aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp1856
1 files changed, 1856 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
new file mode 100644
index 000000000000..6b97609415a3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
@@ -0,0 +1,1856 @@
+//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Hexagon implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonInstrInfo.h"
+#include "Hexagon.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#define GET_INSTRINFO_CTOR_DTOR
+#define GET_INSTRMAP_INFO
+#include "HexagonGenInstrInfo.inc"
+#include "HexagonGenDFAPacketizer.inc"
+
+using namespace llvm;
+
+///
+/// Constants for Hexagon instructions.
+///
+const int Hexagon_MEMW_OFFSET_MAX = 4095;
+const int Hexagon_MEMW_OFFSET_MIN = -4096;
+const int Hexagon_MEMD_OFFSET_MAX = 8191;
+const int Hexagon_MEMD_OFFSET_MIN = -8192;
+const int Hexagon_MEMH_OFFSET_MAX = 2047;
+const int Hexagon_MEMH_OFFSET_MIN = -2048;
+const int Hexagon_MEMB_OFFSET_MAX = 1023;
+const int Hexagon_MEMB_OFFSET_MIN = -1024;
+const int Hexagon_ADDI_OFFSET_MAX = 32767;
+const int Hexagon_ADDI_OFFSET_MIN = -32768;
+const int Hexagon_MEMD_AUTOINC_MAX = 56;
+const int Hexagon_MEMD_AUTOINC_MIN = -64;
+const int Hexagon_MEMW_AUTOINC_MAX = 28;
+const int Hexagon_MEMW_AUTOINC_MIN = -32;
+const int Hexagon_MEMH_AUTOINC_MAX = 14;
+const int Hexagon_MEMH_AUTOINC_MIN = -16;
+const int Hexagon_MEMB_AUTOINC_MAX = 7;
+const int Hexagon_MEMB_AUTOINC_MIN = -8;
+
+// Pin the vtable to this file.
+void HexagonInstrInfo::anchor() {}
+
+HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
+ : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
+ RI(ST), Subtarget(ST) {
+}
+
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::LDriw:
+ case Hexagon::LDrid:
+ case Hexagon::LDrih:
+ case Hexagon::LDrib:
+ case Hexagon::LDriub:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::STriw:
+ case Hexagon::STrid:
+ case Hexagon::STrih:
+ case Hexagon::STrib:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+
+unsigned
+HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const{
+
+ int BOpc = Hexagon::JMP;
+ int BccOpc = Hexagon::JMP_t;
+
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ int regPos = 0;
+ // Check if ReverseBranchCondition has asked to reverse this branch
+ // If we want to reverse the branch an odd number of times, we want
+ // JMP_f.
+ if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
+ BccOpc = Hexagon::JMP_f;
+ regPos = 1;
+ }
+
+ if (FBB == 0) {
+ if (Cond.empty()) {
+ // Due to a bug in TailMerging/CFG Optimization, we need to add a
+ // special case handling of a predicated jump followed by an
+ // unconditional jump. If not, Tail Merging and CFG Optimization go
+ // into an infinite loop.
+ MachineBasicBlock *NewTBB, *NewFBB;
+ SmallVector<MachineOperand, 4> Cond;
+ MachineInstr *Term = MBB.getFirstTerminator();
+ if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
+ false)) {
+ MachineBasicBlock *NextBB =
+ llvm::next(MachineFunction::iterator(&MBB));
+ if (NewTBB == NextBB) {
+ ReverseBranchCondition(Cond);
+ RemoveBranch(MBB);
+ return InsertBranch(MBB, TBB, 0, Cond, DL);
+ }
+ }
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else {
+ BuildMI(&MBB, DL,
+ get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
+ }
+ return 1;
+ }
+
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+
+ return 2;
+}
+
+
+bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ TBB = NULL;
+ FBB = NULL;
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::instr_iterator I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return false;
+
+ // A basic block may looks like this:
+ //
+ // [ insn
+ // EH_LABEL
+ // insn
+ // insn
+ // insn
+ // EH_LABEL
+ // insn ]
+ //
+ // It has two succs but does not have a terminator
+ // Don't know how to handle it.
+ do {
+ --I;
+ if (I->isEHLabel())
+ return true;
+ } while (I != MBB.instr_begin());
+
+ I = MBB.instr_end();
+ --I;
+
+ while (I->isDebugValue()) {
+ if (I == MBB.instr_begin())
+ return false;
+ --I;
+ }
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (AllowModify && I->getOpcode() == Hexagon::JMP &&
+ MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
+ I->eraseFromParent();
+ I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+ MachineInstr *SecondLastInst = NULL;
+ // Find one more terminator if present.
+ do {
+ if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
+ if (!SecondLastInst)
+ SecondLastInst = I;
+ else
+ // This is a third branch.
+ return true;
+ }
+ if (I == MBB.instr_begin())
+ break;
+ --I;
+ } while(I);
+
+ int LastOpcode = LastInst->getOpcode();
+
+ bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
+ bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
+
+ // If there is only one terminator instruction, process it.
+ if (LastInst && !SecondLastInst) {
+ if (LastOpcode == Hexagon::JMP) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (LastOpcode == Hexagon::ENDLOOP0) {
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ if (LastOpcodeHasJMP_c) {
+ TBB = LastInst->getOperand(1).getMBB();
+ if (LastOpcodeHasNot) {
+ Cond.push_back(MachineOperand::CreateImm(0));
+ }
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ int SecLastOpcode = SecondLastInst->getOpcode();
+
+ bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
+ bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
+ if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
+ TBB = SecondLastInst->getOperand(1).getMBB();
+ if (SecLastOpcodeHasNot)
+ Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two Hexagon:JMPs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // If the block ends with an ENDLOOP, and JMP, handle it.
+ if (SecLastOpcode == Hexagon::ENDLOOP0 &&
+ LastOpcode == Hexagon::JMP) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+
+unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ int BOpc = Hexagon::JMP;
+ int BccOpc = Hexagon::JMP_t;
+ int BccOpcNot = Hexagon::JMP_f;
+
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
+ I->getOpcode() != BccOpcNot)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+
+/// \brief For a comparison instruction, return the source registers in
+/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const {
+ unsigned Opc = MI->getOpcode();
+
+ // Set mask and the first source register.
+ switch (Opc) {
+ case Hexagon::CMPEHexagon4rr:
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPGT64rr:
+ case Hexagon::CMPGTU64rr:
+ case Hexagon::CMPGTUri:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPGTrr:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = ~0;
+ break;
+ case Hexagon::CMPbEQri_V4:
+ case Hexagon::CMPbEQrr_sbsb_V4:
+ case Hexagon::CMPbEQrr_ubub_V4:
+ case Hexagon::CMPbGTUri_V4:
+ case Hexagon::CMPbGTUrr_V4:
+ case Hexagon::CMPbGTrr_V4:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFF;
+ break;
+ case Hexagon::CMPhEQri_V4:
+ case Hexagon::CMPhEQrr_shl_V4:
+ case Hexagon::CMPhEQrr_xor_V4:
+ case Hexagon::CMPhGTUri_V4:
+ case Hexagon::CMPhGTUrr_V4:
+ case Hexagon::CMPhGTrr_shl_V4:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFFFF;
+ break;
+ }
+
+ // Set the value/second source register.
+ switch (Opc) {
+ case Hexagon::CMPEHexagon4rr:
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPGT64rr:
+ case Hexagon::CMPGTU64rr:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTrr:
+ case Hexagon::CMPbEQrr_sbsb_V4:
+ case Hexagon::CMPbEQrr_ubub_V4:
+ case Hexagon::CMPbGTUrr_V4:
+ case Hexagon::CMPbGTrr_V4:
+ case Hexagon::CMPhEQrr_shl_V4:
+ case Hexagon::CMPhEQrr_xor_V4:
+ case Hexagon::CMPhGTUrr_V4:
+ case Hexagon::CMPhGTrr_shl_V4:
+ SrcReg2 = MI->getOperand(2).getReg();
+ return true;
+
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPGTUri:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPbEQri_V4:
+ case Hexagon::CMPbGTUri_V4:
+ case Hexagon::CMPhEQri_V4:
+ case Hexagon::CMPhGTUri_V4:
+ SrcReg2 = 0;
+ Value = MI->getOperand(2).getImm();
+ return true;
+ }
+
+ return false;
+}
+
+
+void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
+ // Map Pd = Ps to Pd = or(Ps, Ps).
+ BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
+ DestReg).addReg(SrcReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg)) {
+ // We can have an overlap between single and double reg: r1:0 = r0.
+ if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
+ // r1:0 = r0
+ BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ Hexagon::subreg_hireg))).addImm(0);
+ } else {
+ // r1:0 = r1 or no overlap.
+ BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
+ Hexagon::subreg_loreg))).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ Hexagon::subreg_hireg))).addImm(0);
+ }
+ return;
+ }
+ if (Hexagon::CRRegsRegClass.contains(DestReg) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
+ return;
+ }
+ if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ Hexagon::IntRegsRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+ Hexagon::PredRegsRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ llvm_unreachable("Unimplemented");
+}
+
+
+void HexagonInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+
+ DebugLoc DL = MBB.findDebugLoc(I);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ Align);
+
+ if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STriw))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STrid))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
+ .addFrameIndex(FI).addImm(0)
+ .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
+ } else {
+ llvm_unreachable("Unimplemented");
+ }
+}
+
+
+void HexagonInstrInfo::storeRegToAddr(
+ MachineFunction &MF, unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const
+{
+ llvm_unreachable("Unimplemented");
+}
+
+
+void HexagonInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(I);
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ Align);
+ if (RC == &Hexagon::IntRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else if (RC == &Hexagon::DoubleRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else if (RC == &Hexagon::PredRegsRegClass) {
+ BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ } else {
+ llvm_unreachable("Can't store this register to stack slot");
+ }
+}
+
+
+void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ llvm_unreachable("Unimplemented");
+}
+
+
+MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FI) const {
+ // Hexagon_TODO: Implement.
+ return(0);
+}
+
+unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
+
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *TRC;
+ if (VT == MVT::i1) {
+ TRC = &Hexagon::PredRegsRegClass;
+ } else if (VT == MVT::i32 || VT == MVT::f32) {
+ TRC = &Hexagon::IntRegsRegClass;
+ } else if (VT == MVT::i64 || VT == MVT::f64) {
+ TRC = &Hexagon::DoubleRegsRegClass;
+ } else {
+ llvm_unreachable("Cannot handle this register class");
+ }
+
+ unsigned NewReg = RegInfo.createVirtualRegister(TRC);
+ return NewReg;
+}
+
+bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const MCInstrDesc &MID = MI->getDesc();
+ const uint64_t F = MID.TSFlags;
+ if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
+ return true;
+
+ // TODO: This is largely obsolete now. Will need to be removed
+ // in consecutive patches.
+ switch(MI->getOpcode()) {
+ // TFR_FI Remains a special case.
+ case Hexagon::TFR_FI:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+// This returns true in two cases:
+// - The OP code itself indicates that this is an extended instruction.
+// - One of MOs has been marked with HMOTF_ConstExtended flag.
+bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
+ // First check if this is permanently extended op code.
+ const uint64_t F = MI->getDesc().TSFlags;
+ if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
+ return true;
+ // Use MO operand flags to determine if one of MI's operands
+ // has HMOTF_ConstExtended flag set.
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ }
+ return false;
+}
+
+bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
+ return MI->getDesc().isBranch();
+}
+
+bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
+ if (isNewValueJump(MI))
+ return true;
+
+ if (isNewValueStore(MI))
+ return true;
+
+ return false;
+}
+
+bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
+ return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
+}
+
+bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
+ bool isPred = MI->getDesc().isPredicable();
+
+ if (!isPred)
+ return false;
+
+ const int Opc = MI->getOpcode();
+
+ switch(Opc) {
+ case Hexagon::TFRI:
+ return isInt<12>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrid:
+ case Hexagon::STrid_indexed:
+ return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
+
+ case Hexagon::STriw:
+ case Hexagon::STriw_indexed:
+ case Hexagon::STriw_nv_V4:
+ return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrih:
+ case Hexagon::STrih_indexed:
+ case Hexagon::STrih_nv_V4:
+ return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
+
+ case Hexagon::STrib:
+ case Hexagon::STrib_indexed:
+ case Hexagon::STrib_nv_V4:
+ return isUInt<6>(MI->getOperand(1).getImm());
+
+ case Hexagon::LDrid:
+ case Hexagon::LDrid_indexed:
+ return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDriw:
+ case Hexagon::LDriw_indexed:
+ return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDrih:
+ case Hexagon::LDriuh:
+ case Hexagon::LDrih_indexed:
+ case Hexagon::LDriuh_indexed:
+ return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
+
+ case Hexagon::LDrib:
+ case Hexagon::LDriub:
+ case Hexagon::LDrib_indexed:
+ case Hexagon::LDriub_indexed:
+ return isUInt<6>(MI->getOperand(2).getImm());
+
+ case Hexagon::POST_LDrid:
+ return isShiftedInt<4,3>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDriw:
+ return isShiftedInt<4,2>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDrih:
+ case Hexagon::POST_LDriuh:
+ return isShiftedInt<4,1>(MI->getOperand(3).getImm());
+
+ case Hexagon::POST_LDrib:
+ case Hexagon::POST_LDriub:
+ return isInt<4>(MI->getOperand(3).getImm());
+
+ case Hexagon::STrib_imm_V4:
+ case Hexagon::STrih_imm_V4:
+ case Hexagon::STriw_imm_V4:
+ return (isUInt<6>(MI->getOperand(1).getImm()) &&
+ isInt<6>(MI->getOperand(2).getImm()));
+
+ case Hexagon::ADD_ri:
+ return isInt<8>(MI->getOperand(2).getImm());
+
+ case Hexagon::ASLH:
+ case Hexagon::ASRH:
+ case Hexagon::SXTB:
+ case Hexagon::SXTH:
+ case Hexagon::ZXTB:
+ case Hexagon::ZXTH:
+ return Subtarget.hasV4TOps();
+ }
+
+ return true;
+}
+
+// This function performs the following inversiones:
+//
+// cPt ---> cNotPt
+// cNotPt ---> cPt
+//
+unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
+ int InvPredOpcode;
+ InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
+ : Hexagon::getTruePredOpcode(Opc);
+ if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
+ return InvPredOpcode;
+
+ switch(Opc) {
+ default: llvm_unreachable("Unexpected predicated instruction");
+ case Hexagon::COMBINE_rr_cPt:
+ return Hexagon::COMBINE_rr_cNotPt;
+ case Hexagon::COMBINE_rr_cNotPt:
+ return Hexagon::COMBINE_rr_cPt;
+
+ // Dealloc_return.
+ case Hexagon::DEALLOC_RET_cPt_V4:
+ return Hexagon::DEALLOC_RET_cNotPt_V4;
+ case Hexagon::DEALLOC_RET_cNotPt_V4:
+ return Hexagon::DEALLOC_RET_cPt_V4;
+ }
+}
+
+// New Value Store instructions.
+bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+}
+
+bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+}
+
+int HexagonInstrInfo::
+getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
+ enum Hexagon::PredSense inPredSense;
+ inPredSense = invertPredicate ? Hexagon::PredSense_false :
+ Hexagon::PredSense_true;
+ int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
+ if (CondOpcode >= 0) // Valid Conditional opcode/instruction
+ return CondOpcode;
+
+ // This switch case will be removed once all the instructions have been
+ // modified to use relation maps.
+ switch(Opc) {
+ case Hexagon::TFRI_f:
+ return !invertPredicate ? Hexagon::TFRI_cPt_f :
+ Hexagon::TFRI_cNotPt_f;
+ case Hexagon::COMBINE_rr:
+ return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
+ Hexagon::COMBINE_rr_cNotPt;
+
+ // Word.
+ case Hexagon::STriw_f:
+ return !invertPredicate ? Hexagon::STriw_cPt :
+ Hexagon::STriw_cNotPt;
+ case Hexagon::STriw_indexed_f:
+ return !invertPredicate ? Hexagon::STriw_indexed_cPt :
+ Hexagon::STriw_indexed_cNotPt;
+
+ // DEALLOC_RETURN.
+ case Hexagon::DEALLOC_RET_V4:
+ return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
+ Hexagon::DEALLOC_RET_cNotPt_V4;
+ }
+ llvm_unreachable("Unexpected predicable instruction");
+}
+
+
+bool HexagonInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ int Opc = MI->getOpcode();
+ assert (isPredicable(MI) && "Expected predicable instruction");
+ bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
+ (Cond[0].getImm() == 0));
+
+ // This will change MI's opcode to its predicate version.
+ // However, its operand list is still the old one, i.e. the
+ // non-predicate one.
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
+
+ int oper = -1;
+ unsigned int GAIdx = 0;
+
+ // Indicates whether the current MI has a GlobalAddress operand
+ bool hasGAOpnd = false;
+ std::vector<MachineOperand> tmpOpnds;
+
+ // Indicates whether we need to shift operands to right.
+ bool needShift = true;
+
+ // The predicate is ALWAYS the FIRST input operand !!!
+ if (MI->getNumOperands() == 0) {
+ // The non-predicate version of MI does not take any operands,
+ // i.e. no outs and no ins. In this condition, the predicate
+ // operand will be directly placed at Operands[0]. No operand
+ // shift is needed.
+ // Example: BARRIER
+ needShift = false;
+ oper = -1;
+ }
+ else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
+ && MI->getOperand(MI->getNumOperands()-1).isDef()
+ && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
+ // The non-predicate version of MI does not have any input operands.
+ // In this condition, we extend the length of Operands[] by one and
+ // copy the original last operand to the newly allocated slot.
+ // At this moment, it is just a place holder. Later, we will put
+ // predicate operand directly into it. No operand shift is needed.
+ // Example: r0=BARRIER (this is a faked insn used here for illustration)
+ MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
+ needShift = false;
+ oper = MI->getNumOperands() - 2;
+ }
+ else {
+ // We need to right shift all input operands by one. Duplicate the
+ // last operand into the newly allocated slot.
+ MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
+ }
+
+ if (needShift)
+ {
+ // Operands[ MI->getNumOperands() - 2 ] has been copied into
+ // Operands[ MI->getNumOperands() - 1 ], so we start from
+ // Operands[ MI->getNumOperands() - 3 ].
+ // oper is a signed int.
+ // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
+ for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
+ {
+ MachineOperand &MO = MI->getOperand(oper);
+
+ // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
+ // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
+ // /\~
+ // /||\~
+ // ||
+ // Predicate Operand here
+ if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
+ break;
+ }
+ if (MO.isReg()) {
+ MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
+ MO.isImplicit(), MO.isKill(),
+ MO.isDead(), MO.isUndef(),
+ MO.isDebug());
+ }
+ else if (MO.isImm()) {
+ MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
+ }
+ else if (MO.isGlobal()) {
+ // MI can not have more than one GlobalAddress operand.
+ assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
+
+ // There is no member function called "ChangeToGlobalAddress" in the
+ // MachineOperand class (not like "ChangeToRegister" and
+ // "ChangeToImmediate"). So we have to remove them from Operands[] list
+ // first, and then add them back after we have inserted the predicate
+ // operand. tmpOpnds[] is to remember these operands before we remove
+ // them.
+ tmpOpnds.push_back(MO);
+
+ // Operands[oper] is a GlobalAddress operand;
+ // Operands[oper+1] has been copied into Operands[oper+2];
+ hasGAOpnd = true;
+ GAIdx = oper;
+ continue;
+ }
+ else {
+ assert(false && "Unexpected operand type");
+ }
+ }
+ }
+
+ int regPos = invertJump ? 1 : 0;
+ MachineOperand PredMO = Cond[regPos];
+
+ // [oper] now points to the last explicit Def. Predicate operand must be
+ // located at [oper+1]. See diagram above.
+ // This assumes that the predicate is always the first operand,
+ // i.e. Operands[0+numResults], in the set of inputs
+ // It is better to have an assert here to check this. But I don't know how
+ // to write this assert because findFirstPredOperandIdx() would return -1
+ if (oper < -1) oper = -1;
+
+ MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
+ PredMO.isImplicit(), false,
+ PredMO.isDead(), PredMO.isUndef(),
+ PredMO.isDebug());
+
+ MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
+ RegInfo.clearKillFlags(PredMO.getReg());
+
+ if (hasGAOpnd)
+ {
+ unsigned int i;
+
+ // Operands[GAIdx] is the original GlobalAddress operand, which is
+ // already copied into tmpOpnds[0].
+ // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
+ // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
+ // so we start from [GAIdx+2]
+ for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
+ tmpOpnds.push_back(MI->getOperand(i));
+
+ // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
+ // It is very important that we always remove from the end of Operands[]
+ // MI->getNumOperands() is at least 2 if program goes to here.
+ for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
+ MI->RemoveOperand(i);
+
+ for (i = 0; i < tmpOpnds.size(); ++i)
+ MI->addOperand(tmpOpnds[i]);
+ }
+
+ return true;
+}
+
+
+bool
+HexagonInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles,
+ unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const {
+ return true;
+}
+
+
+bool
+HexagonInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles,
+ unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles,
+ unsigned ExtraFCycles,
+ const BranchProbability &Probability) const {
+ return true;
+}
+
+// Returns true if an instruction is predicated irrespective of the predicate
+// sense. For example, all of the following will return true.
+// if (p0) R1 = add(R2, R3)
+// if (!p0) R1 = add(R2, R3)
+// if (p0.new) R1 = add(R2, R3)
+// if (!p0.new) R1 = add(R2, R3)
+bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+}
+
+bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+}
+
+bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ assert(isPredicated(MI));
+ return (!((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask));
+}
+
+bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ // Make sure that the instruction is predicated.
+ assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+ return (!((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask));
+}
+
+bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ assert(isPredicated(MI));
+ return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+}
+
+bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+
+ assert(isPredicated(Opcode));
+ return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+}
+
+// Returns true, if a ST insn can be promoted to a new-value store.
+bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::mayNVStorePos) &
+ HexagonII::mayNVStoreMask &
+ QRI.Subtarget.hasV4TOps());
+}
+
+bool
+HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
+ MachineOperand MO = MI->getOperand(oper);
+ if (MO.isReg() && MO.isDef()) {
+ const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
+ if (RC == &Hexagon::PredRegsRegClass) {
+ Pred.push_back(MO);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+
+bool
+HexagonInstrInfo::
+SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ // TODO: Fix this
+ return false;
+}
+
+
+//
+// We indicate that we want to reverse the branch by
+// inserting a 0 at the beginning of the Cond vector.
+//
+bool HexagonInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
+ Cond.erase(Cond.begin());
+ } else {
+ Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
+ }
+ return false;
+}
+
+
+bool HexagonInstrInfo::
+isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
+ const BranchProbability &Probability) const {
+ return (NumInstrs <= 4);
+}
+
+bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::DEALLOC_RET_V4 :
+ case Hexagon::DEALLOC_RET_cPt_V4 :
+ case Hexagon::DEALLOC_RET_cNotPt_V4 :
+ case Hexagon::DEALLOC_RET_cdnPnt_V4 :
+ case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
+ case Hexagon::DEALLOC_RET_cdnPt_V4 :
+ case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
+ return true;
+ }
+}
+
+
+bool HexagonInstrInfo::
+isValidOffset(const int Opcode, const int Offset) const {
+ // This function is to check whether the "Offset" is in the correct range of
+ // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
+ // inserted to calculate the final address. Due to this reason, the function
+ // assumes that the "Offset" has correct alignment.
+ // We used to assert if the offset was not properly aligned, however,
+ // there are cases where a misaligned pointer recast can cause this
+ // problem, and we need to allow for it. The front end warns of such
+ // misaligns with respect to load size.
+
+ switch(Opcode) {
+
+ case Hexagon::LDriw:
+ case Hexagon::LDriw_indexed:
+ case Hexagon::LDriw_f:
+ case Hexagon::STriw_indexed:
+ case Hexagon::STriw:
+ case Hexagon::STriw_f:
+ return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMW_OFFSET_MAX);
+
+ case Hexagon::LDrid:
+ case Hexagon::LDrid_indexed:
+ case Hexagon::LDrid_f:
+ case Hexagon::STrid:
+ case Hexagon::STrid_indexed:
+ case Hexagon::STrid_f:
+ return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMD_OFFSET_MAX);
+
+ case Hexagon::LDrih:
+ case Hexagon::LDriuh:
+ case Hexagon::STrih:
+ return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMH_OFFSET_MAX);
+
+ case Hexagon::LDrib:
+ case Hexagon::STrib:
+ case Hexagon::LDriub:
+ return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMB_OFFSET_MAX);
+
+ case Hexagon::ADD_ri:
+ case Hexagon::TFR_FI:
+ return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
+ (Offset <= Hexagon_ADDI_OFFSET_MAX);
+
+ case Hexagon::MemOPw_ADDi_V4 :
+ case Hexagon::MemOPw_SUBi_V4 :
+ case Hexagon::MemOPw_ADDr_V4 :
+ case Hexagon::MemOPw_SUBr_V4 :
+ case Hexagon::MemOPw_ANDr_V4 :
+ case Hexagon::MemOPw_ORr_V4 :
+ return (0 <= Offset && Offset <= 255);
+
+ case Hexagon::MemOPh_ADDi_V4 :
+ case Hexagon::MemOPh_SUBi_V4 :
+ case Hexagon::MemOPh_ADDr_V4 :
+ case Hexagon::MemOPh_SUBr_V4 :
+ case Hexagon::MemOPh_ANDr_V4 :
+ case Hexagon::MemOPh_ORr_V4 :
+ return (0 <= Offset && Offset <= 127);
+
+ case Hexagon::MemOPb_ADDi_V4 :
+ case Hexagon::MemOPb_SUBi_V4 :
+ case Hexagon::MemOPb_ADDr_V4 :
+ case Hexagon::MemOPb_SUBr_V4 :
+ case Hexagon::MemOPb_ANDr_V4 :
+ case Hexagon::MemOPb_ORr_V4 :
+ return (0 <= Offset && Offset <= 63);
+
+ // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
+ // any size. Later pass knows how to handle it.
+ case Hexagon::STriw_pred:
+ case Hexagon::LDriw_pred:
+ return true;
+
+ case Hexagon::LOOP0_i:
+ return isUInt<10>(Offset);
+
+ // INLINEASM is very special.
+ case Hexagon::INLINEASM:
+ return true;
+ }
+
+ llvm_unreachable("No offset range is defined for this opcode. "
+ "Please define it in the above switch statement!");
+}
+
+
+//
+// Check if the Offset is a valid auto-inc imm by Load/Store Type.
+//
+bool HexagonInstrInfo::
+isValidAutoIncImm(const EVT VT, const int Offset) const {
+
+ if (VT == MVT::i64) {
+ return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMD_AUTOINC_MAX &&
+ (Offset & 0x7) == 0);
+ }
+ if (VT == MVT::i32) {
+ return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMW_AUTOINC_MAX &&
+ (Offset & 0x3) == 0);
+ }
+ if (VT == MVT::i16) {
+ return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMH_AUTOINC_MAX &&
+ (Offset & 0x1) == 0);
+ }
+ if (VT == MVT::i8) {
+ return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMB_AUTOINC_MAX);
+ }
+ llvm_unreachable("Not an auto-inc opc!");
+}
+
+
+bool HexagonInstrInfo::
+isMemOp(const MachineInstr *MI) const {
+// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
+
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::MemOPw_ADDi_V4 :
+ case Hexagon::MemOPw_SUBi_V4 :
+ case Hexagon::MemOPw_ADDr_V4 :
+ case Hexagon::MemOPw_SUBr_V4 :
+ case Hexagon::MemOPw_ANDr_V4 :
+ case Hexagon::MemOPw_ORr_V4 :
+ case Hexagon::MemOPh_ADDi_V4 :
+ case Hexagon::MemOPh_SUBi_V4 :
+ case Hexagon::MemOPh_ADDr_V4 :
+ case Hexagon::MemOPh_SUBr_V4 :
+ case Hexagon::MemOPh_ANDr_V4 :
+ case Hexagon::MemOPh_ORr_V4 :
+ case Hexagon::MemOPb_ADDi_V4 :
+ case Hexagon::MemOPb_SUBi_V4 :
+ case Hexagon::MemOPb_ADDr_V4 :
+ case Hexagon::MemOPb_SUBr_V4 :
+ case Hexagon::MemOPb_ANDr_V4 :
+ case Hexagon::MemOPb_ORr_V4 :
+ case Hexagon::MemOPb_SETBITi_V4:
+ case Hexagon::MemOPh_SETBITi_V4:
+ case Hexagon::MemOPw_SETBITi_V4:
+ case Hexagon::MemOPb_CLRBITi_V4:
+ case Hexagon::MemOPh_CLRBITi_V4:
+ case Hexagon::MemOPw_CLRBITi_V4:
+ return true;
+ }
+ return false;
+}
+
+
+bool HexagonInstrInfo::
+isSpillPredRegOp(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::STriw_pred :
+ case Hexagon::LDriw_pred :
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::CMPEQrr:
+ case Hexagon::CMPEQri:
+ case Hexagon::CMPGTrr:
+ case Hexagon::CMPGTri:
+ case Hexagon::CMPGTUrr:
+ case Hexagon::CMPGTUri:
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::
+isConditionalTransfer (const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::TFR_cPt:
+ case Hexagon::TFR_cNotPt:
+ case Hexagon::TFRI_cPt:
+ case Hexagon::TFRI_cNotPt:
+ case Hexagon::TFR_cdnPt:
+ case Hexagon::TFR_cdnNotPt:
+ case Hexagon::TFRI_cdnPt:
+ case Hexagon::TFRI_cdnNotPt:
+ return true;
+ }
+}
+
+bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::ADD_ri_cPt:
+ case Hexagon::ADD_ri_cNotPt:
+ case Hexagon::ADD_rr_cPt:
+ case Hexagon::ADD_rr_cNotPt:
+ case Hexagon::XOR_rr_cPt:
+ case Hexagon::XOR_rr_cNotPt:
+ case Hexagon::AND_rr_cPt:
+ case Hexagon::AND_rr_cNotPt:
+ case Hexagon::OR_rr_cPt:
+ case Hexagon::OR_rr_cNotPt:
+ case Hexagon::SUB_rr_cPt:
+ case Hexagon::SUB_rr_cNotPt:
+ case Hexagon::COMBINE_rr_cPt:
+ case Hexagon::COMBINE_rr_cNotPt:
+ return true;
+ case Hexagon::ASLH_cPt_V4:
+ case Hexagon::ASLH_cNotPt_V4:
+ case Hexagon::ASRH_cPt_V4:
+ case Hexagon::ASRH_cNotPt_V4:
+ case Hexagon::SXTB_cPt_V4:
+ case Hexagon::SXTB_cNotPt_V4:
+ case Hexagon::SXTH_cPt_V4:
+ case Hexagon::SXTH_cNotPt_V4:
+ case Hexagon::ZXTB_cPt_V4:
+ case Hexagon::ZXTB_cNotPt_V4:
+ case Hexagon::ZXTH_cPt_V4:
+ case Hexagon::ZXTH_cNotPt_V4:
+ return QRI.Subtarget.hasV4TOps();
+ }
+}
+
+bool HexagonInstrInfo::
+isConditionalLoad (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::LDrid_cPt :
+ case Hexagon::LDrid_cNotPt :
+ case Hexagon::LDrid_indexed_cPt :
+ case Hexagon::LDrid_indexed_cNotPt :
+ case Hexagon::LDriw_cPt :
+ case Hexagon::LDriw_cNotPt :
+ case Hexagon::LDriw_indexed_cPt :
+ case Hexagon::LDriw_indexed_cNotPt :
+ case Hexagon::LDrih_cPt :
+ case Hexagon::LDrih_cNotPt :
+ case Hexagon::LDrih_indexed_cPt :
+ case Hexagon::LDrih_indexed_cNotPt :
+ case Hexagon::LDrib_cPt :
+ case Hexagon::LDrib_cNotPt :
+ case Hexagon::LDrib_indexed_cPt :
+ case Hexagon::LDrib_indexed_cNotPt :
+ case Hexagon::LDriuh_cPt :
+ case Hexagon::LDriuh_cNotPt :
+ case Hexagon::LDriuh_indexed_cPt :
+ case Hexagon::LDriuh_indexed_cNotPt :
+ case Hexagon::LDriub_cPt :
+ case Hexagon::LDriub_cNotPt :
+ case Hexagon::LDriub_indexed_cPt :
+ case Hexagon::LDriub_indexed_cNotPt :
+ return true;
+ case Hexagon::POST_LDrid_cPt :
+ case Hexagon::POST_LDrid_cNotPt :
+ case Hexagon::POST_LDriw_cPt :
+ case Hexagon::POST_LDriw_cNotPt :
+ case Hexagon::POST_LDrih_cPt :
+ case Hexagon::POST_LDrih_cNotPt :
+ case Hexagon::POST_LDrib_cPt :
+ case Hexagon::POST_LDrib_cNotPt :
+ case Hexagon::POST_LDriuh_cPt :
+ case Hexagon::POST_LDriuh_cNotPt :
+ case Hexagon::POST_LDriub_cPt :
+ case Hexagon::POST_LDriub_cNotPt :
+ return QRI.Subtarget.hasV4TOps();
+ case Hexagon::LDrid_indexed_shl_cPt_V4 :
+ case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDrib_indexed_shl_cPt_V4 :
+ case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriub_indexed_shl_cPt_V4 :
+ case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDrih_indexed_shl_cPt_V4 :
+ case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriuh_indexed_shl_cPt_V4 :
+ case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
+ case Hexagon::LDriw_indexed_shl_cPt_V4 :
+ case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
+ return QRI.Subtarget.hasV4TOps();
+ }
+}
+
+// Returns true if an instruction is a conditional store.
+//
+// Note: It doesn't include conditional new-value stores as they can't be
+// converted to .new predicate.
+//
+// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
+// ^ ^
+// / \ (not OK. it will cause new-value store to be
+// / X conditional on p0.new while R2 producer is
+// / \ on p0)
+// / \.
+// p.new store p.old NV store
+// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
+// ^ ^
+// \ /
+// \ /
+// \ /
+// p.old store
+// [if (p0)memw(R0+#0)=R2]
+//
+// The above diagram shows the steps involoved in the conversion of a predicated
+// store instruction to its .new predicated new-value form.
+//
+// The following set of instructions further explains the scenario where
+// conditional new-value store becomes invalid when promoted to .new predicate
+// form.
+//
+// { 1) if (p0) r0 = add(r1, r2)
+// 2) p0 = cmp.eq(r3, #0) }
+//
+// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
+// the first two instructions because in instr 1, r0 is conditional on old value
+// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
+// is not valid for new-value stores.
+bool HexagonInstrInfo::
+isConditionalStore (const MachineInstr* MI) const {
+ const HexagonRegisterInfo& QRI = getRegisterInfo();
+ switch (MI->getOpcode())
+ {
+ default: return false;
+ case Hexagon::STrib_imm_cPt_V4 :
+ case Hexagon::STrib_imm_cNotPt_V4 :
+ case Hexagon::STrib_indexed_shl_cPt_V4 :
+ case Hexagon::STrib_indexed_shl_cNotPt_V4 :
+ case Hexagon::STrib_cPt :
+ case Hexagon::STrib_cNotPt :
+ case Hexagon::POST_STbri_cPt :
+ case Hexagon::POST_STbri_cNotPt :
+ case Hexagon::STrid_indexed_cPt :
+ case Hexagon::STrid_indexed_cNotPt :
+ case Hexagon::STrid_indexed_shl_cPt_V4 :
+ case Hexagon::POST_STdri_cPt :
+ case Hexagon::POST_STdri_cNotPt :
+ case Hexagon::STrih_cPt :
+ case Hexagon::STrih_cNotPt :
+ case Hexagon::STrih_indexed_cPt :
+ case Hexagon::STrih_indexed_cNotPt :
+ case Hexagon::STrih_imm_cPt_V4 :
+ case Hexagon::STrih_imm_cNotPt_V4 :
+ case Hexagon::STrih_indexed_shl_cPt_V4 :
+ case Hexagon::STrih_indexed_shl_cNotPt_V4 :
+ case Hexagon::POST_SThri_cPt :
+ case Hexagon::POST_SThri_cNotPt :
+ case Hexagon::STriw_cPt :
+ case Hexagon::STriw_cNotPt :
+ case Hexagon::STriw_indexed_cPt :
+ case Hexagon::STriw_indexed_cNotPt :
+ case Hexagon::STriw_imm_cPt_V4 :
+ case Hexagon::STriw_imm_cNotPt_V4 :
+ case Hexagon::STriw_indexed_shl_cPt_V4 :
+ case Hexagon::STriw_indexed_shl_cNotPt_V4 :
+ case Hexagon::POST_STwri_cPt :
+ case Hexagon::POST_STwri_cNotPt :
+ return QRI.Subtarget.hasV4TOps();
+
+ // V4 global address store before promoting to dot new.
+ case Hexagon::STd_GP_cPt_V4 :
+ case Hexagon::STd_GP_cNotPt_V4 :
+ case Hexagon::STb_GP_cPt_V4 :
+ case Hexagon::STb_GP_cNotPt_V4 :
+ case Hexagon::STh_GP_cPt_V4 :
+ case Hexagon::STh_GP_cNotPt_V4 :
+ case Hexagon::STw_GP_cPt_V4 :
+ case Hexagon::STw_GP_cNotPt_V4 :
+ return QRI.Subtarget.hasV4TOps();
+
+ // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+ // from the "Conditional Store" list. Because a predicated new value store
+ // would NOT be promoted to a double dot new store. See diagram below:
+ // This function returns yes for those stores that are predicated but not
+ // yet promoted to predicate dot new instructions.
+ //
+ // +---------------------+
+ // /-----| if (p0) memw(..)=r0 |---------\~
+ // || +---------------------+ ||
+ // promote || /\ /\ || promote
+ // || /||\ /||\ ||
+ // \||/ demote || \||/
+ // \/ || || \/
+ // +-------------------------+ || +-------------------------+
+ // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
+ // +-------------------------+ || +-------------------------+
+ // || || ||
+ // || demote \||/
+ // promote || \/ NOT possible
+ // || || /\~
+ // \||/ || /||\~
+ // \/ || ||
+ // +-----------------------------+
+ // | if (p0.new) memw(..)=r0.new |
+ // +-----------------------------+
+ // Double Dot New Store
+ //
+ }
+}
+
+
+bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
+ if (isNewValue(MI) && isBranch(MI))
+ return true;
+ return false;
+}
+
+bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
+ return (getAddrMode(MI) == HexagonII::PostInc);
+}
+
+bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+}
+
+// Returns true, if any one of the operands is a dot new
+// insn, whether it is predicated dot new or register dot new.
+bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
+ return (isNewValueInst(MI) ||
+ (isPredicated(MI) && isPredicatedNew(MI)));
+}
+
+// Returns the most basic instruction for the .new predicated instructions and
+// new-value stores.
+// For example, all of the following instructions will be converted back to the
+// same instruction:
+// 1) if (p0.new) memw(R0+#0) = R1.new --->
+// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
+// 3) if (p0.new) memw(R0+#0) = R1 --->
+//
+
+int HexagonInstrInfo::GetDotOldOp(const int opc) const {
+ int NewOp = opc;
+ if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
+ NewOp = Hexagon::getPredOldOpcode(NewOp);
+ if (NewOp < 0)
+ assert(0 && "Couldn't change predicate new instruction to its old form.");
+ }
+
+ if (isNewValueStore(NewOp)) { // Convert into non new-value format
+ NewOp = Hexagon::getNonNVStore(NewOp);
+ if (NewOp < 0)
+ assert(0 && "Couldn't change new-value store to its old form.");
+ }
+ return NewOp;
+}
+
+// Return the new value instruction for a given store.
+int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
+ int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
+ if (NVOpcode >= 0) // Valid new-value store instruction.
+ return NVOpcode;
+
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown .new type");
+ // store new value byte
+ case Hexagon::STrib_shl_V4:
+ return Hexagon::STrib_shl_nv_V4;
+
+ case Hexagon::STrih_shl_V4:
+ return Hexagon::STrih_shl_nv_V4;
+
+ case Hexagon::STriw_f:
+ return Hexagon::STriw_nv_V4;
+
+ case Hexagon::STriw_indexed_f:
+ return Hexagon::STriw_indexed_nv_V4;
+
+ case Hexagon::STriw_shl_V4:
+ return Hexagon::STriw_shl_nv_V4;
+
+ }
+ return 0;
+}
+
+// Return .new predicate version for an instruction.
+int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
+ const MachineBranchProbabilityInfo
+ *MBPI) const {
+
+ int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
+ if (NewOpcode >= 0) // Valid predicate new instruction
+ return NewOpcode;
+
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown .new type");
+ // Condtional Jumps
+ case Hexagon::JMP_t:
+ case Hexagon::JMP_f:
+ return getDotNewPredJumpOp(MI, MBPI);
+
+ case Hexagon::JMPR_t:
+ return Hexagon::JMPR_tnew_tV3;
+
+ case Hexagon::JMPR_f:
+ return Hexagon::JMPR_fnew_tV3;
+
+ case Hexagon::JMPret_t:
+ return Hexagon::JMPret_tnew_tV3;
+
+ case Hexagon::JMPret_f:
+ return Hexagon::JMPret_fnew_tV3;
+
+
+ // Conditional combine
+ case Hexagon::COMBINE_rr_cPt :
+ return Hexagon::COMBINE_rr_cdnPt;
+ case Hexagon::COMBINE_rr_cNotPt :
+ return Hexagon::COMBINE_rr_cdnNotPt;
+ }
+}
+
+
+unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
+}
+
+/// immediateExtend - Changes the instruction in place to one using an immediate
+/// extender.
+void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
+ assert((isExtendable(MI)||isConstExtended(MI)) &&
+ "Instruction must be extendable");
+ // Find which operand is extendable.
+ short ExtOpNum = getCExtOpNum(MI);
+ MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // This needs to be something we understand.
+ assert((MO.isMBB() || MO.isImm()) &&
+ "Branch with unknown extendable field type");
+ // Mark given operand as extended.
+ MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
+}
+
+DFAPacketizer *HexagonInstrInfo::
+CreateTargetScheduleState(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ const InstrItineraryData *II = TM->getInstrItineraryData();
+ return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
+}
+
+bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
+ return true;
+
+ return false;
+}
+
+bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
+
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+ if (isExtended) // Instruction must be extended.
+ return true;
+
+ unsigned isExtendable = (F >> HexagonII::ExtendablePos)
+ & HexagonII::ExtendableMask;
+ if (!isExtendable)
+ return false;
+
+ short ExtOpNum = getCExtOpNum(MI);
+ const MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // Use MO operand flags to determine if MO
+ // has the HMOTF_ConstExtended flag set.
+ if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ // If this is a Machine BB address we are talking about, and it is
+ // not marked as extended, say so.
+ if (MO.isMBB())
+ return false;
+
+ // We could be using an instruction with an extendable immediate and shoehorn
+ // a global address into it. If it is a global address it will be constant
+ // extended. We do this for COMBINE.
+ // We currently only handle isGlobal() because it is the only kind of
+ // object we are going to end up with here for now.
+ // In the future we probably should add isSymbol(), etc.
+ if (MO.isGlobal() || MO.isSymbol())
+ return true;
+
+ // If the extendable operand is not 'Immediate' type, the instruction should
+ // have 'isExtended' flag set.
+ assert(MO.isImm() && "Extendable operand must be Immediate type");
+
+ int MinValue = getMinValue(MI);
+ int MaxValue = getMaxValue(MI);
+ int ImmValue = MO.getImm();
+
+ return (ImmValue < MinValue || ImmValue > MaxValue);
+}
+
+// Returns the opcode to use when converting MI, which is a conditional jump,
+// into a conditional instruction which uses the .new value of the predicate.
+// We also use branch probabilities to add a hint to the jump.
+int
+HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
+ const
+ MachineBranchProbabilityInfo *MBPI) const {
+
+ // We assume that block can have at most two successors.
+ bool taken = false;
+ MachineBasicBlock *Src = MI->getParent();
+ MachineOperand *BrTarget = &MI->getOperand(1);
+ MachineBasicBlock *Dst = BrTarget->getMBB();
+
+ const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
+ if (Prediction >= BranchProbability(1,2))
+ taken = true;
+
+ switch (MI->getOpcode()) {
+ case Hexagon::JMP_t:
+ return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
+ case Hexagon::JMP_f:
+ return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
+
+ default:
+ llvm_unreachable("Unexpected jump instruction.");
+ }
+}
+// Returns true if a particular operand is extendable for an instruction.
+bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
+ unsigned short OperandNum) const {
+ // Constant extenders are allowed only for V4 and above.
+ if (!Subtarget.hasV4TOps())
+ return false;
+
+ const uint64_t F = MI->getDesc().TSFlags;
+
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
+ == OperandNum;
+}
+
+// Returns Operand Index for the constant extended instruction.
+unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
+}
+
+// Returns the min value that doesn't need to be extended.
+int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return -1 << (bits - 1);
+ else
+ return 0;
+}
+
+// Returns the max value that doesn't need to be extended.
+int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
+ & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos)
+ & HexagonII::ExtentBitsMask;
+
+ if (isSigned) // if value is signed
+ return ~(-1 << (bits - 1));
+ else
+ return ~(-1 << bits);
+}
+
+// Returns true if an instruction can be converted into a non-extended
+// equivalent instruction.
+bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
+
+ short NonExtOpcode;
+ // Check if the instruction has a register form that uses register in place
+ // of the extended operand, if so return that as the non-extended form.
+ if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
+ return true;
+
+ if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+ // Check addressing mode and retreive non-ext equivalent instruction.
+
+ switch (getAddrMode(MI)) {
+ case HexagonII::Absolute :
+ // Load/store with absolute addressing mode can be converted into
+ // base+offset mode.
+ NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
+ break;
+ case HexagonII::BaseImmOffset :
+ // Load/store with base+offset addressing mode can be converted into
+ // base+register offset addressing mode. However left shift operand should
+ // be set to 0.
+ NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ break;
+ default:
+ return false;
+ }
+ if (NonExtOpcode < 0)
+ return false;
+ return true;
+ }
+ return false;
+}
+
+// Returns opcode of the non-extended equivalent instruction.
+short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
+
+ // Check if the instruction has a register form that uses register in place
+ // of the extended operand, if so return that as the non-extended form.
+ short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
+ if (NonExtOpcode >= 0)
+ return NonExtOpcode;
+
+ if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+ // Check addressing mode and retreive non-ext equivalent instruction.
+ switch (getAddrMode(MI)) {
+ case HexagonII::Absolute :
+ return Hexagon::getBasedWithImmOffset(MI->getOpcode());
+ case HexagonII::BaseImmOffset :
+ return Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ default:
+ return -1;
+ }
+ }
+ return -1;
+}
+
+bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
+ return (Opcode == Hexagon::JMP_t) ||
+ (Opcode == Hexagon::JMP_f) ||
+ (Opcode == Hexagon::JMP_tnew_t) ||
+ (Opcode == Hexagon::JMP_fnew_t) ||
+ (Opcode == Hexagon::JMP_tnew_nt) ||
+ (Opcode == Hexagon::JMP_fnew_nt);
+}
+
+bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
+ return (Opcode == Hexagon::JMP_f) ||
+ (Opcode == Hexagon::JMP_fnew_t) ||
+ (Opcode == Hexagon::JMP_fnew_nt);
+}