diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp | 1548 |
1 files changed, 1548 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp new file mode 100644 index 000000000000..52d5ab2fee27 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp @@ -0,0 +1,1548 @@ +//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass identifies loops where we can generate the Hexagon hardware +// loop instruction. The hardware loop can perform loop branches with a +// zero-cycle overhead. +// +// The pattern that defines the induction variable can changed depending on +// prior optimizations. For example, the IndVarSimplify phase run by 'opt' +// normalizes induction variables, and the Loop Strength Reduction pass +// run by 'llc' may also make changes to the induction variable. +// The pattern detected by this phase is due to running Strength Reduction. +// +// Criteria for hardware loops: +// - Countable loops (w/ ind. var for a trip count) +// - Assumes loops are normalized by IndVarSimplify +// - Try inner-most loops first +// - No nested hardware loops. +// - No function calls in loops. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hwloops" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "Hexagon.h" +#include "HexagonTargetMachine.h" + +#include <algorithm> +#include <vector> + +using namespace llvm; + +#ifndef NDEBUG +static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); +#endif + +STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); + +namespace llvm { + void initializeHexagonHardwareLoopsPass(PassRegistry&); +} + +namespace { + class CountValue; + struct HexagonHardwareLoops : public MachineFunctionPass { + MachineLoopInfo *MLI; + MachineRegisterInfo *MRI; + MachineDominatorTree *MDT; + const HexagonTargetMachine *TM; + const HexagonInstrInfo *TII; + const HexagonRegisterInfo *TRI; +#ifndef NDEBUG + static int Counter; +#endif + + public: + static char ID; + + HexagonHardwareLoops() : MachineFunctionPass(ID) { + initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); + } + + virtual bool runOnMachineFunction(MachineFunction &MF); + + const char *getPassName() const { return "Hexagon Hardware Loops"; } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// Kinds of comparisons in the compare instructions. + struct Comparison { + enum Kind { + EQ = 0x01, + NE = 0x02, + L = 0x04, // Less-than property. + G = 0x08, // Greater-than property. + U = 0x40, // Unsigned property. + LTs = L, + LEs = L | EQ, + GTs = G, + GEs = G | EQ, + LTu = L | U, + LEu = L | EQ | U, + GTu = G | U, + GEu = G | EQ | U + }; + + static Kind getSwappedComparison(Kind Cmp) { + assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); + if ((Cmp & L) || (Cmp & G)) + return (Kind)(Cmp ^ (L|G)); + return Cmp; + } + }; + + /// \brief Find the register that contains the loop controlling + /// induction variable. + /// If successful, it will return true and set the \p Reg, \p IVBump + /// and \p IVOp arguments. Otherwise it will return false. + /// The returned induction register is the register R that follows the + /// following induction pattern: + /// loop: + /// R = phi ..., [ R.next, LatchBlock ] + /// R.next = R + #bump + /// if (R.next < #N) goto loop + /// IVBump is the immediate value added to R, and IVOp is the instruction + /// "R.next = R + #bump". + bool findInductionRegister(MachineLoop *L, unsigned &Reg, + int64_t &IVBump, MachineInstr *&IVOp) const; + + /// \brief Analyze the statements in a loop to determine if the loop + /// has a computable trip count and, if so, return a value that represents + /// the trip count expression. + CountValue *getLoopTripCount(MachineLoop *L, + SmallVectorImpl<MachineInstr *> &OldInsts); + + /// \brief Return the expression that represents the number of times + /// a loop iterates. The function takes the operands that represent the + /// loop start value, loop end value, and induction value. Based upon + /// these operands, the function attempts to compute the trip count. + /// If the trip count is not directly available (as an immediate value, + /// or a register), the function will attempt to insert computation of it + /// to the loop's preheader. + CountValue *computeCount(MachineLoop *Loop, + const MachineOperand *Start, + const MachineOperand *End, + unsigned IVReg, + int64_t IVBump, + Comparison::Kind Cmp) const; + + /// \brief Return true if the instruction is not valid within a hardware + /// loop. + bool isInvalidLoopOperation(const MachineInstr *MI) const; + + /// \brief Return true if the loop contains an instruction that inhibits + /// using the hardware loop. + bool containsInvalidInstruction(MachineLoop *L) const; + + /// \brief Given a loop, check if we can convert it to a hardware loop. + /// If so, then perform the conversion and return true. + bool convertToHardwareLoop(MachineLoop *L); + + /// \brief Return true if the instruction is now dead. + bool isDead(const MachineInstr *MI, + SmallVectorImpl<MachineInstr *> &DeadPhis) const; + + /// \brief Remove the instruction if it is now dead. + void removeIfDead(MachineInstr *MI); + + /// \brief Make sure that the "bump" instruction executes before the + /// compare. We need that for the IV fixup, so that the compare + /// instruction would not use a bumped value that has not yet been + /// defined. If the instructions are out of order, try to reorder them. + bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); + + /// \brief Get the instruction that loads an immediate value into \p R, + /// or 0 if such an instruction does not exist. + MachineInstr *defWithImmediate(unsigned R); + + /// \brief Get the immediate value referenced to by \p MO, either for + /// immediate operands, or for register operands, where the register + /// was defined with an immediate value. + int64_t getImmediate(MachineOperand &MO); + + /// \brief Reset the given machine operand to now refer to a new immediate + /// value. Assumes that the operand was already referencing an immediate + /// value, either directly, or via a register. + void setImmediate(MachineOperand &MO, int64_t Val); + + /// \brief Fix the data flow of the induction varible. + /// The desired flow is: phi ---> bump -+-> comparison-in-latch. + /// | + /// +-> back to phi + /// where "bump" is the increment of the induction variable: + /// iv = iv + #const. + /// Due to some prior code transformations, the actual flow may look + /// like this: + /// phi -+-> bump ---> back to phi + /// | + /// +-> comparison-in-latch (against upper_bound-bump), + /// i.e. the comparison that controls the loop execution may be using + /// the value of the induction variable from before the increment. + /// + /// Return true if the loop's flow is the desired one (i.e. it's + /// either been fixed, or no fixing was necessary). + /// Otherwise, return false. This can happen if the induction variable + /// couldn't be identified, or if the value in the latch's comparison + /// cannot be adjusted to reflect the post-bump value. + bool fixupInductionVariable(MachineLoop *L); + + /// \brief Given a loop, if it does not have a preheader, create one. + /// Return the block that is the preheader. + MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); + }; + + char HexagonHardwareLoops::ID = 0; +#ifndef NDEBUG + int HexagonHardwareLoops::Counter = 0; +#endif + + /// \brief Abstraction for a trip count of a loop. A smaller vesrsion + /// of the MachineOperand class without the concerns of changing the + /// operand representation. + class CountValue { + public: + enum CountValueType { + CV_Register, + CV_Immediate + }; + private: + CountValueType Kind; + union Values { + struct { + unsigned Reg; + unsigned Sub; + } R; + unsigned ImmVal; + } Contents; + + public: + explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { + Kind = t; + if (Kind == CV_Register) { + Contents.R.Reg = v; + Contents.R.Sub = u; + } else { + Contents.ImmVal = v; + } + } + bool isReg() const { return Kind == CV_Register; } + bool isImm() const { return Kind == CV_Immediate; } + + unsigned getReg() const { + assert(isReg() && "Wrong CountValue accessor"); + return Contents.R.Reg; + } + unsigned getSubReg() const { + assert(isReg() && "Wrong CountValue accessor"); + return Contents.R.Sub; + } + unsigned getImm() const { + assert(isImm() && "Wrong CountValue accessor"); + return Contents.ImmVal; + } + + void print(raw_ostream &OS, const TargetMachine *TM = 0) const { + const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; + if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } + if (isImm()) { OS << Contents.ImmVal; } + } + }; +} // end anonymous namespace + + +INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", + "Hexagon Hardware Loops", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", + "Hexagon Hardware Loops", false, false) + + +/// \brief Returns true if the instruction is a hardware loop instruction. +static bool isHardwareLoop(const MachineInstr *MI) { + return MI->getOpcode() == Hexagon::LOOP0_r || + MI->getOpcode() == Hexagon::LOOP0_i; +} + +FunctionPass *llvm::createHexagonHardwareLoops() { + return new HexagonHardwareLoops(); +} + + +bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { + DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); + + bool Changed = false; + + MLI = &getAnalysis<MachineLoopInfo>(); + MRI = &MF.getRegInfo(); + MDT = &getAnalysis<MachineDominatorTree>(); + TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); + TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo()); + TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo()); + + for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); + I != E; ++I) { + MachineLoop *L = *I; + if (!L->getParentLoop()) + Changed |= convertToHardwareLoop(L); + } + + return Changed; +} + + +bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, + unsigned &Reg, + int64_t &IVBump, + MachineInstr *&IVOp + ) const { + MachineBasicBlock *Header = L->getHeader(); + MachineBasicBlock *Preheader = L->getLoopPreheader(); + MachineBasicBlock *Latch = L->getLoopLatch(); + if (!Header || !Preheader || !Latch) + return false; + + // This pair represents an induction register together with an immediate + // value that will be added to it in each loop iteration. + typedef std::pair<unsigned,int64_t> RegisterBump; + + // Mapping: R.next -> (R, bump), where R, R.next and bump are derived + // from an induction operation + // R.next = R + bump + // where bump is an immediate value. + typedef std::map<unsigned,RegisterBump> InductionMap; + + InductionMap IndMap; + + typedef MachineBasicBlock::instr_iterator instr_iterator; + for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); + I != E && I->isPHI(); ++I) { + MachineInstr *Phi = &*I; + + // Have a PHI instruction. Get the operand that corresponds to the + // latch block, and see if is a result of an addition of form "reg+imm", + // where the "reg" is defined by the PHI node we are looking at. + for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { + if (Phi->getOperand(i+1).getMBB() != Latch) + continue; + + unsigned PhiOpReg = Phi->getOperand(i).getReg(); + MachineInstr *DI = MRI->getVRegDef(PhiOpReg); + unsigned UpdOpc = DI->getOpcode(); + bool isAdd = (UpdOpc == Hexagon::ADD_ri); + + if (isAdd) { + // If the register operand to the add is the PHI we're + // looking at, this meets the induction pattern. + unsigned IndReg = DI->getOperand(1).getReg(); + if (MRI->getVRegDef(IndReg) == Phi) { + unsigned UpdReg = DI->getOperand(0).getReg(); + int64_t V = DI->getOperand(2).getImm(); + IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); + } + } + } // for (i) + } // for (instr) + + SmallVector<MachineOperand,2> Cond; + MachineBasicBlock *TB = 0, *FB = 0; + bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); + if (NotAnalyzed) + return false; + + unsigned CSz = Cond.size(); + assert (CSz == 1 || CSz == 2); + unsigned PredR = Cond[CSz-1].getReg(); + + MachineInstr *PredI = MRI->getVRegDef(PredR); + if (!PredI->isCompare()) + return false; + + unsigned CmpReg1 = 0, CmpReg2 = 0; + int CmpImm = 0, CmpMask = 0; + bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, + CmpMask, CmpImm); + // Fail if the compare was not analyzed, or it's not comparing a register + // with an immediate value. Not checking the mask here, since we handle + // the individual compare opcodes (including CMPb) later on. + if (!CmpAnalyzed) + return false; + + // Exactly one of the input registers to the comparison should be among + // the induction registers. + InductionMap::iterator IndMapEnd = IndMap.end(); + InductionMap::iterator F = IndMapEnd; + if (CmpReg1 != 0) { + InductionMap::iterator F1 = IndMap.find(CmpReg1); + if (F1 != IndMapEnd) + F = F1; + } + if (CmpReg2 != 0) { + InductionMap::iterator F2 = IndMap.find(CmpReg2); + if (F2 != IndMapEnd) { + if (F != IndMapEnd) + return false; + F = F2; + } + } + if (F == IndMapEnd) + return false; + + Reg = F->second.first; + IVBump = F->second.second; + IVOp = MRI->getVRegDef(F->first); + return true; +} + + +/// \brief Analyze the statements in a loop to determine if the loop has +/// a computable trip count and, if so, return a value that represents +/// the trip count expression. +/// +/// This function iterates over the phi nodes in the loop to check for +/// induction variable patterns that are used in the calculation for +/// the number of time the loop is executed. +CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, + SmallVectorImpl<MachineInstr *> &OldInsts) { + MachineBasicBlock *TopMBB = L->getTopBlock(); + MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); + assert(PI != TopMBB->pred_end() && + "Loop must have more than one incoming edge!"); + MachineBasicBlock *Backedge = *PI++; + if (PI == TopMBB->pred_end()) // dead loop? + return 0; + MachineBasicBlock *Incoming = *PI++; + if (PI != TopMBB->pred_end()) // multiple backedges? + return 0; + + // Make sure there is one incoming and one backedge and determine which + // is which. + if (L->contains(Incoming)) { + if (L->contains(Backedge)) + return 0; + std::swap(Incoming, Backedge); + } else if (!L->contains(Backedge)) + return 0; + + // Look for the cmp instruction to determine if we can get a useful trip + // count. The trip count can be either a register or an immediate. The + // location of the value depends upon the type (reg or imm). + MachineBasicBlock *Latch = L->getLoopLatch(); + if (!Latch) + return 0; + + unsigned IVReg = 0; + int64_t IVBump = 0; + MachineInstr *IVOp; + bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); + if (!FoundIV) + return 0; + + MachineBasicBlock *Preheader = L->getLoopPreheader(); + + MachineOperand *InitialValue = 0; + MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); + for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { + MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); + if (MBB == Preheader) + InitialValue = &IV_Phi->getOperand(i); + else if (MBB == Latch) + IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. + } + if (!InitialValue) + return 0; + + SmallVector<MachineOperand,2> Cond; + MachineBasicBlock *TB = 0, *FB = 0; + bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); + if (NotAnalyzed) + return 0; + + MachineBasicBlock *Header = L->getHeader(); + // TB must be non-null. If FB is also non-null, one of them must be + // the header. Otherwise, branch to TB could be exiting the loop, and + // the fall through can go to the header. + assert (TB && "Latch block without a branch?"); + assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); + if (!TB || (FB && TB != Header && FB != Header)) + return 0; + + // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch + // to put imm(0), followed by P in the vector Cond. + // If TB is not the header, it means that the "not-taken" path must lead + // to the header. + bool Negated = (Cond.size() > 1) ^ (TB != Header); + unsigned PredReg = Cond[Cond.size()-1].getReg(); + MachineInstr *CondI = MRI->getVRegDef(PredReg); + unsigned CondOpc = CondI->getOpcode(); + + unsigned CmpReg1 = 0, CmpReg2 = 0; + int Mask = 0, ImmValue = 0; + bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, + Mask, ImmValue); + if (!AnalyzedCmp) + return 0; + + // The comparison operator type determines how we compute the loop + // trip count. + OldInsts.push_back(CondI); + OldInsts.push_back(IVOp); + + // Sadly, the following code gets information based on the position + // of the operands in the compare instruction. This has to be done + // this way, because the comparisons check for a specific relationship + // between the operands (e.g. is-less-than), rather than to find out + // what relationship the operands are in (as on PPC). + Comparison::Kind Cmp; + bool isSwapped = false; + const MachineOperand &Op1 = CondI->getOperand(1); + const MachineOperand &Op2 = CondI->getOperand(2); + const MachineOperand *EndValue = 0; + + if (Op1.isReg()) { + if (Op2.isImm() || Op1.getReg() == IVReg) + EndValue = &Op2; + else { + EndValue = &Op1; + isSwapped = true; + } + } + + if (!EndValue) + return 0; + + switch (CondOpc) { + case Hexagon::CMPEQri: + case Hexagon::CMPEQrr: + Cmp = !Negated ? Comparison::EQ : Comparison::NE; + break; + case Hexagon::CMPGTUri: + case Hexagon::CMPGTUrr: + Cmp = !Negated ? Comparison::GTu : Comparison::LEu; + break; + case Hexagon::CMPGTri: + case Hexagon::CMPGTrr: + Cmp = !Negated ? Comparison::GTs : Comparison::LEs; + break; + // Very limited support for byte/halfword compares. + case Hexagon::CMPbEQri_V4: + case Hexagon::CMPhEQri_V4: { + if (IVBump != 1) + return 0; + + int64_t InitV, EndV; + // Since the comparisons are "ri", the EndValue should be an + // immediate. Check it just in case. + assert(EndValue->isImm() && "Unrecognized latch comparison"); + EndV = EndValue->getImm(); + // Allow InitialValue to be a register defined with an immediate. + if (InitialValue->isReg()) { + if (!defWithImmediate(InitialValue->getReg())) + return 0; + InitV = getImmediate(*InitialValue); + } else { + assert(InitialValue->isImm()); + InitV = InitialValue->getImm(); + } + if (InitV >= EndV) + return 0; + if (CondOpc == Hexagon::CMPbEQri_V4) { + if (!isInt<8>(InitV) || !isInt<8>(EndV)) + return 0; + } else { // Hexagon::CMPhEQri_V4 + if (!isInt<16>(InitV) || !isInt<16>(EndV)) + return 0; + } + Cmp = !Negated ? Comparison::EQ : Comparison::NE; + break; + } + default: + return 0; + } + + if (isSwapped) + Cmp = Comparison::getSwappedComparison(Cmp); + + if (InitialValue->isReg()) { + unsigned R = InitialValue->getReg(); + MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); + if (!MDT->properlyDominates(DefBB, Header)) + return 0; + OldInsts.push_back(MRI->getVRegDef(R)); + } + if (EndValue->isReg()) { + unsigned R = EndValue->getReg(); + MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); + if (!MDT->properlyDominates(DefBB, Header)) + return 0; + } + + return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); +} + +/// \brief Helper function that returns the expression that represents the +/// number of times a loop iterates. The function takes the operands that +/// represent the loop start value, loop end value, and induction value. +/// Based upon these operands, the function attempts to compute the trip count. +CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, + const MachineOperand *Start, + const MachineOperand *End, + unsigned IVReg, + int64_t IVBump, + Comparison::Kind Cmp) const { + // Cannot handle comparison EQ, i.e. while (A == B). + if (Cmp == Comparison::EQ) + return 0; + + // Check if either the start or end values are an assignment of an immediate. + // If so, use the immediate value rather than the register. + if (Start->isReg()) { + const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); + if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) + Start = &StartValInstr->getOperand(1); + } + if (End->isReg()) { + const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); + if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) + End = &EndValInstr->getOperand(1); + } + + assert (Start->isReg() || Start->isImm()); + assert (End->isReg() || End->isImm()); + + bool CmpLess = Cmp & Comparison::L; + bool CmpGreater = Cmp & Comparison::G; + bool CmpHasEqual = Cmp & Comparison::EQ; + + // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. + // If loop executes while iv is "less" with the iv value going down, then + // the iv must wrap. + if (CmpLess && IVBump < 0) + return 0; + // If loop executes while iv is "greater" with the iv value going up, then + // the iv must wrap. + if (CmpGreater && IVBump > 0) + return 0; + + if (Start->isImm() && End->isImm()) { + // Both, start and end are immediates. + int64_t StartV = Start->getImm(); + int64_t EndV = End->getImm(); + int64_t Dist = EndV - StartV; + if (Dist == 0) + return 0; + + bool Exact = (Dist % IVBump) == 0; + + if (Cmp == Comparison::NE) { + if (!Exact) + return 0; + if ((Dist < 0) ^ (IVBump < 0)) + return 0; + } + + // For comparisons that include the final value (i.e. include equality + // with the final value), we need to increase the distance by 1. + if (CmpHasEqual) + Dist = Dist > 0 ? Dist+1 : Dist-1; + + // assert (CmpLess => Dist > 0); + assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); + // assert (CmpGreater => Dist < 0); + assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); + + // "Normalized" distance, i.e. with the bump set to +-1. + int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump + : (-Dist + (-IVBump-1)) / (-IVBump); + assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); + + uint64_t Count = Dist1; + + if (Count > 0xFFFFFFFFULL) + return 0; + + return new CountValue(CountValue::CV_Immediate, Count); + } + + // A general case: Start and End are some values, but the actual + // iteration count may not be available. If it is not, insert + // a computation of it into the preheader. + + // If the induction variable bump is not a power of 2, quit. + // Othwerise we'd need a general integer division. + if (!isPowerOf2_64(abs64(IVBump))) + return 0; + + MachineBasicBlock *PH = Loop->getLoopPreheader(); + assert (PH && "Should have a preheader by now"); + MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); + DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() + : DebugLoc(); + + // If Start is an immediate and End is a register, the trip count + // will be "reg - imm". Hexagon's "subtract immediate" instruction + // is actually "reg + -imm". + + // If the loop IV is going downwards, i.e. if the bump is negative, + // then the iteration count (computed as End-Start) will need to be + // negated. To avoid the negation, just swap Start and End. + if (IVBump < 0) { + std::swap(Start, End); + IVBump = -IVBump; + } + // Cmp may now have a wrong direction, e.g. LEs may now be GEs. + // Signedness, and "including equality" are preserved. + + bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) + bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) + + int64_t StartV = 0, EndV = 0; + if (Start->isImm()) + StartV = Start->getImm(); + if (End->isImm()) + EndV = End->getImm(); + + int64_t AdjV = 0; + // To compute the iteration count, we would need this computation: + // Count = (End - Start + (IVBump-1)) / IVBump + // or, when CmpHasEqual: + // Count = (End - Start + (IVBump-1)+1) / IVBump + // The "IVBump-1" part is the adjustment (AdjV). We can avoid + // generating an instruction specifically to add it if we can adjust + // the immediate values for Start or End. + + if (CmpHasEqual) { + // Need to add 1 to the total iteration count. + if (Start->isImm()) + StartV--; + else if (End->isImm()) + EndV++; + else + AdjV += 1; + } + + if (Cmp != Comparison::NE) { + if (Start->isImm()) + StartV -= (IVBump-1); + else if (End->isImm()) + EndV += (IVBump-1); + else + AdjV += (IVBump-1); + } + + unsigned R = 0, SR = 0; + if (Start->isReg()) { + R = Start->getReg(); + SR = Start->getSubReg(); + } else { + R = End->getReg(); + SR = End->getSubReg(); + } + const TargetRegisterClass *RC = MRI->getRegClass(R); + // Hardware loops cannot handle 64-bit registers. If it's a double + // register, it has to have a subregister. + if (!SR && RC == &Hexagon::DoubleRegsRegClass) + return 0; + const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; + + // Compute DistR (register with the distance between Start and End). + unsigned DistR, DistSR; + + // Avoid special case, where the start value is an imm(0). + if (Start->isImm() && StartV == 0) { + DistR = End->getReg(); + DistSR = End->getSubReg(); + } else { + const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) : + (RegToImm ? TII->get(Hexagon::SUB_ri) : + TII->get(Hexagon::ADD_ri)); + unsigned SubR = MRI->createVirtualRegister(IntRC); + MachineInstrBuilder SubIB = + BuildMI(*PH, InsertPos, DL, SubD, SubR); + + if (RegToReg) { + SubIB.addReg(End->getReg(), 0, End->getSubReg()) + .addReg(Start->getReg(), 0, Start->getSubReg()); + } else if (RegToImm) { + SubIB.addImm(EndV) + .addReg(Start->getReg(), 0, Start->getSubReg()); + } else { // ImmToReg + SubIB.addReg(End->getReg(), 0, End->getSubReg()) + .addImm(-StartV); + } + DistR = SubR; + DistSR = 0; + } + + // From DistR, compute AdjR (register with the adjusted distance). + unsigned AdjR, AdjSR; + + if (AdjV == 0) { + AdjR = DistR; + AdjSR = DistSR; + } else { + // Generate CountR = ADD DistR, AdjVal + unsigned AddR = MRI->createVirtualRegister(IntRC); + const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); + BuildMI(*PH, InsertPos, DL, AddD, AddR) + .addReg(DistR, 0, DistSR) + .addImm(AdjV); + + AdjR = AddR; + AdjSR = 0; + } + + // From AdjR, compute CountR (register with the final count). + unsigned CountR, CountSR; + + if (IVBump == 1) { + CountR = AdjR; + CountSR = AdjSR; + } else { + // The IV bump is a power of two. Log_2(IV bump) is the shift amount. + unsigned Shift = Log2_32(IVBump); + + // Generate NormR = LSR DistR, Shift. + unsigned LsrR = MRI->createVirtualRegister(IntRC); + const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); + BuildMI(*PH, InsertPos, DL, LsrD, LsrR) + .addReg(AdjR, 0, AdjSR) + .addImm(Shift); + + CountR = LsrR; + CountSR = 0; + } + + return new CountValue(CountValue::CV_Register, CountR, CountSR); +} + + +/// \brief Return true if the operation is invalid within hardware loop. +bool HexagonHardwareLoops::isInvalidLoopOperation( + const MachineInstr *MI) const { + + // call is not allowed because the callee may use a hardware loop + if (MI->getDesc().isCall()) + return true; + + // do not allow nested hardware loops + if (isHardwareLoop(MI)) + return true; + + // check if the instruction defines a hardware loop register + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned R = MO.getReg(); + if (R == Hexagon::LC0 || R == Hexagon::LC1 || + R == Hexagon::SA0 || R == Hexagon::SA1) + return true; + } + return false; +} + + +/// \brief - Return true if the loop contains an instruction that inhibits +/// the use of the hardware loop function. +bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { + const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + MachineBasicBlock *MBB = Blocks[i]; + for (MachineBasicBlock::iterator + MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { + const MachineInstr *MI = &*MII; + if (isInvalidLoopOperation(MI)) + return true; + } + } + return false; +} + + +/// \brief Returns true if the instruction is dead. This was essentially +/// copied from DeadMachineInstructionElim::isDead, but with special cases +/// for inline asm, physical registers and instructions with side effects +/// removed. +bool HexagonHardwareLoops::isDead(const MachineInstr *MI, + SmallVectorImpl<MachineInstr *> &DeadPhis) const { + // Examine each operand. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + + unsigned Reg = MO.getReg(); + if (MRI->use_nodbg_empty(Reg)) + continue; + + typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; + + // This instruction has users, but if the only user is the phi node for the + // parent block, and the only use of that phi node is this instruction, then + // this instruction is dead: both it (and the phi node) can be removed. + use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); + use_nodbg_iterator End = MRI->use_nodbg_end(); + if (llvm::next(I) != End || !I.getOperand().getParent()->isPHI()) + return false; + + MachineInstr *OnePhi = I.getOperand().getParent(); + for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { + const MachineOperand &OPO = OnePhi->getOperand(j); + if (!OPO.isReg() || !OPO.isDef()) + continue; + + unsigned OPReg = OPO.getReg(); + use_nodbg_iterator nextJ; + for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); + J != End; J = nextJ) { + nextJ = llvm::next(J); + MachineOperand &Use = J.getOperand(); + MachineInstr *UseMI = Use.getParent(); + + // If the phi node has a user that is not MI, bail... + if (MI != UseMI) + return false; + } + } + DeadPhis.push_back(OnePhi); + } + + // If there are no defs with uses, the instruction is dead. + return true; +} + +void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { + // This procedure was essentially copied from DeadMachineInstructionElim. + + SmallVector<MachineInstr*, 1> DeadPhis; + if (isDead(MI, DeadPhis)) { + DEBUG(dbgs() << "HW looping will remove: " << *MI); + + // It is possible that some DBG_VALUE instructions refer to this + // instruction. Examine each def operand for such references; + // if found, mark the DBG_VALUE as undef (but don't delete it). + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned Reg = MO.getReg(); + MachineRegisterInfo::use_iterator nextI; + for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), + E = MRI->use_end(); I != E; I = nextI) { + nextI = llvm::next(I); // I is invalidated by the setReg + MachineOperand &Use = I.getOperand(); + MachineInstr *UseMI = Use.getParent(); + if (UseMI == MI) + continue; + if (Use.isDebug()) + UseMI->getOperand(0).setReg(0U); + // This may also be a "instr -> phi -> instr" case which can + // be removed too. + } + } + + MI->eraseFromParent(); + for (unsigned i = 0; i < DeadPhis.size(); ++i) + DeadPhis[i]->eraseFromParent(); + } +} + +/// \brief Check if the loop is a candidate for converting to a hardware +/// loop. If so, then perform the transformation. +/// +/// This function works on innermost loops first. A loop can be converted +/// if it is a counting loop; either a register value or an immediate. +/// +/// The code makes several assumptions about the representation of the loop +/// in llvm. +bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { + // This is just for sanity. + assert(L->getHeader() && "Loop without a header?"); + + bool Changed = false; + // Process nested loops first. + for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) + Changed |= convertToHardwareLoop(*I); + + // If a nested loop has been converted, then we can't convert this loop. + if (Changed) + return Changed; + +#ifndef NDEBUG + // Stop trying after reaching the limit (if any). + int Limit = HWLoopLimit; + if (Limit >= 0) { + if (Counter >= HWLoopLimit) + return false; + Counter++; + } +#endif + + // Does the loop contain any invalid instructions? + if (containsInvalidInstruction(L)) + return false; + + // Is the induction variable bump feeding the latch condition? + if (!fixupInductionVariable(L)) + return false; + + MachineBasicBlock *LastMBB = L->getExitingBlock(); + // Don't generate hw loop if the loop has more than one exit. + if (LastMBB == 0) + return false; + + MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); + if (LastI == LastMBB->end()) + return false; + + // Ensure the loop has a preheader: the loop instruction will be + // placed there. + bool NewPreheader = false; + MachineBasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) { + Preheader = createPreheaderForLoop(L); + if (!Preheader) + return false; + NewPreheader = true; + } + MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); + + SmallVector<MachineInstr*, 2> OldInsts; + // Are we able to determine the trip count for the loop? + CountValue *TripCount = getLoopTripCount(L, OldInsts); + if (TripCount == 0) + return false; + + // Is the trip count available in the preheader? + if (TripCount->isReg()) { + // There will be a use of the register inserted into the preheader, + // so make sure that the register is actually defined at that point. + MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); + MachineBasicBlock *BBDef = TCDef->getParent(); + if (!NewPreheader) { + if (!MDT->dominates(BBDef, Preheader)) + return false; + } else { + // If we have just created a preheader, the dominator tree won't be + // aware of it. Check if the definition of the register dominates + // the header, but is not the header itself. + if (!MDT->properlyDominates(BBDef, L->getHeader())) + return false; + } + } + + // Determine the loop start. + MachineBasicBlock *LoopStart = L->getTopBlock(); + if (L->getLoopLatch() != LastMBB) { + // When the exit and latch are not the same, use the latch block as the + // start. + // The loop start address is used only after the 1st iteration, and the + // loop latch may contains instrs. that need to be executed after the + // first iteration. + LoopStart = L->getLoopLatch(); + // Make sure the latch is a successor of the exit, otherwise it won't work. + if (!LastMBB->isSuccessor(LoopStart)) + return false; + } + + // Convert the loop to a hardware loop. + DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); + DebugLoc DL; + if (InsertPos != Preheader->end()) + DL = InsertPos->getDebugLoc(); + + if (TripCount->isReg()) { + // Create a copy of the loop count register. + unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) + .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); + // Add the Loop instruction to the beginning of the loop. + BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) + .addMBB(LoopStart) + .addReg(CountReg); + } else { + assert(TripCount->isImm() && "Expecting immediate value for trip count"); + // Add the Loop immediate instruction to the beginning of the loop, + // if the immediate fits in the instructions. Otherwise, we need to + // create a new virtual register. + int64_t CountImm = TripCount->getImm(); + if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { + unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); + BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) + .addImm(CountImm); + BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) + .addMBB(LoopStart).addReg(CountReg); + } else + BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) + .addMBB(LoopStart).addImm(CountImm); + } + + // Make sure the loop start always has a reference in the CFG. We need + // to create a BlockAddress operand to get this mechanism to work both the + // MachineBasicBlock and BasicBlock objects need the flag set. + LoopStart->setHasAddressTaken(); + // This line is needed to set the hasAddressTaken flag on the BasicBlock + // object. + BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); + + // Replace the loop branch with an endloop instruction. + DebugLoc LastIDL = LastI->getDebugLoc(); + BuildMI(*LastMBB, LastI, LastIDL, + TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); + + // The loop ends with either: + // - a conditional branch followed by an unconditional branch, or + // - a conditional branch to the loop start. + if (LastI->getOpcode() == Hexagon::JMP_t || + LastI->getOpcode() == Hexagon::JMP_f) { + // Delete one and change/add an uncond. branch to out of the loop. + MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); + LastI = LastMBB->erase(LastI); + if (!L->contains(BranchTarget)) { + if (LastI != LastMBB->end()) + LastI = LastMBB->erase(LastI); + SmallVector<MachineOperand, 0> Cond; + TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); + } + } else { + // Conditional branch to loop start; just delete it. + LastMBB->erase(LastI); + } + delete TripCount; + + // The induction operation and the comparison may now be + // unneeded. If these are unneeded, then remove them. + for (unsigned i = 0; i < OldInsts.size(); ++i) + removeIfDead(OldInsts[i]); + + ++NumHWLoops; + return true; +} + + +bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, + MachineInstr *CmpI) { + assert (BumpI != CmpI && "Bump and compare in the same instruction?"); + + MachineBasicBlock *BB = BumpI->getParent(); + if (CmpI->getParent() != BB) + return false; + + typedef MachineBasicBlock::instr_iterator instr_iterator; + // Check if things are in order to begin with. + for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) + if (&*I == CmpI) + return true; + + // Out of order. + unsigned PredR = CmpI->getOperand(0).getReg(); + bool FoundBump = false; + instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt); + for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { + MachineInstr *In = &*I; + for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { + MachineOperand &MO = In->getOperand(i); + if (MO.isReg() && MO.isUse()) { + if (MO.getReg() == PredR) // Found an intervening use of PredR. + return false; + } + } + + if (In == BumpI) { + instr_iterator After = BumpI; + instr_iterator From = CmpI; + BB->splice(llvm::next(After), BB, From); + FoundBump = true; + break; + } + } + assert (FoundBump && "Cannot determine instruction order"); + return FoundBump; +} + + +MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { + MachineInstr *DI = MRI->getVRegDef(R); + unsigned DOpc = DI->getOpcode(); + switch (DOpc) { + case Hexagon::TFRI: + case Hexagon::TFRI64: + case Hexagon::CONST32_Int_Real: + case Hexagon::CONST64_Int_Real: + return DI; + } + return 0; +} + + +int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { + if (MO.isImm()) + return MO.getImm(); + assert(MO.isReg()); + unsigned R = MO.getReg(); + MachineInstr *DI = defWithImmediate(R); + assert(DI && "Need an immediate operand"); + // All currently supported "define-with-immediate" instructions have the + // actual immediate value in the operand(1). + int64_t v = DI->getOperand(1).getImm(); + return v; +} + + +void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { + if (MO.isImm()) { + MO.setImm(Val); + return; + } + + assert(MO.isReg()); + unsigned R = MO.getReg(); + MachineInstr *DI = defWithImmediate(R); + if (MRI->hasOneNonDBGUse(R)) { + // If R has only one use, then just change its defining instruction to + // the new immediate value. + DI->getOperand(1).setImm(Val); + return; + } + + const TargetRegisterClass *RC = MRI->getRegClass(R); + unsigned NewR = MRI->createVirtualRegister(RC); + MachineBasicBlock &B = *DI->getParent(); + DebugLoc DL = DI->getDebugLoc(); + BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) + .addImm(Val); + MO.setReg(NewR); +} + + +bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { + MachineBasicBlock *Header = L->getHeader(); + MachineBasicBlock *Preheader = L->getLoopPreheader(); + MachineBasicBlock *Latch = L->getLoopLatch(); + + if (!Header || !Preheader || !Latch) + return false; + + // These data structures follow the same concept as the corresponding + // ones in findInductionRegister (where some comments are). + typedef std::pair<unsigned,int64_t> RegisterBump; + typedef std::pair<unsigned,RegisterBump> RegisterInduction; + typedef std::set<RegisterInduction> RegisterInductionSet; + + // Register candidates for induction variables, with their associated bumps. + RegisterInductionSet IndRegs; + + // Look for induction patterns: + // vreg1 = PHI ..., [ latch, vreg2 ] + // vreg2 = ADD vreg1, imm + typedef MachineBasicBlock::instr_iterator instr_iterator; + for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); + I != E && I->isPHI(); ++I) { + MachineInstr *Phi = &*I; + + // Have a PHI instruction. + for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { + if (Phi->getOperand(i+1).getMBB() != Latch) + continue; + + unsigned PhiReg = Phi->getOperand(i).getReg(); + MachineInstr *DI = MRI->getVRegDef(PhiReg); + unsigned UpdOpc = DI->getOpcode(); + bool isAdd = (UpdOpc == Hexagon::ADD_ri); + + if (isAdd) { + // If the register operand to the add/sub is the PHI we are looking + // at, this meets the induction pattern. + unsigned IndReg = DI->getOperand(1).getReg(); + if (MRI->getVRegDef(IndReg) == Phi) { + unsigned UpdReg = DI->getOperand(0).getReg(); + int64_t V = DI->getOperand(2).getImm(); + IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); + } + } + } // for (i) + } // for (instr) + + if (IndRegs.empty()) + return false; + + MachineBasicBlock *TB = 0, *FB = 0; + SmallVector<MachineOperand,2> Cond; + // AnalyzeBranch returns true if it fails to analyze branch. + bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); + if (NotAnalyzed) + return false; + + // Check if the latch branch is unconditional. + if (Cond.empty()) + return false; + + if (TB != Header && FB != Header) + // The latch does not go back to the header. Not a latch we know and love. + return false; + + // Expecting a predicate register as a condition. It won't be a hardware + // predicate register at this point yet, just a vreg. + // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) + // into Cond, followed by the predicate register. For non-negated branches + // it's just the register. + unsigned CSz = Cond.size(); + if (CSz != 1 && CSz != 2) + return false; + + unsigned P = Cond[CSz-1].getReg(); + MachineInstr *PredDef = MRI->getVRegDef(P); + + if (!PredDef->isCompare()) + return false; + + SmallSet<unsigned,2> CmpRegs; + MachineOperand *CmpImmOp = 0; + + // Go over all operands to the compare and look for immediate and register + // operands. Assume that if the compare has a single register use and a + // single immediate operand, then the register is being compared with the + // immediate value. + for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { + MachineOperand &MO = PredDef->getOperand(i); + if (MO.isReg()) { + // Skip all implicit references. In one case there was: + // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> + if (MO.isImplicit()) + continue; + if (MO.isUse()) { + unsigned R = MO.getReg(); + if (!defWithImmediate(R)) { + CmpRegs.insert(MO.getReg()); + continue; + } + // Consider the register to be the "immediate" operand. + if (CmpImmOp) + return false; + CmpImmOp = &MO; + } + } else if (MO.isImm()) { + if (CmpImmOp) // A second immediate argument? Confusing. Bail out. + return false; + CmpImmOp = &MO; + } + } + + if (CmpRegs.empty()) + return false; + + // Check if the compared register follows the order we want. Fix if needed. + for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); + I != E; ++I) { + // This is a success. If the register used in the comparison is one that + // we have identified as a bumped (updated) induction register, there is + // nothing to do. + if (CmpRegs.count(I->first)) + return true; + + // Otherwise, if the register being compared comes out of a PHI node, + // and has been recognized as following the induction pattern, and is + // compared against an immediate, we can fix it. + const RegisterBump &RB = I->second; + if (CmpRegs.count(RB.first)) { + if (!CmpImmOp) + return false; + + int64_t CmpImm = getImmediate(*CmpImmOp); + int64_t V = RB.second; + if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). + return false; + if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). + return false; + CmpImm += V; + // Some forms of cmp-immediate allow u9 and s10. Assume the worst case + // scenario, i.e. an 8-bit value. + if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) + return false; + + // Make sure that the compare happens after the bump. Otherwise, + // after the fixup, the compare would use a yet-undefined register. + MachineInstr *BumpI = MRI->getVRegDef(I->first); + bool Order = orderBumpCompare(BumpI, PredDef); + if (!Order) + return false; + + // Finally, fix the compare instruction. + setImmediate(*CmpImmOp, CmpImm); + for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { + MachineOperand &MO = PredDef->getOperand(i); + if (MO.isReg() && MO.getReg() == RB.first) { + MO.setReg(I->first); + return true; + } + } + } + } + + return false; +} + + +/// \brief Create a preheader for a given loop. +MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( + MachineLoop *L) { + if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) + return TmpPH; + + MachineBasicBlock *Header = L->getHeader(); + MachineBasicBlock *Latch = L->getLoopLatch(); + MachineFunction *MF = Header->getParent(); + DebugLoc DL; + + if (!Latch || Header->hasAddressTaken()) + return 0; + + typedef MachineBasicBlock::instr_iterator instr_iterator; + + // Verify that all existing predecessors have analyzable branches + // (or no branches at all). + typedef std::vector<MachineBasicBlock*> MBBVector; + MBBVector Preds(Header->pred_begin(), Header->pred_end()); + SmallVector<MachineOperand,2> Tmp1; + MachineBasicBlock *TB = 0, *FB = 0; + + if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) + return 0; + + for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { + MachineBasicBlock *PB = *I; + if (PB != Latch) { + bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); + if (NotAnalyzed) + return 0; + } + } + + MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); + MF->insert(Header, NewPH); + + if (Header->pred_size() > 2) { + // Ensure that the header has only two predecessors: the preheader and + // the loop latch. Any additional predecessors of the header should + // join at the newly created preheader. Inspect all PHI nodes from the + // header and create appropriate corresponding PHI nodes in the preheader. + + for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); + I != E && I->isPHI(); ++I) { + MachineInstr *PN = &*I; + + const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); + MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); + NewPH->insert(NewPH->end(), NewPN); + + unsigned PR = PN->getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI->getRegClass(PR); + unsigned NewPR = MRI->createVirtualRegister(RC); + NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); + + // Copy all non-latch operands of a header's PHI node to the newly + // created PHI node in the preheader. + for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { + unsigned PredR = PN->getOperand(i).getReg(); + MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); + if (PredB == Latch) + continue; + + NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); + NewPN->addOperand(MachineOperand::CreateMBB(PredB)); + } + + // Remove copied operands from the old PHI node and add the value + // coming from the preheader's PHI. + for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { + MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); + if (PredB != Latch) { + PN->RemoveOperand(i+1); + PN->RemoveOperand(i); + } + } + PN->addOperand(MachineOperand::CreateReg(NewPR, false)); + PN->addOperand(MachineOperand::CreateMBB(NewPH)); + } + + } else { + assert(Header->pred_size() == 2); + + // The header has only two predecessors, but the non-latch predecessor + // is not a preheader (e.g. it has other successors, etc.) + // In such a case we don't need any extra PHI nodes in the new preheader, + // all we need is to adjust existing PHIs in the header to now refer to + // the new preheader. + for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); + I != E && I->isPHI(); ++I) { + MachineInstr *PN = &*I; + for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { + MachineOperand &MO = PN->getOperand(i+1); + if (MO.getMBB() != Latch) + MO.setMBB(NewPH); + } + } + } + + // "Reroute" the CFG edges to link in the new preheader. + // If any of the predecessors falls through to the header, insert a branch + // to the new preheader in that place. + SmallVector<MachineOperand,1> Tmp2; + SmallVector<MachineOperand,1> EmptyCond; + + TB = FB = 0; + + for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { + MachineBasicBlock *PB = *I; + if (PB != Latch) { + Tmp2.clear(); + bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); + (void)NotAnalyzed; // supress compiler warning + assert (!NotAnalyzed && "Should be analyzable!"); + if (TB != Header && (Tmp2.empty() || FB != Header)) + TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL); + PB->ReplaceUsesOfBlockWith(Header, NewPH); + } + } + + // It can happen that the latch block will fall through into the header. + // Insert an unconditional branch to the header. + TB = FB = 0; + bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); + (void)LatchNotAnalyzed; // supress compiler warning + assert (!LatchNotAnalyzed && "Should be analyzable!"); + if (!TB && !FB) + TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL); + + // Finally, the branch from the preheader to the header. + TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL); + NewPH->addSuccessor(Header); + + return NewPH; +} |