aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp')
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp586
1 files changed, 586 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp
new file mode 100644
index 000000000000..e451d273cf44
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp
@@ -0,0 +1,586 @@
+//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// CUDA C/C++ includes memory space designation as variable type qualifers (such
+// as __global__ and __shared__). Knowing the space of a memory access allows
+// CUDA compilers to emit faster PTX loads and stores. For example, a load from
+// shared memory can be translated to `ld.shared` which is roughly 10% faster
+// than a generic `ld` on an NVIDIA Tesla K40c.
+//
+// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
+// compilers must infer the memory space of an address expression from
+// type-qualified variables.
+//
+// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
+// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
+// places only type-qualified variables in specific address spaces, and then
+// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
+// (so-called the generic address space) for other instructions to use.
+//
+// For example, the Clang translates the following CUDA code
+// __shared__ float a[10];
+// float v = a[i];
+// to
+// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
+// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
+// %v = load float, float* %1 ; emits ld.f32
+// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
+// redirected to %0 (the generic version of @a).
+//
+// The optimization implemented in this file propagates specific address spaces
+// from type-qualified variable declarations to its users. For example, it
+// optimizes the above IR to
+// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
+// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
+// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
+// codegen is able to emit ld.shared.f32 for %v.
+//
+// Address space inference works in two steps. First, it uses a data-flow
+// analysis to infer as many generic pointers as possible to point to only one
+// specific address space. In the above example, it can prove that %1 only
+// points to addrspace(3). This algorithm was published in
+// CUDA: Compiling and optimizing for a GPU platform
+// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
+// ICCS 2012
+//
+// Then, address space inference replaces all refinable generic pointers with
+// equivalent specific pointers.
+//
+// The major challenge of implementing this optimization is handling PHINodes,
+// which may create loops in the data flow graph. This brings two complications.
+//
+// First, the data flow analysis in Step 1 needs to be circular. For example,
+// %generic.input = addrspacecast float addrspace(3)* %input to float*
+// loop:
+// %y = phi [ %generic.input, %y2 ]
+// %y2 = getelementptr %y, 1
+// %v = load %y2
+// br ..., label %loop, ...
+// proving %y specific requires proving both %generic.input and %y2 specific,
+// but proving %y2 specific circles back to %y. To address this complication,
+// the data flow analysis operates on a lattice:
+// uninitialized > specific address spaces > generic.
+// All address expressions (our implementation only considers phi, bitcast,
+// addrspacecast, and getelementptr) start with the uninitialized address space.
+// The monotone transfer function moves the address space of a pointer down a
+// lattice path from uninitialized to specific and then to generic. A join
+// operation of two different specific address spaces pushes the expression down
+// to the generic address space. The analysis completes once it reaches a fixed
+// point.
+//
+// Second, IR rewriting in Step 2 also needs to be circular. For example,
+// converting %y to addrspace(3) requires the compiler to know the converted
+// %y2, but converting %y2 needs the converted %y. To address this complication,
+// we break these cycles using "undef" placeholders. When converting an
+// instruction `I` to a new address space, if its operand `Op` is not converted
+// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
+// For instance, our algorithm first converts %y to
+// %y' = phi float addrspace(3)* [ %input, undef ]
+// Then, it converts %y2 to
+// %y2' = getelementptr %y', 1
+// Finally, it fixes the undef in %y' so that
+// %y' = phi float addrspace(3)* [ %input, %y2' ]
+//
+// TODO: This pass is experimental and not enabled by default. Users can turn it
+// on by setting the -nvptx-use-infer-addrspace flag of llc. We plan to replace
+// NVPTXNonFavorGenericAddrSpaces with this pass shortly.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "nvptx-infer-addrspace"
+
+#include "NVPTX.h"
+#include "MCTargetDesc/NVPTXBaseInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+
+using namespace llvm;
+
+namespace {
+const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
+
+using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
+
+/// \brief NVPTXInferAddressSpaces
+class NVPTXInferAddressSpaces: public FunctionPass {
+public:
+ static char ID;
+
+ NVPTXInferAddressSpaces() : FunctionPass(ID) {}
+
+ bool runOnFunction(Function &F) override;
+
+private:
+ // Returns the new address space of V if updated; otherwise, returns None.
+ Optional<unsigned>
+ updateAddressSpace(const Value &V,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace);
+
+ // Tries to infer the specific address space of each address expression in
+ // Postorder.
+ void inferAddressSpaces(const std::vector<Value *> &Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace);
+
+ // Changes the generic address expressions in function F to point to specific
+ // address spaces if InferredAddrSpace says so. Postorder is the postorder of
+ // all generic address expressions in the use-def graph of function F.
+ bool
+ rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace,
+ Function *F);
+};
+} // end anonymous namespace
+
+char NVPTXInferAddressSpaces::ID = 0;
+
+namespace llvm {
+void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
+}
+INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
+ "Infer address spaces",
+ false, false)
+
+// Returns true if V is an address expression.
+// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
+// getelementptr operators.
+static bool isAddressExpression(const Value &V) {
+ if (!isa<Operator>(V))
+ return false;
+
+ switch (cast<Operator>(V).getOpcode()) {
+ case Instruction::PHI:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Returns the pointer operands of V.
+//
+// Precondition: V is an address expression.
+static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
+ assert(isAddressExpression(V));
+ const Operator& Op = cast<Operator>(V);
+ switch (Op.getOpcode()) {
+ case Instruction::PHI: {
+ auto IncomingValues = cast<PHINode>(Op).incoming_values();
+ return SmallVector<Value *, 2>(IncomingValues.begin(),
+ IncomingValues.end());
+ }
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ return {Op.getOperand(0)};
+ default:
+ llvm_unreachable("Unexpected instruction type.");
+ }
+}
+
+// If V is an unvisited generic address expression, appends V to PostorderStack
+// and marks it as visited.
+static void appendsGenericAddressExpressionToPostorderStack(
+ Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
+ DenseSet<Value *> *Visited) {
+ assert(V->getType()->isPointerTy());
+ if (isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() ==
+ AddressSpace::ADDRESS_SPACE_GENERIC) {
+ if (Visited->insert(V).second)
+ PostorderStack->push_back(std::make_pair(V, false));
+ }
+}
+
+// Returns all generic address expressions in function F. The elements are
+// ordered in postorder.
+static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
+ // This function implements a non-recursive postorder traversal of a partial
+ // use-def graph of function F.
+ std::vector<std::pair<Value*, bool>> PostorderStack;
+ // The set of visited expressions.
+ DenseSet<Value*> Visited;
+ // We only explore address expressions that are reachable from loads and
+ // stores for now because we aim at generating faster loads and stores.
+ for (Instruction &I : instructions(F)) {
+ if (isa<LoadInst>(I)) {
+ appendsGenericAddressExpressionToPostorderStack(
+ I.getOperand(0), &PostorderStack, &Visited);
+ } else if (isa<StoreInst>(I)) {
+ appendsGenericAddressExpressionToPostorderStack(
+ I.getOperand(1), &PostorderStack, &Visited);
+ }
+ }
+
+ std::vector<Value *> Postorder; // The resultant postorder.
+ while (!PostorderStack.empty()) {
+ // If the operands of the expression on the top are already explored,
+ // adds that expression to the resultant postorder.
+ if (PostorderStack.back().second) {
+ Postorder.push_back(PostorderStack.back().first);
+ PostorderStack.pop_back();
+ continue;
+ }
+ // Otherwise, adds its operands to the stack and explores them.
+ PostorderStack.back().second = true;
+ for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
+ appendsGenericAddressExpressionToPostorderStack(
+ PtrOperand, &PostorderStack, &Visited);
+ }
+ }
+ return Postorder;
+}
+
+// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
+// of OperandUse.get() in the new address space. If the clone is not ready yet,
+// returns an undef in the new address space as a placeholder.
+static Value *operandWithNewAddressSpaceOrCreateUndef(
+ const Use &OperandUse, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Value *Operand = OperandUse.get();
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
+ return NewOperand;
+
+ UndefUsesToFix->push_back(&OperandUse);
+ return UndefValue::get(
+ Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
+}
+
+// Returns a clone of `I` with its operands converted to those specified in
+// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
+// operand whose address space needs to be modified might not exist in
+// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
+// adds that operand use to UndefUsesToFix so that caller can fix them later.
+//
+// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
+// from a pointer whose type already matches. Therefore, this function returns a
+// Value* instead of an Instruction*.
+static Value *cloneInstructionWithNewAddressSpace(
+ Instruction *I, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Type *NewPtrType =
+ I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (I->getOpcode() == Instruction::AddrSpaceCast) {
+ Value *Src = I->getOperand(0);
+ // Because `I` is generic, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space, according
+ // to our algorithm.
+ assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
+ if (Src->getType() != NewPtrType)
+ return new BitCastInst(Src, NewPtrType);
+ return Src;
+ }
+
+ // Computes the converted pointer operands.
+ SmallVector<Value *, 4> NewPointerOperands;
+ for (const Use &OperandUse : I->operands()) {
+ if (!OperandUse.get()->getType()->isPointerTy())
+ NewPointerOperands.push_back(nullptr);
+ else
+ NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
+ OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
+ }
+
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ return new BitCastInst(NewPointerOperands[0], NewPtrType);
+ case Instruction::PHI: {
+ assert(I->getType()->isPointerTy());
+ PHINode *PHI = cast<PHINode>(I);
+ PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
+ for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
+ unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
+ NewPHI->addIncoming(NewPointerOperands[OperandNo],
+ PHI->getIncomingBlock(Index));
+ }
+ return NewPHI;
+ }
+ case Instruction::GetElementPtr: {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
+ GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
+ GEP->getSourceElementType(), NewPointerOperands[0],
+ SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
+ NewGEP->setIsInBounds(GEP->isInBounds());
+ return NewGEP;
+ }
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
+// constant expression `CE` with its operands replaced as specified in
+// ValueWithNewAddrSpace.
+static Value *cloneConstantExprWithNewAddressSpace(
+ ConstantExpr *CE, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace) {
+ Type *TargetType =
+ CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (CE->getOpcode() == Instruction::AddrSpaceCast) {
+ // Because CE is generic, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space according
+ // to our algorithm.
+ assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
+ NewAddrSpace);
+ return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
+ }
+
+ // Computes the operands of the new constant expression.
+ SmallVector<Constant *, 4> NewOperands;
+ for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
+ Constant *Operand = CE->getOperand(Index);
+ // If the address space of `Operand` needs to be modified, the new operand
+ // with the new address space should already be in ValueWithNewAddrSpace
+ // because (1) the constant expressions we consider (i.e. addrspacecast,
+ // bitcast, and getelementptr) do not incur cycles in the data flow graph
+ // and (2) this function is called on constant expressions in postorder.
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
+ NewOperands.push_back(cast<Constant>(NewOperand));
+ } else {
+ // Otherwise, reuses the old operand.
+ NewOperands.push_back(Operand);
+ }
+ }
+
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // Needs to specify the source type while constructing a getelementptr
+ // constant expression.
+ return CE->getWithOperands(
+ NewOperands, TargetType, /*OnlyIfReduced=*/false,
+ NewOperands[0]->getType()->getPointerElementType());
+ }
+
+ return CE->getWithOperands(NewOperands, TargetType);
+}
+
+// Returns a clone of the value `V`, with its operands replaced as specified in
+// ValueWithNewAddrSpace. This function is called on every generic address
+// expression whose address space needs to be modified, in postorder.
+//
+// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
+static Value *
+cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ // All values in Postorder are generic address expressions.
+ assert(isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() ==
+ AddressSpace::ADDRESS_SPACE_GENERIC);
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Value *NewV = cloneInstructionWithNewAddressSpace(
+ I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
+ if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
+ if (NewI->getParent() == nullptr) {
+ NewI->insertBefore(I);
+ NewI->takeName(I);
+ }
+ }
+ return NewV;
+ }
+
+ return cloneConstantExprWithNewAddressSpace(
+ cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
+}
+
+// Defines the join operation on the address space lattice (see the file header
+// comments).
+static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
+ if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
+ AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
+ return AddressSpace::ADDRESS_SPACE_GENERIC;
+
+ if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
+ return AS2;
+ if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
+ return AS1;
+
+ // The join of two different specific address spaces is generic.
+ return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
+}
+
+bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ // Collects all generic address expressions in postorder.
+ std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
+
+ // Runs a data-flow analysis to refine the address spaces of every expression
+ // in Postorder.
+ ValueToAddrSpaceMapTy InferredAddrSpace;
+ inferAddressSpaces(Postorder, &InferredAddrSpace);
+
+ // Changes the address spaces of the generic address expressions who are
+ // inferred to point to a specific address space.
+ return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
+}
+
+void NVPTXInferAddressSpaces::inferAddressSpaces(
+ const std::vector<Value *> &Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace) {
+ SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
+ // Initially, all expressions are in the uninitialized address space.
+ for (Value *V : Postorder)
+ (*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
+
+ while (!Worklist.empty()) {
+ Value* V = Worklist.pop_back_val();
+
+ // Tries to update the address space of the stack top according to the
+ // address spaces of its operands.
+ DEBUG(dbgs() << "Updating the address space of\n"
+ << " " << *V << "\n");
+ Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
+ if (!NewAS.hasValue())
+ continue;
+ // If any updates are made, grabs its users to the worklist because
+ // their address spaces can also be possibly updated.
+ DEBUG(dbgs() << " to " << NewAS.getValue() << "\n");
+ (*InferredAddrSpace)[V] = NewAS.getValue();
+
+ for (Value *User : V->users()) {
+ // Skip if User is already in the worklist.
+ if (Worklist.count(User))
+ continue;
+
+ auto Pos = InferredAddrSpace->find(User);
+ // Our algorithm only updates the address spaces of generic address
+ // expressions, which are those in InferredAddrSpace.
+ if (Pos == InferredAddrSpace->end())
+ continue;
+
+ // Function updateAddressSpace moves the address space down a lattice
+ // path. Therefore, nothing to do if User is already inferred as
+ // generic (the bottom element in the lattice).
+ if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
+ continue;
+
+ Worklist.insert(User);
+ }
+ }
+}
+
+Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
+ const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
+ assert(InferredAddrSpace.count(&V));
+
+ // The new inferred address space equals the join of the address spaces
+ // of all its pointer operands.
+ unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
+ for (Value *PtrOperand : getPointerOperands(V)) {
+ unsigned OperandAS;
+ if (InferredAddrSpace.count(PtrOperand))
+ OperandAS = InferredAddrSpace.lookup(PtrOperand);
+ else
+ OperandAS = PtrOperand->getType()->getPointerAddressSpace();
+ NewAS = joinAddressSpaces(NewAS, OperandAS);
+ // join(generic, *) = generic. So we can break if NewAS is already generic.
+ if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
+ break;
+ }
+
+ unsigned OldAS = InferredAddrSpace.lookup(&V);
+ assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
+ if (OldAS == NewAS)
+ return None;
+ return NewAS;
+}
+
+bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
+ const std::vector<Value *> &Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
+ // For each address expression to be modified, creates a clone of it with its
+ // pointer operands converted to the new address space. Since the pointer
+ // operands are converted, the clone is naturally in the new address space by
+ // construction.
+ ValueToValueMapTy ValueWithNewAddrSpace;
+ SmallVector<const Use *, 32> UndefUsesToFix;
+ for (Value* V : Postorder) {
+ unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
+ if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
+ ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
+ V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
+ }
+ }
+
+ if (ValueWithNewAddrSpace.empty())
+ return false;
+
+ // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
+ for (const Use* UndefUse : UndefUsesToFix) {
+ User *V = UndefUse->getUser();
+ User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
+ unsigned OperandNo = UndefUse->getOperandNo();
+ assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
+ NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
+ }
+
+ // Replaces the uses of the old address expressions with the new ones.
+ for (Value *V : Postorder) {
+ Value *NewV = ValueWithNewAddrSpace.lookup(V);
+ if (NewV == nullptr)
+ continue;
+
+ SmallVector<Use *, 4> Uses;
+ for (Use &U : V->uses())
+ Uses.push_back(&U);
+ DEBUG(dbgs() << "Replacing the uses of " << *V << "\n to\n " << *NewV
+ << "\n");
+ for (Use *U : Uses) {
+ if (isa<LoadInst>(U->getUser()) ||
+ (isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
+ // If V is used as the pointer operand of a load/store, sets the pointer
+ // operand to NewV. This replacement does not change the element type,
+ // so the resultant load/store is still valid.
+ U->set(NewV);
+ } else if (isa<Instruction>(U->getUser())) {
+ // Otherwise, replaces the use with generic(NewV).
+ // TODO: Some optimization opportunities are missed. For example, in
+ // %0 = icmp eq float* %p, %q
+ // if both p and q are inferred to be shared, we can rewrite %0 as
+ // %0 = icmp eq float addrspace(3)* %new_p, %new_q
+ // instead of currently
+ // %generic_p = addrspacecast float addrspace(3)* %new_p to float*
+ // %generic_q = addrspacecast float addrspace(3)* %new_q to float*
+ // %0 = icmp eq float* %generic_p, %generic_q
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ BasicBlock::iterator InsertPos = std::next(I->getIterator());
+ while (isa<PHINode>(InsertPos))
+ ++InsertPos;
+ U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
+ } else {
+ U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
+ V->getType()));
+ }
+ }
+ }
+ if (V->use_empty())
+ RecursivelyDeleteTriviallyDeadInstructions(V);
+ }
+
+ return true;
+}
+
+FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
+ return new NVPTXInferAddressSpaces();
+}