diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td | 2851 |
1 files changed, 2851 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td new file mode 100644 index 000000000000..c96aaca8f8d2 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td @@ -0,0 +1,2851 @@ +//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the Hexagon instructions in TableGen format. +// +//===----------------------------------------------------------------------===// + +include "HexagonInstrFormats.td" +include "HexagonOperands.td" + +//===----------------------------------------------------------------------===// + +// Multi-class for logical operators. +multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> { + def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b), + (i32 IntRegs:$c)))]>; + def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")), + [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b, + (i32 IntRegs:$c)))]>; +} + +// Multi-class for compare ops. +let isCompare = 1 in { +multiclass CMP64_rr<string OpcStr, PatFrag OpNode> { + def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>; +} + +multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> { + let CextOpcode = CextOp in { + let InputType = "reg" in + def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; + + let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, + opExtentBits = 10, InputType = "imm" in + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>; + } +} + +multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> { + let CextOpcode = CextOp in { + let InputType = "reg" in + def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; + + let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, + opExtentBits = 9, InputType = "imm" in + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>; + } +} + +multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> { +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), + s8ExtPred:$c))]>; +} +} + +//===----------------------------------------------------------------------===// +// ALU32/ALU (Instructions with register-register form) +//===----------------------------------------------------------------------===// +def SDTHexagonI64I32I32 : SDTypeProfile<1, 2, + [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; + +def HexagonWrapperCombineII : + SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>; + +def HexagonWrapperCombineRR : + SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>; + +multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot, + bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : ALU32_rr<(outs RC:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", + ") $dst = ")#mnemonic#"($src2, $src3)", + []>; +} + +multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>; + // Predicate new + defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>; + } +} + +let InputType = "reg" in +multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> { + let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in { + let isPredicable = 1 in + def NAME : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = "#mnemonic#"($src1, $src2)", + [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + + let neverHasSideEffects = 1, isPredicated = 1 in { + defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>; + defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>; + } + } +} + +let isCommutable = 1 in { + defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel; + defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel; + defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel; + defm OR_rr : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel; +} + +defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel; + +// Combines the two integer registers SRC1 and SRC2 into a double register. +let isPredicable = 1 in +class T_Combine : ALU32_rr<(outs DoubleRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = combine($src1, $src2)", + [(set (i64 DoubleRegs:$dst), + (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1), + (i32 IntRegs:$src2))))]>; + +multiclass Combine_base { + let BaseOpcode = "combine" in { + def NAME : T_Combine; + let neverHasSideEffects = 1, isPredicated = 1 in { + defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>; + defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>; + } + } +} + +defm COMBINE_rr : Combine_base, PredNewRel; + +// Combines the two immediates SRC1 and SRC2 into a double register. +class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> : + ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2), + "$dst = combine(#$src1, #$src2)", + [(set (i64 DoubleRegs:$dst), + (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>; + +let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in +def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>; + +//===----------------------------------------------------------------------===// +// ALU32/ALU (ADD with register-immediate form) +//===----------------------------------------------------------------------===// +multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", + ") $dst = ")#mnemonic#"($src2, #$src3)", + []>; +} + +multiclass ALU32ri_Pred<string mnemonic, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>; + // Predicate new + defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>; + } +} + +let isExtendable = 1, InputType = "imm" in +multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> { + let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in { + let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16, + isPredicable = 1 in + def NAME : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s16Ext:$src2), + "$dst = "#mnemonic#"($src1, #$src2)", + [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), + (s16ExtPred:$src2)))]>; + + let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, + neverHasSideEffects = 1, isPredicated = 1 in { + defm Pt : ALU32ri_Pred<mnemonic, 0>; + defm NotPt : ALU32ri_Pred<mnemonic, 1>; + } + } +} + +defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel; + +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, +CextOpcode = "OR", InputType = "imm" in +def OR_ri : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s10Ext:$src2), + "$dst = or($src1, #$src2)", + [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), + s10ExtPred:$src2))]>, ImmRegRel; + +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, +InputType = "imm", CextOpcode = "AND" in +def AND_ri : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s10Ext:$src2), + "$dst = and($src1, #$src2)", + [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), + s10ExtPred:$src2))]>, ImmRegRel; + +// Nop. +let neverHasSideEffects = 1 in +def NOP : ALU32_rr<(outs), (ins), + "nop", + []>; + +// Rd32=sub(#s10,Rs32) +let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10, +CextOpcode = "SUB", InputType = "imm" in +def SUB_ri : ALU32_ri<(outs IntRegs:$dst), + (ins s10Ext:$src1, IntRegs:$src2), + "$dst = sub(#$src1, $src2)", + [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>, + ImmRegRel; + +// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). +def : Pat<(not (i32 IntRegs:$src1)), + (SUB_ri -1, (i32 IntRegs:$src1))>; + +// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs). +// Pattern definition for 'neg' was not necessary. + +multiclass TFR_Pred<bit PredNot> { + let isPredicatedFalse = PredNot in { + def _c#NAME : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2), + !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2", + []>; + // Predicate new + let isPredicatedNew = 1 in + def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2), + !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2", + []>; + } +} + +let InputType = "reg", neverHasSideEffects = 1 in +multiclass TFR_base<string CextOp> { + let CextOpcode = CextOp, BaseOpcode = CextOp in { + let isPredicable = 1 in + def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + []>; + + let isPredicated = 1 in { + defm Pt : TFR_Pred<0>; + defm NotPt : TFR_Pred<1>; + } + } +} + +class T_TFR64_Pred<bit PredNot, bit isPredNew> + : ALU32_rr<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, DoubleRegs:$src2), + !if(PredNot, "if (!$src1", "if ($src1")# + !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []> +{ + bits<5> dst; + bits<2> src1; + bits<5> src2; + + let IClass = 0b1111; + let Inst{27-24} = 0b1101; + let Inst{13} = isPredNew; + let Inst{7} = PredNot; + let Inst{4-0} = dst; + let Inst{6-5} = src1; + let Inst{20-17} = src2{4-1}; + let Inst{16} = 0b1; + let Inst{12-9} = src2{4-1}; + let Inst{8} = 0b0; +} + +multiclass TFR64_Pred<bit PredNot> { + let isPredicatedFalse = PredNot in { + def _c#NAME : T_TFR64_Pred<PredNot, 0>; + + let isPredicatedNew = 1 in + def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new + } +} + +let neverHasSideEffects = 1 in +multiclass TFR64_base<string BaseName> { + let BaseOpcode = BaseName in { + let isPredicable = 1 in + def NAME : ALU32Inst <(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1), + "$dst = $src1" > { + bits<5> dst; + bits<5> src1; + + let IClass = 0b1111; + let Inst{27-23} = 0b01010; + let Inst{4-0} = dst; + let Inst{20-17} = src1{4-1}; + let Inst{16} = 0b1; + let Inst{12-9} = src1{4-1}; + let Inst{8} = 0b0; + } + + let isPredicated = 1 in { + defm Pt : TFR64_Pred<0>; + defm NotPt : TFR64_Pred<1>; + } + } +} + +multiclass TFRI_Pred<bit PredNot> { + let isMoveImm = 1, isPredicatedFalse = PredNot in { + def _c#NAME : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Ext:$src2), + !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2", + []>; + + // Predicate new + let isPredicatedNew = 1 in + def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Ext:$src2), + !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2", + []>; + } +} + +let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in +multiclass TFRI_base<string CextOp> { + let CextOpcode = CextOp, BaseOpcode = CextOp#I in { + let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, + isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in + def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1), + "$dst = #$src1", + [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>; + + let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1, + isPredicated = 1 in { + defm Pt : TFRI_Pred<0>; + defm NotPt : TFRI_Pred<1>; + } + } +} + +defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel; +defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel; +defm TFR64 : TFR64_base<"TFR64">, PredNewRel; + +// Transfer control register. +let neverHasSideEffects = 1 in +def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + []>; +//===----------------------------------------------------------------------===// +// ALU32/ALU - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU32/PERM + +//===----------------------------------------------------------------------===// + +let neverHasSideEffects = 1 in +def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst), + (ins s8Imm:$src1, s8Imm:$src2), + "$dst = combine(#$src1, #$src2)", + []>; + +// Mux. +def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, + DoubleRegs:$src2, + DoubleRegs:$src3), + "$dst = vmux($src1, $src2, $src3)", + []>; + +let CextOpcode = "MUX", InputType = "reg" in +def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst = mux($src1, $src2, $src3)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))]>, ImmRegRel; + +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8, +CextOpcode = "MUX", InputType = "imm" in +def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, + IntRegs:$src3), + "$dst = mux($src1, #$src2, $src3)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2, + (i32 IntRegs:$src3))))]>, ImmRegRel; + +let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, +CextOpcode = "MUX", InputType = "imm" in +def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, + s8Ext:$src3), + "$dst = mux($src1, $src2, #$src3)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), + s8ExtPred:$src3)))]>, ImmRegRel; + +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in +def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, + s8Imm:$src3), + "$dst = mux($src1, #$src2, #$src3)", + [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), + s8ExtPred:$src2, + s8ImmPred:$src3)))]>; + +// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth +multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : ALU32Inst<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", + ") $dst = ")#mnemonic#"($src2)">, + Requires<[HasV4T]>; +} + +multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>; + // Predicate new + defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>; + } +} + +multiclass ALU32_2op_base<string mnemonic> { + let BaseOpcode = mnemonic in { + let isPredicable = 1, neverHasSideEffects = 1 in + def NAME : ALU32Inst<(outs IntRegs:$dst), + (ins IntRegs:$src1), + "$dst = "#mnemonic#"($src1)">; + + let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1, + neverHasSideEffects = 1 in { + defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>; + defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>; + } + } +} + +defm ASLH : ALU32_2op_base<"aslh">, PredNewRel; +defm ASRH : ALU32_2op_base<"asrh">, PredNewRel; +defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel; +defm SXTH : ALU32_2op_base<"sxth">, PredNewRel; +defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel; +defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel; + +def : Pat <(shl (i32 IntRegs:$src1), (i32 16)), + (ASLH IntRegs:$src1)>; + +def : Pat <(sra (i32 IntRegs:$src1), (i32 16)), + (ASRH IntRegs:$src1)>; + +def : Pat <(sext_inreg (i32 IntRegs:$src1), i8), + (SXTB IntRegs:$src1)>; + +def : Pat <(sext_inreg (i32 IntRegs:$src1), i16), + (SXTH IntRegs:$src1)>; + +//===----------------------------------------------------------------------===// +// ALU32/PERM - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU32/PRED + +//===----------------------------------------------------------------------===// + +// Compare. +defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel; +defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel; +defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel; + +// SDNode for converting immediate C to C-1. +def DEC_CONST_SIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-1 as an SDNode. + int32_t imm = N->getSExtValue(); + return XformSToSM1Imm(imm); +}]>; + +// SDNode for converting immediate C to C-1. +def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{ + // Return the byte immediate const-1 as an SDNode. + uint32_t imm = N->getZExtValue(); + return XformUToUM1Imm(imm); +}]>; + +def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = cl0($src1)", + [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>; + +def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = ct0($src1)", + [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>; + +def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), + "$dst = cl0($src1)", + [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>; + +def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), + "$dst = ct0($src1)", + [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>; + +def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = tstbit($src1, $src2)", + [(set (i1 PredRegs:$dst), + (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>; + +def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = tstbit($src1, $src2)", + [(set (i1 PredRegs:$dst), + (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>; + +//===----------------------------------------------------------------------===// +// ALU32/PRED - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU64/ALU + +//===----------------------------------------------------------------------===// +// Add. +def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = add($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Add halfword. + +// Compare. +defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>; +defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>; +defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>; + +// Logical operations. +def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = and($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = or($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = xor($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Maximum. +def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = max($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setlt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = maxu($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setult (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = max($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setlt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = maxu($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setult (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +// Minimum. +def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = min($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setgt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = minu($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setugt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = min($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setgt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = minu($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setugt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +// Subtract. +def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = sub($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Subtract halfword. + +//===----------------------------------------------------------------------===// +// ALU64/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ALU64/BIT + +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// +// ALU64/BIT - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ALU64/PERM + +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// +// ALU64/PERM - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// CR + +//===----------------------------------------------------------------------===// +// Logical reductions on predicates. + +// Looping instructions. + +// Pipelined looping instructions. + +// Logical operations on predicates. +def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = and($src1, $src2)", + [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + +let neverHasSideEffects = 1 in +def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, + PredRegs:$src2), + "$dst = and($src1, !$src2)", + []>; + +def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = any8($src1)", + []>; + +def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = all8($src1)", + []>; + +def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1, + PredRegs:$src2), + "$dst = vitpack($src1, $src2)", + []>; + +def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2, + PredRegs:$src3), + "$dst = valignb($src1, $src2, $src3)", + []>; + +def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2, + PredRegs:$src3), + "$dst = vspliceb($src1, $src2, $src3)", + []>; + +def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1), + "$dst = mask($src1)", + []>; + +def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = not($src1)", + [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>; + +def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = or($src1, $src2)", + [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + +def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = xor($src1, $src2)", + [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + + +// User control register transfer. +//===----------------------------------------------------------------------===// +// CR - +//===----------------------------------------------------------------------===// + +def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, + [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; +def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, + [SDNPHasChain]>; + +def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; +def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; + +let InputType = "imm", isBarrier = 1, isPredicable = 1, +Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1, +opExtentBits = 24 in +class T_JMP <dag InsDag, list<dag> JumpList = []> + : JInst<(outs), InsDag, + "jump $dst" , JumpList> { + bits<24> dst; + + let IClass = 0b0101; + + let Inst{27-25} = 0b100; + let Inst{24-16} = dst{23-15}; + let Inst{13-1} = dst{14-2}; +} + +let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1, +Defs = [PC], isPredicated = 1, opExtentBits = 17 in +class T_JMP_c <bit PredNot, bit isPredNew, bit isTaken>: + JInst<(outs ), (ins PredRegs:$src, brtarget:$dst), + !if(PredNot, "if (!$src", "if ($src")# + !if(isPredNew, ".new) ", ") ")#"jump"# + !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> { + + let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); + let isPredicatedFalse = PredNot; + let isPredicatedNew = isPredNew; + bits<2> src; + bits<17> dst; + + let IClass = 0b0101; + + let Inst{27-24} = 0b1100; + let Inst{21} = PredNot; + let Inst{12} = !if(isPredNew, isTaken, zero); + let Inst{11} = isPredNew; + let Inst{9-8} = src; + let Inst{23-22} = dst{16-15}; + let Inst{20-16} = dst{14-10}; + let Inst{13} = dst{9}; + let Inst{7-1} = dst{8-2}; + } + +let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in +class T_JMPr<dag InsDag = (ins IntRegs:$dst)> + : JRInst<(outs ), InsDag, + "jumpr $dst" , + []> { + bits<5> dst; + + let IClass = 0b0101; + let Inst{27-21} = 0b0010100; + let Inst{20-16} = dst; +} + +let Defs = [PC], isPredicated = 1, InputType = "reg" in +class T_JMPr_c <bit PredNot, bit isPredNew, bit isTaken>: + JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst), + !if(PredNot, "if (!$src", "if ($src")# + !if(isPredNew, ".new) ", ") ")#"jumpr"# + !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> { + + let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); + let isPredicatedFalse = PredNot; + let isPredicatedNew = isPredNew; + bits<2> src; + bits<5> dst; + + let IClass = 0b0101; + + let Inst{27-22} = 0b001101; + let Inst{21} = PredNot; + let Inst{20-16} = dst; + let Inst{12} = !if(isPredNew, isTaken, zero); + let Inst{11} = isPredNew; + let Inst{9-8} = src; + let Predicates = !if(isPredNew, [HasV3T], [HasV2T]); + let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT); +} + +multiclass JMP_Pred<bit PredNot> { + def _#NAME : T_JMP_c<PredNot, 0, 0>; + // Predicate new + def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken + def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken +} + +multiclass JMP_base<string BaseOp> { + let BaseOpcode = BaseOp in { + def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>; + defm t : JMP_Pred<0>; + defm f : JMP_Pred<1>; + } +} + +multiclass JMPR_Pred<bit PredNot> { + def NAME: T_JMPr_c<PredNot, 0, 0>; + // Predicate new + def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken + def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken +} + +multiclass JMPR_base<string BaseOp> { + let BaseOpcode = BaseOp in { + def NAME : T_JMPr; + defm _t : JMPR_Pred<0>; + defm _f : JMPR_Pred<1>; + } +} + +let isTerminator = 1, neverHasSideEffects = 1 in { +let isBranch = 1 in +defm JMP : JMP_base<"JMP">, PredNewRel; + +let isBranch = 1, isIndirectBranch = 1 in +defm JMPR : JMPR_base<"JMPr">, PredNewRel; + +let isReturn = 1, isCodeGenOnly = 1 in +defm JMPret : JMPR_base<"JMPret">, PredNewRel; +} + +def : Pat<(retflag), + (JMPret (i32 R31))>; + +def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset), + (JMP_t (i1 PredRegs:$src1), bb:$offset)>; + +// A return through builtin_eh_return. +let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1, +isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in +def EH_RETURN_JMPR : T_JMPr; + +def : Pat<(eh_return), + (EH_RETURN_JMPR (i32 R31))>; + +def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)), + (JMPR (i32 IntRegs:$dst))>; + +def : Pat<(brind (i32 IntRegs:$dst)), + (JMPR (i32 IntRegs:$dst))>; + +//===----------------------------------------------------------------------===// +// JR - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// LD + +//===----------------------------------------------------------------------===// +/// +// Load -- MEMri operand +multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC, + bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : LDInst2<(outs RC:$dst), + (ins PredRegs:$src1, MEMri:$addr), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#"$dst = "#mnemonic#"($addr)", + []>; +} + +multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>; + // Predicate new + defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>; + } +} + +let isExtendable = 1, neverHasSideEffects = 1 in +multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC, + bits<5> ImmBits, bits<5> PredImmBits> { + + let CextOpcode = CextOp, BaseOpcode = CextOp in { + let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, + isPredicable = 1 in + def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr), + "$dst = "#mnemonic#"($addr)", + []>; + + let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, + isPredicated = 1 in { + defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >; + defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >; + } + } +} + +let addrMode = BaseImmOffset, isMEMri = "true" in { + let accessSize = ByteAccess in { + defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel; + defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel; + } + + let accessSize = HalfWordAccess in { + defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel; + defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel; + } + + let accessSize = WordAccess in + defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel; + + let accessSize = DoubleWordAccess in + defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel; +} + +def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)), + (LDrib ADDRriS11_0:$addr) >; + +def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)), + (LDriub ADDRriS11_0:$addr) >; + +def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)), + (LDrih ADDRriS11_1:$addr) >; + +def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)), + (LDriuh ADDRriS11_1:$addr) >; + +def : Pat < (i32 (load ADDRriS11_2:$addr)), + (LDriw ADDRriS11_2:$addr) >; + +def : Pat < (i64 (load ADDRriS11_3:$addr)), + (LDrid ADDRriS11_3:$addr) >; + + +// Load - Base with Immediate offset addressing mode +multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp, + bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : LDInst2<(outs RC:$dst), + (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#"$dst = "#mnemonic#"($src2+#$src3)", + []>; +} + +multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp, + bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>; + // Predicate new + defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>; + } +} + +let isExtendable = 1, neverHasSideEffects = 1 in +multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC, + Operand ImmOp, Operand predImmOp, bits<5> ImmBits, + bits<5> PredImmBits> { + + let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { + let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, + isPredicable = 1, AddedComplexity = 20 in + def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), + "$dst = "#mnemonic#"($src1+#$offset)", + []>; + + let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, + isPredicated = 1 in { + defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >; + defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >; + } + } +} + +let addrMode = BaseImmOffset in { + let accessSize = ByteAccess in { + defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, + 11, 6>, AddrModeRel; + defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext, + 11, 6>, AddrModeRel; + } + let accessSize = HalfWordAccess in { + defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, + 12, 7>, AddrModeRel; + defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, + 12, 7>, AddrModeRel; + } + let accessSize = WordAccess in + defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, + 13, 8>, AddrModeRel; + + let accessSize = DoubleWordAccess in + defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, + 14, 9>, AddrModeRel; +} + +let AddedComplexity = 20 in { +def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), + (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; + +def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), + (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; + +def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), + (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; + +def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), + (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; + +def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))), + (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >; + +def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))), + (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >; +} + +//===----------------------------------------------------------------------===// +// Post increment load +//===----------------------------------------------------------------------===// + +multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp, + bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#"$dst = "#mnemonic#"($src2++#$offset)", + [], + "$src2 = $dst2">; +} + +multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC, + Operand ImmOp, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>; + // Predicate new + let Predicates = [HasV4T], validSubTargets = HasV4SubT in + defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>; + } +} + +multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC, + Operand ImmOp> { + + let BaseOpcode = "POST_"#BaseOp in { + let isPredicable = 1 in + def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, ImmOp:$offset), + "$dst = "#mnemonic#"($src1++#$offset)", + [], + "$src1 = $dst2">; + + let isPredicated = 1 in { + defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >; + defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >; + } + } +} + +let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in { + defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>, + PredNewRel; + defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>, + PredNewRel; + defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>, + PredNewRel; + defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>, + PredNewRel; + defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>, + PredNewRel; + defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>, + PredNewRel; +} + +def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)), + (i32 (LDrib ADDRriS11_0:$addr)) >; + +// Load byte any-extend. +def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), + (i32 (LDrib ADDRriS11_0:$addr)) >; + +// Indexed load byte any-extend. +let AddedComplexity = 20 in +def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), + (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >; + +def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), + (i32 (LDrih ADDRriS11_1:$addr))>; + +let AddedComplexity = 20 in +def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), + (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >; + +let AddedComplexity = 10 in +def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), + (i32 (LDriub ADDRriS11_0:$addr))>; + +let AddedComplexity = 20 in +def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), + (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>; + +// Load predicate. +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, +isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in +def LDriw_pred : LDInst2<(outs PredRegs:$dst), + (ins MEMri:$addr), + "Error; should not emit", + []>; + +// Deallocate stack frame. +let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { + def DEALLOCFRAME : LDInst2<(outs), (ins), + "deallocframe", + []>; +} + +// Load and unpack bytes to halfwords. +//===----------------------------------------------------------------------===// +// LD - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/ALU + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/COMPLEX + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/COMPLEX - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/MPYH + +//===----------------------------------------------------------------------===// +// Multiply and use lower result. +// Rd=+mpyi(Rs,#u8) +let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in +def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2), + "$dst =+ mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + u8ExtPred:$src2))]>; + +// Rd=-mpyi(Rs,#u8) +def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2), + "$dst =- mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1), + u8ImmPred:$src2)))]>; + +// Rd=mpyi(Rs,#m9) +// s9 is NOT the same as m9 - but it works.. so far. +// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8) +// depending on the value of m9. See Arch Spec. +let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9, +CextOpcode = "MPYI", InputType = "imm" in +def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), + "$dst = mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + s9ExtPred:$src2))]>, ImmRegRel; + +// Rd=mpyi(Rs,Rt) +let CextOpcode = "MPYI", InputType = "reg" in +def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyi($src1, $src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>, ImmRegRel; + +// Rx+=mpyi(Rs,#u8) +let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8, +CextOpcode = "MPYI_acc", InputType = "imm" in +def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), + "$dst += mpyi($src2, #$src3)", + [(set (i32 IntRegs:$dst), + (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3), + (i32 IntRegs:$src1)))], + "$src1 = $dst">, ImmRegRel; + +// Rx+=mpyi(Rs,Rt) +let CextOpcode = "MPYI_acc", InputType = "reg" in +def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst += mpyi($src2, $src3)", + [(set (i32 IntRegs:$dst), + (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)), + (i32 IntRegs:$src1)))], + "$src1 = $dst">, ImmRegRel; + +// Rx-=mpyi(Rs,#u8) +let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in +def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), + "$dst -= mpyi($src2, #$src3)", + [(set (i32 IntRegs:$dst), + (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2), + u8ExtPred:$src3)))], + "$src1 = $dst">; + +// Multiply and use upper result. +// Rd=mpy(Rs,Rt.H):<<1:rnd:sat +// Rd=mpy(Rs,Rt.L):<<1:rnd:sat +// Rd=mpy(Rs,Rt) +def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Rd=mpy(Rs,Rt):rnd +// Rd=mpyu(Rs,Rt) +def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyu($src1, $src2)", + [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Multiply and use full result. +// Rdd=mpyu(Rs,Rt) +def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyu($src1, $src2)", + [(set (i64 DoubleRegs:$dst), + (mul (i64 (anyext (i32 IntRegs:$src1))), + (i64 (anyext (i32 IntRegs:$src2)))))]>; + +// Rdd=mpy(Rs,Rt) +def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i64 DoubleRegs:$dst), + (mul (i64 (sext (i32 IntRegs:$src1))), + (i64 (sext (i32 IntRegs:$src2)))))]>; + +// Multiply and accumulate, use full result. +// Rxx[+-]=mpy(Rs,Rt) +// Rxx+=mpy(Rs,Rt) +def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst += mpy($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (add (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3)))), + (i64 DoubleRegs:$src1)))], + "$src1 = $dst">; + +// Rxx-=mpy(Rs,Rt) +def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst -= mpy($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (sub (i64 DoubleRegs:$src1), + (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3))))))], + "$src1 = $dst">; + +// Rxx[+-]=mpyu(Rs,Rt) +// Rxx+=mpyu(Rs,Rt) +def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst += mpyu($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (add (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3)))), + (i64 DoubleRegs:$src1)))], "$src1 = $dst">; + +// Rxx-=mpyu(Rs,Rt) +def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst -= mpyu($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (sub (i64 DoubleRegs:$src1), + (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3))))))], + "$src1 = $dst">; + + +let InputType = "reg", CextOpcode = "ADD_acc" in +def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst += add($src2, $src3)", + [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), + (i32 IntRegs:$src3)), + (i32 IntRegs:$src1)))], + "$src1 = $dst">, ImmRegRel; + +let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, +InputType = "imm", CextOpcode = "ADD_acc" in +def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, s8Ext:$src3), + "$dst += add($src2, #$src3)", + [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), + s8_16ExtPred:$src3), + (i32 IntRegs:$src1)))], + "$src1 = $dst">, ImmRegRel; + +let CextOpcode = "SUB_acc", InputType = "reg" in +def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst -= add($src2, $src3)", + [(set (i32 IntRegs:$dst), + (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">, ImmRegRel; + +let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, +CextOpcode = "SUB_acc", InputType = "imm" in +def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, s8Ext:$src3), + "$dst -= add($src2, #$src3)", + [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), + (add (i32 IntRegs:$src2), + s8_16ExtPred:$src3)))], + "$src1 = $dst">, ImmRegRel; + +//===----------------------------------------------------------------------===// +// MTYPE/MPYH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/MPYS + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/MPYS - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/VB + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/VB - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/VH + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/VH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ST + +//===----------------------------------------------------------------------===// +/// +// Store doubleword. + +//===----------------------------------------------------------------------===// +// Post increment store +//===----------------------------------------------------------------------===// + +multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp, + bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#mnemonic#"($src2++#$offset) = $src3", + [], + "$src2 = $dst">; +} + +multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC, + Operand ImmOp, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>; + // Predicate new + let Predicates = [HasV4T], validSubTargets = HasV4SubT in + defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>; + } +} + +let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in +multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC, + Operand ImmOp> { + + let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in { + let isPredicable = 1 in + def NAME : STInst2PI<(outs IntRegs:$dst), + (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), + mnemonic#"($src1++#$offset) = $src2", + [], + "$src1 = $dst">; + + let isPredicated = 1 in { + defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >; + defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >; + } + } +} + +defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel; +defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel; +defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel; + +let isNVStorable = 0 in +defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel; + +def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2, + s4_3ImmPred:$offset), + (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>; + +def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2, + s4_3ImmPred:$offset), + (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; + +def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset), + (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; + +def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2, + s4_3ImmPred:$offset), + (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>; + +//===----------------------------------------------------------------------===// +// multiclass for the store instructions with MEMri operand. +//===----------------------------------------------------------------------===// +multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot, + bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, RC: $src2), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#mnemonic#"($addr) = $src2", + []>; +} + +multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> { + let isPredicatedFalse = PredNot in { + defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>; + + // Predicate new + let validSubTargets = HasV4SubT, Predicates = [HasV4T] in + defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>; + } +} + +let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in +multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC, + bits<5> ImmBits, bits<5> PredImmBits> { + + let CextOpcode = CextOp, BaseOpcode = CextOp in { + let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, + isPredicable = 1 in + def NAME : STInst2<(outs), + (ins MEMri:$addr, RC:$src), + mnemonic#"($addr) = $src", + []>; + + let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits, + isPredicated = 1 in { + defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>; + defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>; + } + } +} + +let addrMode = BaseImmOffset, isMEMri = "true" in { + let accessSize = ByteAccess in + defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel; + + let accessSize = HalfWordAccess in + defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel; + + let accessSize = WordAccess in + defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel; + + let accessSize = DoubleWordAccess, isNVStorable = 0 in + defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel; +} + +def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr), + (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>; + +def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr), + (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>; + +def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr), + (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>; + +def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr), + (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>; + + +//===----------------------------------------------------------------------===// +// multiclass for the store instructions with base+immediate offset +// addressing mode +//===----------------------------------------------------------------------===// +multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp, + bit isNot, bit isPredNew> { + let isPredicatedNew = isPredNew in + def NAME : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4), + !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", + ") ")#mnemonic#"($src2+#$src3) = $src4", + []>; +} + +multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp, + bit PredNot> { + let isPredicatedFalse = PredNot, isPredicated = 1 in { + defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>; + + // Predicate new + let validSubTargets = HasV4SubT, Predicates = [HasV4T] in + defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>; + } +} + +let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in +multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC, + Operand ImmOp, Operand predImmOp, bits<5> ImmBits, + bits<5> PredImmBits> { + + let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { + let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, + isPredicable = 1 in + def NAME : STInst2<(outs), + (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), + mnemonic#"($src1+#$src2) = $src3", + []>; + + let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in { + defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>; + defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>; + } + } +} + +let addrMode = BaseImmOffset, InputType = "reg" in { + let accessSize = ByteAccess in + defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, + u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel; + + let accessSize = HalfWordAccess in + defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, + u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel; + + let accessSize = WordAccess in + defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, + u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel; + + let accessSize = DoubleWordAccess, isNVStorable = 0 in + defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, + u6_3Ext, 14, 9>, AddrModeRel; +} + +let AddedComplexity = 10 in { +def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2, + s11_0ExtPred:$offset)), + (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset, + (i32 IntRegs:$src1))>; + +def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2, + s11_1ExtPred:$offset)), + (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset, + (i32 IntRegs:$src1))>; + +def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2, + s11_2ExtPred:$offset)), + (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset, + (i32 IntRegs:$src1))>; + +def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2, + s11_3ExtPred:$offset)), + (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset, + (i64 DoubleRegs:$src1))>; +} + +// memh(Rx++#s4:1)=Rt.H + +// Store word. +// Store predicate. +let Defs = [R10,R11,D5], neverHasSideEffects = 1 in +def STriw_pred : STInst2<(outs), + (ins MEMri:$addr, PredRegs:$src1), + "Error; should not emit", + []>; + +// Allocate stack frame. +let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in { + def ALLOCFRAME : STInst2<(outs), + (ins i32imm:$amt), + "allocframe(#$amt)", + []>; +} +//===----------------------------------------------------------------------===// +// ST - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/ALU + +//===----------------------------------------------------------------------===// +// Logical NOT. +def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), + "$dst = not($src1)", + [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; + + +// Sign extend word to doubleword. +def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1), + "$dst = sxtw($src1)", + [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// STYPE/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/BIT + +//===----------------------------------------------------------------------===// +// clrbit. +def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = clrbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), + (not + (shl 1, u5ImmPred:$src2))))]>; + +def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = clrbit($src1, #$src2)", + []>; + +// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31). +def : Pat <(and (i32 IntRegs:$src1), 2147483647), + (CLRBIT_31 (i32 IntRegs:$src1), 31)>; + +// setbit. +def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), + (shl 1, u5ImmPred:$src2)))]>; + +// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31). +def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + []>; + +def : Pat <(or (i32 IntRegs:$src1), -2147483648), + (SETBIT_31 (i32 IntRegs:$src1), 31)>; + +// togglebit. +def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), + (shl 1, u5ImmPred:$src2)))]>; + +// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31). +def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = togglebit($src1, #$src2)", + []>; + +def : Pat <(xor (i32 IntRegs:$src1), -2147483648), + (TOGBIT_31 (i32 IntRegs:$src1), 31)>; + +// Predicate transfer. +let neverHasSideEffects = 1 in +def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1), + "$dst = $src1 /* Should almost never emit this. */", + []>; + +def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1 /* Should almost never emit this. */", + [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// STYPE/PRED - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/SHIFT + +//===----------------------------------------------------------------------===// +// Shift by immediate. +def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = asr($src1, #$src2)", + [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = asr($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = asl($src1, #$src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = asl($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = lsr($src1, #$src2)", + [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = lsr($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +// Shift by immediate and add. +let AddedComplexity = 100 in +def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, + u3Imm:$src3), + "$dst = addasl($src1, $src2, #$src3)", + [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), + (shl (i32 IntRegs:$src2), + u3ImmPred:$src3)))]>; + +// Shift by register. +def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = asl($src1, $src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = asr($src1, $src2)", + [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = lsl($src1, $src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = lsr($src1, $src2)", + [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), + "$dst = asl($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), + "$dst = lsl($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2), + "$dst = asr($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2), + "$dst = lsr($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +//===----------------------------------------------------------------------===// +// STYPE/SHIFT - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/VH + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// STYPE/VH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/VW + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// STYPE/VW - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// SYSTEM/SUPER + +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// SYSTEM/USER + +//===----------------------------------------------------------------------===// +def SDHexagonBARRIER: SDTypeProfile<0, 0, []>; +def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER, + [SDNPHasChain]>; + +let hasSideEffects = 1, isSolo = 1 in +def BARRIER : SYSInst<(outs), (ins), + "barrier", + [(HexagonBARRIER)]>; + +//===----------------------------------------------------------------------===// +// SYSTEM/SUPER - +//===----------------------------------------------------------------------===// + +// TFRI64 - assembly mapped. +let isReMaterializable = 1 in +def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), + "$dst = #$src1", + [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; + +// Pseudo instruction to encode a set of conditional transfers. +// This instruction is used instead of a mux and trades-off codesize +// for performance. We conduct this transformation optimistically in +// the hope that these instructions get promoted to dot-new transfers. +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2, + IntRegs:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), + (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))]>; +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), + s12ImmPred:$src3)))]>; + +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, + (i32 IntRegs:$src3))))]>; + +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, + s12ImmPred:$src3)))]>; + +// Generate frameindex addresses. +let isReMaterializable = 1 in +def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), + "$dst = add($src1)", + [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; + +// +// CR - Type. +// +let neverHasSideEffects = 1, Defs = [SA0, LC0] in { +def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2), + "loop0($offset, #$src2)", + []>; +} + +let neverHasSideEffects = 1, Defs = [SA0, LC0] in { +def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2), + "loop0($offset, $src2)", + []>; +} + +let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1, + Defs = [PC, LC0], Uses = [SA0, LC0] in { +def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), + ":endloop0", + []>; +} + +// Support for generating global address. +// Taken from X86InstrInfo.td. +def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ + SDTCisVT<0, i32>, + SDTCisVT<1, i32>, + SDTCisPtrTy<0>]>; +def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; +def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; + +// HI/LO Instructions +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst.l = #LO($global)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst.h = #HI($global)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), + "$dst.l = #LO($imm_value)", + []>; + + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), + "$dst.h = #HI($imm_value)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst.l = #LO($jt)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst.h = #HI($jt)", + []>; + + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.l = #LO($label)", + []>; + +let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in +def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.h = #HI($label)", + []>; + +// This pattern is incorrect. When we add small data, we should change +// this pattern to use memw(#foo). +// This is for sdata. +let isMoveImm = 1 in +def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; + +// This is for non-sdata. +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32 tglobaladdr:$global))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst = CONST32(#$jt)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32 tjumptable:$jt))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32_GP tglobaladdr:$global))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), imm:$global) ]>; + +// Map BlockAddress lowering to CONST32_Int_Real +def : Pat<(HexagonCONST32_GP tblockaddress:$addr), + (CONST32_Int_Real tblockaddress:$addr)>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst = CONST32($label)", + [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), + "$dst = CONST64(#$global)", + [(set (i64 DoubleRegs:$dst), imm:$global) ]>; + +def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), + "$dst = xor($dst, $dst)", + [(set (i1 PredRegs:$dst), 0)]>; + +def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i32 IntRegs:$dst), + (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), + (i64 (sext (i32 IntRegs:$src2))))), + (i32 32)))))]>; + +// Pseudo instructions. +def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; + +def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, + SDTCisVT<1, i32> ]>; + +def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; + +def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, + [SDNPHasChain, SDNPOutGlue]>; + +def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; + +def call : SDNode<"HexagonISD::CALL", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; + +// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, +// Optional Flag and Variable Arguments. +// Its 1 Operand has pointer type. +def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; + +let Defs = [R29, R30], Uses = [R31, R30, R29] in { + def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), + "Should never be emitted", + [(callseq_start timm:$amt)]>; +} + +let Defs = [R29, R30, R31], Uses = [R29] in { + def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), + "Should never be emitted", + [(callseq_end timm:$amt1, timm:$amt2)]>; +} +// Call subroutine. +let isCall = 1, neverHasSideEffects = 1, + Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, + R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { + def CALL : JInst<(outs), (ins calltarget:$dst), + "call $dst", []>; +} + +// Call subroutine from register. +let isCall = 1, neverHasSideEffects = 1, + Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, + R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { + def CALLR : JRInst<(outs), (ins IntRegs:$dst), + "callr $dst", + []>; + } + + +// Indirect tail-call. +let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in +def TCRETURNR : T_JMPr; + +// Direct tail-calls. +let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, +isTerminator = 1, isCodeGenOnly = 1 in { + def TCRETURNtg : T_JMP<(ins calltarget:$dst)>; + def TCRETURNtext : T_JMP<(ins calltarget:$dst)>; +} + +// Map call instruction. +def : Pat<(call (i32 IntRegs:$dst)), + (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; +def : Pat<(call tglobaladdr:$dst), + (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; +def : Pat<(call texternalsym:$dst), + (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; +//Tail calls. +def : Pat<(HexagonTCRet tglobaladdr:$dst), + (TCRETURNtg tglobaladdr:$dst)>; +def : Pat<(HexagonTCRet texternalsym:$dst), + (TCRETURNtext texternalsym:$dst)>; +def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), + (TCRETURNR (i32 IntRegs:$dst))>; + +// Atomic load and store support +// 8 bit atomic load +def : Pat<(atomic_load_8 ADDRriS11_0:$src1), + (i32 (LDriub ADDRriS11_0:$src1))>; + +def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), + (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; + +// 16 bit atomic load +def : Pat<(atomic_load_16 ADDRriS11_1:$src1), + (i32 (LDriuh ADDRriS11_1:$src1))>; + +def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), + (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; + +def : Pat<(atomic_load_32 ADDRriS11_2:$src1), + (i32 (LDriw ADDRriS11_2:$src1))>; + +def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), + (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; + +// 64 bit atomic load +def : Pat<(atomic_load_64 ADDRriS11_3:$src1), + (i64 (LDrid ADDRriS11_3:$src1))>; + +def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), + (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; + + +def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), + (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), + (i32 IntRegs:$src1)), + (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset, + (i32 IntRegs:$src1))>; + + +def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), + (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_16 (i32 IntRegs:$src1), + (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), + (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset, + (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), + (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), + (i32 IntRegs:$src1)), + (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset, + (i32 IntRegs:$src1))>; + + + + +def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), + (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>; + +def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), + (i64 DoubleRegs:$src1)), + (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset, + (i64 DoubleRegs:$src1))>; + +// Map from r0 = and(r1, 65535) to r0 = zxth(r1) +def : Pat <(and (i32 IntRegs:$src1), 65535), + (ZXTH (i32 IntRegs:$src1))>; + +// Map from r0 = and(r1, 255) to r0 = zxtb(r1). +def : Pat <(and (i32 IntRegs:$src1), 255), + (ZXTB (i32 IntRegs:$src1))>; + +// Map Add(p1, true) to p1 = not(p1). +// Add(p1, false) should never be produced, +// if it does, it got to be mapped to NOOP. +def : Pat <(add (i1 PredRegs:$src1), -1), + (NOT_p (i1 PredRegs:$src1))>; + +// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) => +// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1). +// cmp.lt(r0, r1) -> cmp.gt(r1, r0) +def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i32 IntRegs:$src3), + (i32 IntRegs:$src4)), + (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), + (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>, + Requires<[HasV2TOnly]>; + +// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). +def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), + (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, + s8ImmPred:$src2))>; + +// Map from p0 = pnot(p0); r0 = select(p0, #i, r1) +// => r0 = TFR_condset_ri(p0, r1, #i) +def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, + (i32 IntRegs:$src3)), + (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), + s12ImmPred:$src2))>; + +// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) +// => r0 = TFR_condset_ir(p0, #i, r1) +def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3), + (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, + (i32 IntRegs:$src2)))>; + +// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. +def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset), + (JMP_f (i1 PredRegs:$src1), bb:$offset)>; + +// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). +def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))), + (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; + + +let AddedComplexity = 100 in +def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))), + (i64 (COMBINE_rr (TFRI 0), + (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>, + Requires<[NoV4T]>; + +// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. +let AddedComplexity = 10 in +def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), + (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>; + +// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), + (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; + +// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), + (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg))))))>; + +// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), + (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg))))))>; + +// We want to prevent emitting pnot's as much as possible. +// Map brcond with an unsupported setcc to a JMP_f. +def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), + bb:$offset), + (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), + (JMP_f (i1 PredRegs:$src1), bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), + (JMP_t (i1 PredRegs:$src1), bb:$offset)>; + +// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1) +def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), + bb:$offset), + (JMP_f (CMPGTri (i32 IntRegs:$src1), + (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>; + +// cmp.lt(r0, r1) -> cmp.gt(r1, r0) +def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>; + +def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + bb:$offset), + (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + bb:$offset), + (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + bb:$offset)>; + +// Map from a 64-bit select to an emulated 64-bit mux. +// Hexagon does not support 64-bit MUXes; so emulate with combines. +def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src3)), + (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), + subreg_hireg)))), + (i32 (MUX_rr (i1 PredRegs:$src1), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), + subreg_loreg))))))>; + +// Map from a 1-bit select to logical ops. +// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). +def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), + (i1 PredRegs:$src3)), + (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)), + (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; + +// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. +def : Pat<(i1 (load ADDRriS11_2:$addr)), + (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>; + +// Map for truncating from 64 immediates to 32 bit immediates. +def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; + +// Map for truncating from i64 immediates to i1 bit immediates. +def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), + (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg))))>; + +// Map memb(Rs) = Rdd -> memb(Rs) = Rt. +def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map memh(Rs) = Rdd -> memh(Rs) = Rt. +def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; +// Map memw(Rs) = Rdd -> memw(Rs) = Rt +def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map memw(Rs) = Rdd -> memw(Rs) = Rt. +def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. +def : Pat<(store (i1 -1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (TFRI 1))>; + + +// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. +def : Pat<(store (i1 -1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (TFRI 1))>; + +// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. +def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>; + +// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs). +// Hexagon_TODO: We can probably use combine but that will cost 2 instructions. +// Better way to do this? +def : Pat<(i64 (anyext (i32 IntRegs:$src1))), + (i64 (SXTW (i32 IntRegs:$src1)))>; + +// Map cmple -> cmpgt. +// rs <= rt -> !(rs > rt). +def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)), + (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>; + +// rs <= rt -> !(rs > rt). +def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; + +// Rss <= Rtt -> !(Rss > Rtt). +def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; + +// Map cmpne -> cmpeq. +// Hexagon_TODO: We should improve on this. +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)), + (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>; + +// Map cmpne(Rs) -> !cmpeqe(Rs). +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; + +// Convert setne back to xor for hexagon since we compute w/ pred registers. +def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), + (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; + +// Map cmpne(Rss) -> !cmpew(Rss). +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))))>; + +// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; + +// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1) +def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)), + (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>; + +// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). +// rss >= rtt -> !(rtt > rss). +def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1)))))>; + +// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). +// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1). +// rs < rt -> !(rs >= rt). +def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)), + (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>; + +// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). +// rs < rt -> rt > rs. +// We can let assembler map it, or we can do in the compiler itself. +def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; + +// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). +// rss < rtt -> (rtt > rss). +def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; + +// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) +// rs < rt -> rt > rs. +// We can let assembler map it, or we can do in the compiler itself. +def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; + +// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). +// rs < rt -> rt > rs. +def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; + +// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs) +def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)), + (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>; + +// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1) +def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)), + (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>; + +// Generate cmpgtu(Rs, #u9) +def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)), + (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>; + +// Map from Rs >= Rt -> !(Rt > Rs). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; + +// Map from Rs >= Rt -> !(Rt > Rs). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; + +// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt). +// Map from (Rs <= Rt) -> !(Rs > Rt). +def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; + +// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). +// Map from (Rs <= Rt) -> !(Rs > Rt). +def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; + +// Sign extends. +// i1 -> i32 +def : Pat <(i32 (sext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>; + +// i1 -> i64 +def : Pat <(i64 (sext (i1 PredRegs:$src1))), + (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>; + +// Convert sign-extended load back to load and sign extend. +// i8 -> i64 +def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), + (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; + +// Convert any-extended load back to load and sign extend. +// i8 -> i64 +def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), + (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; + +// Convert sign-extended load back to load and sign extend. +// i16 -> i64 +def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), + (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>; + +// Convert sign-extended load back to load and sign extend. +// i32 -> i64 +def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), + (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>; + + +// Zero extends. +// i1 -> i32 +def : Pat <(i32 (zext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// i1 -> i64 +def : Pat <(i64 (zext (i1 PredRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>, + Requires<[NoV4T]>; + +// i32 -> i64 +def : Pat <(i64 (zext (i32 IntRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, + Requires<[NoV4T]>; + +// i8 -> i64 +def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 20 in +def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1), + s11_0ExtPred:$offset))), + (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, + s11_0ExtPred:$offset)))>, + Requires<[NoV4T]>; + +// i1 -> i64 +def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 20 in +def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1), + s11_0ExtPred:$offset))), + (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, + s11_0ExtPred:$offset)))>, + Requires<[NoV4T]>; + +// i16 -> i64 +def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 20 in +def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1), + s11_1ExtPred:$offset))), + (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1, + s11_1ExtPred:$offset)))>, + Requires<[NoV4T]>; + +// i32 -> i64 +def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 100 in +def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), + (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, + s11_2ExtPred:$offset)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 10 in +def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), + (i32 (LDriw ADDRriS11_0:$src1))>; + +// Map from Rs = Pd to Pd = mux(Pd, #1, #0) +def : Pat <(i32 (zext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// Map from Rs = Pd to Pd = mux(Pd, #1, #0) +def : Pat <(i32 (anyext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) +def : Pat <(i64 (anyext (i1 PredRegs:$src1))), + (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>; + + +let AddedComplexity = 100 in +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zextloadi32 (i32 (add IntRegs:$src2, + s11_2ExtPred:$offset2)))))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + (LDriw_indexed IntRegs:$src2, + s11_2ExtPred:$offset2)))>; + +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + (LDriw ADDRriS11_2:$srcLow)))>; + +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zext (i32 IntRegs:$srcLow))))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + IntRegs:$srcLow))>; + +let AddedComplexity = 100 in +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zextloadi32 (i32 (add IntRegs:$src2, + s11_2ExtPred:$offset2)))))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + (LDriw_indexed IntRegs:$src2, + s11_2ExtPred:$offset2)))>; + +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + (LDriw ADDRriS11_2:$srcLow)))>; + +def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), + (i32 32))), + (i64 (zext (i32 IntRegs:$srcLow))))), + (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), + IntRegs:$srcLow))>; + +// Any extended 64-bit load. +// anyext i32 -> i64 +def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, + Requires<[NoV4T]>; + +// When there is an offset we should prefer the pattern below over the pattern above. +// The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc) +// So this complexity below is comfortably higher to allow for choosing the below. +// If this is not done then we generate addresses such as +// ******************************************** +// r1 = add (r0, #4) +// r1 = memw(r1 + #0) +// instead of +// r1 = memw(r0 + #4) +// ******************************************** +let AddedComplexity = 100 in +def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), + (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, + s11_2ExtPred:$offset)))>, + Requires<[NoV4T]>; + +// anyext i16 -> i64. +def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>, + Requires<[NoV4T]>; + +let AddedComplexity = 20 in +def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1), + s11_1ExtPred:$offset))), + (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1, + s11_1ExtPred:$offset)))>, + Requires<[NoV4T]>; + +// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). +def : Pat<(i64 (zext (i32 IntRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, + Requires<[NoV4T]>; + +// Multiply 64-bit unsigned and use upper result. +def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (i64 + (MPYU64_acc + (i64 + (COMBINE_rr + (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64_acc + (i64 + (MPYU64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)))), 32)), + subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), + 32)), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; + +// Multiply 64-bit signed and use upper result. +def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (i64 + (MPY64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPY64_acc + (i64 + (MPY64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)))), 32)), + subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), + 32)), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; + +// Hexagon specific ISD nodes. +//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; +def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, + [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; +def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", + SDTHexagonADJDYNALLOC>; +// Needed to tag these instructions for stack layout. +let usesCustomInserter = 1 in +def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, + s16Imm:$src2), + "$dst = add($src1, #$src2)", + [(set (i32 IntRegs:$dst), + (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), + s16ImmPred:$src2))]>; + +def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; +def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; +def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + [(set (i32 IntRegs:$dst), + (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; + +let AddedComplexity = 100 in +def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), + (COPY (i32 IntRegs:$src1))>; + +def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; + +def : Pat<(HexagonWrapperJT tjumptable:$dst), + (i32 (CONST32_set_jt tjumptable:$dst))>; + +// XTYPE/SHIFT + +// Multi-class for logical operators : +// Shift by immediate/register and accumulate/logical +multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> { + def _ri : SInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), + [(set (i32 IntRegs:$dst), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$src2), + u5ImmPred:$src3)))], + "$src1 = $dst">; + + def d_ri : SInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), + [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))], + "$src1 = $dst">; +} + +// Multi-class for logical operators : +// Shift by register and accumulate/logical (32/64 bits) +multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> { + def _rr : SInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), + [(set (i32 IntRegs:$dst), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">; + + def d_rr : SInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), + [(set (i64 DoubleRegs:$dst), + (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">; + +} + +multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>; + defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>; + defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>; + defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>; +} + +multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>; + defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>; + defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>; + defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>; +} + +multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>; +} + +defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>, + xtype_xor_imm<"asl", shl>; + +defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>, + xtype_xor_imm<"lsr", srl>; + +defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>; +defm LSL : basic_xtype_reg<"lsl", shl>; + +// Change the sign of the immediate for Rd=-mpyi(Rs,#u8) +def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), + (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>; + +//===----------------------------------------------------------------------===// +// V3 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV3.td" + +//===----------------------------------------------------------------------===// +// V3 Instructions - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// V4 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV4.td" + +//===----------------------------------------------------------------------===// +// V4 Instructions - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// V5 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV5.td" + +//===----------------------------------------------------------------------===// +// V5 Instructions - +//===----------------------------------------------------------------------===// |