diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp | 1073 |
1 files changed, 1073 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp new file mode 100644 index 000000000000..92d3c001df94 --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp @@ -0,0 +1,1073 @@ +//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Subclass of MipsDAGToDAGISel specialized for mips32/64. +// +//===----------------------------------------------------------------------===// + +#include "MipsSEISelDAGToDAG.h" +#include "MCTargetDesc/MipsBaseInfo.h" +#include "Mips.h" +#include "MipsAnalyzeImmediate.h" +#include "MipsMachineFunction.h" +#include "MipsRegisterInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Dominators.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +using namespace llvm; + +#define DEBUG_TYPE "mips-isel" + +bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { + Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); + if (Subtarget->inMips16Mode()) + return false; + return MipsDAGToDAGISel::runOnMachineFunction(MF); +} + +void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<DominatorTreeWrapperPass>(); + SelectionDAGISel::getAnalysisUsage(AU); +} + +void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, + MachineFunction &MF) { + MachineInstrBuilder MIB(MF, &MI); + unsigned Mask = MI.getOperand(1).getImm(); + unsigned Flag = + IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; + + if (Mask & 1) + MIB.addReg(Mips::DSPPos, Flag); + + if (Mask & 2) + MIB.addReg(Mips::DSPSCount, Flag); + + if (Mask & 4) + MIB.addReg(Mips::DSPCarry, Flag); + + if (Mask & 8) + MIB.addReg(Mips::DSPOutFlag, Flag); + + if (Mask & 16) + MIB.addReg(Mips::DSPCCond, Flag); + + if (Mask & 32) + MIB.addReg(Mips::DSPEFI, Flag); +} + +unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { + switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { + default: + llvm_unreachable("Could not map int to register"); + case 0: return Mips::MSAIR; + case 1: return Mips::MSACSR; + case 2: return Mips::MSAAccess; + case 3: return Mips::MSASave; + case 4: return Mips::MSAModify; + case 5: return Mips::MSARequest; + case 6: return Mips::MSAMap; + case 7: return Mips::MSAUnmap; + } +} + +bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, + const MachineInstr& MI) { + unsigned DstReg = 0, ZeroReg = 0; + + // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". + if ((MI.getOpcode() == Mips::ADDiu) && + (MI.getOperand(1).getReg() == Mips::ZERO) && + (MI.getOperand(2).getImm() == 0)) { + DstReg = MI.getOperand(0).getReg(); + ZeroReg = Mips::ZERO; + } else if ((MI.getOpcode() == Mips::DADDiu) && + (MI.getOperand(1).getReg() == Mips::ZERO_64) && + (MI.getOperand(2).getImm() == 0)) { + DstReg = MI.getOperand(0).getReg(); + ZeroReg = Mips::ZERO_64; + } + + if (!DstReg) + return false; + + // Replace uses with ZeroReg. + for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), + E = MRI->use_end(); U != E;) { + MachineOperand &MO = *U; + unsigned OpNo = U.getOperandNo(); + MachineInstr *MI = MO.getParent(); + ++U; + + // Do not replace if it is a phi's operand or is tied to def operand. + if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) + continue; + + // Also, we have to check that the register class of the operand + // contains the zero register. + if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) + continue; + + MO.setReg(ZeroReg); + } + + return true; +} + +void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + if (!MipsFI->globalBaseRegSet()) + return; + + MachineBasicBlock &MBB = MF.front(); + MachineBasicBlock::iterator I = MBB.begin(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + DebugLoc DL; + unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); + const TargetRegisterClass *RC; + const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI(); + RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; + + V0 = RegInfo.createVirtualRegister(RC); + V1 = RegInfo.createVirtualRegister(RC); + + if (ABI.IsN64()) { + MF.getRegInfo().addLiveIn(Mips::T9_64); + MBB.addLiveIn(Mips::T9_64); + + // lui $v0, %hi(%neg(%gp_rel(fname))) + // daddu $v1, $v0, $t9 + // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) + const GlobalValue *FName = MF.getFunction(); + BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); + BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) + .addReg(Mips::T9_64); + BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); + return; + } + + if (!MF.getTarget().isPositionIndependent()) { + // Set global register to __gnu_local_gp. + // + // lui $v0, %hi(__gnu_local_gp) + // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) + BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) + .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); + BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) + .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); + return; + } + + MF.getRegInfo().addLiveIn(Mips::T9); + MBB.addLiveIn(Mips::T9); + + if (ABI.IsN32()) { + // lui $v0, %hi(%neg(%gp_rel(fname))) + // addu $v1, $v0, $t9 + // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) + const GlobalValue *FName = MF.getFunction(); + BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); + BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); + BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); + return; + } + + assert(ABI.IsO32()); + + // For O32 ABI, the following instruction sequence is emitted to initialize + // the global base register: + // + // 0. lui $2, %hi(_gp_disp) + // 1. addiu $2, $2, %lo(_gp_disp) + // 2. addu $globalbasereg, $2, $t9 + // + // We emit only the last instruction here. + // + // GNU linker requires that the first two instructions appear at the beginning + // of a function and no instructions be inserted before or between them. + // The two instructions are emitted during lowering to MC layer in order to + // avoid any reordering. + // + // Register $2 (Mips::V0) is added to the list of live-in registers to ensure + // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) + // reads it. + MF.getRegInfo().addLiveIn(Mips::V0); + MBB.addLiveIn(Mips::V0); + BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) + .addReg(Mips::V0).addReg(Mips::T9); +} + +void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { + initGlobalBaseReg(MF); + + MachineRegisterInfo *MRI = &MF.getRegInfo(); + + for (auto &MBB: MF) { + for (auto &MI: MBB) { + switch (MI.getOpcode()) { + case Mips::RDDSP: + addDSPCtrlRegOperands(false, MI, MF); + break; + case Mips::WRDSP: + addDSPCtrlRegOperands(true, MI, MF); + break; + default: + replaceUsesWithZeroReg(MRI, MI); + } + } + } +} + +void MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag, + SDValue CmpLHS, const SDLoc &DL, + SDNode *Node) const { + unsigned Opc = InFlag.getOpcode(); (void)Opc; + + assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) || + (Opc == ISD::SUBC || Opc == ISD::SUBE)) && + "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"); + + unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu; + if (Subtarget->isGP64bit()) { + SLTuOp = Mips::SLTu64; + ADDuOp = Mips::DADDu; + } + + SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) }; + SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + + SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops); + + if (Subtarget->isGP64bit()) { + // On 64-bit targets, sltu produces an i64 but our backend currently says + // that SLTu64 produces an i32. We need to fix this in the long run but for + // now, just make the DAG type-correct by asserting the upper bits are zero. + Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT, + CurDAG->getTargetConstant(0, DL, VT), + SDValue(Carry, 0), + CurDAG->getTargetConstant(Mips::sub_32, DL, + VT)); + } + + // Generate a second addition only if we know that RHS is not a + // constant-zero node. + SDNode *AddCarry = Carry; + ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); + if (!C || C->getZExtValue()) + AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS); + + CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0)); +} + +/// Match frameindex +bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { + EVT ValTy = Addr.getValueType(); + + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); + Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); + return true; + } + return false; +} + +/// Match frameindex+offset and frameindex|offset +bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( + SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, + unsigned ShiftAmount = 0) const { + if (CurDAG->isBaseWithConstantOffset(Addr)) { + ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); + if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { + EVT ValTy = Addr.getValueType(); + + // If the first operand is a FI, get the TargetFI Node + if (FrameIndexSDNode *FIN = + dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); + else { + Base = Addr.getOperand(0); + // If base is a FI, additional offset calculation is done in + // eliminateFrameIndex, otherwise we need to check the alignment + if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0) + return false; + } + + Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), + ValTy); + return true; + } + } + return false; +} + +/// ComplexPattern used on MipsInstrInfo +/// Used on Mips Load/Store instructions +bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + // if Address is FI, get the TargetFrameIndex. + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + // on PIC code Load GA + if (Addr.getOpcode() == MipsISD::Wrapper) { + Base = Addr.getOperand(0); + Offset = Addr.getOperand(1); + return true; + } + + if (!TM.isPositionIndependent()) { + if ((Addr.getOpcode() == ISD::TargetExternalSymbol || + Addr.getOpcode() == ISD::TargetGlobalAddress)) + return false; + } + + // Addresses of the form FI+const or FI|const + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) + return true; + + // Operand is a result from an ADD. + if (Addr.getOpcode() == ISD::ADD) { + // When loading from constant pools, load the lower address part in + // the instruction itself. Example, instead of: + // lui $2, %hi($CPI1_0) + // addiu $2, $2, %lo($CPI1_0) + // lwc1 $f0, 0($2) + // Generate: + // lui $2, %hi($CPI1_0) + // lwc1 $f0, %lo($CPI1_0)($2) + if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || + Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { + SDValue Opnd0 = Addr.getOperand(1).getOperand(0); + if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || + isa<JumpTableSDNode>(Opnd0)) { + Base = Addr.getOperand(0); + Offset = Opnd0; + return true; + } + } + } + + return false; +} + +/// ComplexPattern used on MipsInstrInfo +/// Used on Mips Load/Store instructions +bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + Base = Addr; + Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); + return true; +} + +bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) + return true; + + return false; +} + +/// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) +bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) + return true; + + return false; +} + +/// Used on microMIPS Load/Store unaligned instructions (12-bit offset) +bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) + return true; + + return false; +} + +bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) + return true; + + return false; +} + +bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm11(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm12(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm16(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { + if (isa<FrameIndexSDNode>(Base)) + return false; + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { + unsigned CnstOff = CN->getZExtValue(); + return (CnstOff == (CnstOff & 0x3c)); + } + + return false; + } + + // For all other cases where "lw" would be selected, don't select "lw16" + // because it would result in additional instructions to prepare operands. + if (selectAddrRegImm(Addr, Base, Offset)) + return false; + + return selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) + return true; + + return selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) + return true; + + return selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) + return true; + + return selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) + return true; + + return selectAddrDefault(Addr, Base, Offset); +} + +// Select constant vector splats. +// +// Returns true and sets Imm if: +// * MSA is enabled +// * N is a ISD::BUILD_VECTOR representing a constant splat +bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, + unsigned MinSizeInBits) const { + if (!Subtarget->hasMSA()) + return false; + + BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); + + if (!Node) + return false; + + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + + if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, + MinSizeInBits, !Subtarget->isLittle())) + return false; + + Imm = SplatValue; + + return true; +} + +// Select constant vector splats. +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value fits in an integer with the specified signed-ness and +// width. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +// +// It's worth noting that this function is not used as part of the selection +// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] +// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in +// MipsSEDAGToDAGISel::selectNode. +bool MipsSEDAGToDAGISel:: +selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, + unsigned ImmBitSize) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + + if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || + (!Signed && ImmValue.isIntN(ImmBitSize))) { + Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm1(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 1); +} + +bool MipsSEDAGToDAGISel:: +selectVSplatUimm2(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 2); +} + +bool MipsSEDAGToDAGISel:: +selectVSplatUimm3(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 3); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm4(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 4); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm5(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 5); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm6(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 6); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm8(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 8); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatSimm5(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, true, 5); +} + +// Select constant vector splats whose value is a power of 2. +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a power of two. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + int32_t Log2 = ImmValue.exactLogBase2(); + + if (Log2 != -1) { + Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats whose value only has a consecutive sequence +// of left-most bits set (e.g. 0b11...1100...00). +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a consecutive sequence of left-most bits. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + // Extract the run of set bits starting with bit zero from the bitwise + // inverse of ImmValue, and test that the inverse of this is the same + // as the original value. + if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { + + Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N), + EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats whose value only has a consecutive sequence +// of right-most bits set (e.g. 0b00...0011...11). +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a consecutive sequence of right-most bits. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + // Extract the run of set bits starting with bit zero, and test that the + // result is the same as the original value + if (ImmValue == (ImmValue & ~(ImmValue + 1))) { + Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N), + EltTy); + return true; + } + } + + return false; +} + +bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, + SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + int32_t Log2 = (~ImmValue).exactLogBase2(); + + if (Log2 != -1) { + Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); + return true; + } + } + + return false; +} + +bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { + unsigned Opcode = Node->getOpcode(); + SDLoc DL(Node); + + /// + // Instruction Selection not handled by the auto-generated + // tablegen selection should be handled here. + /// + switch(Opcode) { + default: break; + + case ISD::SUBE: { + SDValue InFlag = Node->getOperand(2); + unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu; + selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node); + return true; + } + + case ISD::ADDE: { + if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC. + break; + SDValue InFlag = Node->getOperand(2); + unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu; + selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node); + return true; + } + + case ISD::ConstantFP: { + ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); + if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { + if (Subtarget->isGP64bit()) { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO_64, MVT::i64); + ReplaceNode(Node, + CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); + } else if (Subtarget->isFP64bit()) { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO, MVT::i32); + ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, + MVT::f64, Zero, Zero)); + } else { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO, MVT::i32); + ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, + MVT::f64, Zero, Zero)); + } + return true; + } + break; + } + + case ISD::Constant: { + const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); + int64_t Imm = CN->getSExtValue(); + unsigned Size = CN->getValueSizeInBits(0); + + if (isInt<32>(Imm)) + break; + + MipsAnalyzeImmediate AnalyzeImm; + + const MipsAnalyzeImmediate::InstSeq &Seq = + AnalyzeImm.Analyze(Imm, Size, false); + + MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); + SDLoc DL(CN); + SDNode *RegOpnd; + SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), + DL, MVT::i64); + + // The first instruction can be a LUi which is different from other + // instructions (ADDiu, ORI and SLL) in that it does not have a register + // operand. + if (Inst->Opc == Mips::LUi64) + RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); + else + RegOpnd = + CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, + CurDAG->getRegister(Mips::ZERO_64, MVT::i64), + ImmOpnd); + + // The remaining instructions in the sequence are handled here. + for (++Inst; Inst != Seq.end(); ++Inst) { + ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, + MVT::i64); + RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, + SDValue(RegOpnd, 0), ImmOpnd); + } + + ReplaceNode(Node, RegOpnd); + return true; + } + + case ISD::INTRINSIC_W_CHAIN: { + switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_cfcmsa: { + SDValue ChainIn = Node->getOperand(0); + SDValue RegIdx = Node->getOperand(2); + SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, + getMSACtrlReg(RegIdx), MVT::i32); + ReplaceNode(Node, Reg.getNode()); + return true; + } + } + break; + } + + case ISD::INTRINSIC_WO_CHAIN: { + switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_move_v: + // Like an assignment but will always produce a move.v even if + // unnecessary. + ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, + Node->getValueType(0), + Node->getOperand(1))); + return true; + } + break; + } + + case ISD::INTRINSIC_VOID: { + switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_ctcmsa: { + SDValue ChainIn = Node->getOperand(0); + SDValue RegIdx = Node->getOperand(2); + SDValue Value = Node->getOperand(3); + SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, + getMSACtrlReg(RegIdx), Value); + ReplaceNode(Node, ChainOut.getNode()); + return true; + } + } + break; + } + + case MipsISD::ThreadPointer: { + EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); + unsigned RdhwrOpc, DestReg; + + if (PtrVT == MVT::i32) { + RdhwrOpc = Mips::RDHWR; + DestReg = Mips::V1; + } else { + RdhwrOpc = Mips::RDHWR64; + DestReg = Mips::V1_64; + } + + SDNode *Rdhwr = + CurDAG->getMachineNode(RdhwrOpc, DL, + Node->getValueType(0), + CurDAG->getRegister(Mips::HWR29, MVT::i32)); + SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, + SDValue(Rdhwr, 0)); + SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); + ReplaceNode(Node, ResNode.getNode()); + return true; + } + + case ISD::BUILD_VECTOR: { + // Select appropriate ldi.[bhwd] instructions for constant splats of + // 128-bit when MSA is enabled. Fixup any register class mismatches that + // occur as a result. + // + // This allows the compiler to use a wider range of immediates than would + // otherwise be allowed. If, for example, v4i32 could only use ldi.h then + // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, + // 0x01010101 } without using a constant pool. This would be sub-optimal + // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the + // same set/ of registers. Similarly, ldi.h isn't capable of producing { + // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. + + BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + unsigned LdiOp; + EVT ResVecTy = BVN->getValueType(0); + EVT ViaVecTy; + + if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) + return false; + + if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, + HasAnyUndefs, 8, + !Subtarget->isLittle())) + return false; + + switch (SplatBitSize) { + default: + return false; + case 8: + LdiOp = Mips::LDI_B; + ViaVecTy = MVT::v16i8; + break; + case 16: + LdiOp = Mips::LDI_H; + ViaVecTy = MVT::v8i16; + break; + case 32: + LdiOp = Mips::LDI_W; + ViaVecTy = MVT::v4i32; + break; + case 64: + LdiOp = Mips::LDI_D; + ViaVecTy = MVT::v2i64; + break; + } + + if (!SplatValue.isSignedIntN(10)) + return false; + + SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, + ViaVecTy.getVectorElementType()); + + SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); + + if (ResVecTy != ViaVecTy) { + // If LdiOp is writing to a different register class to ResVecTy, then + // fix it up here. This COPY_TO_REGCLASS should never cause a move.v + // since the source and destination register sets contain the same + // registers. + const TargetLowering *TLI = getTargetLowering(); + MVT ResVecTySimple = ResVecTy.getSimpleVT(); + const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); + Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, + ResVecTy, SDValue(Res, 0), + CurDAG->getTargetConstant(RC->getID(), DL, + MVT::i32)); + } + + ReplaceNode(Node, Res); + return true; + } + + } + + return false; +} + +bool MipsSEDAGToDAGISel:: +SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, + std::vector<SDValue> &OutOps) { + SDValue Base, Offset; + + switch(ConstraintID) { + default: + llvm_unreachable("Unexpected asm memory constraint"); + // All memory constraints can at least accept raw pointers. + case InlineAsm::Constraint_i: + OutOps.push_back(Op); + OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); + return false; + case InlineAsm::Constraint_m: + if (selectAddrRegImm16(Op, Base, Offset)) { + OutOps.push_back(Base); + OutOps.push_back(Offset); + return false; + } + OutOps.push_back(Op); + OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); + return false; + case InlineAsm::Constraint_R: + // The 'R' constraint is supposed to be much more complicated than this. + // However, it's becoming less useful due to architectural changes and + // ought to be replaced by other constraints such as 'ZC'. + // For now, support 9-bit signed offsets which is supportable by all + // subtargets for all instructions. + if (selectAddrRegImm9(Op, Base, Offset)) { + OutOps.push_back(Base); + OutOps.push_back(Offset); + return false; + } + OutOps.push_back(Op); + OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); + return false; + case InlineAsm::Constraint_ZC: + // ZC matches whatever the pref, ll, and sc instructions can handle for the + // given subtarget. + if (Subtarget->inMicroMipsMode()) { + // On microMIPS, they can handle 12-bit offsets. + if (selectAddrRegImm12(Op, Base, Offset)) { + OutOps.push_back(Base); + OutOps.push_back(Offset); + return false; + } + } else if (Subtarget->hasMips32r6()) { + // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. + if (selectAddrRegImm9(Op, Base, Offset)) { + OutOps.push_back(Base); + OutOps.push_back(Offset); + return false; + } + } else if (selectAddrRegImm16(Op, Base, Offset)) { + // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. + OutOps.push_back(Base); + OutOps.push_back(Offset); + return false; + } + // In all cases, 0-bit offsets are acceptable. + OutOps.push_back(Op); + OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); + return false; + } + return true; +} + +FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, + CodeGenOpt::Level OptLevel) { + return new MipsSEDAGToDAGISel(TM, OptLevel); +} |