriate stack slot for the tail call optimized function call. +static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, + MachineFunction &MF, + SDValue Chain, + SDValue OldRetAddr, + SDValue OldFP, + int SPDiff, + bool isPPC64, + bool isDarwinABI, + SDLoc dl) { + if (SPDiff) { + // Calculate the new stack slot for the return address. + int SlotSize = isPPC64 ? 8 : 4; + int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, + isDarwinABI); + int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, + NewRetAddrLoc, true); + EVT VT = isPPC64 ? MVT::i64 : MVT::i32; + SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); + Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, + MachinePointerInfo::getFixedStack(NewRetAddr), + false, false, 0); + + // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack + // slot as the FP is never overwritten. + if (isDarwinABI) { + int NewFPLoc = + SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); + int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, + true); + SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); + Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, + MachinePointerInfo::getFixedStack(NewFPIdx), + false, false, 0); + } + } + return Chain; +} + +/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate +/// the position of the argument. +static void +CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, + SDValue Arg, int SPDiff, unsigned ArgOffset, + SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { + int Offset = ArgOffset + SPDiff; + uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; + int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); + EVT VT = isPPC64 ? MVT::i64 : MVT::i32; + SDValue FIN = DAG.getFrameIndex(FI, VT); + TailCallArgumentInfo Info; + Info.Arg = Arg; + Info.FrameIdxOp = FIN; + Info.FrameIdx = FI; + TailCallArguments.push_back(Info); +} + +/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address +/// stack slot. Returns the chain as result and the loaded frame pointers in +/// LROpOut/FPOpout. Used when tail calling. +SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, + int SPDiff, + SDValue Chain, + SDValue &LROpOut, + SDValue &FPOpOut, + bool isDarwinABI, + SDLoc dl) const { + if (SPDiff) { + // Load the LR and FP stack slot for later adjusting. + EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; + LROpOut = getReturnAddrFrameIndex(DAG); + LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), + false, false, false, 0); + Chain = SDValue(LROpOut.getNode(), 1); + + // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack + // slot as the FP is never overwritten. + if (isDarwinABI) { + FPOpOut = getFramePointerFrameIndex(DAG); + FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), + false, false, false, 0); + Chain = SDValue(FPOpOut.getNode(), 1); + } + } + return Chain; +} + +/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified +/// by "Src" to address "Dst" of size "Size". Alignment information is +/// specified by the specific parameter attribute. The copy will be passed as +/// a byval function parameter. +/// Sometimes what we are copying is the end of a larger object, the part that +/// does not fit in registers. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG, + SDLoc dl) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + false, false, MachinePointerInfo(0), + MachinePointerInfo(0)); +} + +/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of +/// tail calls. +static void +LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, + SDValue Arg, SDValue PtrOff, int SPDiff, + unsigned ArgOffset, bool isPPC64, bool isTailCall, + bool isVector, SmallVectorImpl<SDValue> &MemOpChains, + SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, + SDLoc dl) { + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + if (!isTailCall) { + if (isVector) { + SDValue StackPtr; + if (isPPC64) + StackPtr = DAG.getRegister(PPC::X1, MVT::i64); + else + StackPtr = DAG.getRegister(PPC::R1, MVT::i32); + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, + DAG.getConstant(ArgOffset, PtrVT)); + } + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), false, false, 0)); + // Calculate and remember argument location. + } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, + TailCallArguments); +} + +static +void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, + SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, + SDValue LROp, SDValue FPOp, bool isDarwinABI, + SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { + MachineFunction &MF = DAG.getMachineFunction(); + + // Emit a sequence of copyto/copyfrom virtual registers for arguments that + // might overwrite each other in case of tail call optimization. + SmallVector<SDValue, 8> MemOpChains2; + // Do not flag preceding copytoreg stuff together with the following stuff. + InFlag = SDValue(); + StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, + MemOpChains2, dl); + if (!MemOpChains2.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains2[0], MemOpChains2.size()); + + // Store the return address to the appropriate stack slot. + Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, + isPPC64, isDarwinABI, dl); + + // Emit callseq_end just before tailcall node. + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), InFlag, dl); + InFlag = Chain.getValue(1); +} + +static +unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, + SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall, + SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, + SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, + const PPCSubtarget &PPCSubTarget) { + + bool isPPC64 = PPCSubTarget.isPPC64(); + bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + NodeTys.push_back(MVT::Other); // Returns a chain + NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. + + unsigned CallOpc = PPCISD::CALL; + + bool needIndirectCall = true; + if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { + // If this is an absolute destination address, use the munged value. + Callee = SDValue(Dest, 0); + needIndirectCall = false; + } + + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 + // Use indirect calls for ALL functions calls in JIT mode, since the + // far-call stubs may be outside relocation limits for a BL instruction. + if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { + unsigned OpFlags = 0; + if (DAG.getTarget().getRelocationModel() != Reloc::Static && + (PPCSubTarget.getTargetTriple().isMacOSX() && + PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && + (G->getGlobal()->isDeclaration() || + G->getGlobal()->isWeakForLinker())) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = PPCII::MO_DARWIN_STUB; + } + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, + // every direct call is) turn it into a TargetGlobalAddress / + // TargetExternalSymbol node so that legalize doesn't hack it. + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, + Callee.getValueType(), + 0, OpFlags); + needIndirectCall = false; + } + } + + if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + unsigned char OpFlags = 0; + + if (DAG.getTarget().getRelocationModel() != Reloc::Static && + (PPCSubTarget.getTargetTriple().isMacOSX() && + PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = PPCII::MO_DARWIN_STUB; + } + + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), + OpFlags); + needIndirectCall = false; + } + + if (needIndirectCall) { + // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair + // to do the call, we can't use PPCISD::CALL. + SDValue MTCTROps[] = {Chain, Callee, InFlag}; + + if (isSVR4ABI && isPPC64) { + // Function pointers in the 64-bit SVR4 ABI do not point to the function + // entry point, but to the function descriptor (the function entry point + // address is part of the function descriptor though). + // The function descriptor is a three doubleword structure with the + // following fields: function entry point, TOC base address and + // environment pointer. + // Thus for a call through a function pointer, the following actions need + // to be performed: + // 1. Save the TOC of the caller in the TOC save area of its stack + // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). + // 2. Load the address of the function entry point from the function + // descriptor. + // 3. Load the TOC of the callee from the function descriptor into r2. + // 4. Load the environment pointer from the function descriptor into + // r11. + // 5. Branch to the function entry point address. + // 6. On return of the callee, the TOC of the caller needs to be + // restored (this is done in FinishCall()). + // + // All those operations are flagged together to ensure that no other + // operations can be scheduled in between. E.g. without flagging the + // operations together, a TOC access in the caller could be scheduled + // between the load of the callee TOC and the branch to the callee, which + // results in the TOC access going through the TOC of the callee instead + // of going through the TOC of the caller, which leads to incorrect code. + + // Load the address of the function entry point from the function + // descriptor. + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); + SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, + InFlag.getNode() ? 3 : 2); + Chain = LoadFuncPtr.getValue(1); + InFlag = LoadFuncPtr.getValue(2); + + // Load environment pointer into r11. + // Offset of the environment pointer within the function descriptor. + SDValue PtrOff = DAG.getIntPtrConstant(16); + + SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); + SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, + InFlag); + Chain = LoadEnvPtr.getValue(1); + InFlag = LoadEnvPtr.getValue(2); + + SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, + InFlag); + Chain = EnvVal.getValue(0); + InFlag = EnvVal.getValue(1); + + // Load TOC of the callee into r2. We are using a target-specific load + // with r2 hard coded, because the result of a target-independent load + // would never go directly into r2, since r2 is a reserved register (which + // prevents the register allocator from allocating it), resulting in an + // additional register being allocated and an unnecessary move instruction + // being generated. + VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, + Callee, InFlag); + Chain = LoadTOCPtr.getValue(0); + InFlag = LoadTOCPtr.getValue(1); + + MTCTROps[0] = Chain; + MTCTROps[1] = LoadFuncPtr; + MTCTROps[2] = InFlag; + } + + Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, + 2 + (InFlag.getNode() != 0)); + InFlag = Chain.getValue(1); + + NodeTys.clear(); + NodeTys.push_back(MVT::Other); + NodeTys.push_back(MVT::Glue); + Ops.push_back(Chain); + CallOpc = PPCISD::BCTRL; + Callee.setNode(0); + // Add use of X11 (holding environment pointer) + if (isSVR4ABI && isPPC64) + Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); + // Add CTR register as callee so a bctr can be emitted later. + if (isTailCall) + Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); + } + + // If this is a direct call, pass the chain and the callee. + if (Callee.getNode()) { + Ops.push_back(Chain); + Ops.push_back(Callee); + } + // If this is a tail call add stack pointer delta. + if (isTailCall) + Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + return CallOpc; +} + +static +bool isLocalCall(const SDValue &Callee) +{ + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + return !G->getGlobal()->isDeclaration() && + !G->getGlobal()->isWeakForLinker(); + return false; +} + +SDValue +PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Val = DAG.getCopyFromReg(Chain, dl, + VA.getLocReg(), VA.getLocVT(), InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::AExt: + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + break; + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + break; + case CCValAssign::SExt: + Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + break; + } + + InVals.push_back(Val); + } + + return Chain; +} + +SDValue +PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, + bool isTailCall, bool isVarArg, + SelectionDAG &DAG, + SmallVector<std::pair<unsigned, SDValue>, 8> + &RegsToPass, + SDValue InFlag, SDValue Chain, + SDValue &Callee, + int SPDiff, unsigned NumBytes, + const SmallVectorImpl<ISD::InputArg> &Ins, + SmallVectorImpl<SDValue> &InVals) const { + std::vector<EVT> NodeTys; + SmallVector<SDValue, 8> Ops; + unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, + isTailCall, RegsToPass, Ops, NodeTys, + PPCSubTarget); + + // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls + if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) + Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); + + // When performing tail call optimization the callee pops its arguments off + // the stack. Account for this here so these bytes can be pushed back on in + // PPCFrameLowering::eliminateCallFramePseudoInstr. + int BytesCalleePops = + (CallConv == CallingConv::Fast && + getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + // Emit tail call. + if (isTailCall) { + assert(((Callee.getOpcode() == ISD::Register && + cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || + Callee.getOpcode() == ISD::TargetExternalSymbol || + Callee.getOpcode() == ISD::TargetGlobalAddress || + isa<ConstantSDNode>(Callee)) && + "Expecting an global address, external symbol, absolute value or register"); + + return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); + } + + // Add a NOP immediately after the branch instruction when using the 64-bit + // SVR4 ABI. At link time, if caller and callee are in a different module and + // thus have a different TOC, the call will be replaced with a call to a stub + // function which saves the current TOC, loads the TOC of the callee and + // branches to the callee. The NOP will be replaced with a load instruction + // which restores the TOC of the caller from the TOC save slot of the current + // stack frame. If caller and callee belong to the same module (and have the + // same TOC), the NOP will remain unchanged. + + bool needsTOCRestore = false; + if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { + if (CallOpc == PPCISD::BCTRL) { + // This is a call through a function pointer. + // Restore the caller TOC from the save area into R2. + // See PrepareCall() for more information about calls through function + // pointers in the 64-bit SVR4 ABI. + // We are using a target-specific load with r2 hard coded, because the + // result of a target-independent load would never go directly into r2, + // since r2 is a reserved register (which prevents the register allocator + // from allocating it), resulting in an additional register being + // allocated and an unnecessary move instruction being generated. + needsTOCRestore = true; + } else if ((CallOpc == PPCISD::CALL) && + (!isLocalCall(Callee) || + DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { + // Otherwise insert NOP for non-local calls. + CallOpc = PPCISD::CALL_NOP; + } + } + + Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + if (needsTOCRestore) { + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); + InFlag = Chain.getValue(1); + } + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(BytesCalleePops, true), + InFlag, dl); + if (!Ins.empty()) + InFlag = Chain.getValue(1); + + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, + Ins, dl, DAG, InVals); +} + +SDValue +PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &dl = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &isTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool isVarArg = CLI.IsVarArg; + + if (isTailCall) + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, + Ins, DAG); + + if (PPCSubTarget.isSVR4ABI()) { + if (PPCSubTarget.isPPC64()) + return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, + isTailCall, Outs, OutVals, Ins, + dl, DAG, InVals); + else + return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, + isTailCall, Outs, OutVals, Ins, + dl, DAG, InVals); + } + + return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, + isTailCall, Outs, OutVals, Ins, + dl, DAG, InVals); +} + +SDValue +PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, + bool isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description + // of the 32-bit SVR4 ABI stack frame layout. + + assert((CallConv == CallingConv::C || + CallConv == CallingConv::Fast) && "Unknown calling convention!"); + + unsigned PtrByteSize = 4; + + MachineFunction &MF = DAG.getMachineFunction(); + + // Mark this function as potentially containing a function that contains a + // tail call. As a consequence the frame pointer will be used for dynamicalloc + // and restoring the callers stack pointer in this functions epilog. This is + // done because by tail calling the called function might overwrite the value + // in this function's (MF) stack pointer stack slot 0(SP). + if (getTargetMachine().Options.GuaranteedTailCallOpt && + CallConv == CallingConv::Fast) + MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); + + // Count how many bytes are to be pushed on the stack, including the linkage + // area, parameter list area and the part of the local variable space which + // contains copies of aggregates which are passed by value. + + // Assign locations to all of the outgoing arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + // Reserve space for the linkage area on the stack. + CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); + + if (isVarArg) { + // Handle fixed and variable vector arguments differently. + // Fixed vector arguments go into registers as long as registers are + // available. Variable vector arguments always go into memory. + unsigned NumArgs = Outs.size(); + + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ArgVT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + bool Result; + + if (Outs[i].IsFixed) { + Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, + CCInfo); + } else { + Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, + ArgFlags, CCInfo); + } + + if (Result) { +#ifndef NDEBUG + errs() << "Call operand #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString() << "\n"; +#endif + llvm_unreachable(0); + } + } + } else { + // All arguments are treated the same. + CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); + } + + // Assign locations to all of the outgoing aggregate by value arguments. + SmallVector<CCValAssign, 16> ByValArgLocs; + CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ByValArgLocs, *DAG.getContext()); + + // Reserve stack space for the allocations in CCInfo. + CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); + + CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); + + // Size of the linkage area, parameter list area and the part of the local + // space variable where copies of aggregates which are passed by value are + // stored. + unsigned NumBytes = CCByValInfo.getNextStackOffset(); + + // Calculate by how many bytes the stack has to be adjusted in case of tail + // call optimization. + int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); + + // Adjust the stack pointer for the new arguments... + // These operations are automatically eliminated by the prolog/epilog pass + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), + dl); + SDValue CallSeqStart = Chain; + + // Load the return address and frame pointer so it can be moved somewhere else + // later. + SDValue LROp, FPOp; + Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, + dl); + + // Set up a copy of the stack pointer for use loading and storing any + // arguments that may not fit in the registers available for argument + // passing. + SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<TailCallArgumentInfo, 8> TailCallArguments; + SmallVector<SDValue, 8> MemOpChains; + + bool seenFloatArg = false; + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, j = 0, e = ArgLocs.size(); + i != e; + ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + if (Flags.isByVal()) { + // Argument is an aggregate which is passed by value, thus we need to + // create a copy of it in the local variable space of the current stack + // frame (which is the stack frame of the caller) and pass the address of + // this copy to the callee. + assert((j < ByValArgLocs.size()) && "Index out of bounds!"); + CCValAssign &ByValVA = ByValArgLocs[j++]; + assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); + + // Memory reserved in the local variable space of the callers stack frame. + unsigned LocMemOffset = ByValVA.getLocMemOffset(); + + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); + + // Create a copy of the argument in the local area of the current + // stack frame. + SDValue MemcpyCall = + CreateCopyOfByValArgument(Arg, PtrOff, + CallSeqStart.getNode()->getOperand(0), + Flags, DAG, dl); + + // This must go outside the CALLSEQ_START..END. + SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, + CallSeqStart.getNode()->getOperand(1), + SDLoc(MemcpyCall)); + DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), + NewCallSeqStart.getNode()); + Chain = CallSeqStart = NewCallSeqStart; + + // Pass the address of the aggregate copy on the stack either in a + // physical register or in the parameter list area of the current stack + // frame to the callee. + Arg = PtrOff; + } + + if (VA.isRegLoc()) { + seenFloatArg |= VA.getLocVT().isFloatingPoint(); + // Put argument in a physical register. + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else { + // Put argument in the parameter list area of the current stack frame. + assert(VA.isMemLoc()); + unsigned LocMemOffset = VA.getLocMemOffset(); + + if (!isTailCall) { + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); + + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), + false, false, 0)); + } else { + // Calculate and remember argument location. + CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, + TailCallArguments); + } + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into the appropriate regs. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // Set CR bit 6 to true if this is a vararg call with floating args passed in + // registers. + if (isVarArg) { + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = { Chain, InFlag }; + + Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, + dl, VTs, Ops, InFlag.getNode() ? 2 : 1); + + InFlag = Chain.getValue(1); + } + + if (isTailCall) + PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, + false, TailCallArguments); + + return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, + RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, + Ins, InVals); +} + +// Copy an argument into memory, being careful to do this outside the +// call sequence for the call to which the argument belongs. +SDValue +PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, + SDValue CallSeqStart, + ISD::ArgFlagsTy Flags, + SelectionDAG &DAG, + SDLoc dl) const { + SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, + CallSeqStart.getNode()->getOperand(0), + Flags, DAG, dl); + // The MEMCPY must go outside the CALLSEQ_START..END. + SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, + CallSeqStart.getNode()->getOperand(1), + SDLoc(MemcpyCall)); + DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), + NewCallSeqStart.getNode()); + return NewCallSeqStart; +} + +SDValue +PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, + bool isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + unsigned NumOps = Outs.size(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + unsigned PtrByteSize = 8; + + MachineFunction &MF = DAG.getMachineFunction(); + + // Mark this function as potentially containing a function that contains a + // tail call. As a consequence the frame pointer will be used for dynamicalloc + // and restoring the callers stack pointer in this functions epilog. This is + // done because by tail calling the called function might overwrite the value + // in this function's (MF) stack pointer stack slot 0(SP). + if (getTargetMachine().Options.GuaranteedTailCallOpt && + CallConv == CallingConv::Fast) + MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); + + unsigned nAltivecParamsAtEnd = 0; + + // Count how many bytes are to be pushed on the stack, including the linkage + // area, and parameter passing area. We start with at least 48 bytes, which + // is reserved space for [SP][CR][LR][3 x unused]. + // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result + // of this call. + unsigned NumBytes = + CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv, + Outs, OutVals, nAltivecParamsAtEnd); + + // Calculate by how many bytes the stack has to be adjusted in case of tail + // call optimization. + int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); + + // To protect arguments on the stack from being clobbered in a tail call, + // force all the loads to happen before doing any other lowering. + if (isTailCall) + Chain = DAG.getStackArgumentTokenFactor(Chain); + + // Adjust the stack pointer for the new arguments... + // These operations are automatically eliminated by the prolog/epilog pass + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), + dl); + SDValue CallSeqStart = Chain; + + // Load the return address and frame pointer so it can be move somewhere else + // later. + SDValue LROp, FPOp; + Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, + dl); + + // Set up a copy of the stack pointer for use loading and storing any + // arguments that may not fit in the registers available for argument + // passing. + SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); + + // Figure out which arguments are going to go in registers, and which in + // memory. Also, if this is a vararg function, floating point operations + // must be stored to our stack, and loaded into integer regs as well, if + // any integer regs are available for argument passing. + unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); + unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; + + static const uint16_t GPR[] = { + PPC::X3, PPC::X4, PPC::X5, PPC::X6, + PPC::X7, PPC::X8, PPC::X9, PPC::X10, + }; + static const uint16_t *FPR = GetFPR(); + + static const uint16_t VR[] = { + PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, + PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 + }; + const unsigned NumGPRs = array_lengthof(GPR); + const unsigned NumFPRs = 13; + const unsigned NumVRs = array_lengthof(VR); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<TailCallArgumentInfo, 8> TailCallArguments; + + SmallVector<SDValue, 8> MemOpChains; + for (unsigned i = 0; i != NumOps; ++i) { + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + // PtrOff will be used to store the current argument to the stack if a + // register cannot be found for it. + SDValue PtrOff; + + PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); + + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); + + // Promote integers to 64-bit values. + if (Arg.getValueType() == MVT::i32) { + // FIXME: Should this use ANY_EXTEND if neither sext nor zext? + unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); + } + + // FIXME memcpy is used way more than necessary. Correctness first. + // Note: "by value" is code for passing a structure by value, not + // basic types. + if (Flags.isByVal()) { + // Note: Size includes alignment padding, so + // struct x { short a; char b; } + // will have Size = 4. With #pragma pack(1), it will have Size = 3. + // These are the proper values we need for right-justifying the + // aggregate in a parameter register. + unsigned Size = Flags.getByValSize(); + + // An empty aggregate parameter takes up no storage and no + // registers. + if (Size == 0) + continue; + + unsigned BVAlign = Flags.getByValAlign(); + if (BVAlign > 8) { + if (BVAlign % PtrByteSize != 0) + llvm_unreachable( + "ByVal alignment is not a multiple of the pointer size"); + + ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign; + } + + // All aggregates smaller than 8 bytes must be passed right-justified. + if (Size==1 || Size==2 || Size==4) { + EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, + MachinePointerInfo(), VT, + false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + + ArgOffset += PtrByteSize; + continue; + } + } + + if (GPR_idx == NumGPRs && Size < 8) { + SDValue Const = DAG.getConstant(PtrByteSize - Size, + PtrOff.getValueType()); + SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); + Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, + CallSeqStart, + Flags, DAG, dl); + ArgOffset += PtrByteSize; + continue; + } + // Copy entire object into memory. There are cases where gcc-generated + // code assumes it is there, even if it could be put entirely into + // registers. (This is not what the doc says.) + + // FIXME: The above statement is likely due to a misunderstanding of the + // documents. All arguments must be copied into the parameter area BY + // THE CALLEE in the event that the callee takes the address of any + // formal argument. That has not yet been implemented. However, it is + // reasonable to use the stack area as a staging area for the register + // load. + + // Skip this for small aggregates, as we will use the same slot for a + // right-justified copy, below. + if (Size >= 8) + Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, + CallSeqStart, + Flags, DAG, dl); + + // When a register is available, pass a small aggregate right-justified. + if (Size < 8 && GPR_idx != NumGPRs) { + // The easiest way to get this right-justified in a register + // is to copy the structure into the rightmost portion of a + // local variable slot, then load the whole slot into the + // register. + // FIXME: The memcpy seems to produce pretty awful code for + // small aggregates, particularly for packed ones. + // FIXME: It would be preferable to use the slot in the + // parameter save area instead of a new local variable. + SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); + SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); + Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, + CallSeqStart, + Flags, DAG, dl); + + // Load the slot into the register. + SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + + // Done with this argument. + ArgOffset += PtrByteSize; + continue; + } + + // For aggregates larger than PtrByteSize, copy the pieces of the + // object that fit into registers from the parameter save area. + for (unsigned j=0; j<Size; j+=PtrByteSize) { + SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); + SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + ArgOffset += PtrByteSize; + } else { + ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; + break; + } + } + continue; + } + + switch (Arg.getSimpleValueType().SimpleTy) { + default: llvm_unreachable("Unexpected ValueType for argument!"); + case MVT::i32: + case MVT::i64: + if (GPR_idx != NumGPRs) { + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); + } else { + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + true, isTailCall, false, MemOpChains, + TailCallArguments, dl); + } + ArgOffset += PtrByteSize; + break; + case MVT::f32: + case MVT::f64: + if (FPR_idx != NumFPRs) { + RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); + + if (isVarArg) { + // A single float or an aggregate containing only a single float + // must be passed right-justified in the stack doubleword, and + // in the GPR, if one is available. + SDValue StoreOff; + if (Arg.getSimpleValueType().SimpleTy == MVT::f32) { + SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); + StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); + } else + StoreOff = PtrOff; + + SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff, + MachinePointerInfo(), false, false, 0); + MemOpChains.push_back(Store); + + // Float varargs are always shadowed in available integer registers + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, + MachinePointerInfo(), false, false, + false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + } + } else if (GPR_idx != NumGPRs) + // If we have any FPRs remaining, we may also have GPRs remaining. + ++GPR_idx; + } else { + // Single-precision floating-point values are mapped to the + // second (rightmost) word of the stack doubleword. + if (Arg.getValueType() == MVT::f32) { + SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); + } + + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + true, isTailCall, false, MemOpChains, + TailCallArguments, dl); + } + ArgOffset += 8; + break; + case MVT::v4f32: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v16i8: + if (isVarArg) { + // These go aligned on the stack, or in the corresponding R registers + // when within range. The Darwin PPC ABI doc claims they also go in + // V registers; in fact gcc does this only for arguments that are + // prototyped, not for those that match the ... We do it for all + // arguments, seems to work. + while (ArgOffset % 16 !=0) { + ArgOffset += PtrByteSize; + if (GPR_idx != NumGPRs) + GPR_idx++; + } + // We could elide this store in the case where the object fits + // entirely in R registers. Maybe later. + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, + DAG.getConstant(ArgOffset, PtrVT)); + SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), false, false, 0); + MemOpChains.push_back(Store); + if (VR_idx != NumVRs) { + SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); + } + ArgOffset += 16; + for (unsigned i=0; i<16; i+=PtrByteSize) { + if (GPR_idx == NumGPRs) + break; + SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, + DAG.getConstant(i, PtrVT)); + SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + } + break; + } + + // Non-varargs Altivec params generally go in registers, but have + // stack space allocated at the end. + if (VR_idx != NumVRs) { + // Doesn't have GPR space allocated. + RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); + } else { + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + true, isTailCall, true, MemOpChains, + TailCallArguments, dl); + ArgOffset += 16; + } + break; + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Check if this is an indirect call (MTCTR/BCTRL). + // See PrepareCall() for more information about calls through function + // pointers in the 64-bit SVR4 ABI. + if (!isTailCall && + !dyn_cast<GlobalAddressSDNode>(Callee) && + !dyn_cast<ExternalSymbolSDNode>(Callee) && + !isBLACompatibleAddress(Callee, DAG)) { + // Load r2 into a virtual register and store it to the TOC save area. + SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); + // TOC save area offset. + SDValue PtrOff = DAG.getIntPtrConstant(40); + SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); + Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), + false, false, 0); + // R12 must contain the address of an indirect callee. This does not + // mean the MTCTR instruction must use R12; it's easier to model this + // as an extra parameter, so do that. + RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); + } + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into the appropriate regs. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (isTailCall) + PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, + FPOp, true, TailCallArguments); + + return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, + RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, + Ins, InVals); +} + +SDValue +PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, + bool isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + unsigned NumOps = Outs.size(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + bool isPPC64 = PtrVT == MVT::i64; + unsigned PtrByteSize = isPPC64 ? 8 : 4; + + MachineFunction &MF = DAG.getMachineFunction(); + + // Mark this function as potentially containing a function that contains a + // tail call. As a consequence the frame pointer will be used for dynamicalloc + // and restoring the callers stack pointer in this functions epilog. This is + // done because by tail calling the called function might overwrite the value + // in this function's (MF) stack pointer stack slot 0(SP). + if (getTargetMachine().Options.GuaranteedTailCallOpt && + CallConv == CallingConv::Fast) + MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); + + unsigned nAltivecParamsAtEnd = 0; + + // Count how many bytes are to be pushed on the stack, including the linkage + // area, and parameter passing area. We start with 24/48 bytes, which is + // prereserved space for [SP][CR][LR][3 x unused]. + unsigned NumBytes = + CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, + Outs, OutVals, + nAltivecParamsAtEnd); + + // Calculate by how many bytes the stack has to be adjusted in case of tail + // call optimization. + int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); + + // To protect arguments on the stack from being clobbered in a tail call, + // force all the loads to happen before doing any other lowering. + if (isTailCall) + Chain = DAG.getStackArgumentTokenFactor(Chain); + + // Adjust the stack pointer for the new arguments... + // These operations are automatically eliminated by the prolog/epilog pass + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), + dl); + SDValue CallSeqStart = Chain; + + // Load the return address and frame pointer so it can be move somewhere else + // later. + SDValue LROp, FPOp; + Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, + dl); + + // Set up a copy of the stack pointer for use loading and storing any + // arguments that may not fit in the registers available for argument + // passing. + SDValue StackPtr; + if (isPPC64) + StackPtr = DAG.getRegister(PPC::X1, MVT::i64); + else + StackPtr = DAG.getRegister(PPC::R1, MVT::i32); + + // Figure out which arguments are going to go in registers, and which in + // memory. Also, if this is a vararg function, floating point operations + // must be stored to our stack, and loaded into integer regs as well, if + // any integer regs are available for argument passing. + unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); + unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; + + static const uint16_t GPR_32[] = { // 32-bit registers. + PPC::R3, PPC::R4, PPC::R5, PPC::R6, + PPC::R7, PPC::R8, PPC::R9, PPC::R10, + }; + static const uint16_t GPR_64[] = { // 64-bit registers. + PPC::X3, PPC::X4, PPC::X5, PPC::X6, + PPC::X7, PPC::X8, PPC::X9, PPC::X10, + }; + static const uint16_t *FPR = GetFPR(); + + static const uint16_t VR[] = { + PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, + PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 + }; + const unsigned NumGPRs = array_lengthof(GPR_32); + const unsigned NumFPRs = 13; + const unsigned NumVRs = array_lengthof(VR); + + const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<TailCallArgumentInfo, 8> TailCallArguments; + + SmallVector<SDValue, 8> MemOpChains; + for (unsigned i = 0; i != NumOps; ++i) { + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + // PtrOff will be used to store the current argument to the stack if a + // register cannot be found for it. + SDValue PtrOff; + + PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); + + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); + + // On PPC64, promote integers to 64-bit values. + if (isPPC64 && Arg.getValueType() == MVT::i32) { + // FIXME: Should this use ANY_EXTEND if neither sext nor zext? + unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); + } + + // FIXME memcpy is used way more than necessary. Correctness first. + // Note: "by value" is code for passing a structure by value, not + // basic types. + if (Flags.isByVal()) { + unsigned Size = Flags.getByValSize(); + // Very small objects are passed right-justified. Everything else is + // passed left-justified. + if (Size==1 || Size==2) { + EVT VT = (Size==1) ? MVT::i8 : MVT::i16; + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, + MachinePointerInfo(), VT, + false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + + ArgOffset += PtrByteSize; + } else { + SDValue Const = DAG.getConstant(PtrByteSize - Size, + PtrOff.getValueType()); + SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); + Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, + CallSeqStart, + Flags, DAG, dl); + ArgOffset += PtrByteSize; + } + continue; + } + // Copy entire object into memory. There are cases where gcc-generated + // code assumes it is there, even if it could be put entirely into + // registers. (This is not what the doc says.) + Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, + CallSeqStart, + Flags, DAG, dl); + + // For small aggregates (Darwin only) and aggregates >= PtrByteSize, + // copy the pieces of the object that fit into registers from the + // parameter save area. + for (unsigned j=0; j<Size; j+=PtrByteSize) { + SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); + SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + ArgOffset += PtrByteSize; + } else { + ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; + break; + } + } + continue; + } + + switch (Arg.getSimpleValueType().SimpleTy) { + default: llvm_unreachable("Unexpected ValueType for argument!"); + case MVT::i32: + case MVT::i64: + if (GPR_idx != NumGPRs) { + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); + } else { + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + isPPC64, isTailCall, false, MemOpChains, + TailCallArguments, dl); + } + ArgOffset += PtrByteSize; + break; + case MVT::f32: + case MVT::f64: + if (FPR_idx != NumFPRs) { + RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); + + if (isVarArg) { + SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), false, false, 0); + MemOpChains.push_back(Store); + + // Float varargs are always shadowed in available integer registers + if (GPR_idx != NumGPRs) { + SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, + MachinePointerInfo(), false, false, + false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + } + if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ + SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); + SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + } + } else { + // If we have any FPRs remaining, we may also have GPRs remaining. + // Args passed in FPRs consume either 1 (f32) or 2 (f64) available + // GPRs. + if (GPR_idx != NumGPRs) + ++GPR_idx; + if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && + !isPPC64) // PPC64 has 64-bit GPR's obviously :) + ++GPR_idx; + } + } else + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + isPPC64, isTailCall, false, MemOpChains, + TailCallArguments, dl); + if (isPPC64) + ArgOffset += 8; + else + ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; + break; + case MVT::v4f32: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v16i8: + if (isVarArg) { + // These go aligned on the stack, or in the corresponding R registers + // when within range. The Darwin PPC ABI doc claims they also go in + // V registers; in fact gcc does this only for arguments that are + // prototyped, not for those that match the ... We do it for all + // arguments, seems to work. + while (ArgOffset % 16 !=0) { + ArgOffset += PtrByteSize; + if (GPR_idx != NumGPRs) + GPR_idx++; + } + // We could elide this store in the case where the object fits + // entirely in R registers. Maybe later. + PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, + DAG.getConstant(ArgOffset, PtrVT)); + SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), false, false, 0); + MemOpChains.push_back(Store); + if (VR_idx != NumVRs) { + SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, + MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); + } + ArgOffset += 16; + for (unsigned i=0; i<16; i+=PtrByteSize) { + if (GPR_idx == NumGPRs) + break; + SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, + DAG.getConstant(i, PtrVT)); + SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), + false, false, false, 0); + MemOpChains.push_back(Load.getValue(1)); + RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); + } + break; + } + + // Non-varargs Altivec params generally go in registers, but have + // stack space allocated at the end. + if (VR_idx != NumVRs) { + // Doesn't have GPR space allocated. + RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); + } else if (nAltivecParamsAtEnd==0) { + // We are emitting Altivec params in order. + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + isPPC64, isTailCall, true, MemOpChains, + TailCallArguments, dl); + ArgOffset += 16; + } + break; + } + } + // If all Altivec parameters fit in registers, as they usually do, + // they get stack space following the non-Altivec parameters. We + // don't track this here because nobody below needs it. + // If there are more Altivec parameters than fit in registers emit + // the stores here. + if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { + unsigned j = 0; + // Offset is aligned; skip 1st 12 params which go in V registers. + ArgOffset = ((ArgOffset+15)/16)*16; + ArgOffset += 12*16; + for (unsigned i = 0; i != NumOps; ++i) { + SDValue Arg = OutVals[i]; + EVT ArgType = Outs[i].VT; + if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || + ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { + if (++j > NumVRs) { + SDValue PtrOff; + // We are emitting Altivec params in order. + LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, + isPPC64, isTailCall, true, MemOpChains, + TailCallArguments, dl); + ArgOffset += 16; + } + } + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // On Darwin, R12 must contain the address of an indirect callee. This does + // not mean the MTCTR instruction must use R12; it's easier to model this as + // an extra parameter, so do that. + if (!isTailCall && + !dyn_cast<GlobalAddressSDNode>(Callee) && + !dyn_cast<ExternalSymbolSDNode>(Callee) && + !isBLACompatibleAddress(Callee, DAG)) + RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : + PPC::R12), Callee)); + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into the appropriate regs. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (isTailCall) + PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, + FPOp, true, TailCallArguments); + + return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, + RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, + Ins, InVals); +} + +bool +PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, + MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), + RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_PPC); +} + +SDValue +PPCTargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc dl, SelectionDAG &DAG) const { + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_PPC); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Arg = OutVals[i]; + + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); + break; + } + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, + &RetOps[0], RetOps.size()); +} + +SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, + const PPCSubtarget &Subtarget) const { + // When we pop the dynamic allocation we need to restore the SP link. + SDLoc dl(Op); + + // Get the corect type for pointers. + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + + // Construct the stack pointer operand. + bool isPPC64 = Subtarget.isPPC64(); + unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; + SDValue StackPtr = DAG.getRegister(SP, PtrVT); + + // Get the operands for the STACKRESTORE. + SDValue Chain = Op.getOperand(0); + SDValue SaveSP = Op.getOperand(1); + + // Load the old link SP. + SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, + MachinePointerInfo(), + false, false, false, 0); + + // Restore the stack pointer. + Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); + + // Store the old link SP. + return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), + false, false, 0); +} + + + +SDValue +PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + bool isPPC64 = PPCSubTarget.isPPC64(); + bool isDarwinABI = PPCSubTarget.isDarwinABI(); + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + + // Get current frame pointer save index. The users of this index will be + // primarily DYNALLOC instructions. + PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); + int RASI = FI->getReturnAddrSaveIndex(); + + // If the frame pointer save index hasn't been defined yet. + if (!RASI) { + // Find out what the fix offset of the frame pointer save area. + int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); + // Allocate the frame index for frame pointer save area. + RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); + // Save the result. + FI->setReturnAddrSaveIndex(RASI); + } + return DAG.getFrameIndex(RASI, PtrVT); +} + +SDValue +PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + bool isPPC64 = PPCSubTarget.isPPC64(); + bool isDarwinABI = PPCSubTarget.isDarwinABI(); + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + + // Get current frame pointer save index. The users of this index will be + // primarily DYNALLOC instructions. + PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); + int FPSI = FI->getFramePointerSaveIndex(); + + // If the frame pointer save index hasn't been defined yet. + if (!FPSI) { + // Find out what the fix offset of the frame pointer save area. + int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, + isDarwinABI); + + // Allocate the frame index for frame pointer save area. + FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); + // Save the result. + FI->setFramePointerSaveIndex(FPSI); + } + return DAG.getFrameIndex(FPSI, PtrVT); +} + +SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG, + const PPCSubtarget &Subtarget) const { + // Get the inputs. + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + SDLoc dl(Op); + + // Get the corect type for pointers. + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + // Negate the size. + SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, + DAG.getConstant(0, PtrVT), Size); + // Construct a node for the frame pointer save index. + SDValue FPSIdx = getFramePointerFrameIndex(DAG); + // Build a DYNALLOC node. + SDValue Ops[3] = { Chain, NegSize, FPSIdx }; + SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); + return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); +} + +SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, + DAG.getVTList(MVT::i32, MVT::Other), + Op.getOperand(0), Op.getOperand(1)); +} + +SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, + Op.getOperand(0), Op.getOperand(1)); +} + +/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when +/// possible. +SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { + // Not FP? Not a fsel. + if (!Op.getOperand(0).getValueType().isFloatingPoint() || + !Op.getOperand(2).getValueType().isFloatingPoint()) + return Op; + + // We might be able to do better than this under some circumstances, but in + // general, fsel-based lowering of select is a finite-math-only optimization. + // For more information, see section F.3 of the 2.06 ISA specification. + if (!DAG.getTarget().Options.NoInfsFPMath || + !DAG.getTarget().Options.NoNaNsFPMath) + return Op; + + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + + EVT ResVT = Op.getValueType(); + EVT CmpVT = Op.getOperand(0).getValueType(); + SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); + SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); + SDLoc dl(Op); + + // If the RHS of the comparison is a 0.0, we don't need to do the + // subtraction at all. + SDValue Sel1; + if (isFloatingPointZero(RHS)) + switch (CC) { + default: break; // SETUO etc aren't handled by fsel. + case ISD::SETNE: + std::swap(TV, FV); + case ISD::SETEQ: + if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits + LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); + Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); + if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits + Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, + DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); + case ISD::SETULT: + case ISD::SETLT: + std::swap(TV, FV); // fsel is natively setge, swap operands for setlt + case ISD::SETOGE: + case ISD::SETGE: + if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits + LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); + case ISD::SETUGT: + case ISD::SETGT: + std::swap(TV, FV); // fsel is natively setge, swap operands for setlt + case ISD::SETOLE: + case ISD::SETLE: + if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits + LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, + DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); + } + + SDValue Cmp; + switch (CC) { + default: break; // SETUO etc aren't handled by fsel. + case ISD::SETNE: + std::swap(TV, FV); + case ISD::SETEQ: + Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); + if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits + Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); + Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); + if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits + Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, + DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); + case ISD::SETULT: + case ISD::SETLT: + Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); + if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits + Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); + case ISD::SETOGE: + case ISD::SETGE: + Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); + if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits + Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); + case ISD::SETUGT: + case ISD::SETGT: + Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); + if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits + Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); + case ISD::SETOLE: + case ISD::SETLE: + Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); + if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits + Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); + return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); + } + return Op; +} + +// FIXME: Split this code up when LegalizeDAGTypes lands. +SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, + SDLoc dl) const { + assert(Op.getOperand(0).getValueType().isFloatingPoint()); + SDValue Src = Op.getOperand(0); + if (Src.getValueType() == MVT::f32) + Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); + + SDValue Tmp; + switch (Op.getSimpleValueType().SimpleTy) { + default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); + case MVT::i32: + Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : + (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ : + PPCISD::FCTIDZ), + dl, MVT::f64, Src); + break; + case MVT::i64: + assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) && + "i64 FP_TO_UINT is supported only with FPCVT"); + Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : + PPCISD::FCTIDUZ, + dl, MVT::f64, Src); + break; + } + + // Convert the FP value to an int value through memory. + bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() && + (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()); + SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); + int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); + MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); + + // Emit a store to the stack slot. + SDValue Chain; + if (i32Stack) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); + SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; + Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, + DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops), + MVT::i32, MMO); + } else + Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, + MPI, false, false, 0); + + // Result is a load from the stack slot. If loading 4 bytes, make sure to + // add in a bias. + if (Op.getValueType() == MVT::i32 && !i32Stack) { + FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, + DAG.getConstant(4, FIPtr.getValueType())); + MPI = MachinePointerInfo(); + } + + return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI, + false, false, false, 0); +} + +SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + // Don't handle ppc_fp128 here; let it be lowered to a libcall. + if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) + return SDValue(); + + assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) && + "UINT_TO_FP is supported only with FPCVT"); + + // If we have FCFIDS, then use it when converting to single-precision. + // Otherwise, convert to double-precision and then round. + unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? + (Op.getOpcode() == ISD::UINT_TO_FP ? + PPCISD::FCFIDUS : PPCISD::FCFIDS) : + (Op.getOpcode() == ISD::UINT_TO_FP ? + PPCISD::FCFIDU : PPCISD::FCFID); + MVT FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? + MVT::f32 : MVT::f64; + + if (Op.getOperand(0).getValueType() == MVT::i64) { + SDValue SINT = Op.getOperand(0); + // When converting to single-precision, we actually need to convert + // to double-precision first and then round to single-precision. + // To avoid double-rounding effects during that operation, we have + // to prepare the input operand. Bits that might be truncated when + // converting to double-precision are replaced by a bit that won't + // be lost at this stage, but is below the single-precision rounding + // position. + // + // However, if -enable-unsafe-fp-math is in effect, accept double + // rounding to avoid the extra overhead. + if (Op.getValueType() == MVT::f32 && + !PPCSubTarget.hasFPCVT() && + !DAG.getTarget().Options.UnsafeFPMath) { + + // Twiddle input to make sure the low 11 bits are zero. (If this + // is the case, we are guaranteed the value will fit into the 53 bit + // mantissa of an IEEE double-precision value without rounding.) + // If any of those low 11 bits were not zero originally, make sure + // bit 12 (value 2048) is set instead, so that the final rounding + // to single-precision gets the correct result. + SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, + SINT, DAG.getConstant(2047, MVT::i64)); + Round = DAG.getNode(ISD::ADD, dl, MVT::i64, + Round, DAG.getConstant(2047, MVT::i64)); + Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); + Round = DAG.getNode(ISD::AND, dl, MVT::i64, + Round, DAG.getConstant(-2048, MVT::i64)); + + // However, we cannot use that value unconditionally: if the magnitude + // of the input value is small, the bit-twiddling we did above might + // end up visibly changing the output. Fortunately, in that case, we + // don't need to twiddle bits since the original input will convert + // exactly to double-precision floating-point already. Therefore, + // construct a conditional to use the original value if the top 11 + // bits are all sign-bit copies, and use the rounded value computed + // above otherwise. + SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, + SINT, DAG.getConstant(53, MVT::i32)); + Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, + Cond, DAG.getConstant(1, MVT::i64)); + Cond = DAG.getSetCC(dl, MVT::i32, + Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); + + SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); + } + + SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); + SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); + + if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT()) + FP = DAG.getNode(ISD::FP_ROUND, dl, + MVT::f32, FP, DAG.getIntPtrConstant(0)); + return FP; + } + + assert(Op.getOperand(0).getValueType() == MVT::i32 && + "Unhandled INT_TO_FP type in custom expander!"); + // Since we only generate this in 64-bit mode, we can take advantage of + // 64-bit registers. In particular, sign extend the input value into the + // 64-bit register with extsw, store the WHOLE 64-bit value into the stack + // then lfd it and fcfid it. + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *FrameInfo = MF.getFrameInfo(); + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + + SDValue Ld; + if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) { + int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); + SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); + + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, + MachinePointerInfo::getFixedStack(FrameIdx), + false, false, 0); + + assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && + "Expected an i32 store"); + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), + MachineMemOperand::MOLoad, 4, 4); + SDValue Ops[] = { Store, FIdx }; + Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? + PPCISD::LFIWZX : PPCISD::LFIWAX, + dl, DAG.getVTList(MVT::f64, MVT::Other), + Ops, 2, MVT::i32, MMO); + } else { + assert(PPCSubTarget.isPPC64() && + "i32->FP without LFIWAX supported only on PPC64"); + + int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); + SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); + + SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, + Op.getOperand(0)); + + // STD the extended value into the stack slot. + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, + MachinePointerInfo::getFixedStack(FrameIdx), + false, false, 0); + + // Load the value as a double. + Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, + MachinePointerInfo::getFixedStack(FrameIdx), + false, false, false, 0); + } + + // FCFID it and return it. + SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); + if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT()) + FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); + return FP; +} + +SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + /* + The rounding mode is in bits 30:31 of FPSR, and has the following + settings: + 00 Round to nearest + 01 Round to 0 + 10 Round to +inf + 11 Round to -inf + + FLT_ROUNDS, on the other hand, expects the following: + -1 Undefined + 0 Round to 0 + 1 Round to nearest + 2 Round to +inf + 3 Round to -inf + + To perform the conversion, we do: + ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) + */ + + MachineFunction &MF = DAG.getMachineFunction(); + EVT VT = Op.getValueType(); + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + SDValue MFFSreg, InFlag; + + // Save FP Control Word to register + EVT NodeTys[] = { + MVT::f64, // return register + MVT::Glue // unused in this context + }; + SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); + + // Save FP register to stack slot + int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, + StackSlot, MachinePointerInfo(), false, false,0); + + // Load FP Control Word from low 32 bits of stack slot. + SDValue Four = DAG.getConstant(4, PtrVT); + SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); + SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), + false, false, false, 0); + + // Transform as necessary + SDValue CWD1 = + DAG.getNode(ISD::AND, dl, MVT::i32, + CWD, DAG.getConstant(3, MVT::i32)); + SDValue CWD2 = + DAG.getNode(ISD::SRL, dl, MVT::i32, + DAG.getNode(ISD::AND, dl, MVT::i32, + DAG.getNode(ISD::XOR, dl, MVT::i32, + CWD, DAG.getConstant(3, MVT::i32)), + DAG.getConstant(3, MVT::i32)), + DAG.getConstant(1, MVT::i32)); + + SDValue RetVal = + DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); + + return DAG.getNode((VT.getSizeInBits() < 16 ? + ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); +} + +SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + unsigned BitWidth = VT.getSizeInBits(); + SDLoc dl(Op); + assert(Op.getNumOperands() == 3 && + VT == Op.getOperand(1).getValueType() && + "Unexpected SHL!"); + + // Expand into a bunch of logical ops. Note that these ops + // depend on the PPC behavior for oversized shift amounts. + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + SDValue Amt = Op.getOperand(2); + EVT AmtVT = Amt.getValueType(); + + SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, + DAG.getConstant(BitWidth, AmtVT), Amt); + SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); + SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); + SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); + SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, + DAG.getConstant(-BitWidth, AmtVT)); + SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); + SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); + SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); + SDValue OutOps[] = { OutLo, OutHi }; + return DAG.getMergeValues(OutOps, 2, dl); +} + +SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc dl(Op); + unsigned BitWidth = VT.getSizeInBits(); + assert(Op.getNumOperands() == 3 && + VT == Op.getOperand(1).getValueType() && + "Unexpected SRL!"); + + // Expand into a bunch of logical ops. Note that these ops + // depend on the PPC behavior for oversized shift amounts. + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + SDValue Amt = Op.getOperand(2); + EVT AmtVT = Amt.getValueType(); + + SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, + DAG.getConstant(BitWidth, AmtVT), Amt); + SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); + SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); + SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, + DAG.getConstant(-BitWidth, AmtVT)); + SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); + SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); + SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); + SDValue OutOps[] = { OutLo, OutHi }; + return DAG.getMergeValues(OutOps, 2, dl); +} + +SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + EVT VT = Op.getValueType(); + unsigned BitWidth = VT.getSizeInBits(); + assert(Op.getNumOperands() == 3 && + VT == Op.getOperand(1).getValueType() && + "Unexpected SRA!"); + + // Expand into a bunch of logical ops, followed by a select_cc. + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + SDValue Amt = Op.getOperand(2); + EVT AmtVT = Amt.getValueType(); + + SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, + DAG.getConstant(BitWidth, AmtVT), Amt); + SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); + SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); + SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, + DAG.getConstant(-BitWidth, AmtVT)); + SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); + SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); + SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), + Tmp4, Tmp6, ISD::SETLE); + SDValue OutOps[] = { OutLo, OutHi }; + return DAG.getMergeValues(OutOps, 2, dl); +} + +//===----------------------------------------------------------------------===// +// Vector related lowering. +// + +/// BuildSplatI - Build a canonical splati of Val with an element size of +/// SplatSize. Cast the result to VT. +static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, + SelectionDAG &DAG, SDLoc dl) { + assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); + + static const EVT VTys[] = { // canonical VT to use for each size. + MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 + }; + + EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; + + // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. + if (Val == -1) + SplatSize = 1; + + EVT CanonicalVT = VTys[SplatSize-1]; + + // Build a canonical splat for this value. + SDValue Elt = DAG.getConstant(Val, MVT::i32); + SmallVector<SDValue, 8> Ops; + Ops.assign(CanonicalVT.getVectorNumElements(), Elt); + SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, + &Ops[0], Ops.size()); + return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); +} + +/// BuildIntrinsicOp - Return a unary operator intrinsic node with the +/// specified intrinsic ID. +static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, + SelectionDAG &DAG, SDLoc dl, + EVT DestVT = MVT::Other) { + if (DestVT == MVT::Other) DestVT = Op.getValueType(); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, + DAG.getConstant(IID, MVT::i32), Op); +} + +/// BuildIntrinsicOp - Return a binary operator intrinsic node with the +/// specified intrinsic ID. +static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, + SelectionDAG &DAG, SDLoc dl, + EVT DestVT = MVT::Other) { + if (DestVT == MVT::Other) DestVT = LHS.getValueType(); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, + DAG.getConstant(IID, MVT::i32), LHS, RHS); +} + +/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the +/// specified intrinsic ID. +static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, + SDValue Op2, SelectionDAG &DAG, + SDLoc dl, EVT DestVT = MVT::Other) { + if (DestVT == MVT::Other) DestVT = Op0.getValueType(); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, + DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); +} + + +/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified +/// amount. The result has the specified value type. +static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, + EVT VT, SelectionDAG &DAG, SDLoc dl) { + // Force LHS/RHS to be the right type. + LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); + RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); + + int Ops[16]; + for (unsigned i = 0; i != 16; ++i) + Ops[i] = i + Amt; + SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); + return DAG.getNode(ISD::BITCAST, dl, VT, T); +} + +// If this is a case we can't handle, return null and let the default +// expansion code take care of it. If we CAN select this case, and if it +// selects to a single instruction, return Op. Otherwise, if we can codegen +// this case more efficiently than a constant pool load, lower it to the +// sequence of ops that should be used. +SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); + assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); + + // Check if this is a splat of a constant value. + APInt APSplatBits, APSplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, + HasAnyUndefs, 0, true) || SplatBitSize > 32) + return SDValue(); + + unsigned SplatBits = APSplatBits.getZExtValue(); + unsigned SplatUndef = APSplatUndef.getZExtValue(); + unsigned SplatSize = SplatBitSize / 8; + + // First, handle single instruction cases. + + // All zeros? + if (SplatBits == 0) { + // Canonicalize all zero vectors to be v4i32. + if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { + SDValue Z = DAG.getConstant(0, MVT::i32); + Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); + Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); + } + return Op; + } + + // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. + int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> + (32-SplatBitSize)); + if (SextVal >= -16 && SextVal <= 15) + return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); + + + // Two instruction sequences. + + // If this value is in the range [-32,30] and is even, use: + // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) + // If this value is in the range [17,31] and is odd, use: + // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) + // If this value is in the range [-31,-17] and is odd, use: + // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) + // Note the last two are three-instruction sequences. + if (SextVal >= -32 && SextVal <= 31) { + // To avoid having these optimizations undone by constant folding, + // we convert to a pseudo that will be expanded later into one of + // the above forms. + SDValue Elt = DAG.getConstant(SextVal, MVT::i32); + EVT VT = Op.getValueType(); + int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4); + SDValue EltSize = DAG.getConstant(Size, MVT::i32); + return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); + } + + // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is + // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important + // for fneg/fabs. + if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { + // Make -1 and vspltisw -1: + SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); + + // Make the VSLW intrinsic, computing 0x8000_0000. + SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, + OnesV, DAG, dl); + + // xor by OnesV to invert it. + Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); + } + + // Check to see if this is a wide variety of vsplti*, binop self cases. + static const signed char SplatCsts[] = { + -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, + -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 + }; + + for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { + // Indirect through the SplatCsts array so that we favor 'vsplti -1' for + // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' + int i = SplatCsts[idx]; + + // Figure out what shift amount will be used by altivec if shifted by i in + // this splat size. + unsigned TypeShiftAmt = i & (SplatBitSize-1); + + // vsplti + shl self. + if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { + SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); + static const unsigned IIDs[] = { // Intrinsic to use for each size. + Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, + Intrinsic::ppc_altivec_vslw + }; + Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); + } + + // vsplti + srl self. + if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { + SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); + static const unsigned IIDs[] = { // Intrinsic to use for each size. + Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, + Intrinsic::ppc_altivec_vsrw + }; + Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); + } + + // vsplti + sra self. + if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { + SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); + static const unsigned IIDs[] = { // Intrinsic to use for each size. + Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, + Intrinsic::ppc_altivec_vsraw + }; + Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); + } + + // vsplti + rol self. + if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | + ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { + SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); + static const unsigned IIDs[] = { // Intrinsic to use for each size. + Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, + Intrinsic::ppc_altivec_vrlw + }; + Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); + } + + // t = vsplti c, result = vsldoi t, t, 1 + if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { + SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); + return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); + } + // t = vsplti c, result = vsldoi t, t, 2 + if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { + SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); + return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); + } + // t = vsplti c, result = vsldoi t, t, 3 + if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { + SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); + return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); + } + } + + return SDValue(); +} + +/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit +/// the specified operations to build the shuffle. +static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, + SDValue RHS, SelectionDAG &DAG, + SDLoc dl) { + unsigned OpNum = (PFEntry >> 26) & 0x0F; + unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); + unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); + + enum { + OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> + OP_VMRGHW, + OP_VMRGLW, + OP_VSPLTISW0, + OP_VSPLTISW1, + OP_VSPLTISW2, + OP_VSPLTISW3, + OP_VSLDOI4, + OP_VSLDOI8, + OP_VSLDOI12 + }; + + if (OpNum == OP_COPY) { + if (LHSID == (1*9+2)*9+3) return LHS; + assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); + return RHS; + } + + SDValue OpLHS, OpRHS; + OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); + OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); + + int ShufIdxs[16]; + switch (OpNum) { + default: llvm_unreachable("Unknown i32 permute!"); + case OP_VMRGHW: + ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; + ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; + ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; + ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; + break; + case OP_VMRGLW: + ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; + ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; + ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; + ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; + break; + case OP_VSPLTISW0: + for (unsigned i = 0; i != 16; ++i) + ShufIdxs[i] = (i&3)+0; + break; + case OP_VSPLTISW1: + for (unsigned i = 0; i != 16; ++i) + ShufIdxs[i] = (i&3)+4; + break; + case OP_VSPLTISW2: + for (unsigned i = 0; i != 16; ++i) + ShufIdxs[i] = (i&3)+8; + break; + case OP_VSPLTISW3: + for (unsigned i = 0; i != 16; ++i) + ShufIdxs[i] = (i&3)+12; + break; + case OP_VSLDOI4: + return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); + case OP_VSLDOI8: + return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); + case OP_VSLDOI12: + return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); + } + EVT VT = OpLHS.getValueType(); + OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); + OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); + SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); + return DAG.getNode(ISD::BITCAST, dl, VT, T); +} + +/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this +/// is a shuffle we can handle in a single instruction, return it. Otherwise, +/// return the code it can be lowered into. Worst case, it can always be +/// lowered into a vperm. +SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + EVT VT = Op.getValueType(); + + // Cases that are handled by instructions that take permute immediates + // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be + // selected by the instruction selector. + if (V2.getOpcode() == ISD::UNDEF) { + if (PPC::isSplatShuffleMask(SVOp, 1) || + PPC::isSplatShuffleMask(SVOp, 2) || + PPC::isSplatShuffleMask(SVOp, 4) || + PPC::isVPKUWUMShuffleMask(SVOp, true) || + PPC::isVPKUHUMShuffleMask(SVOp, true) || + PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || + PPC::isVMRGLShuffleMask(SVOp, 1, true) || + PPC::isVMRGLShuffleMask(SVOp, 2, true) || + PPC::isVMRGLShuffleMask(SVOp, 4, true) || + PPC::isVMRGHShuffleMask(SVOp, 1, true) || + PPC::isVMRGHShuffleMask(SVOp, 2, true) || + PPC::isVMRGHShuffleMask(SVOp, 4, true)) { + return Op; + } + } + + // Altivec has a variety of "shuffle immediates" that take two vector inputs + // and produce a fixed permutation. If any of these match, do not lower to + // VPERM. + if (PPC::isVPKUWUMShuffleMask(SVOp, false) || + PPC::isVPKUHUMShuffleMask(SVOp, false) || + PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || + PPC::isVMRGLShuffleMask(SVOp, 1, false) || + PPC::isVMRGLShuffleMask(SVOp, 2, false) || + PPC::isVMRGLShuffleMask(SVOp, 4, false) || + PPC::isVMRGHShuffleMask(SVOp, 1, false) || + PPC::isVMRGHShuffleMask(SVOp, 2, false) || + PPC::isVMRGHShuffleMask(SVOp, 4, false)) + return Op; + + // Check to see if this is a shuffle of 4-byte values. If so, we can use our + // perfect shuffle table to emit an optimal matching sequence. + ArrayRef<int> PermMask = SVOp->getMask(); + + unsigned PFIndexes[4]; + bool isFourElementShuffle = true; + for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number + unsigned EltNo = 8; // Start out undef. + for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. + if (PermMask[i*4+j] < 0) + continue; // Undef, ignore it. + + unsigned ByteSource = PermMask[i*4+j]; + if ((ByteSource & 3) != j) { + isFourElementShuffle = false; + break; + } + + if (EltNo == 8) { + EltNo = ByteSource/4; + } else if (EltNo != ByteSource/4) { + isFourElementShuffle = false; + break; + } + } + PFIndexes[i] = EltNo; + } + + // If this shuffle can be expressed as a shuffle of 4-byte elements, use the + // perfect shuffle vector to determine if it is cost effective to do this as + // discrete instructions, or whether we should use a vperm. + if (isFourElementShuffle) { + // Compute the index in the perfect shuffle table. + unsigned PFTableIndex = + PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; + + unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; + unsigned Cost = (PFEntry >> 30); + + // Determining when to avoid vperm is tricky. Many things affect the cost + // of vperm, particularly how many times the perm mask needs to be computed. + // For example, if the perm mask can be hoisted out of a loop or is already + // used (perhaps because there are multiple permutes with the same shuffle + // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of + // the loop requires an extra register. + // + // As a compromise, we only emit discrete instructions if the shuffle can be + // generated in 3 or fewer operations. When we have loop information + // available, if this block is within a loop, we should avoid using vperm + // for 3-operation perms and use a constant pool load instead. + if (Cost < 3) + return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); + } + + // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant + // vector that will get spilled to the constant pool. + if (V2.getOpcode() == ISD::UNDEF) V2 = V1; + + // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except + // that it is in input element units, not in bytes. Convert now. + EVT EltVT = V1.getValueType().getVectorElementType(); + unsigned BytesPerElement = EltVT.getSizeInBits()/8; + + SmallVector<SDValue, 16> ResultMask; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { + unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; + + for (unsigned j = 0; j != BytesPerElement; ++j) + ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, + MVT::i32)); + } + + SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, + &ResultMask[0], ResultMask.size()); + return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); +} + +/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an +/// altivec comparison. If it is, return true and fill in Opc/isDot with +/// information about the intrinsic. +static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, + bool &isDot) { + unsigned IntrinsicID = + cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); + CompareOpc = -1; + isDot = false; + switch (IntrinsicID) { + default: return false; + // Comparison predicates. + case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; + case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; + + // Normal Comparisons. + case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; + case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; + } + return true; +} + +/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom +/// lower, do it, otherwise return null. +SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + // If this is a lowered altivec predicate compare, CompareOpc is set to the + // opcode number of the comparison. + SDLoc dl(Op); + int CompareOpc; + bool isDot; + if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) + return SDValue(); // Don't custom lower most intrinsics. + + // If this is a non-dot comparison, make the VCMP node and we are done. + if (!isDot) { + SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), + Op.getOperand(1), Op.getOperand(2), + DAG.getConstant(CompareOpc, MVT::i32)); + return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); + } + + // Create the PPCISD altivec 'dot' comparison node. + SDValue Ops[] = { + Op.getOperand(2), // LHS + Op.getOperand(3), // RHS + DAG.getConstant(CompareOpc, MVT::i32) + }; + EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; + SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); + + // Now that we have the comparison, emit a copy from the CR to a GPR. + // This is flagged to the above dot comparison. + SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, + DAG.getRegister(PPC::CR6, MVT::i32), + CompNode.getValue(1)); + + // Unpack the result based on how the target uses it. + unsigned BitNo; // Bit # of CR6. + bool InvertBit; // Invert result? + switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { + default: // Can't happen, don't crash on invalid number though. + case 0: // Return the value of the EQ bit of CR6. + BitNo = 0; InvertBit = false; + break; + case 1: // Return the inverted value of the EQ bit of CR6. + BitNo = 0; InvertBit = true; + break; + case 2: // Return the value of the LT bit of CR6. + BitNo = 2; InvertBit = false; + break; + case 3: // Return the inverted value of the LT bit of CR6. + BitNo = 2; InvertBit = true; + break; + } + + // Shift the bit into the low position. + Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, + DAG.getConstant(8-(3-BitNo), MVT::i32)); + // Isolate the bit. + Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, + DAG.getConstant(1, MVT::i32)); + + // If we are supposed to, toggle the bit. + if (InvertBit) + Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, + DAG.getConstant(1, MVT::i32)); + return Flags; +} + +SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + // Create a stack slot that is 16-byte aligned. + MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); + int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); + EVT PtrVT = getPointerTy(); + SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); + + // Store the input value into Value#0 of the stack slot. + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, + Op.getOperand(0), FIdx, MachinePointerInfo(), + false, false, 0); + // Load it out. + return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), + false, false, false, 0); +} + +SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + if (Op.getValueType() == MVT::v4i32) { + SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); + + SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); + SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. + + SDValue RHSSwap = // = vrlw RHS, 16 + BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); + + // Shrinkify inputs to v8i16. + LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); + RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); + RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); + + // Low parts multiplied together, generating 32-bit results (we ignore the + // top parts). + SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, + LHS, RHS, DAG, dl, MVT::v4i32); + + SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, + LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); + // Shift the high parts up 16 bits. + HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, + Neg16, DAG, dl); + return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); + } else if (Op.getValueType() == MVT::v8i16) { + SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); + + SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); + + return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, + LHS, RHS, Zero, DAG, dl); + } else if (Op.getValueType() == MVT::v16i8) { + SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); + + // Multiply the even 8-bit parts, producing 16-bit sums. + SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, + LHS, RHS, DAG, dl, MVT::v8i16); + EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); + + // Multiply the odd 8-bit parts, producing 16-bit sums. + SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, + LHS, RHS, DAG, dl, MVT::v8i16); + OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); + + // Merge the results together. + int Ops[16]; + for (unsigned i = 0; i != 8; ++i) { + Ops[i*2 ] = 2*i+1; + Ops[i*2+1] = 2*i+1+16; + } + return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); + } else { + llvm_unreachable("Unknown mul to lower!"); + } +} + +/// LowerOperation - Provide custom lowering hooks for some operations. +/// +SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Wasn't expecting to be able to lower this!"); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); + case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); + case ISD::VASTART: + return LowerVASTART(Op, DAG, PPCSubTarget); + + case ISD::VAARG: + return LowerVAARG(Op, DAG, PPCSubTarget); + + case ISD::VACOPY: + return LowerVACOPY(Op, DAG, PPCSubTarget); + + case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); + case ISD::DYNAMIC_STACKALLOC: + return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); + + case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); + case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); + + case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); + case ISD::FP_TO_UINT: + case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, + SDLoc(Op)); + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); + case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); + + // Lower 64-bit shifts. + case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); + case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); + case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); + + // Vector-related lowering. + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); + case ISD::MUL: return LowerMUL(Op, DAG); + + // For counter-based loop handling. + case ISD::INTRINSIC_W_CHAIN: return SDValue(); + + // Frame & Return address. + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + } +} + +void PPCTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG) const { + const TargetMachine &TM = getTargetMachine(); + SDLoc dl(N); + switch (N->getOpcode()) { + default: + llvm_unreachable("Do not know how to custom type legalize this operation!"); + case ISD::INTRINSIC_W_CHAIN: { + if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != + Intrinsic::ppc_is_decremented_ctr_nonzero) + break; + + assert(N->getValueType(0) == MVT::i1 && + "Unexpected result type for CTR decrement intrinsic"); + EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0)); + SDVTList VTs = DAG.getVTList(SVT, MVT::Other); + SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), + N->getOperand(1)); + + Results.push_back(NewInt); + Results.push_back(NewInt.getValue(1)); + break; + } + case ISD::VAARG: { + if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() + || TM.getSubtarget<PPCSubtarget>().isPPC64()) + return; + + EVT VT = N->getValueType(0); + + if (VT == MVT::i64) { + SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); + + Results.push_back(NewNode); + Results.push_back(NewNode.getValue(1)); + } + return; + } + case ISD::FP_ROUND_INREG: { + assert(N->getValueType(0) == MVT::ppcf128); + assert(N->getOperand(0).getValueType() == MVT::ppcf128); + SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + MVT::f64, N->getOperand(0), + DAG.getIntPtrConstant(0)); + SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + MVT::f64, N->getOperand(0), + DAG.getIntPtrConstant(1)); + + // Add the two halves of the long double in round-to-zero mode. + SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); + + // We know the low half is about to be thrown away, so just use something + // convenient. + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, + FPreg, FPreg)); + return; + } + case ISD::FP_TO_SINT: + // LowerFP_TO_INT() can only handle f32 and f64. + if (N->getOperand(0).getValueType() == MVT::ppcf128) + return; + Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); + return; + } +} + + +//===----------------------------------------------------------------------===// +// Other Lowering Code +//===----------------------------------------------------------------------===// + +MachineBasicBlock * +PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, + bool is64bit, unsigned BinOpcode) const { + // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction *F = BB->getParent(); + MachineFunction::iterator It = BB; + ++It; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptrA = MI->getOperand(1).getReg(); + unsigned ptrB = MI->getOperand(2).getReg(); + unsigned incr = MI->getOperand(3).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, loopMBB); + F->insert(It, exitMBB); + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + MachineRegisterInfo &RegInfo = F->getRegInfo(); + unsigned TmpReg = (!BinOpcode) ? incr : + RegInfo.createVirtualRegister( + is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : + (const TargetRegisterClass *) &PPC::GPRCRegClass); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + + // loopMBB: + // l[wd]arx dest, ptr + // add r0, dest, incr + // st[wd]cx. r0, ptr + // bne- loopMBB + // fallthrough --> exitMBB + BB = loopMBB; + BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) + .addReg(ptrA).addReg(ptrB); + if (BinOpcode) + BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); + BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) + .addReg(TmpReg).addReg(ptrA).addReg(ptrB); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); + BB->addSuccessor(loopMBB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + return BB; +} + +MachineBasicBlock * +PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, + MachineBasicBlock *BB, + bool is8bit, // operation + unsigned BinOpcode) const { + // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + // In 64 bit mode we have to use 64 bits for addresses, even though the + // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address + // registers without caring whether they're 32 or 64, but here we're + // doing actual arithmetic on the addresses. + bool is64bit = PPCSubTarget.isPPC64(); + unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; + + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction *F = BB->getParent(); + MachineFunction::iterator It = BB; + ++It; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptrA = MI->getOperand(1).getReg(); + unsigned ptrB = MI->getOperand(2).getReg(); + unsigned incr = MI->getOperand(3).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, loopMBB); + F->insert(It, exitMBB); + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + MachineRegisterInfo &RegInfo = F->getRegInfo(); + const TargetRegisterClass *RC = + is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : + (const TargetRegisterClass *) &PPC::GPRCRegClass; + unsigned PtrReg = RegInfo.createVirtualRegister(RC); + unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); + unsigned ShiftReg = RegInfo.createVirtualRegister(RC); + unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); + unsigned MaskReg = RegInfo.createVirtualRegister(RC); + unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); + unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); + unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); + unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); + unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); + unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); + unsigned Ptr1Reg; + unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + + // The 4-byte load must be aligned, while a char or short may be + // anywhere in the word. Hence all this nasty bookkeeping code. + // add ptr1, ptrA, ptrB [copy if ptrA==0] + // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] + // xori shift, shift1, 24 [16] + // rlwinm ptr, ptr1, 0, 0, 29 + // slw incr2, incr, shift + // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] + // slw mask, mask2, shift + // loopMBB: + // lwarx tmpDest, ptr + // add tmp, tmpDest, incr2 + // andc tmp2, tmpDest, mask + // and tmp3, tmp, mask + // or tmp4, tmp3, tmp2 + // stwcx. tmp4, ptr + // bne- loopMBB + // fallthrough --> exitMBB + // srw dest, tmpDest, shift + if (ptrA != ZeroReg) { + Ptr1Reg = RegInfo.createVirtualRegister(RC); + BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) + .addReg(ptrA).addReg(ptrB); + } else { + Ptr1Reg = ptrB; + } + BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) + .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); + BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) + .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); + if (is64bit) + BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) + .addReg(Ptr1Reg).addImm(0).addImm(61); + else + BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) + .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); + BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) + .addReg(incr).addReg(ShiftReg); + if (is8bit) + BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); + else { + BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); + BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); + } + BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) + .addReg(Mask2Reg).addReg(ShiftReg); + + BB = loopMBB; + BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) + .addReg(ZeroReg).addReg(PtrReg); + if (BinOpcode) + BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) + .addReg(Incr2Reg).addReg(TmpDestReg); + BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) + .addReg(TmpDestReg).addReg(MaskReg); + BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) + .addReg(TmpReg).addReg(MaskReg); + BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) + .addReg(Tmp3Reg).addReg(Tmp2Reg); + BuildMI(BB, dl, TII->get(PPC::STWCX)) + .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); + BB->addSuccessor(loopMBB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) + .addReg(ShiftReg); + return BB; +} + +llvm::MachineBasicBlock* +PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + MachineFunction *MF = MBB->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator I = MBB; + ++I; + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + unsigned DstReg = MI->getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(DstReg); + assert(RC->hasType(MVT::i32) && "Invalid destination!"); + unsigned mainDstReg = MRI.createVirtualRegister(RC); + unsigned restoreDstReg = MRI.createVirtualRegister(RC); + + MVT PVT = getPointerTy(); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + // For v = setjmp(buf), we generate + // + // thisMBB: + // SjLjSetup mainMBB + // bl mainMBB + // v_restore = 1 + // b sinkMBB + // + // mainMBB: + // buf[LabelOffset] = LR + // v_main = 0 + // + // sinkMBB: + // v = phi(main, restore) + // + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(I, mainMBB); + MF->insert(I, sinkMBB); + + MachineInstrBuilder MIB; + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // Note that the structure of the jmp_buf used here is not compatible + // with that used by libc, and is not designed to be. Specifically, it + // stores only those 'reserved' registers that LLVM does not otherwise + // understand how to spill. Also, by convention, by the time this + // intrinsic is called, Clang has already stored the frame address in the + // first slot of the buffer and stack address in the third. Following the + // X86 target code, we'll store the jump address in the second slot. We also + // need to save the TOC pointer (R2) to handle jumps between shared + // libraries, and that will be stored in the fourth slot. The thread + // identifier (R13) is not affected. + + // thisMBB: + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + const int64_t TOCOffset = 3 * PVT.getStoreSize(); + const int64_t BPOffset = 4 * PVT.getStoreSize(); + + // Prepare IP either in reg. + const TargetRegisterClass *PtrRC = getRegClassFor(PVT); + unsigned LabelReg = MRI.createVirtualRegister(PtrRC); + unsigned BufReg = MI->getOperand(1).getReg(); + + if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) { + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) + .addReg(PPC::X2) + .addImm(TOCOffset) + .addReg(BufReg); + MIB.setMemRefs(MMOBegin, MMOEnd); + } + + // Naked functions never have a base pointer, and so we use r1. For all + // other functions, this decision must be delayed until during PEI. + unsigned BaseReg; + if (MF->getFunction()->getAttributes().hasAttribute( + AttributeSet::FunctionIndex, Attribute::Naked)) + BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1; + else + BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP; + + MIB = BuildMI(*thisMBB, MI, DL, + TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW)) + .addReg(BaseReg) + .addImm(BPOffset) + .addReg(BufReg); + MIB.setMemRefs(MMOBegin, MMOEnd); + + // Setup + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); + const PPCRegisterInfo *TRI = + static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo()); + MIB.addRegMask(TRI->getNoPreservedMask()); + + BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); + + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) + .addMBB(mainMBB); + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); + + thisMBB->addSuccessor(mainMBB, /* weight */ 0); + thisMBB->addSuccessor(sinkMBB, /* weight */ 1); + + // mainMBB: + // mainDstReg = 0 + MIB = BuildMI(mainMBB, DL, + TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); + + // Store IP + if (PPCSubTarget.isPPC64()) { + MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) + .addReg(LabelReg) + .addImm(LabelOffset) + .addReg(BufReg); + } else { + MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) + .addReg(LabelReg) + .addImm(LabelOffset) + .addReg(BufReg); + } + + MIB.setMemRefs(MMOBegin, MMOEnd); + + BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); + mainMBB->addSuccessor(sinkMBB); + + // sinkMBB: + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(PPC::PHI), DstReg) + .addReg(mainDstReg).addMBB(mainMBB) + .addReg(restoreDstReg).addMBB(thisMBB); + + MI->eraseFromParent(); + return sinkMBB; +} + +MachineBasicBlock * +PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + MachineFunction *MF = MBB->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + MVT PVT = getPointerTy(); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + + const TargetRegisterClass *RC = + (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; + unsigned Tmp = MRI.createVirtualRegister(RC); + // Since FP is only updated here but NOT referenced, it's treated as GPR. + unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; + unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; + unsigned BP = (PVT == MVT::i64) ? PPC::X30 : PPC::R30; + + MachineInstrBuilder MIB; + + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + const int64_t SPOffset = 2 * PVT.getStoreSize(); + const int64_t TOCOffset = 3 * PVT.getStoreSize(); + const int64_t BPOffset = 4 * PVT.getStoreSize(); + + unsigned BufReg = MI->getOperand(0).getReg(); + + // Reload FP (the jumped-to function may not have had a + // frame pointer, and if so, then its r31 will be restored + // as necessary). + if (PVT == MVT::i64) { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) + .addImm(0) + .addReg(BufReg); + } else { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) + .addImm(0) + .addReg(BufReg); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + + // Reload IP + if (PVT == MVT::i64) { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) + .addImm(LabelOffset) + .addReg(BufReg); + } else { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) + .addImm(LabelOffset) + .addReg(BufReg); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + + // Reload SP + if (PVT == MVT::i64) { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) + .addImm(SPOffset) + .addReg(BufReg); + } else { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) + .addImm(SPOffset) + .addReg(BufReg); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + + // Reload BP + if (PVT == MVT::i64) { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) + .addImm(BPOffset) + .addReg(BufReg); + } else { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) + .addImm(BPOffset) + .addReg(BufReg); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + + // Reload TOC + if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) { + MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) + .addImm(TOCOffset) + .addReg(BufReg); + + MIB.setMemRefs(MMOBegin, MMOEnd); + } + + // Jump + BuildMI(*MBB, MI, DL, + TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); + BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); + + MI->eraseFromParent(); + return MBB; +} + +MachineBasicBlock * +PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || + MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { + return emitEHSjLjSetJmp(MI, BB); + } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || + MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { + return emitEHSjLjLongJmp(MI, BB); + } + + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + // To "insert" these instructions we actually have to insert their + // control-flow patterns. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; + + MachineFunction *F = BB->getParent(); + + if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || + MI->getOpcode() == PPC::SELECT_CC_I8)) { + SmallVector<MachineOperand, 2> Cond; + Cond.push_back(MI->getOperand(4)); + Cond.push_back(MI->getOperand(1)); + + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), + Cond, MI->getOperand(2).getReg(), + MI->getOperand(3).getReg()); + } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || + MI->getOpcode() == PPC::SELECT_CC_I8 || + MI->getOpcode() == PPC::SELECT_CC_F4 || + MI->getOpcode() == PPC::SELECT_CC_F8 || + MI->getOpcode() == PPC::SELECT_CC_VRRC) { + + + // The incoming instruction knows the destination vreg to set, the + // condition code register to branch on, the true/false values to + // select between, and a branch opcode to use. + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + unsigned SelectPred = MI->getOperand(4).getImm(); + DebugLoc dl = MI->getDebugLoc(); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Next, add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BB = sinkMBB; + BuildMI(*BB, BB->begin(), dl, + TII->get(PPC::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) + .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); + } + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); + + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::AND); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); + + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::OR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); + + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); + + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); + + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) + BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); + else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) + BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); + + else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) + BB = EmitPartwordAtomicBinary(MI, BB, true, 0); + else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) + BB = EmitPartwordAtomicBinary(MI, BB, false, 0); + else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) + BB = EmitAtomicBinary(MI, BB, false, 0); + else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) + BB = EmitAtomicBinary(MI, BB, true, 0); + + else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || + MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { + bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptrA = MI->getOperand(1).getReg(); + unsigned ptrB = MI->getOperand(2).getReg(); + unsigned oldval = MI->getOperand(3).getReg(); + unsigned newval = MI->getOperand(4).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, loop1MBB); + F->insert(It, loop2MBB); + F->insert(It, midMBB); + F->insert(It, exitMBB); + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loop1MBB); + + // loop1MBB: + // l[wd]arx dest, ptr + // cmp[wd] dest, oldval + // bne- midMBB + // loop2MBB: + // st[wd]cx. newval, ptr + // bne- loopMBB + // b exitBB + // midMBB: + // st[wd]cx. dest, ptr + // exitBB: + BB = loop1MBB; + BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) + .addReg(ptrA).addReg(ptrB); + BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) + .addReg(oldval).addReg(dest); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); + BB->addSuccessor(loop2MBB); + BB->addSuccessor(midMBB); + + BB = loop2MBB; + BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) + .addReg(newval).addReg(ptrA).addReg(ptrB); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); + BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); + BB->addSuccessor(loop1MBB); + BB->addSuccessor(exitMBB); + + BB = midMBB; + BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) + .addReg(dest).addReg(ptrA).addReg(ptrB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || + MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { + // We must use 64-bit registers for addresses when targeting 64-bit, + // since we're actually doing arithmetic on them. Other registers + // can be 32-bit. + bool is64bit = PPCSubTarget.isPPC64(); + bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptrA = MI->getOperand(1).getReg(); + unsigned ptrB = MI->getOperand(2).getReg(); + unsigned oldval = MI->getOperand(3).getReg(); + unsigned newval = MI->getOperand(4).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, loop1MBB); + F->insert(It, loop2MBB); + F->insert(It, midMBB); + F->insert(It, exitMBB); + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + MachineRegisterInfo &RegInfo = F->getRegInfo(); + const TargetRegisterClass *RC = + is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : + (const TargetRegisterClass *) &PPC::GPRCRegClass; + unsigned PtrReg = RegInfo.createVirtualRegister(RC); + unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); + unsigned ShiftReg = RegInfo.createVirtualRegister(RC); + unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); + unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); + unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); + unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); + unsigned MaskReg = RegInfo.createVirtualRegister(RC); + unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); + unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); + unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); + unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); + unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); + unsigned Ptr1Reg; + unsigned TmpReg = RegInfo.createVirtualRegister(RC); + unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loop1MBB); + + // The 4-byte load must be aligned, while a char or short may be + // anywhere in the word. Hence all this nasty bookkeeping code. + // add ptr1, ptrA, ptrB [copy if ptrA==0] + // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] + // xori shift, shift1, 24 [16] + // rlwinm ptr, ptr1, 0, 0, 29 + // slw newval2, newval, shift + // slw oldval2, oldval,shift + // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] + // slw mask, mask2, shift + // and newval3, newval2, mask + // and oldval3, oldval2, mask + // loop1MBB: + // lwarx tmpDest, ptr + // and tmp, tmpDest, mask + // cmpw tmp, oldval3 + // bne- midMBB + // loop2MBB: + // andc tmp2, tmpDest, mask + // or tmp4, tmp2, newval3 + // stwcx. tmp4, ptr + // bne- loop1MBB + // b exitBB + // midMBB: + // stwcx. tmpDest, ptr + // exitBB: + // srw dest, tmpDest, shift + if (ptrA != ZeroReg) { + Ptr1Reg = RegInfo.createVirtualRegister(RC); + BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) + .addReg(ptrA).addReg(ptrB); + } else { + Ptr1Reg = ptrB; + } + BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) + .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); + BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) + .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); + if (is64bit) + BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) + .addReg(Ptr1Reg).addImm(0).addImm(61); + else + BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) + .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); + BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) + .addReg(newval).addReg(ShiftReg); + BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) + .addReg(oldval).addReg(ShiftReg); + if (is8bit) + BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); + else { + BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); + BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) + .addReg(Mask3Reg).addImm(65535); + } + BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) + .addReg(Mask2Reg).addReg(ShiftReg); + BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) + .addReg(NewVal2Reg).addReg(MaskReg); + BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) + .addReg(OldVal2Reg).addReg(MaskReg); + + BB = loop1MBB; + BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) + .addReg(ZeroReg).addReg(PtrReg); + BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) + .addReg(TmpDestReg).addReg(MaskReg); + BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) + .addReg(TmpReg).addReg(OldVal3Reg); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); + BB->addSuccessor(loop2MBB); + BB->addSuccessor(midMBB); + + BB = loop2MBB; + BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) + .addReg(TmpDestReg).addReg(MaskReg); + BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) + .addReg(Tmp2Reg).addReg(NewVal3Reg); + BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) + .addReg(ZeroReg).addReg(PtrReg); + BuildMI(BB, dl, TII->get(PPC::BCC)) + .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); + BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); + BB->addSuccessor(loop1MBB); + BB->addSuccessor(exitMBB); + + BB = midMBB; + BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) + .addReg(ZeroReg).addReg(PtrReg); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) + .addReg(ShiftReg); + } else if (MI->getOpcode() == PPC::FADDrtz) { + // This pseudo performs an FADD with rounding mode temporarily forced + // to round-to-zero. We emit this via custom inserter since the FPSCR + // is not modeled at the SelectionDAG level. + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Src1 = MI->getOperand(1).getReg(); + unsigned Src2 = MI->getOperand(2).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineRegisterInfo &RegInfo = F->getRegInfo(); + unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); + + // Save FPSCR value. + BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); + + // Set rounding mode to round-to-zero. + BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); + BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); + + // Perform addition. + BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); + + // Restore FPSCR value. + BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg); + } else { + llvm_unreachable("Unexpected instr type to insert"); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +//===----------------------------------------------------------------------===// +// Target Optimization Hooks +//===----------------------------------------------------------------------===// + +SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op, + DAGCombinerInfo &DCI) const { + if (DCI.isAfterLegalizeVectorOps()) + return SDValue(); + + EVT VT = Op.getValueType(); + + if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) || + (VT == MVT::f64 && PPCSubTarget.hasFRE()) || + (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) { + + // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) + // For the reciprocal, we need to find the zero of the function: + // F(X) = A X - 1 [which has a zero at X = 1/A] + // => + // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form + // does not require additional intermediate precision] + + // Convergence is quadratic, so we essentially double the number of digits + // correct after every iteration. The minimum architected relative + // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has + // 23 digits and double has 52 digits. + int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3; + if (VT.getScalarType() == MVT::f64) + ++Iterations; + + SelectionDAG &DAG = DCI.DAG; + SDLoc dl(Op); + + SDValue FPOne = + DAG.getConstantFP(1.0, VT.getScalarType()); + if (VT.isVector()) { + assert(VT.getVectorNumElements() == 4 && + "Unknown vector type"); + FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, + FPOne, FPOne, FPOne, FPOne); + } + + SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op); + DCI.AddToWorklist(Est.getNode()); + + // Newton iterations: Est = Est + Est (1 - Arg * Est) + for (int i = 0; i < Iterations; ++i) { + SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est); + DCI.AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst); + DCI.AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); + DCI.AddToWorklist(NewEst.getNode()); + + Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst); + DCI.AddToWorklist(Est.getNode()); + } + + return Est; + } + + return SDValue(); +} + +SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op, + DAGCombinerInfo &DCI) const { + if (DCI.isAfterLegalizeVectorOps()) + return SDValue(); + + EVT VT = Op.getValueType(); + + if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) || + (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE()) || + (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) { + + // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) + // For the reciprocal sqrt, we need to find the zero of the function: + // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] + // => + // X_{i+1} = X_i (1.5 - A X_i^2 / 2) + // As a result, we precompute A/2 prior to the iteration loop. + + // Convergence is quadratic, so we essentially double the number of digits + // correct after every iteration. The minimum architected relative + // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has + // 23 digits and double has 52 digits. + int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3; + if (VT.getScalarType() == MVT::f64) + ++Iterations; + + SelectionDAG &DAG = DCI.DAG; + SDLoc dl(Op); + + SDValue FPThreeHalves = + DAG.getConstantFP(1.5, VT.getScalarType()); + if (VT.isVector()) { + assert(VT.getVectorNumElements() == 4 && + "Unknown vector type"); + FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, + FPThreeHalves, FPThreeHalves, + FPThreeHalves, FPThreeHalves); + } + + SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op); + DCI.AddToWorklist(Est.getNode()); + + // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that + // this entire sequence requires only one FP constant. + SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op); + DCI.AddToWorklist(HalfArg.getNode()); + + HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op); + DCI.AddToWorklist(HalfArg.getNode()); + + // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) + for (int i = 0; i < Iterations; ++i) { + SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est); + DCI.AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst); + DCI.AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst); + DCI.AddToWorklist(NewEst.getNode()); + + Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst); + DCI.AddToWorklist(Est.getNode()); + } + + return Est; + } + + return SDValue(); +} + +// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does +// not enforce equality of the chain operands. +static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base, + unsigned Bytes, int Dist, + SelectionDAG &DAG) { + EVT VT = LS->getMemoryVT(); + if (VT.getSizeInBits() / 8 != Bytes) + return false; + + SDValue Loc = LS->getBasePtr(); + SDValue BaseLoc = Base->getBasePtr(); + if (Loc.getOpcode() == ISD::FrameIndex) { + if (BaseLoc.getOpcode() != ISD::FrameIndex) + return false; + const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); + int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); + int FS = MFI->getObjectSize(FI); + int BFS = MFI->getObjectSize(BFI); + if (FS != BFS || FS != (int)Bytes) return false; + return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); + } + + // Handle X+C + if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && + cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) + return true; + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + const GlobalValue *GV1 = NULL; + const GlobalValue *GV2 = NULL; + int64_t Offset1 = 0; + int64_t Offset2 = 0; + bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); + bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); + if (isGA1 && isGA2 && GV1 == GV2) + return Offset1 == (Offset2 + Dist*Bytes); + return false; +} + +// Return true is there is a nearyby consecutive load to the one provided +// (regardless of alignment). We search up and down the chain, looking though +// token factors and other loads (but nothing else). As a result, a true +// results indicates that it is safe to create a new consecutive load adjacent +// to the load provided. +static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { + SDValue Chain = LD->getChain(); + EVT VT = LD->getMemoryVT(); + + SmallSet<SDNode *, 16> LoadRoots; + SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); + SmallSet<SDNode *, 16> Visited; + + // First, search up the chain, branching to follow all token-factor operands. + // If we find a consecutive load, then we're done, otherwise, record all + // nodes just above the top-level loads and token factors. + while (!Queue.empty()) { + SDNode *ChainNext = Queue.pop_back_val(); + if (!Visited.insert(ChainNext)) + continue; + + if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) { + if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) + return true; + + if (!Visited.count(ChainLD->getChain().getNode())) + Queue.push_back(ChainLD->getChain().getNode()); + } else if (ChainNext->getOpcode() == ISD::TokenFactor) { + for (SDNode::op_iterator O = ChainNext->op_begin(), + OE = ChainNext->op_end(); O != OE; ++O) + if (!Visited.count(O->getNode())) + Queue.push_back(O->getNode()); + } else + LoadRoots.insert(ChainNext); + } + + // Second, search down the chain, starting from the top-level nodes recorded + // in the first phase. These top-level nodes are the nodes just above all + // loads and token factors. Starting with their uses, recursively look though + // all loads (just the chain uses) and token factors to find a consecutive + // load. + Visited.clear(); + Queue.clear(); + + for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), + IE = LoadRoots.end(); I != IE; ++I) { + Queue.push_back(*I); + + while (!Queue.empty()) { + SDNode *LoadRoot = Queue.pop_back_val(); + if (!Visited.insert(LoadRoot)) + continue; + + if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot)) + if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) + return true; + + for (SDNode::use_iterator UI = LoadRoot->use_begin(), + UE = LoadRoot->use_end(); UI != UE; ++UI) + if (((isa<LoadSDNode>(*UI) && + cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) || + UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) + Queue.push_back(*UI); + } + } + + return false; +} + +SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + const TargetMachine &TM = getTargetMachine(); + SelectionDAG &DAG = DCI.DAG; + SDLoc dl(N); + switch (N->getOpcode()) { + default: break; + case PPCISD::SHL: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { + if (C->isNullValue()) // 0 << V -> 0. + return N->getOperand(0); + } + break; + case PPCISD::SRL: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { + if (C->isNullValue()) // 0 >>u V -> 0. + return N->getOperand(0); + } + break; + case PPCISD::SRA: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { + if (C->isNullValue() || // 0 >>s V -> 0. + C->isAllOnesValue()) // -1 >>s V -> -1. + return N->getOperand(0); + } + break; + case ISD::FDIV: { + assert(TM.Options.UnsafeFPMath && + "Reciprocal estimates require UnsafeFPMath"); + + if (N->getOperand(1).getOpcode() == ISD::FSQRT) { + SDValue RV = + DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI); + if (RV.getNode() != 0) { + DCI.AddToWorklist(RV.getNode()); + return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), + N->getOperand(0), RV); + } + } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND && + N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { + SDValue RV = + DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), + DCI); + if (RV.getNode() != 0) { + DCI.AddToWorklist(RV.getNode()); + RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)), + N->getValueType(0), RV); + DCI.AddToWorklist(RV.getNode()); + return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), + N->getOperand(0), RV); + } + } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND && + N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) { + SDValue RV = + DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0), + DCI); + if (RV.getNode() != 0) { + DCI.AddToWorklist(RV.getNode()); + RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)), + N->getValueType(0), RV, + N->getOperand(1).getOperand(1)); + DCI.AddToWorklist(RV.getNode()); + return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), + N->getOperand(0), RV); + } + } + + SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI); + if (RV.getNode() != 0) { + DCI.AddToWorklist(RV.getNode()); + return DAG.getNode(ISD::FMUL, dl, N->getValueType(0), + N->getOperand(0), RV); + } + + } + break; + case ISD::FSQRT: { + assert(TM.Options.UnsafeFPMath && + "Reciprocal estimates require UnsafeFPMath"); + + // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the + // reciprocal sqrt. + SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI); + if (RV.getNode() != 0) { + DCI.AddToWorklist(RV.getNode()); + RV = DAGCombineFastRecip(RV, DCI); + if (RV.getNode() != 0) { + // Unfortunately, RV is now NaN if the input was exactly 0. Select out + // this case and force the answer to 0. + + EVT VT = RV.getValueType(); + + SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType()); + if (VT.isVector()) { + assert(VT.getVectorNumElements() == 4 && "Unknown vector type"); + Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero); + } + + SDValue ZeroCmp = + DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT), + N->getOperand(0), Zero, ISD::SETEQ); + DCI.AddToWorklist(ZeroCmp.getNode()); + DCI.AddToWorklist(RV.getNode()); + + RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT, + ZeroCmp, Zero, RV); + return RV; + } + } + + } + break; + case ISD::SINT_TO_FP: + if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { + if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { + // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. + // We allow the src/dst to be either f32/f64, but the intermediate + // type must be i64. + if (N->getOperand(0).getValueType() == MVT::i64 && + N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { + SDValue Val = N->getOperand(0).getOperand(0); + if (Val.getValueType() == MVT::f32) { + Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); + DCI.AddToWorklist(Val.getNode()); + } + + Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); + DCI.AddToWorklist(Val.getNode()); + Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); + DCI.AddToWorklist(Val.getNode()); + if (N->getValueType(0) == MVT::f32) { + Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, + DAG.getIntPtrConstant(0)); + DCI.AddToWorklist(Val.getNode()); + } + return Val; + } else if (N->getOperand(0).getValueType() == MVT::i32) { + // If the intermediate type is i32, we can avoid the load/store here + // too. + } + } + } + break; + case ISD::STORE: + // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). + if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && + !cast<StoreSDNode>(N)->isTruncatingStore() && + N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && + N->getOperand(1).getValueType() == MVT::i32 && + N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { + SDValue Val = N->getOperand(1).getOperand(0); + if (Val.getValueType() == MVT::f32) { + Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); + DCI.AddToWorklist(Val.getNode()); + } + Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); + DCI.AddToWorklist(Val.getNode()); + + SDValue Ops[] = { + N->getOperand(0), Val, N->getOperand(2), + DAG.getValueType(N->getOperand(1).getValueType()) + }; + + Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, + DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops), + cast<StoreSDNode>(N)->getMemoryVT(), + cast<StoreSDNode>(N)->getMemOperand()); + DCI.AddToWorklist(Val.getNode()); + return Val; + } + + // Turn STORE (BSWAP) -> sthbrx/stwbrx. + if (cast<StoreSDNode>(N)->isUnindexed() && + N->getOperand(1).getOpcode() == ISD::BSWAP && + N->getOperand(1).getNode()->hasOneUse() && + (N->getOperand(1).getValueType() == MVT::i32 || + N->getOperand(1).getValueType() == MVT::i16 || + (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && + TM.getSubtarget<PPCSubtarget>().isPPC64() && + N->getOperand(1).getValueType() == MVT::i64))) { + SDValue BSwapOp = N->getOperand(1).getOperand(0); + // Do an any-extend to 32-bits if this is a half-word input. + if (BSwapOp.getValueType() == MVT::i16) + BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); + + SDValue Ops[] = { + N->getOperand(0), BSwapOp, N->getOperand(2), + DAG.getValueType(N->getOperand(1).getValueType()) + }; + return + DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), + Ops, array_lengthof(Ops), + cast<StoreSDNode>(N)->getMemoryVT(), + cast<StoreSDNode>(N)->getMemOperand()); + } + break; + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(N); + EVT VT = LD->getValueType(0); + Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); + if (ISD::isNON_EXTLoad(N) && VT.isVector() && + TM.getSubtarget<PPCSubtarget>().hasAltivec() && + (VT == MVT::v16i8 || VT == MVT::v8i16 || + VT == MVT::v4i32 || VT == MVT::v4f32) && + LD->getAlignment() < ABIAlignment) { + // This is a type-legal unaligned Altivec load. + SDValue Chain = LD->getChain(); + SDValue Ptr = LD->getBasePtr(); + + // This implements the loading of unaligned vectors as described in + // the venerable Apple Velocity Engine overview. Specifically: + // https://developer.apple.com/hardwaredrivers/ve/alignment.html + // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html + // + // The general idea is to expand a sequence of one or more unaligned + // loads into a alignment-based permutation-control instruction (lvsl), + // a series of regular vector loads (which always truncate their + // input address to an aligned address), and a series of permutations. + // The results of these permutations are the requested loaded values. + // The trick is that the last "extra" load is not taken from the address + // you might suspect (sizeof(vector) bytes after the last requested + // load), but rather sizeof(vector) - 1 bytes after the last + // requested vector. The point of this is to avoid a page fault if the + // base address happend to be aligned. This works because if the base + // address is aligned, then adding less than a full vector length will + // cause the last vector in the sequence to be (re)loaded. Otherwise, + // the next vector will be fetched as you might suspect was necessary. + + // We might be able to reuse the permutation generation from + // a different base address offset from this one by an aligned amount. + // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this + // optimization later. + SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr, + DAG, dl, MVT::v16i8); + + // Refine the alignment of the original load (a "new" load created here + // which was identical to the first except for the alignment would be + // merged with the existing node regardless). + MachineFunction &MF = DAG.getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(LD->getPointerInfo(), + LD->getMemOperand()->getFlags(), + LD->getMemoryVT().getStoreSize(), + ABIAlignment); + LD->refineAlignment(MMO); + SDValue BaseLoad = SDValue(LD, 0); + + // Note that the value of IncOffset (which is provided to the next + // load's pointer info offset value, and thus used to calculate the + // alignment), and the value of IncValue (which is actually used to + // increment the pointer value) are different! This is because we + // require the next load to appear to be aligned, even though it + // is actually offset from the base pointer by a lesser amount. + int IncOffset = VT.getSizeInBits() / 8; + int IncValue = IncOffset; + + // Walk (both up and down) the chain looking for another load at the real + // (aligned) offset (the alignment of the other load does not matter in + // this case). If found, then do not use the offset reduction trick, as + // that will prevent the loads from being later combined (as they would + // otherwise be duplicates). + if (!findConsecutiveLoad(LD, DAG)) + --IncValue; + + SDValue Increment = DAG.getConstant(IncValue, getPointerTy()); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + + SDValue ExtraLoad = + DAG.getLoad(VT, dl, Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncOffset), + LD->isVolatile(), LD->isNonTemporal(), + LD->isInvariant(), ABIAlignment); + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + BaseLoad.getValue(1), ExtraLoad.getValue(1)); + + if (BaseLoad.getValueType() != MVT::v4i32) + BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad); + + if (ExtraLoad.getValueType() != MVT::v4i32) + ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad); + + SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm, + BaseLoad, ExtraLoad, PermCntl, DAG, dl); + + if (VT != MVT::v4i32) + Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm); + + // Now we need to be really careful about how we update the users of the + // original load. We cannot just call DCI.CombineTo (or + // DAG.ReplaceAllUsesWith for that matter), because the load still has + // uses created here (the permutation for example) that need to stay. + SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + while (UI != UE) { + SDUse &Use = UI.getUse(); + SDNode *User = *UI; + // Note: BaseLoad is checked here because it might not be N, but a + // bitcast of N. + if (User == Perm.getNode() || User == BaseLoad.getNode() || + User == TF.getNode() || Use.getResNo() > 1) { + ++UI; + continue; + } + + SDValue To = Use.getResNo() ? TF : Perm; + ++UI; + + SmallVector<SDValue, 8> Ops; + for (SDNode::op_iterator O = User->op_begin(), + OE = User->op_end(); O != OE; ++O) { + if (*O == Use) + Ops.push_back(To); + else + Ops.push_back(*O); + } + + DAG.UpdateNodeOperands(User, Ops.data(), Ops.size()); + } + + return SDValue(N, 0); + } + } + break; + case ISD::INTRINSIC_WO_CHAIN: + if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == + Intrinsic::ppc_altivec_lvsl && + N->getOperand(1)->getOpcode() == ISD::ADD) { + SDValue Add = N->getOperand(1); + + if (DAG.MaskedValueIsZero(Add->getOperand(1), + APInt::getAllOnesValue(4 /* 16 byte alignment */).zext( + Add.getValueType().getScalarType().getSizeInBits()))) { + SDNode *BasePtr = Add->getOperand(0).getNode(); + for (SDNode::use_iterator UI = BasePtr->use_begin(), + UE = BasePtr->use_end(); UI != UE; ++UI) { + if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && + cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == + Intrinsic::ppc_altivec_lvsl) { + // We've found another LVSL, and this address if an aligned + // multiple of that one. The results will be the same, so use the + // one we've just found instead. + + return SDValue(*UI, 0); + } + } + } + } + + break; + case ISD::BSWAP: + // Turn BSWAP (LOAD) -> lhbrx/lwbrx. + if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && + N->getOperand(0).hasOneUse() && + (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || + (TM.getSubtarget<PPCSubtarget>().hasLDBRX() && + TM.getSubtarget<PPCSubtarget>().isPPC64() && + N->getValueType(0) == MVT::i64))) { + SDValue Load = N->getOperand(0); + LoadSDNode *LD = cast<LoadSDNode>(Load); + // Create the byte-swapping load. + SDValue Ops[] = { + LD->getChain(), // Chain + LD->getBasePtr(), // Ptr + DAG.getValueType(N->getValueType(0)) // VT + }; + SDValue BSLoad = + DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, + DAG.getVTList(N->getValueType(0) == MVT::i64 ? + MVT::i64 : MVT::i32, MVT::Other), + Ops, 3, LD->getMemoryVT(), LD->getMemOperand()); + + // If this is an i16 load, insert the truncate. + SDValue ResVal = BSLoad; + if (N->getValueType(0) == MVT::i16) + ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); + + // First, combine the bswap away. This makes the value produced by the + // load dead. + DCI.CombineTo(N, ResVal); + + // Next, combine the load away, we give it a bogus result value but a real + // chain result. The result value is dead because the bswap is dead. + DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); + + // Return N so it doesn't get rechecked! + return SDValue(N, 0); + } + + break; + case PPCISD::VCMP: { + // If a VCMPo node already exists with exactly the same operands as this + // node, use its result instead of this node (VCMPo computes both a CR6 and + // a normal output). + // + if (!N->getOperand(0).hasOneUse() && + !N->getOperand(1).hasOneUse() && + !N->getOperand(2).hasOneUse()) { + + // Scan all of the users of the LHS, looking for VCMPo's that match. + SDNode *VCMPoNode = 0; + + SDNode *LHSN = N->getOperand(0).getNode(); + for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); + UI != E; ++UI) + if (UI->getOpcode() == PPCISD::VCMPo && + UI->getOperand(1) == N->getOperand(1) && + UI->getOperand(2) == N->getOperand(2) && + UI->getOperand(0) == N->getOperand(0)) { + VCMPoNode = *UI; + break; + } + + // If there is no VCMPo node, or if the flag value has a single use, don't + // transform this. + if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) + break; + + // Look at the (necessarily single) use of the flag value. If it has a + // chain, this transformation is more complex. Note that multiple things + // could use the value result, which we should ignore. + SDNode *FlagUser = 0; + for (SDNode::use_iterator UI = VCMPoNode->use_begin(); + FlagUser == 0; ++UI) { + assert(UI != VCMPoNode->use_end() && "Didn't find user!"); + SDNode *User = *UI; + for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { + if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { + FlagUser = User; + break; + } + } + } + + // If the user is a MFOCRF instruction, we know this is safe. + // Otherwise we give up for right now. + if (FlagUser->getOpcode() == PPCISD::MFOCRF) + return SDValue(VCMPoNode, 0); + } + break; + } + case ISD::BR_CC: { + // If this is a branch on an altivec predicate comparison, lower this so + // that we don't have to do a MFOCRF: instead, branch directly on CR6. This + // lowering is done pre-legalize, because the legalizer lowers the predicate + // compare down to code that is difficult to reassemble. + ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); + SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); + + // Sometimes the promoted value of the intrinsic is ANDed by some non-zero + // value. If so, pass-through the AND to get to the intrinsic. + if (LHS.getOpcode() == ISD::AND && + LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && + cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == + Intrinsic::ppc_is_decremented_ctr_nonzero && + isa<ConstantSDNode>(LHS.getOperand(1)) && + !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> + isZero()) + LHS = LHS.getOperand(0); + + if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && + cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == + Intrinsic::ppc_is_decremented_ctr_nonzero && + isa<ConstantSDNode>(RHS)) { + assert((CC == ISD::SETEQ || CC == ISD::SETNE) && + "Counter decrement comparison is not EQ or NE"); + + unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); + bool isBDNZ = (CC == ISD::SETEQ && Val) || + (CC == ISD::SETNE && !Val); + + // We now need to make the intrinsic dead (it cannot be instruction + // selected). + DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); + assert(LHS.getNode()->hasOneUse() && + "Counter decrement has more than one use"); + + return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, + N->getOperand(0), N->getOperand(4)); + } + + int CompareOpc; + bool isDot; + + if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && + isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && + getAltivecCompareInfo(LHS, CompareOpc, isDot)) { + assert(isDot && "Can't compare against a vector result!"); + + // If this is a comparison against something other than 0/1, then we know + // that the condition is never/always true. + unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); + if (Val != 0 && Val != 1) { + if (CC == ISD::SETEQ) // Cond never true, remove branch. + return N->getOperand(0); + // Always !=, turn it into an unconditional branch. + return DAG.getNode(ISD::BR, dl, MVT::Other, + N->getOperand(0), N->getOperand(4)); + } + + bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); + + // Create the PPCISD altivec 'dot' comparison node. + SDValue Ops[] = { + LHS.getOperand(2), // LHS of compare + LHS.getOperand(3), // RHS of compare + DAG.getConstant(CompareOpc, MVT::i32) + }; + EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; + SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); + + // Unpack the result based on how the target uses it. + PPC::Predicate CompOpc; + switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { + default: // Can't happen, don't crash on invalid number though. + case 0: // Branch on the value of the EQ bit of CR6. + CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; + break; + case 1: // Branch on the inverted value of the EQ bit of CR6. + CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; + break; + case 2: // Branch on the value of the LT bit of CR6. + CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; + break; + case 3: // Branch on the inverted value of the LT bit of CR6. + CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; + break; + } + + return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), + DAG.getConstant(CompOpc, MVT::i32), + DAG.getRegister(PPC::CR6, MVT::i32), + N->getOperand(4), CompNode.getValue(1)); + } + break; + } + } + + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Inline Assembly Support +//===----------------------------------------------------------------------===// + +void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); + switch (Op.getOpcode()) { + default: break; + case PPCISD::LBRX: { + // lhbrx is known to have the top bits cleared out. + if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) + KnownZero = 0xFFFF0000; + break; + } + case ISD::INTRINSIC_WO_CHAIN: { + switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { + default: break; + case Intrinsic::ppc_altivec_vcmpbfp_p: + case Intrinsic::ppc_altivec_vcmpeqfp_p: + case Intrinsic::ppc_altivec_vcmpequb_p: + case Intrinsic::ppc_altivec_vcmpequh_p: + case Intrinsic::ppc_altivec_vcmpequw_p: + case Intrinsic::ppc_altivec_vcmpgefp_p: + case Intrinsic::ppc_altivec_vcmpgtfp_p: + case Intrinsic::ppc_altivec_vcmpgtsb_p: + case Intrinsic::ppc_altivec_vcmpgtsh_p: + case Intrinsic::ppc_altivec_vcmpgtsw_p: + case Intrinsic::ppc_altivec_vcmpgtub_p: + case Intrinsic::ppc_altivec_vcmpgtuh_p: + case Intrinsic::ppc_altivec_vcmpgtuw_p: + KnownZero = ~1U; // All bits but the low one are known to be zero. + break; + } + } + } +} + + +/// getConstraintType - Given a constraint, return the type of +/// constraint it is for this target. +PPCTargetLowering::ConstraintType +PPCTargetLowering::getConstraintType(const std::string &Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: break; + case 'b': + case 'r': + case 'f': + case 'v': + case 'y': + return C_RegisterClass; + case 'Z': + // FIXME: While Z does indicate a memory constraint, it specifically + // indicates an r+r address (used in conjunction with the 'y' modifier + // in the replacement string). Currently, we're forcing the base + // register to be r0 in the asm printer (which is interpreted as zero) + // and forming the complete address in the second register. This is + // suboptimal. + return C_Memory; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +PPCTargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (CallOperandVal == NULL) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'b': + if (type->isIntegerTy()) + weight = CW_Register; + break; + case 'f': + if (type->isFloatTy()) + weight = CW_Register; + break; + case 'd': + if (type->isDoubleTy()) + weight = CW_Register; + break; + case 'v': + if (type->isVectorTy()) + weight = CW_Register; + break; + case 'y': + weight = CW_Register; + break; + case 'Z': + weight = CW_Memory; + break; + } + return weight; +} + +std::pair<unsigned, const TargetRegisterClass*> +PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, + MVT VT) const { + if (Constraint.size() == 1) { + // GCC RS6000 Constraint Letters + switch (Constraint[0]) { + case 'b': // R1-R31 + if (VT == MVT::i64 && PPCSubTarget.isPPC64()) + return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); + return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); + case 'r': // R0-R31 + if (VT == MVT::i64 && PPCSubTarget.isPPC64()) + return std::make_pair(0U, &PPC::G8RCRegClass); + return std::make_pair(0U, &PPC::GPRCRegClass); + case 'f': + if (VT == MVT::f32 || VT == MVT::i32) + return std::make_pair(0U, &PPC::F4RCRegClass); + if (VT == MVT::f64 || VT == MVT::i64) + return std::make_pair(0U, &PPC::F8RCRegClass); + break; + case 'v': + return std::make_pair(0U, &PPC::VRRCRegClass); + case 'y': // crrc + return std::make_pair(0U, &PPC::CRRCRegClass); + } + } + + std::pair<unsigned, const TargetRegisterClass*> R = + TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); + + // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers + // (which we call X[0-9]+). If a 64-bit value has been requested, and a + // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent + // register. + // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use + // the AsmName field from *RegisterInfo.td, then this would not be necessary. + if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() && + PPC::GPRCRegClass.contains(R.first)) { + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + return std::make_pair(TRI->getMatchingSuperReg(R.first, + PPC::sub_32, &PPC::G8RCRegClass), + &PPC::G8RCRegClass); + } + + return R; +} + + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDValue Result(0,0); + + // Only support length 1 constraints. + if (Constraint.length() > 1) return; + + char Letter = Constraint[0]; + switch (Letter) { + default: break; + case 'I': + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'O': + case 'P': { + ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); + if (!CST) return; // Must be an immediate to match. + unsigned Value = CST->getZExtValue(); + switch (Letter) { + default: llvm_unreachable("Unknown constraint letter!"); + case 'I': // "I" is a signed 16-bit constant. + if ((short)Value == (int)Value) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'J': // "J" is a constant with only the high-order 16 bits nonzero. + case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. + if ((short)Value == 0) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'K': // "K" is a constant with only the low-order 16 bits nonzero. + if ((Value >> 16) == 0) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'M': // "M" is a constant that is greater than 31. + if (Value > 31) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'N': // "N" is a positive constant that is an exact power of two. + if ((int)Value > 0 && isPowerOf2_32(Value)) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'O': // "O" is the constant zero. + if (Value == 0) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + case 'P': // "P" is a constant whose negation is a signed 16-bit constant. + if ((short)-Value == (int)-Value) + Result = DAG.getTargetConstant(Value, Op.getValueType()); + break; + } + break; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + // Handle standard constraint letters. + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +// isLegalAddressingMode - Return true if the addressing mode represented +// by AM is legal for this target, for a load/store of the specified type. +bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, + Type *Ty) const { + // FIXME: PPC does not allow r+i addressing modes for vectors! + + // PPC allows a sign-extended 16-bit immediate field. + if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) + return false; + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // PPC only support r+r, + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. + return false; + // Otherwise we have r+r or r+i. + break; + case 2: + if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. + return false; + // Allow 2*r as r+r. + break; + default: + // No other scales are supported. + return false; + } + + return true; +} + +SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + SDLoc dl(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + + // Make sure the function does not optimize away the store of the RA to + // the stack. + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setLRStoreRequired(); + bool isPPC64 = PPCSubTarget.isPPC64(); + bool isDarwinABI = PPCSubTarget.isDarwinABI(); + + if (Depth > 0) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + SDValue Offset = + + DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), + isPPC64? MVT::i64 : MVT::i32); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, getPointerTy(), + FrameAddr, Offset), + MachinePointerInfo(), false, false, false, 0); + } + + // Just load the return address off the stack. + SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + RetAddrFI, MachinePointerInfo(), false, false, false, 0); +} + +SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + + EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); + bool isPPC64 = PtrVT == MVT::i64; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + // Naked functions never have a frame pointer, and so we use r1. For all + // other functions, this decision must be delayed until during PEI. + unsigned FrameReg; + if (MF.getFunction()->getAttributes().hasAttribute( + AttributeSet::FunctionIndex, Attribute::Naked)) + FrameReg = isPPC64 ? PPC::X1 : PPC::R1; + else + FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; + + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, + PtrVT); + while (Depth--) + FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), + FrameAddr, MachinePointerInfo(), false, false, + false, 0); + return FrameAddr; +} + +bool +PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The PowerPC target isn't yet aware of offsets. + return false; +} + +/// getOptimalMemOpType - Returns the target specific optimal type for load +/// and store operations as a result of memset, memcpy, and memmove +/// lowering. If DstAlign is zero that means it's safe to destination +/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it +/// means there isn't a need to check it against alignment requirement, +/// probably because the source does not need to be loaded. If 'IsMemset' is +/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that +/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy +/// source is constant so it does not need to be loaded. +/// It returns EVT::Other if the type should be determined using generic +/// target-independent logic. +EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + if (this->PPCSubTarget.isPPC64()) { + return MVT::i64; + } else { + return MVT::i32; + } +} + +bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, + bool *Fast) const { + if (DisablePPCUnaligned) + return false; + + // PowerPC supports unaligned memory access for simple non-vector types. + // Although accessing unaligned addresses is not as efficient as accessing + // aligned addresses, it is generally more efficient than manual expansion, + // and generally only traps for software emulation when crossing page + // boundaries. + + if (!VT.isSimple()) + return false; + + if (VT.getSimpleVT().isVector()) + return false; + + if (VT == MVT::ppcf128) + return false; + + if (Fast) + *Fast = true; + + return true; +} + +bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + default: + break; + } + + return false; +} + +Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { + if (DisableILPPref || PPCSubTarget.enableMachineScheduler()) + return TargetLowering::getSchedulingPreference(N); + + return Sched::ILP; +} + +// Create a fast isel object. +FastISel * +PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, + const TargetLibraryInfo *LibInfo) const { + return PPC::createFastISel(FuncInfo, LibInfo); +} |