diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsCallingConv.td')
-rw-r--r-- | contrib/llvm/lib/Target/Mips/MipsCallingConv.td | 406 |
1 files changed, 406 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsCallingConv.td b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td new file mode 100644 index 000000000000..a57cb7badc17 --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td @@ -0,0 +1,406 @@ +//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// This describes the calling conventions for Mips architecture. +//===----------------------------------------------------------------------===// + +/// CCIfSubtarget - Match if the current subtarget has a feature F. +class CCIfSubtarget<string F, CCAction A, string Invert = ""> + : CCIf<!strconcat(Invert, + "static_cast<const MipsSubtarget&>" + "(State.getMachineFunction().getSubtarget()).", + F), + A>; + +// The inverse of CCIfSubtarget +class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">; + +/// Match if the original argument (before lowering) was a float. +/// For example, this is true for i32's that were lowered from soft-float. +class CCIfOrigArgWasNotFloat<CCAction A> + : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)", + A>; + +/// Match if the original argument (before lowering) was a 128-bit float (i.e. +/// long double). +class CCIfOrigArgWasF128<CCAction A> + : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>; + +/// Match if this specific argument is a vararg. +/// This is slightly different fro CCIfIsVarArg which matches if any argument is +/// a vararg. +class CCIfArgIsVarArg<CCAction A> + : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>; + + +/// Match if the special calling conv is the specified value. +class CCIfSpecialCallingConv<string CC, CCAction A> + : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == " + "MipsCCState::" # CC, A>; + +// For soft-float, f128 values are returned in A0_64 rather than V1_64. +def RetCC_F128SoftFloat : CallingConv<[ + CCAssignToReg<[V0_64, A0_64]> +]>; + +// For hard-float, f128 values are returned as a pair of f64's rather than a +// pair of i64's. +def RetCC_F128HardFloat : CallingConv<[ + CCBitConvertToType<f64>, + + // Contrary to the ABI documentation, a struct containing a long double is + // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to + // match the de facto ABI as implemented by GCC. + CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>, + + CCAssignToReg<[D0_64, D2_64]> +]>; + +// Handle F128 specially since we can't identify the original type during the +// tablegen-erated code. +def RetCC_F128 : CallingConv<[ + CCIfSubtarget<"useSoftFloat()", + CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>, + CCIfSubtargetNot<"useSoftFloat()", + CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>> +]>; + +//===----------------------------------------------------------------------===// +// Mips O32 Calling Convention +//===----------------------------------------------------------------------===// + +def CC_MipsO32 : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, + + // Integer values get stored in stack slots that are 4 bytes in + // size and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + + // Integer values get stored in stack slots that are 8 bytes in + // size and 8-byte aligned. + CCIfType<[f64], CCAssignToStack<8, 8>> +]>; + +// Only the return rules are defined here for O32. The rules for argument +// passing are defined in MipsISelLowering.cpp. +def RetCC_MipsO32 : CallingConv<[ + // Promote i1/i8/i16 return values to i32. + CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, + + // i32 are returned in registers V0, V1, A0, A1 + CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>, + + // f32 are returned in registers F0, F2 + CCIfType<[f32], CCAssignToReg<[F0, F2]>>, + + // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or + // in D0 and D1 in FP32bit mode. + CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>, + CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>> +]>; + +def CC_MipsO32_FP32 : CustomCallingConv; +def CC_MipsO32_FP64 : CustomCallingConv; + +def CC_MipsO32_FP : CallingConv<[ + CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>, + CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>> +]>; + +//===----------------------------------------------------------------------===// +// Mips N32/64 Calling Convention +//===----------------------------------------------------------------------===// + +def CC_MipsN_SoftFloat : CallingConv<[ + CCAssignToRegWithShadow<[A0, A1, A2, A3, + T0, T1, T2, T3], + [D12_64, D13_64, D14_64, D15_64, + D16_64, D17_64, D18_64, D19_64]>, + CCAssignToStack<4, 8> +]>; + +def CC_MipsN : CallingConv<[ + CCIfType<[i8, i16, i32, i64], + CCIfSubtargetNot<"isLittle()", + CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, + + // All integers (except soft-float integers) are promoted to 64-bit. + CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>, + + // The only i32's we have left are soft-float arguments. + CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>, + + // Integer arguments are passed in integer registers. + CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64, + T0_64, T1_64, T2_64, T3_64], + [D12_64, D13_64, D14_64, D15_64, + D16_64, D17_64, D18_64, D19_64]>>, + + // f32 arguments are passed in single precision FP registers. + CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15, + F16, F17, F18, F19], + [A0_64, A1_64, A2_64, A3_64, + T0_64, T1_64, T2_64, T3_64]>>, + + // f64 arguments are passed in double precision FP registers. + CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64, + D16_64, D17_64, D18_64, D19_64], + [A0_64, A1_64, A2_64, A3_64, + T0_64, T1_64, T2_64, T3_64]>>, + + // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. + CCIfType<[f32], CCAssignToStack<4, 8>>, + CCIfType<[i64, f64], CCAssignToStack<8, 8>> +]>; + +// N32/64 variable arguments. +// All arguments are passed in integer registers. +def CC_MipsN_VarArg : CallingConv<[ + CCIfType<[i8, i16, i32, i64], + CCIfSubtargetNot<"isLittle()", + CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, + + // All integers are promoted to 64-bit. + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>, + + CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, + T0_64, T1_64, T2_64, T3_64]>>, + + // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. + CCIfType<[f32], CCAssignToStack<4, 8>>, + CCIfType<[i64, f64], CCAssignToStack<8, 8>> +]>; + +def RetCC_MipsN : CallingConv<[ + // f128 needs to be handled similarly to f32 and f64. However, f128 is not + // legal and is lowered to i128 which is further lowered to a pair of i64's. + // This presents us with a problem for the calling convention since hard-float + // still needs to pass them in FPU registers, and soft-float needs to use $v0, + // and $a0 instead of the usual $v0, and $v1. We therefore resort to a + // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on + // whether the result was originally an f128 into the tablegen-erated code. + // + // f128 should only occur for the N64 ABI where long double is 128-bit. On + // N32, long double is equivalent to double. + CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>, + + // Aggregate returns are positioned at the lowest address in the slot for + // both little and big-endian targets. When passing in registers, this + // requires that big-endian targets shift the value into the upper bits. + CCIfSubtarget<"isLittle()", + CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>, + CCIfSubtargetNot<"isLittle()", + CCIfType<[i8, i16, i32, i64], + CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, + + // i64 are returned in registers V0_64, V1_64 + CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>, + + // f32 are returned in registers F0, F2 + CCIfType<[f32], CCAssignToReg<[F0, F2]>>, + + // f64 are returned in registers D0, D2 + CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>> +]>; + +//===----------------------------------------------------------------------===// +// Mips FastCC Calling Convention +//===----------------------------------------------------------------------===// +def CC_MipsO32_FastCC : CallingConv<[ + // f64 arguments are passed in double-precision floating pointer registers. + CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", + CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, + D7, D8, D9]>>>, + CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()", + CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, + D4_64, D5_64, D6_64, D7_64, + D8_64, D9_64, D10_64, D11_64, + D12_64, D13_64, D14_64, D15_64, + D16_64, D17_64, D18_64, + D19_64]>>>>, + CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()", + CCAssignToReg<[D0_64, D2_64, D4_64, D6_64, + D8_64, D10_64, D12_64, D14_64, + D16_64, D18_64]>>>>, + + // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned. + CCIfType<[f64], CCAssignToStack<8, 8>> +]>; + +def CC_MipsN_FastCC : CallingConv<[ + // Integer arguments are passed in integer registers. + CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, + T2_64, T3_64, T4_64, T5_64, T6_64, T7_64, + T8_64, V1_64]>>, + + // f64 arguments are passed in double-precision floating pointer registers. + CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64, + D6_64, D7_64, D8_64, D9_64, D10_64, D11_64, + D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, + D18_64, D19_64]>>, + + // Stack parameter slots for i64 and f64 are 64-bit doublewords and + // 8-byte aligned. + CCIfType<[i64, f64], CCAssignToStack<8, 8>> +]>; + +def CC_Mips_FastCC : CallingConv<[ + // Handles byval parameters. + CCIfByVal<CCPassByVal<4, 4>>, + + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Integer arguments are passed in integer registers. All scratch registers, + // except for AT, V0 and T9, are available to be used as argument registers. + CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()", + CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>, + + // In NaCl, T6, T7 and T8 are reserved and not available as argument + // registers for fastcc. T6 contains the mask for sandboxing control flow + // (indirect jumps and calls). T7 contains the mask for sandboxing memory + // accesses (loads and stores). T8 contains the thread pointer. + CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()", + CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>, + + // f32 arguments are passed in single-precision floating pointer registers. + CCIfType<[f32], CCIfSubtarget<"useOddSPReg()", + CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, + F14, F15, F16, F17, F18, F19]>>>, + + // Don't use odd numbered single-precision registers for -mno-odd-spreg. + CCIfType<[f32], CCIfSubtarget<"noOddSPReg()", + CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>, + + // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + + CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>, + CCDelegateTo<CC_MipsN_FastCC> +]>; + +//===----------------------------------------------------------------------===// +// Mips Calling Convention Dispatch +//===----------------------------------------------------------------------===// + +def RetCC_Mips : CallingConv<[ + CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>, + CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>, + CCDelegateTo<RetCC_MipsO32> +]>; + +def CC_Mips_ByVal : CallingConv<[ + CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>, + CCIfByVal<CCPassByVal<8, 8>> +]>; + +def CC_Mips16RetHelper : CallingConv<[ + CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, + + // Integer arguments are passed in integer registers. + CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>> +]>; + +def CC_Mips_FixedArg : CallingConv<[ + // Mips16 needs special handling on some functions. + CCIf<"State.getCallingConv() != CallingConv::Fast", + CCIfSpecialCallingConv<"Mips16RetHelperConv", + CCDelegateTo<CC_Mips16RetHelper>>>, + + CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, + + // f128 needs to be handled similarly to f32 and f64 on hard-float. However, + // f128 is not legal and is lowered to i128 which is further lowered to a pair + // of i64's. + // This presents us with a problem for the calling convention since hard-float + // still needs to pass them in FPU registers. We therefore resort to a + // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on + // whether the argument was originally an f128 into the tablegen-erated code. + // + // f128 should only occur for the N64 ABI where long double is 128-bit. On + // N32, long double is equivalent to double. + CCIfType<[i64], + CCIfSubtargetNot<"useSoftFloat()", + CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>, + + CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>, + + CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, + CCDelegateTo<CC_MipsN> +]>; + +def CC_Mips_VarArg : CallingConv<[ + CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, + + CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, + CCDelegateTo<CC_MipsN_VarArg> +]>; + +def CC_Mips : CallingConv<[ + CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>, + CCDelegateTo<CC_Mips_FixedArg> +]>; + +//===----------------------------------------------------------------------===// +// Callee-saved register lists. +//===----------------------------------------------------------------------===// + +def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP, + (sequence "S%u", 7, 0))>; + +def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, + (sequence "S%u", 7, 0))> { + let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2)); +} + +def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, + (sequence "S%u", 7, 0))>; + +def CSR_O32_FP64 : + CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP, + (sequence "S%u", 7, 0))>; + +def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64, + D30_64, RA_64, FP_64, GP_64, + (sequence "S%u_64", 7, 0))>; + +def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64, + GP_64, (sequence "S%u_64", 7, 0))>; + +def CSR_Mips16RetHelper : + CalleeSavedRegs<(add V0, V1, FP, + (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), + (sequence "D%u", 15, 10))>; + +def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), + (sequence "S%u", 7, 0), + (sequence "V%u", 1, 0), + (sequence "T%u", 9, 0), + RA, FP, GP, AT)>; + +def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), + (sequence "S%u", 7, 0), + (sequence "V%u", 1, 0), + (sequence "T%u", 9, 0), + RA, FP, GP, AT, LO0, HI0)>; + +def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), + (sequence "V%u_64", 1, 0), + (sequence "S%u_64", 7, 0), + (sequence "T%u_64", 9, 0), + RA_64, FP_64, GP_64, AT_64)>; + +def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), + (sequence "S%u_64", 7, 0), + (sequence "T%u_64", 9, 0), + (sequence "V%u_64", 1, 0), + RA_64, FP_64, GP_64, AT_64, + LO0_64, HI0_64)>; |