aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp7938
1 files changed, 7938 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
new file mode 100644
index 000000000000..8da5f0563c6a
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -0,0 +1,7938 @@
+//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the PPCISelLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCISelLowering.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCPerfectShuffle.h"
+#include "PPCTargetMachine.h"
+#include "PPCTargetObjectFile.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
+cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
+
+static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
+cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
+
+static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
+cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
+
+static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
+ if (TM.getSubtargetImpl()->isDarwin())
+ return new TargetLoweringObjectFileMachO();
+
+ if (TM.getSubtargetImpl()->isSVR4ABI())
+ return new PPC64LinuxTargetObjectFile();
+
+ return new TargetLoweringObjectFileELF();
+}
+
+PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
+ : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
+ const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
+
+ setPow2DivIsCheap();
+
+ // Use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+
+ // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
+ // arguments are at least 4/8 bytes aligned.
+ bool isPPC64 = Subtarget->isPPC64();
+ setMinStackArgumentAlignment(isPPC64 ? 8:4);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
+ addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
+ addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
+
+ // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // PowerPC has pre-inc load and store's.
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
+ setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
+
+ // This is used in the ppcf128->int sequence. Note it has different semantics
+ // from FP_ROUND: that rounds to nearest, this rounds to zero.
+ setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
+
+ // We do not currently implement these libm ops for PowerPC.
+ setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
+ setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
+
+ // PowerPC has no SREM/UREM instructions
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+
+ // We don't support sin/cos/sqrt/fmod/pow
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM , MVT::f64, Expand);
+ setOperationAction(ISD::FPOW , MVT::f64, Expand);
+ setOperationAction(ISD::FMA , MVT::f64, Legal);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM , MVT::f32, Expand);
+ setOperationAction(ISD::FPOW , MVT::f32, Expand);
+ setOperationAction(ISD::FMA , MVT::f32, Legal);
+
+ setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
+
+ // If we're enabling GP optimizations, use hardware square root
+ if (!Subtarget->hasFSQRT() &&
+ !(TM.Options.UnsafeFPMath &&
+ Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+
+ if (!Subtarget->hasFSQRT() &&
+ !(TM.Options.UnsafeFPMath &&
+ Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
+ setOperationAction(ISD::FSQRT, MVT::f32, Expand);
+
+ if (Subtarget->hasFCPSGN()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
+ } else {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ }
+
+ if (Subtarget->hasFPRND()) {
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::f64, Legal);
+
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::f32, Legal);
+ }
+
+ // PowerPC does not have BSWAP, CTPOP or CTTZ
+ setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+
+ if (Subtarget->hasPOPCNTD()) {
+ setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
+ setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
+ } else {
+ setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
+ }
+
+ // PowerPC does not have ROTR
+ setOperationAction(ISD::ROTR, MVT::i32 , Expand);
+ setOperationAction(ISD::ROTR, MVT::i64 , Expand);
+
+ // PowerPC does not have Select
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+
+ // PowerPC wants to turn select_cc of FP into fsel when possible.
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ // PowerPC wants to optimize integer setcc a bit
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+
+ // PowerPC does not have BRCOND which requires SetCC
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ // PowerPC does not have [U|S]INT_TO_FP
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+
+ setOperationAction(ISD::BITCAST, MVT::f32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::i64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::f64, Expand);
+
+ // We cannot sextinreg(i1). Expand to shifts.
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
+ // SjLj exception handling but a light-weight setjmp/longjmp replacement to
+ // support continuation, user-level threading, and etc.. As a result, no
+ // other SjLj exception interfaces are implemented and please don't build
+ // your own exception handling based on them.
+ // LLVM/Clang supports zero-cost DWARF exception handling.
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ // We want to legalize GlobalAddress and ConstantPool nodes into the
+ // appropriate instructions to materialize the address.
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ // TRAP is legal.
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // TRAMPOLINE is custom lowered.
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+
+ if (Subtarget->isSVR4ABI()) {
+ if (isPPC64) {
+ // VAARG always uses double-word chunks, so promote anything smaller.
+ setOperationAction(ISD::VAARG, MVT::i1, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i8, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i16, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::i32, Promote);
+ AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ } else {
+ // VAARG is custom lowered with the 32-bit SVR4 ABI.
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::i64, Custom);
+ }
+ } else
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+
+ if (Subtarget->isSVR4ABI() && !isPPC64)
+ // VACOPY is custom lowered with the 32-bit SVR4 ABI.
+ setOperationAction(ISD::VACOPY , MVT::Other, Custom);
+ else
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ // To handle counter-based loop conditions.
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
+
+ // Comparisons that require checking two conditions.
+ setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
+
+ if (Subtarget->has64BitSupport()) {
+ // They also have instructions for converting between i64 and fp.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ // This is just the low 32 bits of a (signed) fp->i64 conversion.
+ // We cannot do this with Promote because i64 is not a legal type.
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+
+ if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ } else {
+ // PowerPC does not have FP_TO_UINT on 32-bit implementations.
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ }
+
+ // With the instructions enabled under FPCVT, we can do everything.
+ if (PPCSubTarget.hasFPCVT()) {
+ if (Subtarget->has64BitSupport()) {
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ }
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ }
+
+ if (Subtarget->use64BitRegs()) {
+ // 64-bit PowerPC implementations can support i64 types directly
+ addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
+ // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
+ setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
+ // 64-bit PowerPC wants to expand i128 shifts itself.
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+ } else {
+ // 32-bit PowerPC wants to expand i64 shifts itself.
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ }
+
+ if (Subtarget->hasAltivec()) {
+ // First set operation action for all vector types to expand. Then we
+ // will selectively turn on ones that can be effectively codegen'd.
+ for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
+
+ // add/sub are legal for all supported vector VT's.
+ setOperationAction(ISD::ADD , VT, Legal);
+ setOperationAction(ISD::SUB , VT, Legal);
+
+ // We promote all shuffles to v16i8.
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
+ AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
+
+ // We promote all non-typed operations to v4i32.
+ setOperationAction(ISD::AND , VT, Promote);
+ AddPromotedToType (ISD::AND , VT, MVT::v4i32);
+ setOperationAction(ISD::OR , VT, Promote);
+ AddPromotedToType (ISD::OR , VT, MVT::v4i32);
+ setOperationAction(ISD::XOR , VT, Promote);
+ AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
+ setOperationAction(ISD::LOAD , VT, Promote);
+ AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
+ setOperationAction(ISD::STORE, VT, Promote);
+ AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
+
+ // No other operations are legal.
+ setOperationAction(ISD::MUL , VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FPOWI, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+
+ for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
+ MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
+ setTruncStoreAction(VT, InnerVT, Expand);
+ }
+ setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, Expand);
+ }
+
+ // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
+ // with merges, splats, etc.
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::AND , MVT::v4i32, Legal);
+ setOperationAction(ISD::OR , MVT::v4i32, Legal);
+ setOperationAction(ISD::XOR , MVT::v4i32, Legal);
+ setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
+ setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
+ setOperationAction(ISD::STORE , MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
+
+ addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
+ addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
+
+ setOperationAction(ISD::MUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f32, Legal);
+
+ if (TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
+ }
+
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+
+ // Altivec does not contain unordered floating-point compare instructions
+ setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
+
+ setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
+ setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
+ }
+
+ if (Subtarget->has64BitSupport()) {
+ setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
+ }
+
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // Altivec instructions set fields to all zeros or all ones.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ if (isPPC64) {
+ setStackPointerRegisterToSaveRestore(PPC::X1);
+ setExceptionPointerRegister(PPC::X3);
+ setExceptionSelectorRegister(PPC::X4);
+ } else {
+ setStackPointerRegisterToSaveRestore(PPC::R1);
+ setExceptionPointerRegister(PPC::R3);
+ setExceptionSelectorRegister(PPC::R4);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::BR_CC);
+ setTargetDAGCombine(ISD::BSWAP);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+
+ // Use reciprocal estimates.
+ if (TM.Options.UnsafeFPMath) {
+ setTargetDAGCombine(ISD::FDIV);
+ setTargetDAGCombine(ISD::FSQRT);
+ }
+
+ // Darwin long double math library functions have $LDBL128 appended.
+ if (Subtarget->isDarwin()) {
+ setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
+ setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
+ setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
+ setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
+ setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
+ setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
+ setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
+ setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
+ setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
+ setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
+ }
+
+ setMinFunctionAlignment(2);
+ if (PPCSubTarget.isDarwin())
+ setPrefFunctionAlignment(4);
+
+ if (isPPC64 && Subtarget->isJITCodeModel())
+ // Temporary workaround for the inability of PPC64 JIT to handle jump
+ // tables.
+ setSupportJumpTables(false);
+
+ setInsertFencesForAtomic(true);
+
+ if (Subtarget->enableMachineScheduler())
+ setSchedulingPreference(Sched::Source);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ computeRegisterProperties();
+
+ // The Freescale cores does better with aggressive inlining of memcpy and
+ // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
+ if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
+ Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
+ MaxStoresPerMemset = 32;
+ MaxStoresPerMemsetOptSize = 16;
+ MaxStoresPerMemcpy = 32;
+ MaxStoresPerMemcpyOptSize = 8;
+ MaxStoresPerMemmove = 32;
+ MaxStoresPerMemmoveOptSize = 8;
+
+ setPrefFunctionAlignment(4);
+ }
+}
+
+/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
+ unsigned MaxMaxAlign) {
+ if (MaxAlign == MaxMaxAlign)
+ return;
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
+ MaxAlign = 32;
+ else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
+ MaxAlign = 16;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == MaxMaxAlign)
+ break;
+ }
+ }
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area.
+unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
+ // Darwin passes everything on 4 byte boundary.
+ if (PPCSubTarget.isDarwin())
+ return 4;
+
+ // 16byte and wider vectors are passed on 16byte boundary.
+ // The rest is 8 on PPC64 and 4 on PPC32 boundary.
+ unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4;
+ if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX())
+ getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16);
+ return Align;
+}
+
+const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case PPCISD::FSEL: return "PPCISD::FSEL";
+ case PPCISD::FCFID: return "PPCISD::FCFID";
+ case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
+ case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
+ case PPCISD::FRE: return "PPCISD::FRE";
+ case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
+ case PPCISD::STFIWX: return "PPCISD::STFIWX";
+ case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
+ case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
+ case PPCISD::VPERM: return "PPCISD::VPERM";
+ case PPCISD::Hi: return "PPCISD::Hi";
+ case PPCISD::Lo: return "PPCISD::Lo";
+ case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
+ case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE";
+ case PPCISD::LOAD: return "PPCISD::LOAD";
+ case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
+ case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
+ case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
+ case PPCISD::SRL: return "PPCISD::SRL";
+ case PPCISD::SRA: return "PPCISD::SRA";
+ case PPCISD::SHL: return "PPCISD::SHL";
+ case PPCISD::CALL: return "PPCISD::CALL";
+ case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
+ case PPCISD::MTCTR: return "PPCISD::MTCTR";
+ case PPCISD::BCTRL: return "PPCISD::BCTRL";
+ case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
+ case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
+ case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
+ case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
+ case PPCISD::VCMP: return "PPCISD::VCMP";
+ case PPCISD::VCMPo: return "PPCISD::VCMPo";
+ case PPCISD::LBRX: return "PPCISD::LBRX";
+ case PPCISD::STBRX: return "PPCISD::STBRX";
+ case PPCISD::LARX: return "PPCISD::LARX";
+ case PPCISD::STCX: return "PPCISD::STCX";
+ case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
+ case PPCISD::BDNZ: return "PPCISD::BDNZ";
+ case PPCISD::BDZ: return "PPCISD::BDZ";
+ case PPCISD::MFFS: return "PPCISD::MFFS";
+ case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
+ case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
+ case PPCISD::CR6SET: return "PPCISD::CR6SET";
+ case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
+ case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
+ case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
+ case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
+ case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
+ case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
+ case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
+ case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
+ case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
+ case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
+ case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
+ case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
+ case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
+ case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
+ case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
+ case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
+ case PPCISD::SC: return "PPCISD::SC";
+ }
+}
+
+EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+//===----------------------------------------------------------------------===//
+// Node matching predicates, for use by the tblgen matching code.
+//===----------------------------------------------------------------------===//
+
+/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isZero();
+ }
+ return false;
+}
+
+/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
+/// true if Op is undef or if it matches the specified value.
+static bool isConstantOrUndef(int Op, int Val) {
+ return Op < 0 || Op == Val;
+}
+
+/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUHUM instruction.
+bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
+ if (!isUnary) {
+ for (unsigned i = 0; i != 16; ++i)
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
+ return false;
+ } else {
+ for (unsigned i = 0; i != 8; ++i)
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
+ return false;
+ }
+ return true;
+}
+
+/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
+/// VPKUWUM instruction.
+bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
+ if (!isUnary) {
+ for (unsigned i = 0; i != 16; i += 2)
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
+ return false;
+ } else {
+ for (unsigned i = 0; i != 8; i += 2)
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
+ !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
+ return false;
+ }
+ return true;
+}
+
+/// isVMerge - Common function, used to match vmrg* shuffles.
+///
+static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
+ unsigned LHSStart, unsigned RHSStart) {
+ assert(N->getValueType(0) == MVT::v16i8 &&
+ "PPC only supports shuffles by bytes!");
+ assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
+ "Unsupported merge size!");
+
+ for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
+ for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
+ if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
+ LHSStart+j+i*UnitSize) ||
+ !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
+ RHSStart+j+i*UnitSize))
+ return false;
+ }
+ return true;
+}
+
+/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
+bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ bool isUnary) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 8, 24);
+ return isVMerge(N, UnitSize, 8, 8);
+}
+
+/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
+/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
+bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
+ bool isUnary) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 0, 16);
+ return isVMerge(N, UnitSize, 0, 0);
+}
+
+
+/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
+/// amount, otherwise return -1.
+int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
+ assert(N->getValueType(0) == MVT::v16i8 &&
+ "PPC only supports shuffles by bytes!");
+
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+
+ // Find the first non-undef value in the shuffle mask.
+ unsigned i;
+ for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
+ /*search*/;
+
+ if (i == 16) return -1; // all undef.
+
+ // Otherwise, check to see if the rest of the elements are consecutively
+ // numbered from this value.
+ unsigned ShiftAmt = SVOp->getMaskElt(i);
+ if (ShiftAmt < i) return -1;
+ ShiftAmt -= i;
+
+ if (!isUnary) {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
+ return -1;
+ } else {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
+ return -1;
+ }
+ return ShiftAmt;
+}
+
+/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a splat of a single element that is suitable for input to
+/// VSPLTB/VSPLTH/VSPLTW.
+bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
+ assert(N->getValueType(0) == MVT::v16i8 &&
+ (EltSize == 1 || EltSize == 2 || EltSize == 4));
+
+ // This is a splat operation if each element of the permute is the same, and
+ // if the value doesn't reference the second vector.
+ unsigned ElementBase = N->getMaskElt(0);
+
+ // FIXME: Handle UNDEF elements too!
+ if (ElementBase >= 16)
+ return false;
+
+ // Check that the indices are consecutive, in the case of a multi-byte element
+ // splatted with a v16i8 mask.
+ for (unsigned i = 1; i != EltSize; ++i)
+ if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
+ return false;
+
+ for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
+ if (N->getMaskElt(i) < 0) continue;
+ for (unsigned j = 0; j != EltSize; ++j)
+ if (N->getMaskElt(i+j) != N->getMaskElt(j))
+ return false;
+ }
+ return true;
+}
+
+/// isAllNegativeZeroVector - Returns true if all elements of build_vector
+/// are -0.0.
+bool PPC::isAllNegativeZeroVector(SDNode *N) {
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
+
+ APInt APVal, APUndef;
+ unsigned BitSize;
+ bool HasAnyUndefs;
+
+ if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ return CFP->getValueAPF().isNegZero();
+
+ return false;
+}
+
+/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
+/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
+unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ assert(isSplatShuffleMask(SVOp, EltSize));
+ return SVOp->getMaskElt(0) / EltSize;
+}
+
+/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
+/// by using a vspltis[bhw] instruction of the specified element size, return
+/// the constant being splatted. The ByteSize field indicates the number of
+/// bytes of each element [124] -> [bhw].
+SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
+ SDValue OpVal(0, 0);
+
+ // If ByteSize of the splat is bigger than the element size of the
+ // build_vector, then we have a case where we are checking for a splat where
+ // multiple elements of the buildvector are folded together into a single
+ // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
+ unsigned EltSize = 16/N->getNumOperands();
+ if (EltSize < ByteSize) {
+ unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
+ SDValue UniquedVals[4];
+ assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
+
+ // See if all of the elements in the buildvector agree across.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ // If the element isn't a constant, bail fully out.
+ if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
+
+
+ if (UniquedVals[i&(Multiple-1)].getNode() == 0)
+ UniquedVals[i&(Multiple-1)] = N->getOperand(i);
+ else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
+ return SDValue(); // no match.
+ }
+
+ // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
+ // either constant or undef values that are identical for each chunk. See
+ // if these chunks can form into a larger vspltis*.
+
+ // Check to see if all of the leading entries are either 0 or -1. If
+ // neither, then this won't fit into the immediate field.
+ bool LeadingZero = true;
+ bool LeadingOnes = true;
+ for (unsigned i = 0; i != Multiple-1; ++i) {
+ if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
+
+ LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
+ LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
+ }
+ // Finally, check the least significant entry.
+ if (LeadingZero) {
+ if (UniquedVals[Multiple-1].getNode() == 0)
+ return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
+ int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
+ if (Val < 16)
+ return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
+ }
+ if (LeadingOnes) {
+ if (UniquedVals[Multiple-1].getNode() == 0)
+ return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
+ int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
+ if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
+ return DAG.getTargetConstant(Val, MVT::i32);
+ }
+
+ return SDValue();
+ }
+
+ // Check to see if this buildvec has a single non-undef value in its elements.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ if (OpVal.getNode() == 0)
+ OpVal = N->getOperand(i);
+ else if (OpVal != N->getOperand(i))
+ return SDValue();
+ }
+
+ if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
+
+ unsigned ValSizeInBytes = EltSize;
+ uint64_t Value = 0;
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
+ Value = CN->getZExtValue();
+ } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
+ assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
+ Value = FloatToBits(CN->getValueAPF().convertToFloat());
+ }
+
+ // If the splat value is larger than the element value, then we can never do
+ // this splat. The only case that we could fit the replicated bits into our
+ // immediate field for would be zero, and we prefer to use vxor for it.
+ if (ValSizeInBytes < ByteSize) return SDValue();
+
+ // If the element value is larger than the splat value, cut it in half and
+ // check to see if the two halves are equal. Continue doing this until we
+ // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
+ while (ValSizeInBytes > ByteSize) {
+ ValSizeInBytes >>= 1;
+
+ // If the top half equals the bottom half, we're still ok.
+ if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
+ (Value & ((1 << (8*ValSizeInBytes))-1)))
+ return SDValue();
+ }
+
+ // Properly sign extend the value.
+ int MaskVal = SignExtend32(Value, ByteSize * 8);
+
+ // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
+ if (MaskVal == 0) return SDValue();
+
+ // Finally, if this value fits in a 5 bit sext field, return it
+ if (SignExtend32<5>(MaskVal) == MaskVal)
+ return DAG.getTargetConstant(MaskVal, MVT::i32);
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing Mode Selection
+//===----------------------------------------------------------------------===//
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (N->getOpcode() != ISD::Constant)
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
+}
+static bool isIntS16Immediate(SDValue Op, short &Imm) {
+ return isIntS16Immediate(Op.getNode(), Imm);
+}
+
+
+/// SelectAddressRegReg - Given the specified addressed, check to see if it
+/// can be represented as an indexed [r+r] operation. Returns false if it
+/// can be more efficiently represented with [r+imm].
+bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
+ SDValue &Index,
+ SelectionDAG &DAG) const {
+ short imm = 0;
+ if (N.getOpcode() == ISD::ADD) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i
+ if (N.getOperand(1).getOpcode() == PPCISD::Lo)
+ return false; // r+i
+
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ } else if (N.getOpcode() == ISD::OR) {
+ if (isIntS16Immediate(N.getOperand(1), imm))
+ return false; // r+i can fold it if we can.
+
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are provably
+ // disjoint.
+ APInt LHSKnownZero, LHSKnownOne;
+ APInt RHSKnownZero, RHSKnownOne;
+ DAG.ComputeMaskedBits(N.getOperand(0),
+ LHSKnownZero, LHSKnownOne);
+
+ if (LHSKnownZero.getBoolValue()) {
+ DAG.ComputeMaskedBits(N.getOperand(1),
+ RHSKnownZero, RHSKnownOne);
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ if (~(LHSKnownZero | RHSKnownZero) == 0) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+// If we happen to be doing an i64 load or store into a stack slot that has
+// less than a 4-byte alignment, then the frame-index elimination may need to
+// use an indexed load or store instruction (because the offset may not be a
+// multiple of 4). The extra register needed to hold the offset comes from the
+// register scavenger, and it is possible that the scavenger will need to use
+// an emergency spill slot. As a result, we need to make sure that a spill slot
+// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
+// stack slot.
+static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
+ // FIXME: This does not handle the LWA case.
+ if (VT != MVT::i64)
+ return;
+
+ // NOTE: We'll exclude negative FIs here, which come from argument
+ // lowering, because there are no known test cases triggering this problem
+ // using packed structures (or similar). We can remove this exclusion if
+ // we find such a test case. The reason why this is so test-case driven is
+ // because this entire 'fixup' is only to prevent crashes (from the
+ // register scavenger) on not-really-valid inputs. For example, if we have:
+ // %a = alloca i1
+ // %b = bitcast i1* %a to i64*
+ // store i64* a, i64 b
+ // then the store should really be marked as 'align 1', but is not. If it
+ // were marked as 'align 1' then the indexed form would have been
+ // instruction-selected initially, and the problem this 'fixup' is preventing
+ // won't happen regardless.
+ if (FrameIdx < 0)
+ return;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ unsigned Align = MFI->getObjectAlignment(FrameIdx);
+ if (Align >= 4)
+ return;
+
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setHasNonRISpills();
+}
+
+/// Returns true if the address N can be represented by a base register plus
+/// a signed 16-bit displacement [r+imm], and if it is not better
+/// represented as reg+reg. If Aligned is true, only accept displacements
+/// suitable for STD and friends, i.e. multiples of 4.
+bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
+ SDValue &Base,
+ SelectionDAG &DAG,
+ bool Aligned) const {
+ // FIXME dl should come from parent load or store, not from address
+ SDLoc dl(N);
+ // If this can be more profitably realized as r+r, fail.
+ if (SelectAddressRegReg(N, Disp, Base, DAG))
+ return false;
+
+ if (N.getOpcode() == ISD::ADD) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) &&
+ (!Aligned || (imm & 3) == 0)) {
+ Disp = DAG.getTargetConstant(imm, N.getValueType());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
+ } else {
+ Base = N.getOperand(0);
+ }
+ return true; // [r+i]
+ } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
+ // Match LOAD (ADD (X, Lo(G))).
+ assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
+ && "Cannot handle constant offsets yet!");
+ Disp = N.getOperand(1).getOperand(0); // The global address.
+ assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
+ Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
+ Disp.getOpcode() == ISD::TargetConstantPool ||
+ Disp.getOpcode() == ISD::TargetJumpTable);
+ Base = N.getOperand(0);
+ return true; // [&g+r]
+ }
+ } else if (N.getOpcode() == ISD::OR) {
+ short imm = 0;
+ if (isIntS16Immediate(N.getOperand(1), imm) &&
+ (!Aligned || (imm & 3) == 0)) {
+ // If this is an or of disjoint bitfields, we can codegen this as an add
+ // (for better address arithmetic) if the LHS and RHS of the OR are
+ // provably disjoint.
+ APInt LHSKnownZero, LHSKnownOne;
+ DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
+
+ if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
+ // If all of the bits are known zero on the LHS or RHS, the add won't
+ // carry.
+ Base = N.getOperand(0);
+ Disp = DAG.getTargetConstant(imm, N.getValueType());
+ return true;
+ }
+ }
+ } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
+ // Loading from a constant address.
+
+ // If this address fits entirely in a 16-bit sext immediate field, codegen
+ // this as "d, 0"
+ short Imm;
+ if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
+ Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
+ Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ CN->getValueType(0));
+ return true;
+ }
+
+ // Handle 32-bit sext immediates with LIS + addr mode.
+ if ((CN->getValueType(0) == MVT::i32 ||
+ (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
+ (!Aligned || (CN->getZExtValue() & 3) == 0)) {
+ int Addr = (int)CN->getZExtValue();
+
+ // Otherwise, break this down into an LIS + disp.
+ Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
+
+ Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
+ unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
+ Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
+ return true;
+ }
+ }
+
+ Disp = DAG.getTargetConstant(0, getPointerTy());
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
+ Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
+ fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
+ } else
+ Base = N;
+ return true; // [r+0]
+}
+
+/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
+/// represented as an indexed [r+r] operation.
+bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
+ SDValue &Index,
+ SelectionDAG &DAG) const {
+ // Check to see if we can easily represent this as an [r+r] address. This
+ // will fail if it thinks that the address is more profitably represented as
+ // reg+imm, e.g. where imm = 0.
+ if (SelectAddressRegReg(N, Base, Index, DAG))
+ return true;
+
+ // If the operand is an addition, always emit this as [r+r], since this is
+ // better (for code size, and execution, as the memop does the add for free)
+ // than emitting an explicit add.
+ if (N.getOpcode() == ISD::ADD) {
+ Base = N.getOperand(0);
+ Index = N.getOperand(1);
+ return true;
+ }
+
+ // Otherwise, do it the hard way, using R0 as the base register.
+ Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ N.getValueType());
+ Index = N;
+ return true;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (DisablePPCPreinc) return false;
+
+ bool isLoad = true;
+ SDValue Ptr;
+ EVT VT;
+ unsigned Alignment;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ Alignment = LD->getAlignment();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ Alignment = ST->getAlignment();
+ isLoad = false;
+ } else
+ return false;
+
+ // PowerPC doesn't have preinc load/store instructions for vectors.
+ if (VT.isVector())
+ return false;
+
+ if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
+
+ // Common code will reject creating a pre-inc form if the base pointer
+ // is a frame index, or if N is a store and the base pointer is either
+ // the same as or a predecessor of the value being stored. Check for
+ // those situations here, and try with swapped Base/Offset instead.
+ bool Swap = false;
+
+ if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
+ Swap = true;
+ else if (!isLoad) {
+ SDValue Val = cast<StoreSDNode>(N)->getValue();
+ if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
+ Swap = true;
+ }
+
+ if (Swap)
+ std::swap(Base, Offset);
+
+ AM = ISD::PRE_INC;
+ return true;
+ }
+
+ // LDU/STU can only handle immediates that are a multiple of 4.
+ if (VT != MVT::i64) {
+ if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
+ return false;
+ } else {
+ // LDU/STU need an address with at least 4-byte alignment.
+ if (Alignment < 4)
+ return false;
+
+ if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
+ return false;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
+ // sext i32 to i64 when addr mode is r+i.
+ if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
+ LD->getExtensionType() == ISD::SEXTLOAD &&
+ isa<ConstantSDNode>(Offset))
+ return false;
+ }
+
+ AM = ISD::PRE_INC;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// LowerOperation implementation
+//===----------------------------------------------------------------------===//
+
+/// GetLabelAccessInfo - Return true if we should reference labels using a
+/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
+static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
+ unsigned &LoOpFlags, const GlobalValue *GV = 0) {
+ HiOpFlags = PPCII::MO_HA;
+ LoOpFlags = PPCII::MO_LO;
+
+ // Don't use the pic base if not in PIC relocation model. Or if we are on a
+ // non-darwin platform. We don't support PIC on other platforms yet.
+ bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
+ TM.getSubtarget<PPCSubtarget>().isDarwin();
+ if (isPIC) {
+ HiOpFlags |= PPCII::MO_PIC_FLAG;
+ LoOpFlags |= PPCII::MO_PIC_FLAG;
+ }
+
+ // If this is a reference to a global value that requires a non-lazy-ptr, make
+ // sure that instruction lowering adds it.
+ if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
+ HiOpFlags |= PPCII::MO_NLP_FLAG;
+ LoOpFlags |= PPCII::MO_NLP_FLAG;
+
+ if (GV->hasHiddenVisibility()) {
+ HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
+ LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
+ }
+ }
+
+ return isPIC;
+}
+
+static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
+ SelectionDAG &DAG) {
+ EVT PtrVT = HiPart.getValueType();
+ SDValue Zero = DAG.getConstant(0, PtrVT);
+ SDLoc DL(HiPart);
+
+ SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
+ SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
+
+ // With PIC, the first instruction is actually "GR+hi(&G)".
+ if (isPIC)
+ Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
+
+ // Generate non-pic code that has direct accesses to the constant pool.
+ // The address of the global is just (hi(&g)+lo(&g)).
+ return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
+}
+
+SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ const Constant *C = CP->getConstVal();
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
+ return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+ SDValue CPIHi =
+ DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
+ SDValue CPILo =
+ DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
+ return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
+ return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+ SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
+ SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
+ return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
+ SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
+ SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
+ return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
+}
+
+SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ // FIXME: TLS addresses currently use medium model code sequences,
+ // which is the most useful form. Eventually support for small and
+ // large models could be added if users need it, at the cost of
+ // additional complexity.
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ SDLoc dl(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy();
+ bool is64bit = PPCSubTarget.isPPC64();
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
+
+ if (Model == TLSModel::LocalExec) {
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TPREL_HA);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TPREL_LO);
+ SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
+ is64bit ? MVT::i64 : MVT::i32);
+ SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
+ return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
+ }
+
+ if (!is64bit)
+ llvm_unreachable("only local-exec is currently supported for ppc32");
+
+ if (Model == TLSModel::InitialExec) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ PPCII::MO_TLS);
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
+ PtrVT, GOTReg, TGA);
+ SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
+ PtrVT, TGA, TPOffsetHi);
+ return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
+ }
+
+ if (Model == TLSModel::GeneralDynamic) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
+ GOTReg, TGA);
+ SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
+ GOTEntryHi, TGA);
+
+ // We need a chain node, and don't have one handy. The underlying
+ // call has no side effects, so using the function entry node
+ // suffices.
+ SDValue Chain = DAG.getEntryNode();
+ Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
+ SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
+ SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
+ PtrVT, ParmReg, TGA);
+ // The return value from GET_TLS_ADDR really is in X3 already, but
+ // some hacks are needed here to tie everything together. The extra
+ // copies dissolve during subsequent transforms.
+ Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
+ return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
+ }
+
+ if (Model == TLSModel::LocalDynamic) {
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
+ SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
+ SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
+ GOTReg, TGA);
+ SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
+ GOTEntryHi, TGA);
+
+ // We need a chain node, and don't have one handy. The underlying
+ // call has no side effects, so using the function entry node
+ // suffices.
+ SDValue Chain = DAG.getEntryNode();
+ Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
+ SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
+ SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
+ PtrVT, ParmReg, TGA);
+ // The return value from GET_TLSLD_ADDR really is in X3 already, but
+ // some hacks are needed here to tie everything together. The extra
+ // copies dissolve during subsequent transforms.
+ Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
+ SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
+ Chain, ParmReg, TGA);
+ return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
+ }
+
+ llvm_unreachable("Unknown TLS model!");
+}
+
+SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = Op.getValueType();
+ GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
+ SDLoc DL(GSDN);
+ const GlobalValue *GV = GSDN->getGlobal();
+
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
+ return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
+ unsigned MOHiFlag, MOLoFlag;
+ bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
+
+ SDValue GAHi =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
+ SDValue GALo =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
+
+ SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
+
+ // If the global reference is actually to a non-lazy-pointer, we have to do an
+ // extra load to get the address of the global.
+ if (MOHiFlag & PPCII::MO_NLP_FLAG)
+ Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
+ false, false, false, 0);
+ return Ptr;
+}
+
+SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+
+ // If we're comparing for equality to zero, expose the fact that this is
+ // implented as a ctlz/srl pair on ppc, so that the dag combiner can
+ // fold the new nodes.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (C->isNullValue() && CC == ISD::SETEQ) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDValue Zext = Op.getOperand(0);
+ if (VT.bitsLT(MVT::i32)) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
+ DAG.getConstant(Log2b, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
+ }
+ // Leave comparisons against 0 and -1 alone for now, since they're usually
+ // optimized. FIXME: revisit this when we can custom lower all setcc
+ // optimizations.
+ if (C->isAllOnesValue() || C->isNullValue())
+ return SDValue();
+ }
+
+ // If we have an integer seteq/setne, turn it into a compare against zero
+ // by xor'ing the rhs with the lhs, which is faster than setting a
+ // condition register, reading it back out, and masking the correct bit. The
+ // normal approach here uses sub to do this instead of xor. Using xor exposes
+ // the result to other bit-twiddling opportunities.
+ EVT LHSVT = Op.getOperand(0).getValueType();
+ if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ EVT VT = Op.getValueType();
+ SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
+ }
+ return SDValue();
+}
+
+SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc dl(Node);
+
+ assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
+
+ // gpr_index
+ SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
+ VAListPtr, MachinePointerInfo(SV), MVT::i8,
+ false, false, 0);
+ InChain = GprIndex.getValue(1);
+
+ if (VT == MVT::i64) {
+ // Check if GprIndex is even
+ SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
+ DAG.getConstant(1, MVT::i32));
+ SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
+ DAG.getConstant(0, MVT::i32), ISD::SETNE);
+ SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
+ DAG.getConstant(1, MVT::i32));
+ // Align GprIndex to be even if it isn't
+ GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
+ GprIndex);
+ }
+
+ // fpr index is 1 byte after gpr
+ SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(1, MVT::i32));
+
+ // fpr
+ SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
+ FprPtr, MachinePointerInfo(SV), MVT::i8,
+ false, false, 0);
+ InChain = FprIndex.getValue(1);
+
+ SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(8, MVT::i32));
+
+ SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
+ DAG.getConstant(4, MVT::i32));
+
+ // areas
+ SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ InChain = OverflowArea.getValue(1);
+
+ SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ InChain = RegSaveArea.getValue(1);
+
+ // select overflow_area if index > 8
+ SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(8, MVT::i32), ISD::SETLT);
+
+ // adjustment constant gpr_index * 4/8
+ SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
+ VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(VT.isInteger() ? 4 : 8,
+ MVT::i32));
+
+ // OurReg = RegSaveArea + RegConstant
+ SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
+ RegConstant);
+
+ // Floating types are 32 bytes into RegSaveArea
+ if (VT.isFloatingPoint())
+ OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
+ DAG.getConstant(32, MVT::i32));
+
+ // increase {f,g}pr_index by 1 (or 2 if VT is i64)
+ SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ VT.isInteger() ? GprIndex : FprIndex,
+ DAG.getConstant(VT == MVT::i64 ? 2 : 1,
+ MVT::i32));
+
+ InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
+ VT.isInteger() ? VAListPtr : FprPtr,
+ MachinePointerInfo(SV),
+ MVT::i8, false, false, 0);
+
+ // determine if we should load from reg_save_area or overflow_area
+ SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
+
+ // increase overflow_area by 4/8 if gpr/fpr > 8
+ SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
+ DAG.getConstant(VT.isInteger() ? 4 : 8,
+ MVT::i32));
+
+ OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
+ OverflowAreaPlusN);
+
+ InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
+ OverflowAreaPtr,
+ MachinePointerInfo(),
+ MVT::i32, false, false, 0);
+
+ return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
+
+ // We have to copy the entire va_list struct:
+ // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
+ return DAG.getMemcpy(Op.getOperand(0), Op,
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(12, MVT::i32), 8, false, true,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ return Op.getOperand(0);
+}
+
+SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ SDLoc dl(Op);
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+ Type *IntPtrTy =
+ DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
+ *DAG.getContext());
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = Trmp; Args.push_back(Entry);
+
+ // TrampSize == (isPPC64 ? 48 : 40);
+ Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
+ isPPC64 ? MVT::i64 : MVT::i32);
+ Args.push_back(Entry);
+
+ Entry.Node = FPtr; Args.push_back(Entry);
+ Entry.Node = Nest; Args.push_back(Entry);
+
+ // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
+ TargetLowering::CallLoweringInfo CLI(Chain,
+ Type::getVoidTy(*DAG.getContext()),
+ false, false, false, false, 0,
+ CallingConv::C,
+ /*isTailCall=*/false,
+ /*doesNotRet=*/false,
+ /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol("__trampoline_setup", PtrVT),
+ Args, DAG, dl);
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ return CallResult.second;
+}
+
+SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ SDLoc dl(Op);
+
+ if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV),
+ false, false, 0);
+ }
+
+ // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
+ // We suppose the given va_list is already allocated.
+ //
+ // typedef struct {
+ // char gpr; /* index into the array of 8 GPRs
+ // * stored in the register save area
+ // * gpr=0 corresponds to r3,
+ // * gpr=1 to r4, etc.
+ // */
+ // char fpr; /* index into the array of 8 FPRs
+ // * stored in the register save area
+ // * fpr=0 corresponds to f1,
+ // * fpr=1 to f2, etc.
+ // */
+ // char *overflow_arg_area;
+ // /* location on stack that holds
+ // * the next overflow argument
+ // */
+ // char *reg_save_area;
+ // /* where r3:r10 and f1:f8 (if saved)
+ // * are stored
+ // */
+ // } va_list[1];
+
+
+ SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
+ SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
+
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
+ PtrVT);
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ PtrVT);
+
+ uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
+ SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
+
+ uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
+ SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
+
+ uint64_t FPROffset = 1;
+ SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+
+ // Store first byte : number of int regs
+ SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
+ Op.getOperand(1),
+ MachinePointerInfo(SV),
+ MVT::i8, false, false, 0);
+ uint64_t nextOffset = FPROffset;
+ SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
+ ConstFPROffset);
+
+ // Store second byte : number of float regs
+ SDValue secondStore =
+ DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
+ MachinePointerInfo(SV, nextOffset), MVT::i8,
+ false, false, 0);
+ nextOffset += StackOffset;
+ nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
+
+ // Store second word : arguments given on stack
+ SDValue thirdStore =
+ DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
+ MachinePointerInfo(SV, nextOffset),
+ false, false, 0);
+ nextOffset += FrameOffset;
+ nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
+
+ // Store third word : arguments given in registers
+ return DAG.getStore(thirdStore, dl, FR, nextPtr,
+ MachinePointerInfo(SV, nextOffset),
+ false, false, 0);
+
+}
+
+#include "PPCGenCallingConv.inc"
+
+// Function whose sole purpose is to kill compiler warnings
+// stemming from unused functions included from PPCGenCallingConv.inc.
+CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
+ return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ return true;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ static const uint16_t ArgRegs[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ const unsigned NumArgRegs = array_lengthof(ArgRegs);
+
+ unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
+
+ // Skip one register if the first unallocated register has an even register
+ // number and there are still argument registers available which have not been
+ // allocated yet. RegNum is actually an index into ArgRegs, which means we
+ // need to skip a register if RegNum is odd.
+ if (RegNum != NumArgRegs && RegNum % 2 == 1) {
+ State.AllocateReg(ArgRegs[RegNum]);
+ }
+
+ // Always return false here, as this function only makes sure that the first
+ // unallocated register has an odd register number and does not actually
+ // allocate a register for the current argument.
+ return false;
+}
+
+bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ static const uint16_t ArgRegs[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8
+ };
+
+ const unsigned NumArgRegs = array_lengthof(ArgRegs);
+
+ unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
+
+ // If there is only one Floating-point register left we need to put both f64
+ // values of a split ppc_fp128 value on the stack.
+ if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
+ State.AllocateReg(ArgRegs[RegNum]);
+ }
+
+ // Always return false here, as this function only makes sure that the two f64
+ // values a ppc_fp128 value is split into are both passed in registers or both
+ // passed on the stack and does not actually allocate a register for the
+ // current argument.
+ return false;
+}
+
+/// GetFPR - Get the set of FP registers that should be allocated for arguments,
+/// on Darwin.
+static const uint16_t *GetFPR() {
+ static const uint16_t FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ return FPR;
+}
+
+/// CalculateStackSlotSize - Calculates the size reserved for this argument on
+/// the stack.
+static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
+ unsigned PtrByteSize) {
+ unsigned ArgSize = ArgVT.getSizeInBits()/8;
+ if (Flags.isByVal())
+ ArgSize = Flags.getByValSize();
+ ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+
+ return ArgSize;
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ if (PPCSubTarget.isSVR4ABI()) {
+ if (PPCSubTarget.isPPC64())
+ return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ else
+ return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ } else {
+ return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ }
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_32SVR4(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // 32-bit SVR4 ABI Stack Frame Layout:
+ // +-----------------------------------+
+ // +--> | Back chain |
+ // | +-----------------------------------+
+ // | | Floating-point register save area |
+ // | +-----------------------------------+
+ // | | General register save area |
+ // | +-----------------------------------+
+ // | | CR save word |
+ // | +-----------------------------------+
+ // | | VRSAVE save word |
+ // | +-----------------------------------+
+ // | | Alignment padding |
+ // | +-----------------------------------+
+ // | | Vector register save area |
+ // | +-----------------------------------+
+ // | | Local variable space |
+ // | +-----------------------------------+
+ // | | Parameter list area |
+ // | +-----------------------------------+
+ // | | LR save word |
+ // | +-----------------------------------+
+ // SP--> +--- | Back chain |
+ // +-----------------------------------+
+ //
+ // Specifications:
+ // System V Application Binary Interface PowerPC Processor Supplement
+ // AltiVec Technology Programming Interface Manual
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = 4;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // Reserve space for the linkage area on the stack.
+ CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ const TargetRegisterClass *RC;
+ EVT ValVT = VA.getValVT();
+
+ switch (ValVT.getSimpleVT().SimpleTy) {
+ default:
+ llvm_unreachable("ValVT not supported by formal arguments Lowering");
+ case MVT::i32:
+ RC = &PPC::GPRCRegClass;
+ break;
+ case MVT::f32:
+ RC = &PPC::F4RCRegClass;
+ break;
+ case MVT::f64:
+ RC = &PPC::F8RCRegClass;
+ break;
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v4f32:
+ RC = &PPC::VRRCRegClass;
+ break;
+ }
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
+
+ InVals.push_back(ArgValue);
+ } else {
+ // Argument stored in memory.
+ assert(VA.isMemLoc());
+
+ unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
+ int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
+ isImmutable);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
+ MachinePointerInfo(),
+ false, false, false, 0));
+ }
+ }
+
+ // Assign locations to all of the incoming aggregate by value arguments.
+ // Aggregates passed by value are stored in the local variable space of the
+ // caller's stack frame, right above the parameter list area.
+ SmallVector<CCValAssign, 16> ByValArgLocs;
+ CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ByValArgLocs, *DAG.getContext());
+
+ // Reserve stack space for the allocations in CCInfo.
+ CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
+
+ CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
+
+ // Area that is at least reserved in the caller of this function.
+ unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized function's reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+
+ MinReservedArea =
+ std::max(MinReservedArea,
+ PPCFrameLowering::getMinCallFrameSize(false, false));
+
+ unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
+ getStackAlignment();
+ unsigned AlignMask = TargetAlign-1;
+ MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
+
+ FI->setMinReservedArea(MinReservedArea);
+
+ SmallVector<SDValue, 8> MemOps;
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ static const uint16_t GPArgRegs[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
+
+ static const uint16_t FPArgRegs[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8
+ };
+ const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
+
+ FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
+ NumGPArgRegs));
+ FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
+ NumFPArgRegs));
+
+ // Make room for NumGPArgRegs and NumFPArgRegs.
+ int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
+ NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
+
+ FuncInfo->setVarArgsStackOffset(
+ MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
+ CCInfo.getNextStackOffset(), true));
+
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // The fixed integer arguments of a variadic function are stored to the
+ // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
+ // Get an existing live-in vreg, or add a new one.
+ unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
+ if (!VReg)
+ VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+
+ // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
+ // is set.
+ // The double arguments are stored to the VarArgsFrameIndex
+ // on the stack.
+ for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
+ // Get an existing live-in vreg, or add a new one.
+ unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
+ if (!VReg)
+ VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by eight for the next argument to store
+ SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
+ PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl,
+ MVT::Other, &MemOps[0], MemOps.size());
+
+ return Chain;
+}
+
+// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+// value to MVT::i64 and then truncate to the correct register size.
+SDValue
+PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
+ SelectionDAG &DAG, SDValue ArgVal,
+ SDLoc dl) const {
+ if (Flags.isSExt())
+ ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
+ DAG.getValueType(ObjectVT));
+ else if (Flags.isZExt())
+ ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
+ DAG.getValueType(ObjectVT));
+
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
+}
+
+// Set the size that is at least reserved in caller of this function. Tail
+// call optimized functions' reserved stack space needs to be aligned so that
+// taking the difference between two stack areas will result in an aligned
+// stack.
+void
+PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
+ unsigned nAltivecParamsAtEnd,
+ unsigned MinReservedArea,
+ bool isPPC64) const {
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ // Add the Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += 16*nAltivecParamsAtEnd;
+ }
+ MinReservedArea =
+ std::max(MinReservedArea,
+ PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
+ unsigned TargetAlign
+ = DAG.getMachineFunction().getTarget().getFrameLowering()->
+ getStackAlignment();
+ unsigned AlignMask = TargetAlign-1;
+ MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
+ FI->setMinReservedArea(MinReservedArea);
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_64SVR4(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // TODO: add description of PPC stack frame format, or at least some docs.
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = 8;
+
+ unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
+ // Area that is at least reserved in caller of this function.
+ unsigned MinReservedArea = ArgOffset;
+
+ static const uint16_t GPR[] = {
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+
+ static const uint16_t *FPR = GetFPR();
+
+ static const uint16_t VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+
+ const unsigned Num_GPR_Regs = array_lengthof(GPR);
+ const unsigned Num_FPR_Regs = 13;
+ const unsigned Num_VR_Regs = array_lengthof(VR);
+
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ // Add DAG nodes to load the arguments or copy them out of registers. On
+ // entry to a function on PPC, the arguments start after the linkage area,
+ // although the first ones are often in registers.
+
+ SmallVector<SDValue, 8> MemOps;
+ unsigned nAltivecParamsAtEnd = 0;
+ Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
+ SDValue ArgVal;
+ bool needsLoad = false;
+ EVT ObjectVT = Ins[ArgNo].VT;
+ unsigned ObjSize = ObjectVT.getSizeInBits()/8;
+ unsigned ArgSize = ObjSize;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+ std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[ArgNo].OrigArgIndex;
+
+ unsigned CurArgOffset = ArgOffset;
+
+ // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
+ if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
+ ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
+ if (isVarArg) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += CalculateStackSlotSize(ObjectVT,
+ Flags,
+ PtrByteSize);
+ } else
+ nAltivecParamsAtEnd++;
+ } else
+ // Calculate min reserved area.
+ MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
+ Flags,
+ PtrByteSize);
+
+ // FIXME the codegen can be much improved in some cases.
+ // We do not have to keep everything in memory.
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of registers.
+ ObjSize = Flags.getByValSize();
+ ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ // Empty aggregate parameters do not take up registers. Examples:
+ // struct { } a;
+ // union { } b;
+ // int c[0];
+ // etc. However, we have to provide a place-holder in InVals, so
+ // pretend we have an 8-byte item at the current address for that
+ // purpose.
+ if (!ObjSize) {
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(FIN);
+ continue;
+ }
+
+ unsigned BVAlign = Flags.getByValAlign();
+ if (BVAlign > 8) {
+ ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
+ CurArgOffset = ArgOffset;
+ }
+
+ // All aggregates smaller than 8 bytes must be passed right-justified.
+ if (ObjSize < PtrByteSize)
+ CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
+ // The value of the object is its address.
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(FIN);
+
+ if (ObjSize < 8) {
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store;
+
+ if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
+ EVT ObjType = (ObjSize == 1 ? MVT::i8 :
+ (ObjSize == 2 ? MVT::i16 : MVT::i32));
+ Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg, CurArgOffset),
+ ObjType, false, false, 0);
+ } else {
+ // For sizes that don't fit a truncating store (3, 5, 6, 7),
+ // store the whole register as-is to the parameter save area
+ // slot. The address of the parameter was already calculated
+ // above (InVals.push_back(FIN)) to be the right-justified
+ // offset within the slot. For this store, we need a new
+ // frame index that points at the beginning of the slot.
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg, ArgOffset),
+ false, false, 0);
+ }
+
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ }
+ // Whether we copied from a register or not, advance the offset
+ // into the parameter save area by a full doubleword.
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+
+ for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
+ // Store whatever pieces of the object are in registers
+ // to memory. ArgOffset will be the address of the beginning
+ // of the object.
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg;
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg, ArgOffset),
+ false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ArgSize - j;
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i32:
+ case MVT::i64:
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+ if (ObjectVT == MVT::i32)
+ // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+ // value to MVT::i64 and then truncate to the correct register size.
+ ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
+
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ ArgOffset += 8;
+ break;
+
+ case MVT::f32:
+ case MVT::f64:
+ // Every 8 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_idx != Num_GPR_Regs) {
+ ++GPR_idx;
+ }
+ if (FPR_idx != Num_FPR_Regs) {
+ unsigned VReg;
+
+ if (ObjectVT == MVT::f32)
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
+ else
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
+
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+
+ ArgOffset += 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Note that vector arguments in registers don't reserve stack space,
+ // except in varargs functions.
+ if (VR_idx != Num_VR_Regs) {
+ unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ if (isVarArg) {
+ while ((ArgOffset % 16) != 0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != Num_GPR_Regs)
+ GPR_idx++;
+ }
+ ArgOffset += 16;
+ GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
+ }
+ ++VR_idx;
+ } else {
+ // Vectors are aligned.
+ ArgOffset = ((ArgOffset+15)/16)*16;
+ CurArgOffset = ArgOffset;
+ ArgOffset += 16;
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined
+ // above that we ran out of physical registers of the appropriate type.
+ if (needsLoad) {
+ int FI = MFI->CreateFixedObject(ObjSize,
+ CurArgOffset + (ArgSize - ObjSize),
+ isImmutable);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+
+ InVals.push_back(ArgVal);
+ }
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized functions' reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ int Depth = ArgOffset;
+
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(PtrByteSize, Depth, true));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl,
+ MVT::Other, &MemOps[0], MemOps.size());
+
+ return Chain;
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_Darwin(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // TODO: add description of PPC stack frame format, or at least some docs.
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ // Potential tail calls could cause overwriting of argument stack slots.
+ bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
+ (CallConv == CallingConv::Fast));
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ // Area that is at least reserved in caller of this function.
+ unsigned MinReservedArea = ArgOffset;
+
+ static const uint16_t GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const uint16_t GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+
+ static const uint16_t *FPR = GetFPR();
+
+ static const uint16_t VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+
+ const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
+ const unsigned Num_FPR_Regs = 13;
+ const unsigned Num_VR_Regs = array_lengthof( VR);
+
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ // In 32-bit non-varargs functions, the stack space for vectors is after the
+ // stack space for non-vectors. We do not use this space unless we have
+ // too many vectors to fit in registers, something that only occurs in
+ // constructed examples:), but we have to walk the arglist to figure
+ // that out...for the pathological case, compute VecArgOffset as the
+ // start of the vector parameter area. Computing VecArgOffset is the
+ // entire point of the following loop.
+ unsigned VecArgOffset = ArgOffset;
+ if (!isVarArg && !isPPC64) {
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
+ ++ArgNo) {
+ EVT ObjectVT = Ins[ArgNo].VT;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of regs.
+ unsigned ObjSize = Flags.getByValSize();
+ unsigned ArgSize =
+ ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ VecArgOffset += ArgSize;
+ continue;
+ }
+
+ switch(ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i32:
+ case MVT::f32:
+ VecArgOffset += 4;
+ break;
+ case MVT::i64: // PPC64
+ case MVT::f64:
+ // FIXME: We are guaranteed to be !isPPC64 at this point.
+ // Does MVT::i64 apply?
+ VecArgOffset += 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Nothing to do, we're only looking at Nonvector args here.
+ break;
+ }
+ }
+ }
+ // We've found where the vector parameter area in memory is. Skip the
+ // first 12 parameters; these don't use that memory.
+ VecArgOffset = ((VecArgOffset+15)/16)*16;
+ VecArgOffset += 12*16;
+
+ // Add DAG nodes to load the arguments or copy them out of registers. On
+ // entry to a function on PPC, the arguments start after the linkage area,
+ // although the first ones are often in registers.
+
+ SmallVector<SDValue, 8> MemOps;
+ unsigned nAltivecParamsAtEnd = 0;
+ Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
+ SDValue ArgVal;
+ bool needsLoad = false;
+ EVT ObjectVT = Ins[ArgNo].VT;
+ unsigned ObjSize = ObjectVT.getSizeInBits()/8;
+ unsigned ArgSize = ObjSize;
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
+ std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[ArgNo].OrigArgIndex;
+
+ unsigned CurArgOffset = ArgOffset;
+
+ // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
+ if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
+ ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
+ if (isVarArg || isPPC64) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += CalculateStackSlotSize(ObjectVT,
+ Flags,
+ PtrByteSize);
+ } else nAltivecParamsAtEnd++;
+ } else
+ // Calculate min reserved area.
+ MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
+ Flags,
+ PtrByteSize);
+
+ // FIXME the codegen can be much improved in some cases.
+ // We do not have to keep everything in memory.
+ if (Flags.isByVal()) {
+ // ObjSize is the true size, ArgSize rounded up to multiple of registers.
+ ObjSize = Flags.getByValSize();
+ ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
+ // Objects of size 1 and 2 are right justified, everything else is
+ // left justified. This means the memory address is adjusted forwards.
+ if (ObjSize==1 || ObjSize==2) {
+ CurArgOffset = CurArgOffset + (4 - ObjSize);
+ }
+ // The value of the object is its address.
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(FIN);
+ if (ObjSize==1 || ObjSize==2) {
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg;
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
+ SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg,
+ CurArgOffset),
+ ObjType, false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ }
+
+ ArgOffset += PtrByteSize;
+
+ continue;
+ }
+ for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
+ // Store whatever pieces of the object are in registers
+ // to memory. ArgOffset will be the address of the beginning
+ // of the object.
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg;
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(FuncArg, ArgOffset),
+ false, false, 0);
+ MemOps.push_back(Store);
+ ++GPR_idx;
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
+ case MVT::i32:
+ if (!isPPC64) {
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ // All int arguments reserve stack space in the Darwin ABI.
+ ArgOffset += PtrByteSize;
+ break;
+ }
+ // FALLTHROUGH
+ case MVT::i64: // PPC64
+ if (GPR_idx != Num_GPR_Regs) {
+ unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+
+ if (ObjectVT == MVT::i32)
+ // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
+ // value to MVT::i64 and then truncate to the correct register size.
+ ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
+
+ ++GPR_idx;
+ } else {
+ needsLoad = true;
+ ArgSize = PtrByteSize;
+ }
+ // All int arguments reserve stack space in the Darwin ABI.
+ ArgOffset += 8;
+ break;
+
+ case MVT::f32:
+ case MVT::f64:
+ // Every 4 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_idx != Num_GPR_Regs) {
+ ++GPR_idx;
+ if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
+ ++GPR_idx;
+ }
+ if (FPR_idx != Num_FPR_Regs) {
+ unsigned VReg;
+
+ if (ObjectVT == MVT::f32)
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
+ else
+ VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
+
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ }
+
+ // All FP arguments reserve stack space in the Darwin ABI.
+ ArgOffset += isPPC64 ? 8 : ObjSize;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ // Note that vector arguments in registers don't reserve stack space,
+ // except in varargs functions.
+ if (VR_idx != Num_VR_Regs) {
+ unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
+ if (isVarArg) {
+ while ((ArgOffset % 16) != 0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != Num_GPR_Regs)
+ GPR_idx++;
+ }
+ ArgOffset += 16;
+ GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
+ }
+ ++VR_idx;
+ } else {
+ if (!isVarArg && !isPPC64) {
+ // Vectors go after all the nonvectors.
+ CurArgOffset = VecArgOffset;
+ VecArgOffset += 16;
+ } else {
+ // Vectors are aligned.
+ ArgOffset = ((ArgOffset+15)/16)*16;
+ CurArgOffset = ArgOffset;
+ ArgOffset += 16;
+ }
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined above
+ // that we ran out of physical registers of the appropriate type.
+ if (needsLoad) {
+ int FI = MFI->CreateFixedObject(ObjSize,
+ CurArgOffset + (ArgSize - ObjSize),
+ isImmutable);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
+ false, false, false, 0);
+ }
+
+ InVals.push_back(ArgVal);
+ }
+
+ // Set the size that is at least reserved in caller of this function. Tail
+ // call optimized functions' reserved stack space needs to be aligned so that
+ // taking the difference between two stack areas will result in an aligned
+ // stack.
+ setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ int Depth = ArgOffset;
+
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
+ Depth, true));
+ SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+ unsigned VReg;
+
+ if (isPPC64)
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
+ else
+ VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl,
+ MVT::Other, &MemOps[0], MemOps.size());
+
+ return Chain;
+}
+
+/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
+/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
+static unsigned
+CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
+ bool isPPC64,
+ bool isVarArg,
+ unsigned CC,
+ const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ unsigned &nAltivecParamsAtEnd) {
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. We start with 24/48 bytes, which is
+ // prereserved space for [SP][CR][LR][3 x unused].
+ unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned NumOps = Outs.size();
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ // Add up all the space actually used.
+ // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
+ // they all go in registers, but we must reserve stack space for them for
+ // possible use by the caller. In varargs or 64-bit calls, parameters are
+ // assigned stack space in order, with padding so Altivec parameters are
+ // 16-byte aligned.
+ nAltivecParamsAtEnd = 0;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+ // Varargs Altivec parameters are padded to a 16 byte boundary.
+ if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
+ ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
+ if (!isVarArg && !isPPC64) {
+ // Non-varargs Altivec parameters go after all the non-Altivec
+ // parameters; handle those later so we know how much padding we need.
+ nAltivecParamsAtEnd++;
+ continue;
+ }
+ // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
+ NumBytes = ((NumBytes+15)/16)*16;
+ }
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ }
+
+ // Allow for Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ NumBytes = ((NumBytes+15)/16)*16;
+ NumBytes += 16*nAltivecParamsAtEnd;
+ }
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ NumBytes = std::max(NumBytes,
+ PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
+
+ // Tail call needs the stack to be aligned.
+ if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
+ unsigned TargetAlign = DAG.getMachineFunction().getTarget().
+ getFrameLowering()->getStackAlignment();
+ unsigned AlignMask = TargetAlign-1;
+ NumBytes = (NumBytes + AlignMask) & ~AlignMask;
+ }
+
+ return NumBytes;
+}
+
+/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
+/// adjusted to accommodate the arguments for the tailcall.
+static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
+ unsigned ParamSize) {
+
+ if (!isTailCall) return 0;
+
+ PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
+ unsigned CallerMinReservedArea = FI->getMinReservedArea();
+ int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
+ // Remember only if the new adjustement is bigger.
+ if (SPDiff < FI->getTailCallSPDelta())
+ FI->setTailCallSPDelta(SPDiff);
+
+ return SPDiff;
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ if (!getTargetMachine().Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Variable argument functions are not supported.
+ if (isVarArg)
+ return false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
+ if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
+ // Functions containing by val parameters are not supported.
+ for (unsigned i = 0; i != Ins.size(); i++) {
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ if (Flags.isByVal()) return false;
+ }
+
+ // Non PIC/GOT tail calls are supported.
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return true;
+
+ // At the moment we can only do local tail calls (in same module, hidden
+ // or protected) if we are generating PIC.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ return G->getGlobal()->hasHiddenVisibility()
+ || G->getGlobal()->hasProtectedVisibility();
+ }
+
+ return false;
+}
+
+/// isCallCompatibleAddress - Return the immediate to use if the specified
+/// 32-bit value is representable in the immediate field of a BxA instruction.
+static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C) return 0;
+
+ int Addr = C->getZExtValue();
+ if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
+ SignExtend32<26>(Addr) != Addr)
+ return 0; // Top 6 bits have to be sext of immediate.
+
+ return DAG.getConstant((int)C->getZExtValue() >> 2,
+ DAG.getTargetLoweringInfo().getPointerTy()).getNode();
+}
+
+namespace {
+
+struct TailCallArgumentInfo {
+ SDValue Arg;
+ SDValue FrameIdxOp;
+ int FrameIdx;
+
+ TailCallArgumentInfo() : FrameIdx(0) {}
+};
+
+}
+
+/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
+static void
+StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
+ SDValue Chain,
+ const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ SDLoc dl) {
+ for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
+ SDValue Arg = TailCallArgs[i].Arg;
+ SDValue FIN = TailCallArgs[i].FrameIdxOp;
+ int FI = TailCallArgs[i].FrameIdx;
+ // Store relative to framepointer.
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ }
+}
+
+/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
+/// the appropriate stack slot for the tail call optimized function call.
+static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
+ MachineFunction &MF,
+ SDValue Chain,
+ SDValue OldRetAddr,
+ SDValue OldFP,
+ int SPDiff,
+ bool isPPC64,
+ bool isDarwinABI,
+ SDLoc dl) {
+ if (SPDiff) {
+ // Calculate the new stack slot for the return address.
+ int SlotSize = isPPC64 ? 8 : 4;
+ int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
+ isDarwinABI);
+ int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
+ NewRetAddrLoc, true);
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
+ Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
+ MachinePointerInfo::getFixedStack(NewRetAddr),
+ false, false, 0);
+
+ // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
+ // slot as the FP is never overwritten.
+ if (isDarwinABI) {
+ int NewFPLoc =
+ SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
+ int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
+ true);
+ SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
+ Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
+ MachinePointerInfo::getFixedStack(NewFPIdx),
+ false, false, 0);
+ }
+ }
+ return Chain;
+}
+
+/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
+/// the position of the argument.
+static void
+CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
+ SDValue Arg, int SPDiff, unsigned ArgOffset,
+ SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
+ int Offset = ArgOffset + SPDiff;
+ uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
+ int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ SDValue FIN = DAG.getFrameIndex(FI, VT);
+ TailCallArgumentInfo Info;
+ Info.Arg = Arg;
+ Info.FrameIdxOp = FIN;
+ Info.FrameIdx = FI;
+ TailCallArguments.push_back(Info);
+}
+
+/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
+/// stack slot. Returns the chain as result and the loaded frame pointers in
+/// LROpOut/FPOpout. Used when tail calling.
+SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
+ int SPDiff,
+ SDValue Chain,
+ SDValue &LROpOut,
+ SDValue &FPOpOut,
+ bool isDarwinABI,
+ SDLoc dl) const {
+ if (SPDiff) {
+ // Load the LR and FP stack slot for later adjusting.
+ EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
+ LROpOut = getReturnAddrFrameIndex(DAG);
+ LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
+ false, false, false, 0);
+ Chain = SDValue(LROpOut.getNode(), 1);
+
+ // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
+ // slot as the FP is never overwritten.
+ if (isDarwinABI) {
+ FPOpOut = getFramePointerFrameIndex(DAG);
+ FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
+ false, false, false, 0);
+ Chain = SDValue(FPOpOut.getNode(), 1);
+ }
+ }
+ return Chain;
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// specified by the specific parameter attribute. The copy will be passed as
+/// a byval function parameter.
+/// Sometimes what we are copying is the end of a larger object, the part that
+/// does not fit in registers.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ false, false, MachinePointerInfo(0),
+ MachinePointerInfo(0));
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
+/// tail calls.
+static void
+LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
+ SDValue Arg, SDValue PtrOff, int SPDiff,
+ unsigned ArgOffset, bool isPPC64, bool isTailCall,
+ bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
+ SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
+ SDLoc dl) {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ if (!isTailCall) {
+ if (isVector) {
+ SDValue StackPtr;
+ if (isPPC64)
+ StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+ else
+ StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ DAG.getConstant(ArgOffset, PtrVT));
+ }
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0));
+ // Calculate and remember argument location.
+ } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
+ TailCallArguments);
+}
+
+static
+void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
+ SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
+ SDValue LROp, SDValue FPOp, bool isDarwinABI,
+ SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Emit a sequence of copyto/copyfrom virtual registers for arguments that
+ // might overwrite each other in case of tail call optimization.
+ SmallVector<SDValue, 8> MemOpChains2;
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
+ MemOpChains2, dl);
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains2[0], MemOpChains2.size());
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
+ isPPC64, isDarwinABI, dl);
+
+ // Emit callseq_end just before tailcall node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+}
+
+static
+unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
+ SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
+ SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
+ SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
+ const PPCSubtarget &PPCSubTarget) {
+
+ bool isPPC64 = PPCSubTarget.isPPC64();
+ bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
+
+ unsigned CallOpc = PPCISD::CALL;
+
+ bool needIndirectCall = true;
+ if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
+ // If this is an absolute destination address, use the munged value.
+ Callee = SDValue(Dest, 0);
+ needIndirectCall = false;
+ }
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
+ // Use indirect calls for ALL functions calls in JIT mode, since the
+ // far-call stubs may be outside relocation limits for a BL instruction.
+ if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
+ unsigned OpFlags = 0;
+ if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
+ (PPCSubTarget.getTargetTriple().isMacOSX() &&
+ PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
+ (G->getGlobal()->isDeclaration() ||
+ G->getGlobal()->isWeakForLinker())) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = PPCII::MO_DARWIN_STUB;
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
+ // every direct call is) turn it into a TargetGlobalAddress /
+ // TargetExternalSymbol node so that legalize doesn't hack it.
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
+ Callee.getValueType(),
+ 0, OpFlags);
+ needIndirectCall = false;
+ }
+ }
+
+ if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ unsigned char OpFlags = 0;
+
+ if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
+ (PPCSubTarget.getTargetTriple().isMacOSX() &&
+ PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = PPCII::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
+ OpFlags);
+ needIndirectCall = false;
+ }
+
+ if (needIndirectCall) {
+ // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
+ // to do the call, we can't use PPCISD::CALL.
+ SDValue MTCTROps[] = {Chain, Callee, InFlag};
+
+ if (isSVR4ABI && isPPC64) {
+ // Function pointers in the 64-bit SVR4 ABI do not point to the function
+ // entry point, but to the function descriptor (the function entry point
+ // address is part of the function descriptor though).
+ // The function descriptor is a three doubleword structure with the
+ // following fields: function entry point, TOC base address and
+ // environment pointer.
+ // Thus for a call through a function pointer, the following actions need
+ // to be performed:
+ // 1. Save the TOC of the caller in the TOC save area of its stack
+ // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
+ // 2. Load the address of the function entry point from the function
+ // descriptor.
+ // 3. Load the TOC of the callee from the function descriptor into r2.
+ // 4. Load the environment pointer from the function descriptor into
+ // r11.
+ // 5. Branch to the function entry point address.
+ // 6. On return of the callee, the TOC of the caller needs to be
+ // restored (this is done in FinishCall()).
+ //
+ // All those operations are flagged together to ensure that no other
+ // operations can be scheduled in between. E.g. without flagging the
+ // operations together, a TOC access in the caller could be scheduled
+ // between the load of the callee TOC and the branch to the callee, which
+ // results in the TOC access going through the TOC of the callee instead
+ // of going through the TOC of the caller, which leads to incorrect code.
+
+ // Load the address of the function entry point from the function
+ // descriptor.
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
+ SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
+ InFlag.getNode() ? 3 : 2);
+ Chain = LoadFuncPtr.getValue(1);
+ InFlag = LoadFuncPtr.getValue(2);
+
+ // Load environment pointer into r11.
+ // Offset of the environment pointer within the function descriptor.
+ SDValue PtrOff = DAG.getIntPtrConstant(16);
+
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
+ SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
+ InFlag);
+ Chain = LoadEnvPtr.getValue(1);
+ InFlag = LoadEnvPtr.getValue(2);
+
+ SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
+ InFlag);
+ Chain = EnvVal.getValue(0);
+ InFlag = EnvVal.getValue(1);
+
+ // Load TOC of the callee into r2. We are using a target-specific load
+ // with r2 hard coded, because the result of a target-independent load
+ // would never go directly into r2, since r2 is a reserved register (which
+ // prevents the register allocator from allocating it), resulting in an
+ // additional register being allocated and an unnecessary move instruction
+ // being generated.
+ VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
+ Callee, InFlag);
+ Chain = LoadTOCPtr.getValue(0);
+ InFlag = LoadTOCPtr.getValue(1);
+
+ MTCTROps[0] = Chain;
+ MTCTROps[1] = LoadFuncPtr;
+ MTCTROps[2] = InFlag;
+ }
+
+ Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
+ 2 + (InFlag.getNode() != 0));
+ InFlag = Chain.getValue(1);
+
+ NodeTys.clear();
+ NodeTys.push_back(MVT::Other);
+ NodeTys.push_back(MVT::Glue);
+ Ops.push_back(Chain);
+ CallOpc = PPCISD::BCTRL;
+ Callee.setNode(0);
+ // Add use of X11 (holding environment pointer)
+ if (isSVR4ABI && isPPC64)
+ Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
+ // Add CTR register as callee so a bctr can be emitted later.
+ if (isTailCall)
+ Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
+ }
+
+ // If this is a direct call, pass the chain and the callee.
+ if (Callee.getNode()) {
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ }
+ // If this is a tail call add stack pointer delta.
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ return CallOpc;
+}
+
+static
+bool isLocalCall(const SDValue &Callee)
+{
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ return !G->getGlobal()->isDeclaration() &&
+ !G->getGlobal()->isWeakForLinker();
+ return false;
+}
+
+SDValue
+PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl,
+ VA.getLocReg(), VA.getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+SDValue
+PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
+ bool isTailCall, bool isVarArg,
+ SelectionDAG &DAG,
+ SmallVector<std::pair<unsigned, SDValue>, 8>
+ &RegsToPass,
+ SDValue InFlag, SDValue Chain,
+ SDValue &Callee,
+ int SPDiff, unsigned NumBytes,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<SDValue> &InVals) const {
+ std::vector<EVT> NodeTys;
+ SmallVector<SDValue, 8> Ops;
+ unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
+ isTailCall, RegsToPass, Ops, NodeTys,
+ PPCSubTarget);
+
+ // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
+ if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
+ Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
+
+ // When performing tail call optimization the callee pops its arguments off
+ // the stack. Account for this here so these bytes can be pushed back on in
+ // PPCFrameLowering::eliminateCallFramePseudoInstr.
+ int BytesCalleePops =
+ (CallConv == CallingConv::Fast &&
+ getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ // Emit tail call.
+ if (isTailCall) {
+ assert(((Callee.getOpcode() == ISD::Register &&
+ cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
+ Callee.getOpcode() == ISD::TargetExternalSymbol ||
+ Callee.getOpcode() == ISD::TargetGlobalAddress ||
+ isa<ConstantSDNode>(Callee)) &&
+ "Expecting an global address, external symbol, absolute value or register");
+
+ return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
+ }
+
+ // Add a NOP immediately after the branch instruction when using the 64-bit
+ // SVR4 ABI. At link time, if caller and callee are in a different module and
+ // thus have a different TOC, the call will be replaced with a call to a stub
+ // function which saves the current TOC, loads the TOC of the callee and
+ // branches to the callee. The NOP will be replaced with a load instruction
+ // which restores the TOC of the caller from the TOC save slot of the current
+ // stack frame. If caller and callee belong to the same module (and have the
+ // same TOC), the NOP will remain unchanged.
+
+ bool needsTOCRestore = false;
+ if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
+ if (CallOpc == PPCISD::BCTRL) {
+ // This is a call through a function pointer.
+ // Restore the caller TOC from the save area into R2.
+ // See PrepareCall() for more information about calls through function
+ // pointers in the 64-bit SVR4 ABI.
+ // We are using a target-specific load with r2 hard coded, because the
+ // result of a target-independent load would never go directly into r2,
+ // since r2 is a reserved register (which prevents the register allocator
+ // from allocating it), resulting in an additional register being
+ // allocated and an unnecessary move instruction being generated.
+ needsTOCRestore = true;
+ } else if ((CallOpc == PPCISD::CALL) &&
+ (!isLocalCall(Callee) ||
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ // Otherwise insert NOP for non-local calls.
+ CallOpc = PPCISD::CALL_NOP;
+ }
+ }
+
+ Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ if (needsTOCRestore) {
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(BytesCalleePops, true),
+ InFlag, dl);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ if (isTailCall)
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
+ Ins, DAG);
+
+ if (PPCSubTarget.isSVR4ABI()) {
+ if (PPCSubTarget.isPPC64())
+ return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+ else
+ return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+ }
+
+ return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, OutVals, Ins,
+ dl, DAG, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
+ // of the 32-bit SVR4 ABI stack frame layout.
+
+ assert((CallConv == CallingConv::C ||
+ CallConv == CallingConv::Fast) && "Unknown calling convention!");
+
+ unsigned PtrByteSize = 4;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, parameter list area and the part of the local variable space which
+ // contains copies of aggregates which are passed by value.
+
+ // Assign locations to all of the outgoing arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // Reserve space for the linkage area on the stack.
+ CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
+
+ if (isVarArg) {
+ // Handle fixed and variable vector arguments differently.
+ // Fixed vector arguments go into registers as long as registers are
+ // available. Variable vector arguments always go into memory.
+ unsigned NumArgs = Outs.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ bool Result;
+
+ if (Outs[i].IsFixed) {
+ Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
+ CCInfo);
+ } else {
+ Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo);
+ }
+
+ if (Result) {
+#ifndef NDEBUG
+ errs() << "Call operand #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << "\n";
+#endif
+ llvm_unreachable(0);
+ }
+ }
+ } else {
+ // All arguments are treated the same.
+ CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
+ }
+
+ // Assign locations to all of the outgoing aggregate by value arguments.
+ SmallVector<CCValAssign, 16> ByValArgLocs;
+ CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ByValArgLocs, *DAG.getContext());
+
+ // Reserve stack space for the allocations in CCInfo.
+ CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
+
+ CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
+
+ // Size of the linkage area, parameter list area and the part of the local
+ // space variable where copies of aggregates which are passed by value are
+ // stored.
+ unsigned NumBytes = CCByValInfo.getNextStackOffset();
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be moved somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ bool seenFloatArg = false;
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, j = 0, e = ArgLocs.size();
+ i != e;
+ ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ if (Flags.isByVal()) {
+ // Argument is an aggregate which is passed by value, thus we need to
+ // create a copy of it in the local variable space of the current stack
+ // frame (which is the stack frame of the caller) and pass the address of
+ // this copy to the callee.
+ assert((j < ByValArgLocs.size()) && "Index out of bounds!");
+ CCValAssign &ByValVA = ByValArgLocs[j++];
+ assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
+
+ // Memory reserved in the local variable space of the callers stack frame.
+ unsigned LocMemOffset = ByValVA.getLocMemOffset();
+
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+ // Create a copy of the argument in the local area of the current
+ // stack frame.
+ SDValue MemcpyCall =
+ CreateCopyOfByValArgument(Arg, PtrOff,
+ CallSeqStart.getNode()->getOperand(0),
+ Flags, DAG, dl);
+
+ // This must go outside the CALLSEQ_START..END.
+ SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+ CallSeqStart.getNode()->getOperand(1),
+ SDLoc(MemcpyCall));
+ DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+ NewCallSeqStart.getNode());
+ Chain = CallSeqStart = NewCallSeqStart;
+
+ // Pass the address of the aggregate copy on the stack either in a
+ // physical register or in the parameter list area of the current stack
+ // frame to the callee.
+ Arg = PtrOff;
+ }
+
+ if (VA.isRegLoc()) {
+ seenFloatArg |= VA.getLocVT().isFloatingPoint();
+ // Put argument in a physical register.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ // Put argument in the parameter list area of the current stack frame.
+ assert(VA.isMemLoc());
+ unsigned LocMemOffset = VA.getLocMemOffset();
+
+ if (!isTailCall) {
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(),
+ false, false, 0));
+ } else {
+ // Calculate and remember argument location.
+ CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
+ TailCallArguments);
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Set CR bit 6 to true if this is a vararg call with floating args passed in
+ // registers.
+ if (isVarArg) {
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, InFlag };
+
+ Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
+ dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
+
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
+ false, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+// Copy an argument into memory, being careful to do this outside the
+// call sequence for the call to which the argument belongs.
+SDValue
+PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
+ SDValue CallSeqStart,
+ ISD::ArgFlagsTy Flags,
+ SelectionDAG &DAG,
+ SDLoc dl) const {
+ SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
+ CallSeqStart.getNode()->getOperand(0),
+ Flags, DAG, dl);
+ // The MEMCPY must go outside the CALLSEQ_START..END.
+ SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
+ CallSeqStart.getNode()->getOperand(1),
+ SDLoc(MemcpyCall));
+ DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
+ NewCallSeqStart.getNode());
+ return NewCallSeqStart;
+}
+
+SDValue
+PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ unsigned NumOps = Outs.size();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ unsigned PtrByteSize = 8;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ unsigned nAltivecParamsAtEnd = 0;
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. We start with at least 48 bytes, which
+ // is reserved space for [SP][CR][LR][3 x unused].
+ // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
+ // of this call.
+ unsigned NumBytes =
+ CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
+ Outs, OutVals, nAltivecParamsAtEnd);
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // To protect arguments on the stack from being clobbered in a tail call,
+ // force all the loads to happen before doing any other lowering.
+ if (isTailCall)
+ Chain = DAG.getStackArgumentTokenFactor(Chain);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be move somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ static const uint16_t GPR[] = {
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+ static const uint16_t *FPR = GetFPR();
+
+ static const uint16_t VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ const unsigned NumGPRs = array_lengthof(GPR);
+ const unsigned NumFPRs = 13;
+ const unsigned NumVRs = array_lengthof(VR);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+
+ SmallVector<SDValue, 8> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDValue PtrOff;
+
+ PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+
+ // Promote integers to 64-bit values.
+ if (Arg.getValueType() == MVT::i32) {
+ // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
+ unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
+ }
+
+ // FIXME memcpy is used way more than necessary. Correctness first.
+ // Note: "by value" is code for passing a structure by value, not
+ // basic types.
+ if (Flags.isByVal()) {
+ // Note: Size includes alignment padding, so
+ // struct x { short a; char b; }
+ // will have Size = 4. With #pragma pack(1), it will have Size = 3.
+ // These are the proper values we need for right-justifying the
+ // aggregate in a parameter register.
+ unsigned Size = Flags.getByValSize();
+
+ // An empty aggregate parameter takes up no storage and no
+ // registers.
+ if (Size == 0)
+ continue;
+
+ unsigned BVAlign = Flags.getByValAlign();
+ if (BVAlign > 8) {
+ if (BVAlign % PtrByteSize != 0)
+ llvm_unreachable(
+ "ByVal alignment is not a multiple of the pointer size");
+
+ ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
+ }
+
+ // All aggregates smaller than 8 bytes must be passed right-justified.
+ if (Size==1 || Size==2 || Size==4) {
+ EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+ MachinePointerInfo(), VT,
+ false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+ }
+
+ if (GPR_idx == NumGPRs && Size < 8) {
+ SDValue Const = DAG.getConstant(PtrByteSize - Size,
+ PtrOff.getValueType());
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+ // Copy entire object into memory. There are cases where gcc-generated
+ // code assumes it is there, even if it could be put entirely into
+ // registers. (This is not what the doc says.)
+
+ // FIXME: The above statement is likely due to a misunderstanding of the
+ // documents. All arguments must be copied into the parameter area BY
+ // THE CALLEE in the event that the callee takes the address of any
+ // formal argument. That has not yet been implemented. However, it is
+ // reasonable to use the stack area as a staging area for the register
+ // load.
+
+ // Skip this for small aggregates, as we will use the same slot for a
+ // right-justified copy, below.
+ if (Size >= 8)
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // When a register is available, pass a small aggregate right-justified.
+ if (Size < 8 && GPR_idx != NumGPRs) {
+ // The easiest way to get this right-justified in a register
+ // is to copy the structure into the rightmost portion of a
+ // local variable slot, then load the whole slot into the
+ // register.
+ // FIXME: The memcpy seems to produce pretty awful code for
+ // small aggregates, particularly for packed ones.
+ // FIXME: It would be preferable to use the slot in the
+ // parameter save area instead of a new local variable.
+ SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // Load the slot into the register.
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+ // Done with this argument.
+ ArgOffset += PtrByteSize;
+ continue;
+ }
+
+ // For aggregates larger than PtrByteSize, copy the pieces of the
+ // object that fit into registers from the parameter save area.
+ for (unsigned j=0; j<Size; j+=PtrByteSize) {
+ SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (Arg.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
+ case MVT::i32:
+ case MVT::i64:
+ if (GPR_idx != NumGPRs) {
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += PtrByteSize;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (FPR_idx != NumFPRs) {
+ RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
+
+ if (isVarArg) {
+ // A single float or an aggregate containing only a single float
+ // must be passed right-justified in the stack doubleword, and
+ // in the GPR, if one is available.
+ SDValue StoreOff;
+ if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
+ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+ } else
+ StoreOff = PtrOff;
+
+ SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ } else if (GPR_idx != NumGPRs)
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ ++GPR_idx;
+ } else {
+ // Single-precision floating-point values are mapped to the
+ // second (rightmost) word of the stack doubleword.
+ if (Arg.getValueType() == MVT::f32) {
+ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+ }
+
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ if (isVarArg) {
+ // These go aligned on the stack, or in the corresponding R registers
+ // when within range. The Darwin PPC ABI doc claims they also go in
+ // V registers; in fact gcc does this only for arguments that are
+ // prototyped, not for those that match the ... We do it for all
+ // arguments, seems to work.
+ while (ArgOffset % 16 !=0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != NumGPRs)
+ GPR_idx++;
+ }
+ // We could elide this store in the case where the object fits
+ // entirely in R registers. Maybe later.
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ DAG.getConstant(ArgOffset, PtrVT));
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+ if (VR_idx != NumVRs) {
+ SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
+ }
+ ArgOffset += 16;
+ for (unsigned i=0; i<16; i+=PtrByteSize) {
+ if (GPR_idx == NumGPRs)
+ break;
+ SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
+ DAG.getConstant(i, PtrVT));
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ break;
+ }
+
+ // Non-varargs Altivec params generally go in registers, but have
+ // stack space allocated at the end.
+ if (VR_idx != NumVRs) {
+ // Doesn't have GPR space allocated.
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ true, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ ArgOffset += 16;
+ }
+ break;
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Check if this is an indirect call (MTCTR/BCTRL).
+ // See PrepareCall() for more information about calls through function
+ // pointers in the 64-bit SVR4 ABI.
+ if (!isTailCall &&
+ !dyn_cast<GlobalAddressSDNode>(Callee) &&
+ !dyn_cast<ExternalSymbolSDNode>(Callee) &&
+ !isBLACompatibleAddress(Callee, DAG)) {
+ // Load r2 into a virtual register and store it to the TOC save area.
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
+ // TOC save area offset.
+ SDValue PtrOff = DAG.getIntPtrConstant(40);
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+ Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
+ false, false, 0);
+ // R12 must contain the address of an indirect callee. This does not
+ // mean the MTCTR instruction must use R12; it's easier to model this
+ // as an extra parameter, so do that.
+ RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
+ FPOp, true, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ unsigned NumOps = Outs.size();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+ unsigned PtrByteSize = isPPC64 ? 8 : 4;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Mark this function as potentially containing a function that contains a
+ // tail call. As a consequence the frame pointer will be used for dynamicalloc
+ // and restoring the callers stack pointer in this functions epilog. This is
+ // done because by tail calling the called function might overwrite the value
+ // in this function's (MF) stack pointer stack slot 0(SP).
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
+
+ unsigned nAltivecParamsAtEnd = 0;
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area. We start with 24/48 bytes, which is
+ // prereserved space for [SP][CR][LR][3 x unused].
+ unsigned NumBytes =
+ CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
+ Outs, OutVals,
+ nAltivecParamsAtEnd);
+
+ // Calculate by how many bytes the stack has to be adjusted in case of tail
+ // call optimization.
+ int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+
+ // To protect arguments on the stack from being clobbered in a tail call,
+ // force all the loads to happen before doing any other lowering.
+ if (isTailCall)
+ Chain = DAG.getStackArgumentTokenFactor(Chain);
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
+ SDValue CallSeqStart = Chain;
+
+ // Load the return address and frame pointer so it can be move somewhere else
+ // later.
+ SDValue LROp, FPOp;
+ Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
+ dl);
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDValue StackPtr;
+ if (isPPC64)
+ StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
+ else
+ StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+
+ static const uint16_t GPR_32[] = { // 32-bit registers.
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const uint16_t GPR_64[] = { // 64-bit registers.
+ PPC::X3, PPC::X4, PPC::X5, PPC::X6,
+ PPC::X7, PPC::X8, PPC::X9, PPC::X10,
+ };
+ static const uint16_t *FPR = GetFPR();
+
+ static const uint16_t VR[] = {
+ PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
+ PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
+ };
+ const unsigned NumGPRs = array_lengthof(GPR_32);
+ const unsigned NumFPRs = 13;
+ const unsigned NumVRs = array_lengthof(VR);
+
+ const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
+
+ SmallVector<SDValue, 8> MemOpChains;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDValue PtrOff;
+
+ PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
+
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
+
+ // On PPC64, promote integers to 64-bit values.
+ if (isPPC64 && Arg.getValueType() == MVT::i32) {
+ // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
+ unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
+ }
+
+ // FIXME memcpy is used way more than necessary. Correctness first.
+ // Note: "by value" is code for passing a structure by value, not
+ // basic types.
+ if (Flags.isByVal()) {
+ unsigned Size = Flags.getByValSize();
+ // Very small objects are passed right-justified. Everything else is
+ // passed left-justified.
+ if (Size==1 || Size==2) {
+ EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
+ MachinePointerInfo(), VT,
+ false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+
+ ArgOffset += PtrByteSize;
+ } else {
+ SDValue Const = DAG.getConstant(PtrByteSize - Size,
+ PtrOff.getValueType());
+ SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
+ CallSeqStart,
+ Flags, DAG, dl);
+ ArgOffset += PtrByteSize;
+ }
+ continue;
+ }
+ // Copy entire object into memory. There are cases where gcc-generated
+ // code assumes it is there, even if it could be put entirely into
+ // registers. (This is not what the doc says.)
+ Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
+ CallSeqStart,
+ Flags, DAG, dl);
+
+ // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
+ // copy the pieces of the object that fit into registers from the
+ // parameter save area.
+ for (unsigned j=0; j<Size; j+=PtrByteSize) {
+ SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ ArgOffset += PtrByteSize;
+ } else {
+ ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
+ break;
+ }
+ }
+ continue;
+ }
+
+ switch (Arg.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
+ case MVT::i32:
+ case MVT::i64:
+ if (GPR_idx != NumGPRs) {
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+ } else {
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ }
+ ArgOffset += PtrByteSize;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (FPR_idx != NumFPRs) {
+ RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
+
+ if (isVarArg) {
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_idx != NumGPRs) {
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+ MachinePointerInfo(), false, false,
+ false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
+ SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ } else {
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
+ // GPRs.
+ if (GPR_idx != NumGPRs)
+ ++GPR_idx;
+ if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
+ !isPPC64) // PPC64 has 64-bit GPR's obviously :)
+ ++GPR_idx;
+ }
+ } else
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, false, MemOpChains,
+ TailCallArguments, dl);
+ if (isPPC64)
+ ArgOffset += 8;
+ else
+ ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
+ break;
+ case MVT::v4f32:
+ case MVT::v4i32:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ if (isVarArg) {
+ // These go aligned on the stack, or in the corresponding R registers
+ // when within range. The Darwin PPC ABI doc claims they also go in
+ // V registers; in fact gcc does this only for arguments that are
+ // prototyped, not for those that match the ... We do it for all
+ // arguments, seems to work.
+ while (ArgOffset % 16 !=0) {
+ ArgOffset += PtrByteSize;
+ if (GPR_idx != NumGPRs)
+ GPR_idx++;
+ }
+ // We could elide this store in the case where the object fits
+ // entirely in R registers. Maybe later.
+ PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
+ DAG.getConstant(ArgOffset, PtrVT));
+ SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo(), false, false, 0);
+ MemOpChains.push_back(Store);
+ if (VR_idx != NumVRs) {
+ SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
+ }
+ ArgOffset += 16;
+ for (unsigned i=0; i<16; i+=PtrByteSize) {
+ if (GPR_idx == NumGPRs)
+ break;
+ SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
+ DAG.getConstant(i, PtrVT));
+ SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ }
+ break;
+ }
+
+ // Non-varargs Altivec params generally go in registers, but have
+ // stack space allocated at the end.
+ if (VR_idx != NumVRs) {
+ // Doesn't have GPR space allocated.
+ RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
+ } else if (nAltivecParamsAtEnd==0) {
+ // We are emitting Altivec params in order.
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ ArgOffset += 16;
+ }
+ break;
+ }
+ }
+ // If all Altivec parameters fit in registers, as they usually do,
+ // they get stack space following the non-Altivec parameters. We
+ // don't track this here because nobody below needs it.
+ // If there are more Altivec parameters than fit in registers emit
+ // the stores here.
+ if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
+ unsigned j = 0;
+ // Offset is aligned; skip 1st 12 params which go in V registers.
+ ArgOffset = ((ArgOffset+15)/16)*16;
+ ArgOffset += 12*16;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue Arg = OutVals[i];
+ EVT ArgType = Outs[i].VT;
+ if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
+ ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
+ if (++j > NumVRs) {
+ SDValue PtrOff;
+ // We are emitting Altivec params in order.
+ LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
+ isPPC64, isTailCall, true, MemOpChains,
+ TailCallArguments, dl);
+ ArgOffset += 16;
+ }
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // On Darwin, R12 must contain the address of an indirect callee. This does
+ // not mean the MTCTR instruction must use R12; it's easier to model this as
+ // an extra parameter, so do that.
+ if (!isTailCall &&
+ !dyn_cast<GlobalAddressSDNode>(Callee) &&
+ !dyn_cast<ExternalSymbolSDNode>(Callee) &&
+ !isBLACompatibleAddress(Callee, DAG))
+ RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
+ PPC::R12), Callee));
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (isTailCall)
+ PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
+ FPOp, true, TailCallArguments);
+
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
+}
+
+bool
+PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
+ RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_PPC);
+}
+
+SDValue
+PPCTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[i];
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
+ &RetOps[0], RetOps.size());
+}
+
+SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ // When we pop the dynamic allocation we need to restore the SP link.
+ SDLoc dl(Op);
+
+ // Get the corect type for pointers.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Construct the stack pointer operand.
+ bool isPPC64 = Subtarget.isPPC64();
+ unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
+ SDValue StackPtr = DAG.getRegister(SP, PtrVT);
+
+ // Get the operands for the STACKRESTORE.
+ SDValue Chain = Op.getOperand(0);
+ SDValue SaveSP = Op.getOperand(1);
+
+ // Load the old link SP.
+ SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Restore the stack pointer.
+ Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
+
+ // Store the old link SP.
+ return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
+ false, false, 0);
+}
+
+
+
+SDValue
+PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isPPC64 = PPCSubTarget.isPPC64();
+ bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Get current frame pointer save index. The users of this index will be
+ // primarily DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int RASI = FI->getReturnAddrSaveIndex();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!RASI) {
+ // Find out what the fix offset of the frame pointer save area.
+ int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
+ // Allocate the frame index for frame pointer save area.
+ RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
+ // Save the result.
+ FI->setReturnAddrSaveIndex(RASI);
+ }
+ return DAG.getFrameIndex(RASI, PtrVT);
+}
+
+SDValue
+PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isPPC64 = PPCSubTarget.isPPC64();
+ bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ // Get current frame pointer save index. The users of this index will be
+ // primarily DYNALLOC instructions.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ int FPSI = FI->getFramePointerSaveIndex();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!FPSI) {
+ // Find out what the fix offset of the frame pointer save area.
+ int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
+ isDarwinABI);
+
+ // Allocate the frame index for frame pointer save area.
+ FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
+ // Save the result.
+ FI->setFramePointerSaveIndex(FPSI);
+ }
+ return DAG.getFrameIndex(FPSI, PtrVT);
+}
+
+SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG,
+ const PPCSubtarget &Subtarget) const {
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ // Get the corect type for pointers.
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ // Negate the size.
+ SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
+ DAG.getConstant(0, PtrVT), Size);
+ // Construct a node for the frame pointer save index.
+ SDValue FPSIdx = getFramePointerFrameIndex(DAG);
+ // Build a DYNALLOC node.
+ SDValue Ops[3] = { Chain, NegSize, FPSIdx };
+ SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
+ return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
+}
+
+SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
+/// possible.
+SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ // Not FP? Not a fsel.
+ if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
+ !Op.getOperand(2).getValueType().isFloatingPoint())
+ return Op;
+
+ // We might be able to do better than this under some circumstances, but in
+ // general, fsel-based lowering of select is a finite-math-only optimization.
+ // For more information, see section F.3 of the 2.06 ISA specification.
+ if (!DAG.getTarget().Options.NoInfsFPMath ||
+ !DAG.getTarget().Options.NoNaNsFPMath)
+ return Op;
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+
+ EVT ResVT = Op.getValueType();
+ EVT CmpVT = Op.getOperand(0).getValueType();
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+ SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ // If the RHS of the comparison is a 0.0, we don't need to do the
+ // subtraction at all.
+ SDValue Sel1;
+ if (isFloatingPointZero(RHS))
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETNE:
+ std::swap(TV, FV);
+ case ISD::SETEQ:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
+ if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
+ LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
+ }
+
+ SDValue Cmp;
+ switch (CC) {
+ default: break; // SETUO etc aren't handled by fsel.
+ case ISD::SETNE:
+ std::swap(TV, FV);
+ case ISD::SETEQ:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT,
+ DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
+ if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
+ Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
+ return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
+ }
+ return Op;
+}
+
+// FIXME: Split this code up when LegalizeDAGTypes lands.
+SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
+ SDLoc dl) const {
+ assert(Op.getOperand(0).getValueType().isFloatingPoint());
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::f32)
+ Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
+
+ SDValue Tmp;
+ switch (Op.getSimpleValueType().SimpleTy) {
+ default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
+ case MVT::i32:
+ Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
+ (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
+ PPCISD::FCTIDZ),
+ dl, MVT::f64, Src);
+ break;
+ case MVT::i64:
+ assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
+ "i64 FP_TO_UINT is supported only with FPCVT");
+ Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
+ PPCISD::FCTIDUZ,
+ dl, MVT::f64, Src);
+ break;
+ }
+
+ // Convert the FP value to an int value through memory.
+ bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
+ (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
+ SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
+ int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
+ MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
+
+ // Emit a store to the stack slot.
+ SDValue Chain;
+ if (i32Stack) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
+ SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
+ Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
+ DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
+ MVT::i32, MMO);
+ } else
+ Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
+ MPI, false, false, 0);
+
+ // Result is a load from the stack slot. If loading 4 bytes, make sure to
+ // add in a bias.
+ if (Op.getValueType() == MVT::i32 && !i32Stack) {
+ FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
+ DAG.getConstant(4, FIPtr.getValueType()));
+ MPI = MachinePointerInfo();
+ }
+
+ return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // Don't handle ppc_fp128 here; let it be lowered to a libcall.
+ if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
+ return SDValue();
+
+ assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
+ "UINT_TO_FP is supported only with FPCVT");
+
+ // If we have FCFIDS, then use it when converting to single-precision.
+ // Otherwise, convert to double-precision and then round.
+ unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDUS : PPCISD::FCFIDS) :
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDU : PPCISD::FCFID);
+ MVT FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ MVT::f32 : MVT::f64;
+
+ if (Op.getOperand(0).getValueType() == MVT::i64) {
+ SDValue SINT = Op.getOperand(0);
+ // When converting to single-precision, we actually need to convert
+ // to double-precision first and then round to single-precision.
+ // To avoid double-rounding effects during that operation, we have
+ // to prepare the input operand. Bits that might be truncated when
+ // converting to double-precision are replaced by a bit that won't
+ // be lost at this stage, but is below the single-precision rounding
+ // position.
+ //
+ // However, if -enable-unsafe-fp-math is in effect, accept double
+ // rounding to avoid the extra overhead.
+ if (Op.getValueType() == MVT::f32 &&
+ !PPCSubTarget.hasFPCVT() &&
+ !DAG.getTarget().Options.UnsafeFPMath) {
+
+ // Twiddle input to make sure the low 11 bits are zero. (If this
+ // is the case, we are guaranteed the value will fit into the 53 bit
+ // mantissa of an IEEE double-precision value without rounding.)
+ // If any of those low 11 bits were not zero originally, make sure
+ // bit 12 (value 2048) is set instead, so that the final rounding
+ // to single-precision gets the correct result.
+ SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+ SINT, DAG.getConstant(2047, MVT::i64));
+ Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
+ Round, DAG.getConstant(2047, MVT::i64));
+ Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
+ Round = DAG.getNode(ISD::AND, dl, MVT::i64,
+ Round, DAG.getConstant(-2048, MVT::i64));
+
+ // However, we cannot use that value unconditionally: if the magnitude
+ // of the input value is small, the bit-twiddling we did above might
+ // end up visibly changing the output. Fortunately, in that case, we
+ // don't need to twiddle bits since the original input will convert
+ // exactly to double-precision floating-point already. Therefore,
+ // construct a conditional to use the original value if the top 11
+ // bits are all sign-bit copies, and use the rounded value computed
+ // above otherwise.
+ SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
+ SINT, DAG.getConstant(53, MVT::i32));
+ Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
+ Cond, DAG.getConstant(1, MVT::i64));
+ Cond = DAG.getSetCC(dl, MVT::i32,
+ Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
+
+ SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
+ }
+
+ SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
+ SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
+
+ if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
+ FP = DAG.getNode(ISD::FP_ROUND, dl,
+ MVT::f32, FP, DAG.getIntPtrConstant(0));
+ return FP;
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::i32 &&
+ "Unhandled INT_TO_FP type in custom expander!");
+ // Since we only generate this in 64-bit mode, we can take advantage of
+ // 64-bit registers. In particular, sign extend the input value into the
+ // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
+ // then lfd it and fcfid it.
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ SDValue Ld;
+ if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
+ int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
+ "Expected an i32 store");
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad, 4, 4);
+ SDValue Ops[] = { Store, FIdx };
+ Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::LFIWZX : PPCISD::LFIWAX,
+ dl, DAG.getVTList(MVT::f64, MVT::Other),
+ Ops, 2, MVT::i32, MMO);
+ } else {
+ assert(PPCSubTarget.isPPC64() &&
+ "i32->FP without LFIWAX supported only on PPC64");
+
+ int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
+ Op.getOperand(0));
+
+ // STD the extended value into the stack slot.
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ // Load the value as a double.
+ Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, false, 0);
+ }
+
+ // FCFID it and return it.
+ SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
+ if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
+ FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
+ return FP;
+}
+
+SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ /*
+ The rounding mode is in bits 30:31 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to 0
+ 10 Round to +inf
+ 11 Round to -inf
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ EVT VT = Op.getValueType();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue MFFSreg, InFlag;
+
+ // Save FP Control Word to register
+ EVT NodeTys[] = {
+ MVT::f64, // return register
+ MVT::Glue // unused in this context
+ };
+ SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
+
+ // Save FP register to stack slot
+ int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
+ StackSlot, MachinePointerInfo(), false, false,0);
+
+ // Load FP Control Word from low 32 bits of stack slot.
+ SDValue Four = DAG.getConstant(4, PtrVT);
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
+ SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::AND, dl, MVT::i32,
+ CWD, DAG.getConstant(3, MVT::i32));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, dl, MVT::i32,
+ DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::XOR, dl, MVT::i32,
+ CWD, DAG.getConstant(3, MVT::i32)),
+ DAG.getConstant(3, MVT::i32)),
+ DAG.getConstant(1, MVT::i32));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
+}
+
+SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ SDLoc dl(Op);
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SHL!");
+
+ // Expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
+ SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
+ SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, 2, dl);
+}
+
+SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned BitWidth = VT.getSizeInBits();
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SRL!");
+
+ // Expand into a bunch of logical ops. Note that these ops
+ // depend on the PPC behavior for oversized shift amounts.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
+ SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
+ SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, 2, dl);
+}
+
+SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ assert(Op.getNumOperands() == 3 &&
+ VT == Op.getOperand(1).getValueType() &&
+ "Unexpected SRA!");
+
+ // Expand into a bunch of logical ops, followed by a select_cc.
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Amt = Op.getOperand(2);
+ EVT AmtVT = Amt.getValueType();
+
+ SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
+ DAG.getConstant(BitWidth, AmtVT), Amt);
+ SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
+ SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
+ SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
+ DAG.getConstant(-BitWidth, AmtVT));
+ SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
+ SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
+ SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
+ Tmp4, Tmp6, ISD::SETLE);
+ SDValue OutOps[] = { OutLo, OutHi };
+ return DAG.getMergeValues(OutOps, 2, dl);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector related lowering.
+//
+
+/// BuildSplatI - Build a canonical splati of Val with an element size of
+/// SplatSize. Cast the result to VT.
+static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
+
+ static const EVT VTys[] = { // canonical VT to use for each size.
+ MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
+ };
+
+ EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
+
+ // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
+ if (Val == -1)
+ SplatSize = 1;
+
+ EVT CanonicalVT = VTys[SplatSize-1];
+
+ // Build a canonical splat for this value.
+ SDValue Elt = DAG.getConstant(Val, MVT::i32);
+ SmallVector<SDValue, 8> Ops;
+ Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
+ SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
+ &Ops[0], Ops.size());
+ return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
+}
+
+/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
+ SelectionDAG &DAG, SDLoc dl,
+ EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = Op.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), Op);
+}
+
+/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, SDLoc dl,
+ EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = LHS.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), LHS, RHS);
+}
+
+/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
+/// specified intrinsic ID.
+static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
+ SDValue Op2, SelectionDAG &DAG,
+ SDLoc dl, EVT DestVT = MVT::Other) {
+ if (DestVT == MVT::Other) DestVT = Op0.getValueType();
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
+ DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
+}
+
+
+/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
+/// amount. The result has the specified value type.
+static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
+ EVT VT, SelectionDAG &DAG, SDLoc dl) {
+ // Force LHS/RHS to be the right type.
+ LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
+ RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
+
+ int Ops[16];
+ for (unsigned i = 0; i != 16; ++i)
+ Ops[i] = i + Amt;
+ SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, T);
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it. If we CAN select this case, and if it
+// selects to a single instruction, return Op. Otherwise, if we can codegen
+// this case more efficiently than a constant pool load, lower it to the
+// sequence of ops that should be used.
+SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
+
+ // Check if this is a splat of a constant value.
+ APInt APSplatBits, APSplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
+ HasAnyUndefs, 0, true) || SplatBitSize > 32)
+ return SDValue();
+
+ unsigned SplatBits = APSplatBits.getZExtValue();
+ unsigned SplatUndef = APSplatUndef.getZExtValue();
+ unsigned SplatSize = SplatBitSize / 8;
+
+ // First, handle single instruction cases.
+
+ // All zeros?
+ if (SplatBits == 0) {
+ // Canonicalize all zero vectors to be v4i32.
+ if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
+ SDValue Z = DAG.getConstant(0, MVT::i32);
+ Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
+ Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
+ }
+ return Op;
+ }
+
+ // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
+ int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
+ (32-SplatBitSize));
+ if (SextVal >= -16 && SextVal <= 15)
+ return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
+
+
+ // Two instruction sequences.
+
+ // If this value is in the range [-32,30] and is even, use:
+ // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
+ // If this value is in the range [17,31] and is odd, use:
+ // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
+ // If this value is in the range [-31,-17] and is odd, use:
+ // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
+ // Note the last two are three-instruction sequences.
+ if (SextVal >= -32 && SextVal <= 31) {
+ // To avoid having these optimizations undone by constant folding,
+ // we convert to a pseudo that will be expanded later into one of
+ // the above forms.
+ SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
+ EVT VT = Op.getValueType();
+ int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
+ SDValue EltSize = DAG.getConstant(Size, MVT::i32);
+ return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
+ }
+
+ // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
+ // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
+ // for fneg/fabs.
+ if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
+ // Make -1 and vspltisw -1:
+ SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
+
+ // Make the VSLW intrinsic, computing 0x8000_0000.
+ SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
+ OnesV, DAG, dl);
+
+ // xor by OnesV to invert it.
+ Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // Check to see if this is a wide variety of vsplti*, binop self cases.
+ static const signed char SplatCsts[] = {
+ -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
+ -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
+ };
+
+ for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
+ // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
+ // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
+ int i = SplatCsts[idx];
+
+ // Figure out what shift amount will be used by altivec if shifted by i in
+ // this splat size.
+ unsigned TypeShiftAmt = i & (SplatBitSize-1);
+
+ // vsplti + shl self.
+ if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
+ Intrinsic::ppc_altivec_vslw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + srl self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
+ Intrinsic::ppc_altivec_vsrw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + sra self.
+ if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
+ Intrinsic::ppc_altivec_vsraw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // vsplti + rol self.
+ if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
+ ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
+ SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
+ static const unsigned IIDs[] = { // Intrinsic to use for each size.
+ Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
+ Intrinsic::ppc_altivec_vrlw
+ };
+ Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+
+ // t = vsplti c, result = vsldoi t, t, 1
+ if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
+ }
+ // t = vsplti c, result = vsldoi t, t, 2
+ if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
+ }
+ // t = vsplti c, result = vsldoi t, t, 3
+ if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
+ SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
+ return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
+ }
+ }
+
+ return SDValue();
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VMRGHW,
+ OP_VMRGLW,
+ OP_VSPLTISW0,
+ OP_VSPLTISW1,
+ OP_VSPLTISW2,
+ OP_VSPLTISW3,
+ OP_VSLDOI4,
+ OP_VSLDOI8,
+ OP_VSLDOI12
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+
+ int ShufIdxs[16];
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown i32 permute!");
+ case OP_VMRGHW:
+ ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
+ ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
+ ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
+ ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
+ break;
+ case OP_VMRGLW:
+ ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
+ ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
+ ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
+ ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
+ break;
+ case OP_VSPLTISW0:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+0;
+ break;
+ case OP_VSPLTISW1:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+4;
+ break;
+ case OP_VSPLTISW2:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+8;
+ break;
+ case OP_VSPLTISW3:
+ for (unsigned i = 0; i != 16; ++i)
+ ShufIdxs[i] = (i&3)+12;
+ break;
+ case OP_VSLDOI4:
+ return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
+ case OP_VSLDOI8:
+ return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
+ case OP_VSLDOI12:
+ return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
+ }
+ EVT VT = OpLHS.getValueType();
+ OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
+ OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
+ SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
+ return DAG.getNode(ISD::BITCAST, dl, VT, T);
+}
+
+/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
+/// is a shuffle we can handle in a single instruction, return it. Otherwise,
+/// return the code it can be lowered into. Worst case, it can always be
+/// lowered into a vperm.
+SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ EVT VT = Op.getValueType();
+
+ // Cases that are handled by instructions that take permute immediates
+ // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
+ // selected by the instruction selector.
+ if (V2.getOpcode() == ISD::UNDEF) {
+ if (PPC::isSplatShuffleMask(SVOp, 1) ||
+ PPC::isSplatShuffleMask(SVOp, 2) ||
+ PPC::isSplatShuffleMask(SVOp, 4) ||
+ PPC::isVPKUWUMShuffleMask(SVOp, true) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, true) ||
+ PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
+ return Op;
+ }
+ }
+
+ // Altivec has a variety of "shuffle immediates" that take two vector inputs
+ // and produce a fixed permutation. If any of these match, do not lower to
+ // VPERM.
+ if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, false) ||
+ PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, false))
+ return Op;
+
+ // Check to see if this is a shuffle of 4-byte values. If so, we can use our
+ // perfect shuffle table to emit an optimal matching sequence.
+ ArrayRef<int> PermMask = SVOp->getMask();
+
+ unsigned PFIndexes[4];
+ bool isFourElementShuffle = true;
+ for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
+ unsigned EltNo = 8; // Start out undef.
+ for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
+ if (PermMask[i*4+j] < 0)
+ continue; // Undef, ignore it.
+
+ unsigned ByteSource = PermMask[i*4+j];
+ if ((ByteSource & 3) != j) {
+ isFourElementShuffle = false;
+ break;
+ }
+
+ if (EltNo == 8) {
+ EltNo = ByteSource/4;
+ } else if (EltNo != ByteSource/4) {
+ isFourElementShuffle = false;
+ break;
+ }
+ }
+ PFIndexes[i] = EltNo;
+ }
+
+ // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
+ // perfect shuffle vector to determine if it is cost effective to do this as
+ // discrete instructions, or whether we should use a vperm.
+ if (isFourElementShuffle) {
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ // Determining when to avoid vperm is tricky. Many things affect the cost
+ // of vperm, particularly how many times the perm mask needs to be computed.
+ // For example, if the perm mask can be hoisted out of a loop or is already
+ // used (perhaps because there are multiple permutes with the same shuffle
+ // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
+ // the loop requires an extra register.
+ //
+ // As a compromise, we only emit discrete instructions if the shuffle can be
+ // generated in 3 or fewer operations. When we have loop information
+ // available, if this block is within a loop, we should avoid using vperm
+ // for 3-operation perms and use a constant pool load instead.
+ if (Cost < 3)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
+ // vector that will get spilled to the constant pool.
+ if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
+
+ // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
+ // that it is in input element units, not in bytes. Convert now.
+ EVT EltVT = V1.getValueType().getVectorElementType();
+ unsigned BytesPerElement = EltVT.getSizeInBits()/8;
+
+ SmallVector<SDValue, 16> ResultMask;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
+ unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
+
+ for (unsigned j = 0; j != BytesPerElement; ++j)
+ ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
+ MVT::i32));
+ }
+
+ SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
+ &ResultMask[0], ResultMask.size());
+ return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
+}
+
+/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
+/// altivec comparison. If it is, return true and fill in Opc/isDot with
+/// information about the intrinsic.
+static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
+ bool &isDot) {
+ unsigned IntrinsicID =
+ cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
+ CompareOpc = -1;
+ isDot = false;
+ switch (IntrinsicID) {
+ default: return false;
+ // Comparison predicates.
+ case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
+
+ // Normal Comparisons.
+ case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
+ case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
+ }
+ return true;
+}
+
+/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
+/// lower, do it, otherwise return null.
+SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ // If this is a lowered altivec predicate compare, CompareOpc is set to the
+ // opcode number of the comparison.
+ SDLoc dl(Op);
+ int CompareOpc;
+ bool isDot;
+ if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
+ return SDValue(); // Don't custom lower most intrinsics.
+
+ // If this is a non-dot comparison, make the VCMP node and we are done.
+ if (!isDot) {
+ SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(CompareOpc, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
+ }
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ SDValue Ops[] = {
+ Op.getOperand(2), // LHS
+ Op.getOperand(3), // RHS
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
+ SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
+
+ // Now that we have the comparison, emit a copy from the CR to a GPR.
+ // This is flagged to the above dot comparison.
+ SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ CompNode.getValue(1));
+
+ // Unpack the result based on how the target uses it.
+ unsigned BitNo; // Bit # of CR6.
+ bool InvertBit; // Invert result?
+ switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Return the value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = false;
+ break;
+ case 1: // Return the inverted value of the EQ bit of CR6.
+ BitNo = 0; InvertBit = true;
+ break;
+ case 2: // Return the value of the LT bit of CR6.
+ BitNo = 2; InvertBit = false;
+ break;
+ case 3: // Return the inverted value of the LT bit of CR6.
+ BitNo = 2; InvertBit = true;
+ break;
+ }
+
+ // Shift the bit into the low position.
+ Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
+ DAG.getConstant(8-(3-BitNo), MVT::i32));
+ // Isolate the bit.
+ Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+
+ // If we are supposed to, toggle the bit.
+ if (InvertBit)
+ Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
+ DAG.getConstant(1, MVT::i32));
+ return Flags;
+}
+
+SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // Create a stack slot that is 16-byte aligned.
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
+ EVT PtrVT = getPointerTy();
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ // Store the input value into Value#0 of the stack slot.
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
+ Op.getOperand(0), FIdx, MachinePointerInfo(),
+ false, false, 0);
+ // Load it out.
+ return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ if (Op.getValueType() == MVT::v4i32) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
+ SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
+
+ SDValue RHSSwap = // = vrlw RHS, 16
+ BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
+
+ // Shrinkify inputs to v8i16.
+ LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
+ RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
+ RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
+
+ // Low parts multiplied together, generating 32-bit results (we ignore the
+ // top parts).
+ SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
+ LHS, RHS, DAG, dl, MVT::v4i32);
+
+ SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
+ LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
+ // Shift the high parts up 16 bits.
+ HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
+ Neg16, DAG, dl);
+ return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
+ } else if (Op.getValueType() == MVT::v8i16) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
+
+ return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
+ LHS, RHS, Zero, DAG, dl);
+ } else if (Op.getValueType() == MVT::v16i8) {
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+
+ // Multiply the even 8-bit parts, producing 16-bit sums.
+ SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
+ LHS, RHS, DAG, dl, MVT::v8i16);
+ EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
+
+ // Multiply the odd 8-bit parts, producing 16-bit sums.
+ SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
+ LHS, RHS, DAG, dl, MVT::v8i16);
+ OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
+
+ // Merge the results together.
+ int Ops[16];
+ for (unsigned i = 0; i != 8; ++i) {
+ Ops[i*2 ] = 2*i+1;
+ Ops[i*2+1] = 2*i+1+16;
+ }
+ return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
+ } else {
+ llvm_unreachable("Unknown mul to lower!");
+ }
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Wasn't expecting to be able to lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG, PPCSubTarget);
+
+ case ISD::VAARG:
+ return LowerVAARG(Op, DAG, PPCSubTarget);
+
+ case ISD::VACOPY:
+ return LowerVACOPY(Op, DAG, PPCSubTarget);
+
+ case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
+ case ISD::DYNAMIC_STACKALLOC:
+ return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
+
+ case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
+
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
+ SDLoc(Op));
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+
+ // Lower 64-bit shifts.
+ case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
+ case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
+ case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
+
+ // Vector-related lowering.
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+
+ // For counter-based loop handling.
+ case ISD::INTRINSIC_W_CHAIN: return SDValue();
+
+ // Frame & Return address.
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ }
+}
+
+void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ const TargetMachine &TM = getTargetMachine();
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case ISD::INTRINSIC_W_CHAIN: {
+ if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
+ Intrinsic::ppc_is_decremented_ctr_nonzero)
+ break;
+
+ assert(N->getValueType(0) == MVT::i1 &&
+ "Unexpected result type for CTR decrement intrinsic");
+ EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
+ SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
+ SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
+ N->getOperand(1));
+
+ Results.push_back(NewInt);
+ Results.push_back(NewInt.getValue(1));
+ break;
+ }
+ case ISD::VAARG: {
+ if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
+ || TM.getSubtarget<PPCSubtarget>().isPPC64())
+ return;
+
+ EVT VT = N->getValueType(0);
+
+ if (VT == MVT::i64) {
+ SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
+
+ Results.push_back(NewNode);
+ Results.push_back(NewNode.getValue(1));
+ }
+ return;
+ }
+ case ISD::FP_ROUND_INREG: {
+ assert(N->getValueType(0) == MVT::ppcf128);
+ assert(N->getOperand(0).getValueType() == MVT::ppcf128);
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ MVT::f64, N->getOperand(0),
+ DAG.getIntPtrConstant(0));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ MVT::f64, N->getOperand(0),
+ DAG.getIntPtrConstant(1));
+
+ // Add the two halves of the long double in round-to-zero mode.
+ SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
+
+ // We know the low half is about to be thrown away, so just use something
+ // convenient.
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
+ FPreg, FPreg));
+ return;
+ }
+ case ISD::FP_TO_SINT:
+ // LowerFP_TO_INT() can only handle f32 and f64.
+ if (N->getOperand(0).getValueType() == MVT::ppcf128)
+ return;
+ Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
+ return;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ bool is64bit, unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *F = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned incr = MI->getOperand(3).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loopMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned TmpReg = (!BinOpcode) ? incr :
+ RegInfo.createVirtualRegister(
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // l[wd]arx dest, ptr
+ // add r0, dest, incr
+ // st[wd]cx. r0, ptr
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
+ .addReg(ptrA).addReg(ptrB);
+ if (BinOpcode)
+ BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ return BB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ bool is8bit, // operation
+ unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ // In 64 bit mode we have to use 64 bits for addresses, even though the
+ // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
+ // registers without caring whether they're 32 or 64, but here we're
+ // doing actual arithmetic on the addresses.
+ bool is64bit = PPCSubTarget.isPPC64();
+ unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *F = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned incr = MI->getOperand(3).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loopMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ const TargetRegisterClass *RC =
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ unsigned PtrReg = RegInfo.createVirtualRegister(RC);
+ unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
+ unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned MaskReg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
+ unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
+ unsigned Ptr1Reg;
+ unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // The 4-byte load must be aligned, while a char or short may be
+ // anywhere in the word. Hence all this nasty bookkeeping code.
+ // add ptr1, ptrA, ptrB [copy if ptrA==0]
+ // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
+ // xori shift, shift1, 24 [16]
+ // rlwinm ptr, ptr1, 0, 0, 29
+ // slw incr2, incr, shift
+ // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
+ // slw mask, mask2, shift
+ // loopMBB:
+ // lwarx tmpDest, ptr
+ // add tmp, tmpDest, incr2
+ // andc tmp2, tmpDest, mask
+ // and tmp3, tmp, mask
+ // or tmp4, tmp3, tmp2
+ // stwcx. tmp4, ptr
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ // srw dest, tmpDest, shift
+ if (ptrA != ZeroReg) {
+ Ptr1Reg = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
+ .addReg(ptrA).addReg(ptrB);
+ } else {
+ Ptr1Reg = ptrB;
+ }
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
+ .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
+ .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
+ if (is64bit)
+ BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(61);
+ else
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
+ BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
+ .addReg(incr).addReg(ShiftReg);
+ if (is8bit)
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
+ else {
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
+ BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
+ }
+ BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
+ .addReg(Mask2Reg).addReg(ShiftReg);
+
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ if (BinOpcode)
+ BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
+ .addReg(Incr2Reg).addReg(TmpDestReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
+ .addReg(TmpReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
+ .addReg(Tmp3Reg).addReg(Tmp2Reg);
+ BuildMI(BB, dl, TII->get(PPC::STWCX))
+ .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
+ .addReg(ShiftReg);
+ return BB;
+}
+
+llvm::MachineBasicBlock*
+PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = MBB;
+ ++I;
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ unsigned DstReg = MI->getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(RC->hasType(MVT::i32) && "Invalid destination!");
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // SjLjSetup mainMBB
+ // bl mainMBB
+ // v_restore = 1
+ // b sinkMBB
+ //
+ // mainMBB:
+ // buf[LabelOffset] = LR
+ // v_main = 0
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+ //
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+
+ MachineInstrBuilder MIB;
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // Note that the structure of the jmp_buf used here is not compatible
+ // with that used by libc, and is not designed to be. Specifically, it
+ // stores only those 'reserved' registers that LLVM does not otherwise
+ // understand how to spill. Also, by convention, by the time this
+ // intrinsic is called, Clang has already stored the frame address in the
+ // first slot of the buffer and stack address in the third. Following the
+ // X86 target code, we'll store the jump address in the second slot. We also
+ // need to save the TOC pointer (R2) to handle jumps between shared
+ // libraries, and that will be stored in the fourth slot. The thread
+ // identifier (R13) is not affected.
+
+ // thisMBB:
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t TOCOffset = 3 * PVT.getStoreSize();
+ const int64_t BPOffset = 4 * PVT.getStoreSize();
+
+ // Prepare IP either in reg.
+ const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
+ unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
+ unsigned BufReg = MI->getOperand(1).getReg();
+
+ if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
+ .addReg(PPC::X2)
+ .addImm(TOCOffset)
+ .addReg(BufReg);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ }
+
+ // Naked functions never have a base pointer, and so we use r1. For all
+ // other functions, this decision must be delayed until during PEI.
+ unsigned BaseReg;
+ if (MF->getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::Naked))
+ BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
+ else
+ BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
+
+ MIB = BuildMI(*thisMBB, MI, DL,
+ TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
+ .addReg(BaseReg)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Setup
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
+ const PPCRegisterInfo *TRI =
+ static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
+ MIB.addRegMask(TRI->getNoPreservedMask());
+
+ BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
+
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
+ .addMBB(mainMBB);
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
+
+ thisMBB->addSuccessor(mainMBB, /* weight */ 0);
+ thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
+
+ // mainMBB:
+ // mainDstReg = 0
+ MIB = BuildMI(mainMBB, DL,
+ TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
+
+ // Store IP
+ if (PPCSubTarget.isPPC64()) {
+ MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
+ .addReg(LabelReg)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
+ .addReg(LabelReg)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ }
+
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(PPC::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(thisMBB);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ MVT PVT = getPointerTy();
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ const TargetRegisterClass *RC =
+ (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ // Since FP is only updated here but NOT referenced, it's treated as GPR.
+ unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
+ unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
+ unsigned BP = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
+
+ MachineInstrBuilder MIB;
+
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t SPOffset = 2 * PVT.getStoreSize();
+ const int64_t TOCOffset = 3 * PVT.getStoreSize();
+ const int64_t BPOffset = 4 * PVT.getStoreSize();
+
+ unsigned BufReg = MI->getOperand(0).getReg();
+
+ // Reload FP (the jumped-to function may not have had a
+ // frame pointer, and if so, then its r31 will be restored
+ // as necessary).
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
+ .addImm(0)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
+ .addImm(0)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload IP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
+ .addImm(LabelOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload SP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
+ .addImm(SPOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
+ .addImm(SPOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload BP
+ if (PVT == MVT::i64) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ } else {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
+ .addImm(BPOffset)
+ .addReg(BufReg);
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ // Reload TOC
+ if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
+ .addImm(TOCOffset)
+ .addReg(BufReg);
+
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ }
+
+ // Jump
+ BuildMI(*MBB, MI, DL,
+ TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
+ BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
+ MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
+ return emitEHSjLjSetJmp(MI, BB);
+ } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
+ MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
+ return emitEHSjLjLongJmp(MI, BB);
+ }
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ // To "insert" these instructions we actually have to insert their
+ // control-flow patterns.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ MachineFunction *F = BB->getParent();
+
+ if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8)) {
+ SmallVector<MachineOperand, 2> Cond;
+ Cond.push_back(MI->getOperand(4));
+ Cond.push_back(MI->getOperand(1));
+
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
+ Cond, MI->getOperand(2).getReg(),
+ MI->getOperand(3).getReg());
+ } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ MI->getOpcode() == PPC::SELECT_CC_I8 ||
+ MI->getOpcode() == PPC::SELECT_CC_F4 ||
+ MI->getOpcode() == PPC::SELECT_CC_F8 ||
+ MI->getOpcode() == PPC::SELECT_CC_VRRC) {
+
+
+ // The incoming instruction knows the destination vreg to set, the
+ // condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ unsigned SelectPred = MI->getOperand(4).getImm();
+ DebugLoc dl = MI->getDebugLoc();
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII->get(PPC::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+ }
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
+ BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
+ else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
+ BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
+ BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
+ BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
+ BB = EmitAtomicBinary(MI, BB, false, 0);
+ else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
+ BB = EmitAtomicBinary(MI, BB, true, 0);
+
+ else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
+ MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
+ bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned oldval = MI->getOperand(3).getReg();
+ unsigned newval = MI->getOperand(4).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loop1MBB);
+ F->insert(It, loop2MBB);
+ F->insert(It, midMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loop1MBB);
+
+ // loop1MBB:
+ // l[wd]arx dest, ptr
+ // cmp[wd] dest, oldval
+ // bne- midMBB
+ // loop2MBB:
+ // st[wd]cx. newval, ptr
+ // bne- loopMBB
+ // b exitBB
+ // midMBB:
+ // st[wd]cx. dest, ptr
+ // exitBB:
+ BB = loop1MBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
+ .addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
+ .addReg(oldval).addReg(dest);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(midMBB);
+
+ BB = loop2MBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(newval).addReg(ptrA).addReg(ptrB);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
+ BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ BB = midMBB;
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
+ .addReg(dest).addReg(ptrA).addReg(ptrB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
+ MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
+ // We must use 64-bit registers for addresses when targeting 64-bit,
+ // since we're actually doing arithmetic on them. Other registers
+ // can be 32-bit.
+ bool is64bit = PPCSubTarget.isPPC64();
+ bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptrA = MI->getOperand(1).getReg();
+ unsigned ptrB = MI->getOperand(2).getReg();
+ unsigned oldval = MI->getOperand(3).getReg();
+ unsigned newval = MI->getOperand(4).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, loop1MBB);
+ F->insert(It, loop2MBB);
+ F->insert(It, midMBB);
+ F->insert(It, exitMBB);
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ const TargetRegisterClass *RC =
+ is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
+ (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ unsigned PtrReg = RegInfo.createVirtualRegister(RC);
+ unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
+ unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned MaskReg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
+ unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
+ unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
+ unsigned Ptr1Reg;
+ unsigned TmpReg = RegInfo.createVirtualRegister(RC);
+ unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loop1MBB);
+
+ // The 4-byte load must be aligned, while a char or short may be
+ // anywhere in the word. Hence all this nasty bookkeeping code.
+ // add ptr1, ptrA, ptrB [copy if ptrA==0]
+ // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
+ // xori shift, shift1, 24 [16]
+ // rlwinm ptr, ptr1, 0, 0, 29
+ // slw newval2, newval, shift
+ // slw oldval2, oldval,shift
+ // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
+ // slw mask, mask2, shift
+ // and newval3, newval2, mask
+ // and oldval3, oldval2, mask
+ // loop1MBB:
+ // lwarx tmpDest, ptr
+ // and tmp, tmpDest, mask
+ // cmpw tmp, oldval3
+ // bne- midMBB
+ // loop2MBB:
+ // andc tmp2, tmpDest, mask
+ // or tmp4, tmp2, newval3
+ // stwcx. tmp4, ptr
+ // bne- loop1MBB
+ // b exitBB
+ // midMBB:
+ // stwcx. tmpDest, ptr
+ // exitBB:
+ // srw dest, tmpDest, shift
+ if (ptrA != ZeroReg) {
+ Ptr1Reg = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
+ .addReg(ptrA).addReg(ptrB);
+ } else {
+ Ptr1Reg = ptrB;
+ }
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
+ .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
+ BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
+ .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
+ if (is64bit)
+ BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(61);
+ else
+ BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
+ .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
+ BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
+ .addReg(newval).addReg(ShiftReg);
+ BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
+ .addReg(oldval).addReg(ShiftReg);
+ if (is8bit)
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
+ else {
+ BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
+ BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
+ .addReg(Mask3Reg).addImm(65535);
+ }
+ BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
+ .addReg(Mask2Reg).addReg(ShiftReg);
+ BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
+ .addReg(NewVal2Reg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
+ .addReg(OldVal2Reg).addReg(MaskReg);
+
+ BB = loop1MBB;
+ BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
+ .addReg(TmpReg).addReg(OldVal3Reg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(midMBB);
+
+ BB = loop2MBB;
+ BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
+ .addReg(TmpDestReg).addReg(MaskReg);
+ BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
+ .addReg(Tmp2Reg).addReg(NewVal3Reg);
+ BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
+ BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ BB = midMBB;
+ BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
+ .addReg(ZeroReg).addReg(PtrReg);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+ BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
+ .addReg(ShiftReg);
+ } else if (MI->getOpcode() == PPC::FADDrtz) {
+ // This pseudo performs an FADD with rounding mode temporarily forced
+ // to round-to-zero. We emit this via custom inserter since the FPSCR
+ // is not modeled at the SelectionDAG level.
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src1 = MI->getOperand(1).getReg();
+ unsigned Src2 = MI->getOperand(2).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
+
+ // Save FPSCR value.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
+
+ // Set rounding mode to round-to-zero.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
+
+ // Perform addition.
+ BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
+
+ // Restore FPSCR value.
+ BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
+ } else {
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isAfterLegalizeVectorOps())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
+ (VT == MVT::f64 && PPCSubTarget.hasFRE()) ||
+ (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
+
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal, we need to find the zero of the function:
+ // F(X) = A X - 1 [which has a zero at X = 1/A]
+ // =>
+ // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
+ // does not require additional intermediate precision]
+
+ // Convergence is quadratic, so we essentially double the number of digits
+ // correct after every iteration. The minimum architected relative
+ // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
+ // 23 digits and double has 52 digits.
+ int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
+ if (VT.getScalarType() == MVT::f64)
+ ++Iterations;
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(Op);
+
+ SDValue FPOne =
+ DAG.getConstantFP(1.0, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 &&
+ "Unknown vector type");
+ FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ FPOne, FPOne, FPOne, FPOne);
+ }
+
+ SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
+ DCI.AddToWorklist(Est.getNode());
+
+ // Newton iterations: Est = Est + Est (1 - Arg * Est)
+ for (int i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(Est.getNode());
+ }
+
+ return Est;
+ }
+
+ return SDValue();
+}
+
+SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isAfterLegalizeVectorOps())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
+ (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE()) ||
+ (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
+
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal sqrt, we need to find the zero of the function:
+ // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+ // =>
+ // X_{i+1} = X_i (1.5 - A X_i^2 / 2)
+ // As a result, we precompute A/2 prior to the iteration loop.
+
+ // Convergence is quadratic, so we essentially double the number of digits
+ // correct after every iteration. The minimum architected relative
+ // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
+ // 23 digits and double has 52 digits.
+ int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
+ if (VT.getScalarType() == MVT::f64)
+ ++Iterations;
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(Op);
+
+ SDValue FPThreeHalves =
+ DAG.getConstantFP(1.5, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 &&
+ "Unknown vector type");
+ FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ FPThreeHalves, FPThreeHalves,
+ FPThreeHalves, FPThreeHalves);
+ }
+
+ SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
+ DCI.AddToWorklist(Est.getNode());
+
+ // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
+ // this entire sequence requires only one FP constant.
+ SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
+ DCI.AddToWorklist(HalfArg.getNode());
+
+ HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
+ DCI.AddToWorklist(HalfArg.getNode());
+
+ // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
+ for (int i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
+ DCI.AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
+ DCI.AddToWorklist(Est.getNode());
+ }
+
+ return Est;
+ }
+
+ return SDValue();
+}
+
+// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
+// not enforce equality of the chain operands.
+static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
+ unsigned Bytes, int Dist,
+ SelectionDAG &DAG) {
+ EVT VT = LS->getMemoryVT();
+ if (VT.getSizeInBits() / 8 != Bytes)
+ return false;
+
+ SDValue Loc = LS->getBasePtr();
+ SDValue BaseLoc = Base->getBasePtr();
+ if (Loc.getOpcode() == ISD::FrameIndex) {
+ if (BaseLoc.getOpcode() != ISD::FrameIndex)
+ return false;
+ const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
+ int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
+ int FS = MFI->getObjectSize(FI);
+ int BFS = MFI->getObjectSize(BFI);
+ if (FS != BFS || FS != (int)Bytes) return false;
+ return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
+ }
+
+ // Handle X+C
+ if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
+ cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
+ return true;
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const GlobalValue *GV1 = NULL;
+ const GlobalValue *GV2 = NULL;
+ int64_t Offset1 = 0;
+ int64_t Offset2 = 0;
+ bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
+ bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
+ if (isGA1 && isGA2 && GV1 == GV2)
+ return Offset1 == (Offset2 + Dist*Bytes);
+ return false;
+}
+
+// Return true is there is a nearyby consecutive load to the one provided
+// (regardless of alignment). We search up and down the chain, looking though
+// token factors and other loads (but nothing else). As a result, a true
+// results indicates that it is safe to create a new consecutive load adjacent
+// to the load provided.
+static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
+ SDValue Chain = LD->getChain();
+ EVT VT = LD->getMemoryVT();
+
+ SmallSet<SDNode *, 16> LoadRoots;
+ SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
+ SmallSet<SDNode *, 16> Visited;
+
+ // First, search up the chain, branching to follow all token-factor operands.
+ // If we find a consecutive load, then we're done, otherwise, record all
+ // nodes just above the top-level loads and token factors.
+ while (!Queue.empty()) {
+ SDNode *ChainNext = Queue.pop_back_val();
+ if (!Visited.insert(ChainNext))
+ continue;
+
+ if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
+ if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
+ return true;
+
+ if (!Visited.count(ChainLD->getChain().getNode()))
+ Queue.push_back(ChainLD->getChain().getNode());
+ } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
+ for (SDNode::op_iterator O = ChainNext->op_begin(),
+ OE = ChainNext->op_end(); O != OE; ++O)
+ if (!Visited.count(O->getNode()))
+ Queue.push_back(O->getNode());
+ } else
+ LoadRoots.insert(ChainNext);
+ }
+
+ // Second, search down the chain, starting from the top-level nodes recorded
+ // in the first phase. These top-level nodes are the nodes just above all
+ // loads and token factors. Starting with their uses, recursively look though
+ // all loads (just the chain uses) and token factors to find a consecutive
+ // load.
+ Visited.clear();
+ Queue.clear();
+
+ for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
+ IE = LoadRoots.end(); I != IE; ++I) {
+ Queue.push_back(*I);
+
+ while (!Queue.empty()) {
+ SDNode *LoadRoot = Queue.pop_back_val();
+ if (!Visited.insert(LoadRoot))
+ continue;
+
+ if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
+ if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
+ return true;
+
+ for (SDNode::use_iterator UI = LoadRoot->use_begin(),
+ UE = LoadRoot->use_end(); UI != UE; ++UI)
+ if (((isa<LoadSDNode>(*UI) &&
+ cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
+ UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
+ Queue.push_back(*UI);
+ }
+ }
+
+ return false;
+}
+
+SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ const TargetMachine &TM = getTargetMachine();
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default: break;
+ case PPCISD::SHL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue()) // 0 << V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue()) // 0 >>u V -> 0.
+ return N->getOperand(0);
+ }
+ break;
+ case PPCISD::SRA:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (C->isNullValue() || // 0 >>s V -> 0.
+ C->isAllOnesValue()) // -1 >>s V -> -1.
+ return N->getOperand(0);
+ }
+ break;
+ case ISD::FDIV: {
+ assert(TM.Options.UnsafeFPMath &&
+ "Reciprocal estimates require UnsafeFPMath");
+
+ if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
+ if (RV.getNode() != 0) {
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
+ N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
+ DCI);
+ if (RV.getNode() != 0) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
+ N->getValueType(0), RV);
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
+ N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
+ SDValue RV =
+ DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
+ DCI);
+ if (RV.getNode() != 0) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
+ N->getValueType(0), RV,
+ N->getOperand(1).getOperand(1));
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+ }
+
+ SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
+ if (RV.getNode() != 0) {
+ DCI.AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
+ N->getOperand(0), RV);
+ }
+
+ }
+ break;
+ case ISD::FSQRT: {
+ assert(TM.Options.UnsafeFPMath &&
+ "Reciprocal estimates require UnsafeFPMath");
+
+ // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
+ // reciprocal sqrt.
+ SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
+ if (RV.getNode() != 0) {
+ DCI.AddToWorklist(RV.getNode());
+ RV = DAGCombineFastRecip(RV, DCI);
+ if (RV.getNode() != 0) {
+ // Unfortunately, RV is now NaN if the input was exactly 0. Select out
+ // this case and force the answer to 0.
+
+ EVT VT = RV.getValueType();
+
+ SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
+ if (VT.isVector()) {
+ assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
+ Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
+ }
+
+ SDValue ZeroCmp =
+ DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
+ N->getOperand(0), Zero, ISD::SETEQ);
+ DCI.AddToWorklist(ZeroCmp.getNode());
+ DCI.AddToWorklist(RV.getNode());
+
+ RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
+ ZeroCmp, Zero, RV);
+ return RV;
+ }
+ }
+
+ }
+ break;
+ case ISD::SINT_TO_FP:
+ if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
+ if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
+ // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
+ // We allow the src/dst to be either f32/f64, but the intermediate
+ // type must be i64.
+ if (N->getOperand(0).getValueType() == MVT::i64 &&
+ N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
+ SDValue Val = N->getOperand(0).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ }
+
+ Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ if (N->getValueType(0) == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
+ DAG.getIntPtrConstant(0));
+ DCI.AddToWorklist(Val.getNode());
+ }
+ return Val;
+ } else if (N->getOperand(0).getValueType() == MVT::i32) {
+ // If the intermediate type is i32, we can avoid the load/store here
+ // too.
+ }
+ }
+ }
+ break;
+ case ISD::STORE:
+ // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
+ if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
+ !cast<StoreSDNode>(N)->isTruncatingStore() &&
+ N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
+ N->getOperand(1).getValueType() == MVT::i32 &&
+ N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
+ SDValue Val = N->getOperand(1).getOperand(0);
+ if (Val.getValueType() == MVT::f32) {
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+ }
+ Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
+ DCI.AddToWorklist(Val.getNode());
+
+ SDValue Ops[] = {
+ N->getOperand(0), Val, N->getOperand(2),
+ DAG.getValueType(N->getOperand(1).getValueType())
+ };
+
+ Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
+ DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
+ cast<StoreSDNode>(N)->getMemoryVT(),
+ cast<StoreSDNode>(N)->getMemOperand());
+ DCI.AddToWorklist(Val.getNode());
+ return Val;
+ }
+
+ // Turn STORE (BSWAP) -> sthbrx/stwbrx.
+ if (cast<StoreSDNode>(N)->isUnindexed() &&
+ N->getOperand(1).getOpcode() == ISD::BSWAP &&
+ N->getOperand(1).getNode()->hasOneUse() &&
+ (N->getOperand(1).getValueType() == MVT::i32 ||
+ N->getOperand(1).getValueType() == MVT::i16 ||
+ (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
+ TM.getSubtarget<PPCSubtarget>().isPPC64() &&
+ N->getOperand(1).getValueType() == MVT::i64))) {
+ SDValue BSwapOp = N->getOperand(1).getOperand(0);
+ // Do an any-extend to 32-bits if this is a half-word input.
+ if (BSwapOp.getValueType() == MVT::i16)
+ BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
+
+ SDValue Ops[] = {
+ N->getOperand(0), BSwapOp, N->getOperand(2),
+ DAG.getValueType(N->getOperand(1).getValueType())
+ };
+ return
+ DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
+ Ops, array_lengthof(Ops),
+ cast<StoreSDNode>(N)->getMemoryVT(),
+ cast<StoreSDNode>(N)->getMemOperand());
+ }
+ break;
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT VT = LD->getValueType(0);
+ Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
+ if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
+ TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
+ (VT == MVT::v16i8 || VT == MVT::v8i16 ||
+ VT == MVT::v4i32 || VT == MVT::v4f32) &&
+ LD->getAlignment() < ABIAlignment) {
+ // This is a type-legal unaligned Altivec load.
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+
+ // This implements the loading of unaligned vectors as described in
+ // the venerable Apple Velocity Engine overview. Specifically:
+ // https://developer.apple.com/hardwaredrivers/ve/alignment.html
+ // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
+ //
+ // The general idea is to expand a sequence of one or more unaligned
+ // loads into a alignment-based permutation-control instruction (lvsl),
+ // a series of regular vector loads (which always truncate their
+ // input address to an aligned address), and a series of permutations.
+ // The results of these permutations are the requested loaded values.
+ // The trick is that the last "extra" load is not taken from the address
+ // you might suspect (sizeof(vector) bytes after the last requested
+ // load), but rather sizeof(vector) - 1 bytes after the last
+ // requested vector. The point of this is to avoid a page fault if the
+ // base address happend to be aligned. This works because if the base
+ // address is aligned, then adding less than a full vector length will
+ // cause the last vector in the sequence to be (re)loaded. Otherwise,
+ // the next vector will be fetched as you might suspect was necessary.
+
+ // We might be able to reuse the permutation generation from
+ // a different base address offset from this one by an aligned amount.
+ // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
+ // optimization later.
+ SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
+ DAG, dl, MVT::v16i8);
+
+ // Refine the alignment of the original load (a "new" load created here
+ // which was identical to the first except for the alignment would be
+ // merged with the existing node regardless).
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(LD->getPointerInfo(),
+ LD->getMemOperand()->getFlags(),
+ LD->getMemoryVT().getStoreSize(),
+ ABIAlignment);
+ LD->refineAlignment(MMO);
+ SDValue BaseLoad = SDValue(LD, 0);
+
+ // Note that the value of IncOffset (which is provided to the next
+ // load's pointer info offset value, and thus used to calculate the
+ // alignment), and the value of IncValue (which is actually used to
+ // increment the pointer value) are different! This is because we
+ // require the next load to appear to be aligned, even though it
+ // is actually offset from the base pointer by a lesser amount.
+ int IncOffset = VT.getSizeInBits() / 8;
+ int IncValue = IncOffset;
+
+ // Walk (both up and down) the chain looking for another load at the real
+ // (aligned) offset (the alignment of the other load does not matter in
+ // this case). If found, then do not use the offset reduction trick, as
+ // that will prevent the loads from being later combined (as they would
+ // otherwise be duplicates).
+ if (!findConsecutiveLoad(LD, DAG))
+ --IncValue;
+
+ SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+
+ SDValue ExtraLoad =
+ DAG.getLoad(VT, dl, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncOffset),
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), ABIAlignment);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ BaseLoad.getValue(1), ExtraLoad.getValue(1));
+
+ if (BaseLoad.getValueType() != MVT::v4i32)
+ BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
+
+ if (ExtraLoad.getValueType() != MVT::v4i32)
+ ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
+
+ SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
+ BaseLoad, ExtraLoad, PermCntl, DAG, dl);
+
+ if (VT != MVT::v4i32)
+ Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
+
+ // Now we need to be really careful about how we update the users of the
+ // original load. We cannot just call DCI.CombineTo (or
+ // DAG.ReplaceAllUsesWith for that matter), because the load still has
+ // uses created here (the permutation for example) that need to stay.
+ SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ while (UI != UE) {
+ SDUse &Use = UI.getUse();
+ SDNode *User = *UI;
+ // Note: BaseLoad is checked here because it might not be N, but a
+ // bitcast of N.
+ if (User == Perm.getNode() || User == BaseLoad.getNode() ||
+ User == TF.getNode() || Use.getResNo() > 1) {
+ ++UI;
+ continue;
+ }
+
+ SDValue To = Use.getResNo() ? TF : Perm;
+ ++UI;
+
+ SmallVector<SDValue, 8> Ops;
+ for (SDNode::op_iterator O = User->op_begin(),
+ OE = User->op_end(); O != OE; ++O) {
+ if (*O == Use)
+ Ops.push_back(To);
+ else
+ Ops.push_back(*O);
+ }
+
+ DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
+ }
+
+ return SDValue(N, 0);
+ }
+ }
+ break;
+ case ISD::INTRINSIC_WO_CHAIN:
+ if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
+ Intrinsic::ppc_altivec_lvsl &&
+ N->getOperand(1)->getOpcode() == ISD::ADD) {
+ SDValue Add = N->getOperand(1);
+
+ if (DAG.MaskedValueIsZero(Add->getOperand(1),
+ APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
+ Add.getValueType().getScalarType().getSizeInBits()))) {
+ SDNode *BasePtr = Add->getOperand(0).getNode();
+ for (SDNode::use_iterator UI = BasePtr->use_begin(),
+ UE = BasePtr->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
+ cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
+ Intrinsic::ppc_altivec_lvsl) {
+ // We've found another LVSL, and this address if an aligned
+ // multiple of that one. The results will be the same, so use the
+ // one we've just found instead.
+
+ return SDValue(*UI, 0);
+ }
+ }
+ }
+ }
+
+ break;
+ case ISD::BSWAP:
+ // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
+ if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
+ N->getOperand(0).hasOneUse() &&
+ (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
+ (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
+ TM.getSubtarget<PPCSubtarget>().isPPC64() &&
+ N->getValueType(0) == MVT::i64))) {
+ SDValue Load = N->getOperand(0);
+ LoadSDNode *LD = cast<LoadSDNode>(Load);
+ // Create the byte-swapping load.
+ SDValue Ops[] = {
+ LD->getChain(), // Chain
+ LD->getBasePtr(), // Ptr
+ DAG.getValueType(N->getValueType(0)) // VT
+ };
+ SDValue BSLoad =
+ DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
+ DAG.getVTList(N->getValueType(0) == MVT::i64 ?
+ MVT::i64 : MVT::i32, MVT::Other),
+ Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
+
+ // If this is an i16 load, insert the truncate.
+ SDValue ResVal = BSLoad;
+ if (N->getValueType(0) == MVT::i16)
+ ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
+
+ // First, combine the bswap away. This makes the value produced by the
+ // load dead.
+ DCI.CombineTo(N, ResVal);
+
+ // Next, combine the load away, we give it a bogus result value but a real
+ // chain result. The result value is dead because the bswap is dead.
+ DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
+
+ // Return N so it doesn't get rechecked!
+ return SDValue(N, 0);
+ }
+
+ break;
+ case PPCISD::VCMP: {
+ // If a VCMPo node already exists with exactly the same operands as this
+ // node, use its result instead of this node (VCMPo computes both a CR6 and
+ // a normal output).
+ //
+ if (!N->getOperand(0).hasOneUse() &&
+ !N->getOperand(1).hasOneUse() &&
+ !N->getOperand(2).hasOneUse()) {
+
+ // Scan all of the users of the LHS, looking for VCMPo's that match.
+ SDNode *VCMPoNode = 0;
+
+ SDNode *LHSN = N->getOperand(0).getNode();
+ for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
+ UI != E; ++UI)
+ if (UI->getOpcode() == PPCISD::VCMPo &&
+ UI->getOperand(1) == N->getOperand(1) &&
+ UI->getOperand(2) == N->getOperand(2) &&
+ UI->getOperand(0) == N->getOperand(0)) {
+ VCMPoNode = *UI;
+ break;
+ }
+
+ // If there is no VCMPo node, or if the flag value has a single use, don't
+ // transform this.
+ if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
+ break;
+
+ // Look at the (necessarily single) use of the flag value. If it has a
+ // chain, this transformation is more complex. Note that multiple things
+ // could use the value result, which we should ignore.
+ SDNode *FlagUser = 0;
+ for (SDNode::use_iterator UI = VCMPoNode->use_begin();
+ FlagUser == 0; ++UI) {
+ assert(UI != VCMPoNode->use_end() && "Didn't find user!");
+ SDNode *User = *UI;
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
+ if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
+ FlagUser = User;
+ break;
+ }
+ }
+ }
+
+ // If the user is a MFOCRF instruction, we know this is safe.
+ // Otherwise we give up for right now.
+ if (FlagUser->getOpcode() == PPCISD::MFOCRF)
+ return SDValue(VCMPoNode, 0);
+ }
+ break;
+ }
+ case ISD::BR_CC: {
+ // If this is a branch on an altivec predicate comparison, lower this so
+ // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
+ // lowering is done pre-legalize, because the legalizer lowers the predicate
+ // compare down to code that is difficult to reassemble.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+ SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
+
+ // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
+ // value. If so, pass-through the AND to get to the intrinsic.
+ if (LHS.getOpcode() == ISD::AND &&
+ LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
+ cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
+ Intrinsic::ppc_is_decremented_ctr_nonzero &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
+ isZero())
+ LHS = LHS.getOperand(0);
+
+ if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
+ cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
+ Intrinsic::ppc_is_decremented_ctr_nonzero &&
+ isa<ConstantSDNode>(RHS)) {
+ assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ "Counter decrement comparison is not EQ or NE");
+
+ unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
+ bool isBDNZ = (CC == ISD::SETEQ && Val) ||
+ (CC == ISD::SETNE && !Val);
+
+ // We now need to make the intrinsic dead (it cannot be instruction
+ // selected).
+ DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
+ assert(LHS.getNode()->hasOneUse() &&
+ "Counter decrement has more than one use");
+
+ return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
+ N->getOperand(0), N->getOperand(4));
+ }
+
+ int CompareOpc;
+ bool isDot;
+
+ if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
+ isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
+ assert(isDot && "Can't compare against a vector result!");
+
+ // If this is a comparison against something other than 0/1, then we know
+ // that the condition is never/always true.
+ unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
+ if (Val != 0 && Val != 1) {
+ if (CC == ISD::SETEQ) // Cond never true, remove branch.
+ return N->getOperand(0);
+ // Always !=, turn it into an unconditional branch.
+ return DAG.getNode(ISD::BR, dl, MVT::Other,
+ N->getOperand(0), N->getOperand(4));
+ }
+
+ bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
+
+ // Create the PPCISD altivec 'dot' comparison node.
+ SDValue Ops[] = {
+ LHS.getOperand(2), // LHS of compare
+ LHS.getOperand(3), // RHS of compare
+ DAG.getConstant(CompareOpc, MVT::i32)
+ };
+ EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
+ SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
+
+ // Unpack the result based on how the target uses it.
+ PPC::Predicate CompOpc;
+ switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
+ default: // Can't happen, don't crash on invalid number though.
+ case 0: // Branch on the value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
+ break;
+ case 1: // Branch on the inverted value of the EQ bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
+ break;
+ case 2: // Branch on the value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
+ break;
+ case 3: // Branch on the inverted value of the LT bit of CR6.
+ CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
+ break;
+ }
+
+ return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
+ DAG.getConstant(CompOpc, MVT::i32),
+ DAG.getRegister(PPC::CR6, MVT::i32),
+ N->getOperand(4), CompNode.getValue(1));
+ }
+ break;
+ }
+ }
+
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case PPCISD::LBRX: {
+ // lhbrx is known to have the top bits cleared out.
+ if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
+ KnownZero = 0xFFFF0000;
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
+ default: break;
+ case Intrinsic::ppc_altivec_vcmpbfp_p:
+ case Intrinsic::ppc_altivec_vcmpeqfp_p:
+ case Intrinsic::ppc_altivec_vcmpequb_p:
+ case Intrinsic::ppc_altivec_vcmpequh_p:
+ case Intrinsic::ppc_altivec_vcmpequw_p:
+ case Intrinsic::ppc_altivec_vcmpgefp_p:
+ case Intrinsic::ppc_altivec_vcmpgtfp_p:
+ case Intrinsic::ppc_altivec_vcmpgtsb_p:
+ case Intrinsic::ppc_altivec_vcmpgtsh_p:
+ case Intrinsic::ppc_altivec_vcmpgtsw_p:
+ case Intrinsic::ppc_altivec_vcmpgtub_p:
+ case Intrinsic::ppc_altivec_vcmpgtuh_p:
+ case Intrinsic::ppc_altivec_vcmpgtuw_p:
+ KnownZero = ~1U; // All bits but the low one are known to be zero.
+ break;
+ }
+ }
+ }
+}
+
+
+/// getConstraintType - Given a constraint, return the type of
+/// constraint it is for this target.
+PPCTargetLowering::ConstraintType
+PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'b':
+ case 'r':
+ case 'f':
+ case 'v':
+ case 'y':
+ return C_RegisterClass;
+ case 'Z':
+ // FIXME: While Z does indicate a memory constraint, it specifically
+ // indicates an r+r address (used in conjunction with the 'y' modifier
+ // in the replacement string). Currently, we're forcing the base
+ // register to be r0 in the asm printer (which is interpreted as zero)
+ // and forming the complete address in the second register. This is
+ // suboptimal.
+ return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+PPCTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'b':
+ if (type->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'f':
+ if (type->isFloatTy())
+ weight = CW_Register;
+ break;
+ case 'd':
+ if (type->isDoubleTy())
+ weight = CW_Register;
+ break;
+ case 'v':
+ if (type->isVectorTy())
+ weight = CW_Register;
+ break;
+ case 'y':
+ weight = CW_Register;
+ break;
+ case 'Z':
+ weight = CW_Memory;
+ break;
+ }
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC RS6000 Constraint Letters
+ switch (Constraint[0]) {
+ case 'b': // R1-R31
+ if (VT == MVT::i64 && PPCSubTarget.isPPC64())
+ return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
+ return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
+ case 'r': // R0-R31
+ if (VT == MVT::i64 && PPCSubTarget.isPPC64())
+ return std::make_pair(0U, &PPC::G8RCRegClass);
+ return std::make_pair(0U, &PPC::GPRCRegClass);
+ case 'f':
+ if (VT == MVT::f32 || VT == MVT::i32)
+ return std::make_pair(0U, &PPC::F4RCRegClass);
+ if (VT == MVT::f64 || VT == MVT::i64)
+ return std::make_pair(0U, &PPC::F8RCRegClass);
+ break;
+ case 'v':
+ return std::make_pair(0U, &PPC::VRRCRegClass);
+ case 'y': // crrc
+ return std::make_pair(0U, &PPC::CRRCRegClass);
+ }
+ }
+
+ std::pair<unsigned, const TargetRegisterClass*> R =
+ TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
+ // (which we call X[0-9]+). If a 64-bit value has been requested, and a
+ // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
+ // register.
+ // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
+ // the AsmName field from *RegisterInfo.td, then this would not be necessary.
+ if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
+ PPC::GPRCRegClass.contains(R.first)) {
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ return std::make_pair(TRI->getMatchingSuperReg(R.first,
+ PPC::sub_32, &PPC::G8RCRegClass),
+ &PPC::G8RCRegClass);
+ }
+
+ return R;
+}
+
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0,0);
+
+ // Only support length 1 constraints.
+ if (Constraint.length() > 1) return;
+
+ char Letter = Constraint[0];
+ switch (Letter) {
+ default: break;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P': {
+ ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
+ if (!CST) return; // Must be an immediate to match.
+ unsigned Value = CST->getZExtValue();
+ switch (Letter) {
+ default: llvm_unreachable("Unknown constraint letter!");
+ case 'I': // "I" is a signed 16-bit constant.
+ if ((short)Value == (int)Value)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
+ case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
+ if ((short)Value == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
+ if ((Value >> 16) == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'M': // "M" is a constant that is greater than 31.
+ if (Value > 31)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'N': // "N" is a positive constant that is an exact power of two.
+ if ((int)Value > 0 && isPowerOf2_32(Value))
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'O': // "O" is the constant zero.
+ if (Value == 0)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
+ if ((short)-Value == (int)-Value)
+ Result = DAG.getTargetConstant(Value, Op.getValueType());
+ break;
+ }
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ // Handle standard constraint letters.
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // FIXME: PPC does not allow r+i addressing modes for vectors!
+
+ // PPC allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // PPC only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ default:
+ // No other scales are supported.
+ return false;
+ }
+
+ return true;
+}
+
+SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ // Make sure the function does not optimize away the store of the RA to
+ // the stack.
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setLRStoreRequired();
+ bool isPPC64 = PPCSubTarget.isPPC64();
+ bool isDarwinABI = PPCSubTarget.isDarwinABI();
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset =
+
+ DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
+ isPPC64? MVT::i64 : MVT::i32);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Just load the return address off the stack.
+ SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ RetAddrFI, MachinePointerInfo(), false, false, false, 0);
+}
+
+SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = PtrVT == MVT::i64;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ // Naked functions never have a frame pointer, and so we use r1. For all
+ // other functions, this decision must be delayed until during PEI.
+ unsigned FrameReg;
+ if (MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::Naked))
+ FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
+ else
+ FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
+
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
+ PtrVT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
+ FrameAddr, MachinePointerInfo(), false, false,
+ false, 0);
+ return FrameAddr;
+}
+
+bool
+PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The PowerPC target isn't yet aware of offsets.
+ return false;
+}
+
+/// getOptimalMemOpType - Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ if (this->PPCSubTarget.isPPC64()) {
+ return MVT::i64;
+ } else {
+ return MVT::i32;
+ }
+}
+
+bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
+ bool *Fast) const {
+ if (DisablePPCUnaligned)
+ return false;
+
+ // PowerPC supports unaligned memory access for simple non-vector types.
+ // Although accessing unaligned addresses is not as efficient as accessing
+ // aligned addresses, it is generally more efficient than manual expansion,
+ // and generally only traps for software emulation when crossing page
+ // boundaries.
+
+ if (!VT.isSimple())
+ return false;
+
+ if (VT.getSimpleVT().isVector())
+ return false;
+
+ if (VT == MVT::ppcf128)
+ return false;
+
+ if (Fast)
+ *Fast = true;
+
+ return true;
+}
+
+bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
+ if (DisableILPPref || PPCSubTarget.enableMachineScheduler())
+ return TargetLowering::getSchedulingPreference(N);
+
+ return Sched::ILP;
+}
+
+// Create a fast isel object.
+FastISel *
+PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) const {
+ return PPC::createFastISel(FuncInfo, LibInfo);
+}