aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp1310
1 files changed, 1310 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp
new file mode 100644
index 000000000000..734f3c6658d9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp
@@ -0,0 +1,1310 @@
+//===--- HexagonExpandCondsets.cpp ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Replace mux instructions with the corresponding legal instructions.
+// It is meant to work post-SSA, but still on virtual registers. It was
+// originally placed between register coalescing and machine instruction
+// scheduler.
+// In this place in the optimization sequence, live interval analysis had
+// been performed, and the live intervals should be preserved. A large part
+// of the code deals with preserving the liveness information.
+//
+// Liveness tracking aside, the main functionality of this pass is divided
+// into two steps. The first step is to replace an instruction
+// vreg0 = C2_mux vreg1, vreg2, vreg3
+// with a pair of conditional transfers
+// vreg0 = A2_tfrt vreg1, vreg2
+// vreg0 = A2_tfrf vreg1, vreg3
+// It is the intention that the execution of this pass could be terminated
+// after this step, and the code generated would be functionally correct.
+//
+// If the uses of the source values vreg1 and vreg2 are kills, and their
+// definitions are predicable, then in the second step, the conditional
+// transfers will then be rewritten as predicated instructions. E.g.
+// vreg0 = A2_or vreg1, vreg2
+// vreg3 = A2_tfrt vreg99, vreg0<kill>
+// will be rewritten as
+// vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// This replacement has two variants: "up" and "down". Consider this case:
+// vreg0 = A2_or vreg1, vreg2
+// ... [intervening instructions] ...
+// vreg3 = A2_tfrt vreg99, vreg0<kill>
+// variant "up":
+// vreg3 = A2_port vreg99, vreg1, vreg2
+// ... [intervening instructions, vreg0->vreg3] ...
+// [deleted]
+// variant "down":
+// [deleted]
+// ... [intervening instructions] ...
+// vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// Both, one or none of these variants may be valid, and checks are made
+// to rule out inapplicable variants.
+//
+// As an additional optimization, before either of the two steps above is
+// executed, the pass attempts to coalesce the target register with one of
+// the source registers, e.g. given an instruction
+// vreg3 = C2_mux vreg0, vreg1, vreg2
+// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
+// the instruction would then be (for example)
+// vreg3 = C2_mux vreg0, vreg3, vreg2
+// and, under certain circumstances, this could result in only one predicated
+// instruction:
+// vreg3 = A2_tfrf vreg0, vreg2
+//
+
+// Splitting a definition of a register into two predicated transfers
+// creates a complication in liveness tracking. Live interval computation
+// will see both instructions as actual definitions, and will mark the
+// first one as dead. The definition is not actually dead, and this
+// situation will need to be fixed. For example:
+// vreg1<def,dead> = A2_tfrt ... ; marked as dead
+// vreg1<def> = A2_tfrf ...
+//
+// Since any of the individual predicated transfers may end up getting
+// removed (in case it is an identity copy), some pre-existing def may
+// be marked as dead after live interval recomputation:
+// vreg1<def,dead> = ... ; marked as dead
+// ...
+// vreg1<def> = A2_tfrf ... ; if A2_tfrt is removed
+// This case happens if vreg1 was used as a source in A2_tfrt, which means
+// that is it actually live at the A2_tfrf, and so the now dead definition
+// of vreg1 will need to be updated to non-dead at some point.
+//
+// This issue could be remedied by adding implicit uses to the predicated
+// transfers, but this will create a problem with subsequent predication,
+// since the transfers will no longer be possible to reorder. To avoid
+// that, the initial splitting will not add any implicit uses. These
+// implicit uses will be added later, after predication. The extra price,
+// however, is that finding the locations where the implicit uses need
+// to be added, and updating the live ranges will be more involved.
+
+#define DEBUG_TYPE "expand-condsets"
+
+#include "HexagonInstrInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <cassert>
+#include <iterator>
+#include <set>
+#include <utility>
+
+using namespace llvm;
+
+static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
+ cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
+static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
+ cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
+
+namespace llvm {
+
+ void initializeHexagonExpandCondsetsPass(PassRegistry&);
+ FunctionPass *createHexagonExpandCondsets();
+
+} // end namespace llvm
+
+namespace {
+
+ class HexagonExpandCondsets : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonExpandCondsets() :
+ MachineFunctionPass(ID), HII(nullptr), TRI(nullptr), MRI(nullptr),
+ LIS(nullptr), CoaLimitActive(false),
+ TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
+ if (OptCoaLimit.getPosition())
+ CoaLimitActive = true, CoaLimit = OptCoaLimit;
+ if (OptTfrLimit.getPosition())
+ TfrLimitActive = true, TfrLimit = OptTfrLimit;
+ initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ private:
+ const HexagonInstrInfo *HII;
+ const TargetRegisterInfo *TRI;
+ MachineDominatorTree *MDT;
+ MachineRegisterInfo *MRI;
+ LiveIntervals *LIS;
+
+ bool CoaLimitActive, TfrLimitActive;
+ unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
+
+ struct RegisterRef {
+ RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
+ Sub(Op.getSubReg()) {}
+ RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
+
+ bool operator== (RegisterRef RR) const {
+ return Reg == RR.Reg && Sub == RR.Sub;
+ }
+ bool operator!= (RegisterRef RR) const { return !operator==(RR); }
+ bool operator< (RegisterRef RR) const {
+ return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
+ }
+
+ unsigned Reg, Sub;
+ };
+
+ typedef DenseMap<unsigned,unsigned> ReferenceMap;
+ enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
+ enum { Exec_Then = 0x10, Exec_Else = 0x20 };
+ unsigned getMaskForSub(unsigned Sub);
+ bool isCondset(const MachineInstr &MI);
+ LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
+
+ void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
+ bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
+
+ void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
+ void updateKillFlags(unsigned Reg);
+ void updateDeadFlags(unsigned Reg);
+ void recalculateLiveInterval(unsigned Reg);
+ void removeInstr(MachineInstr &MI);
+ void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
+ bool UpdateKills, bool UpdateDeads);
+
+ unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
+ MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
+ MachineBasicBlock::iterator At, unsigned DstR,
+ unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
+ bool ReadUndef, bool ImpUse);
+ bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
+
+ bool isPredicable(MachineInstr *MI);
+ MachineInstr *getReachingDefForPred(RegisterRef RD,
+ MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
+ bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
+ bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
+ void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
+ MachineBasicBlock::iterator Where,
+ const MachineOperand &PredOp, bool Cond,
+ std::set<unsigned> &UpdRegs);
+ void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
+ bool Cond, MachineBasicBlock::iterator First,
+ MachineBasicBlock::iterator Last);
+ bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
+ bool predicateInBlock(MachineBasicBlock &B,
+ std::set<unsigned> &UpdRegs);
+
+ bool isIntReg(RegisterRef RR, unsigned &BW);
+ bool isIntraBlocks(LiveInterval &LI);
+ bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
+ bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
+ std::set<unsigned> &UpdRegs);
+ };
+
+} // end anonymous namespace
+
+char HexagonExpandCondsets::ID = 0;
+
+namespace llvm {
+
+ char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
+
+} // end namespace llvm
+
+INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
+ "Hexagon Expand Condsets", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
+ "Hexagon Expand Condsets", false, false)
+
+unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
+ switch (Sub) {
+ case Hexagon::isub_lo:
+ case Hexagon::vsub_lo:
+ return Sub_Low;
+ case Hexagon::isub_hi:
+ case Hexagon::vsub_hi:
+ return Sub_High;
+ case Hexagon::NoSubRegister:
+ return Sub_None;
+ }
+ llvm_unreachable("Invalid subregister");
+}
+
+bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ case Hexagon::C2_mux:
+ case Hexagon::C2_muxii:
+ case Hexagon::C2_muxir:
+ case Hexagon::C2_muxri:
+ case Hexagon::PS_pselect:
+ return true;
+ break;
+ }
+ return false;
+}
+
+LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+ return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+}
+
+void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
+ unsigned Exec) {
+ unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+ ReferenceMap::iterator F = Map.find(RR.Reg);
+ if (F == Map.end())
+ Map.insert(std::make_pair(RR.Reg, Mask));
+ else
+ F->second |= Mask;
+}
+
+bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
+ unsigned Exec) {
+ ReferenceMap::iterator F = Map.find(RR.Reg);
+ if (F == Map.end())
+ return false;
+ unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+ if (Mask & F->second)
+ return true;
+ return false;
+}
+
+void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
+ auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
+ // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
+ MachineInstr *MI = LIS->getInstructionFromIndex(K);
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
+ continue;
+ LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
+ if ((SLM & LM) == SLM) {
+ // Only set the kill flag on the first encountered use of Reg in this
+ // instruction.
+ Op.setIsKill(true);
+ break;
+ }
+ }
+ };
+
+ LiveInterval &LI = LIS->getInterval(Reg);
+ for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
+ if (!I->end.isRegister())
+ continue;
+ // Do not mark the end of the segment as <kill>, if the next segment
+ // starts with a predicated instruction.
+ auto NextI = std::next(I);
+ if (NextI != E && NextI->start.isRegister()) {
+ MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
+ if (HII->isPredicated(*DefI))
+ continue;
+ }
+ bool WholeReg = true;
+ if (LI.hasSubRanges()) {
+ auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
+ LiveRange::iterator F = S.find(I->end);
+ return F != S.end() && I->end == F->end;
+ };
+ // Check if all subranges end at I->end. If so, make sure to kill
+ // the whole register.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if (EndsAtI(S))
+ KillAt(I->end, S.LaneMask);
+ else
+ WholeReg = false;
+ }
+ }
+ if (WholeReg)
+ KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
+ }
+}
+
+void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
+ LiveRange &Range) {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+ if (Range.empty())
+ return;
+
+ // Return two booleans: { def-modifes-reg, def-covers-reg }.
+ auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
+ if (!Op.isReg() || !Op.isDef())
+ return { false, false };
+ unsigned DR = Op.getReg(), DSR = Op.getSubReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
+ return { false, false };
+ LaneBitmask SLM = getLaneMask(DR, DSR);
+ LaneBitmask A = SLM & LM;
+ return { A.any(), A == SLM };
+ };
+
+ // The splitting step will create pairs of predicated definitions without
+ // any implicit uses (since implicit uses would interfere with predication).
+ // This can cause the reaching defs to become dead after live range
+ // recomputation, even though they are not really dead.
+ // We need to identify predicated defs that need implicit uses, and
+ // dead defs that are not really dead, and correct both problems.
+
+ auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
+ MachineBasicBlock *Dest) -> bool {
+ for (MachineBasicBlock *D : Defs)
+ if (D != Dest && MDT->dominates(D, Dest))
+ return true;
+
+ MachineBasicBlock *Entry = &Dest->getParent()->front();
+ SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
+ for (unsigned i = 0; i < Work.size(); ++i) {
+ MachineBasicBlock *B = Work[i];
+ if (Defs.count(B))
+ continue;
+ if (B == Entry)
+ return false;
+ for (auto *P : B->predecessors())
+ Work.insert(P);
+ }
+ return true;
+ };
+
+ // First, try to extend live range within individual basic blocks. This
+ // will leave us only with dead defs that do not reach any predicated
+ // defs in the same block.
+ SetVector<MachineBasicBlock*> Defs;
+ SmallVector<SlotIndex,4> PredDefs;
+ for (auto &Seg : Range) {
+ if (!Seg.start.isRegister())
+ continue;
+ MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
+ Defs.insert(DefI->getParent());
+ if (HII->isPredicated(*DefI))
+ PredDefs.push_back(Seg.start);
+ }
+
+ SmallVector<SlotIndex,8> Undefs;
+ LiveInterval &LI = LIS->getInterval(Reg);
+ LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
+
+ for (auto &SI : PredDefs) {
+ MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
+ auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
+ if (P.first != nullptr || P.second)
+ SI = SlotIndex();
+ }
+
+ // Calculate reachability for those predicated defs that were not handled
+ // by the in-block extension.
+ SmallVector<SlotIndex,4> ExtTo;
+ for (auto &SI : PredDefs) {
+ if (!SI.isValid())
+ continue;
+ MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
+ if (BB->pred_empty())
+ continue;
+ // If the defs from this range reach SI via all predecessors, it is live.
+ // It can happen that SI is reached by the defs through some paths, but
+ // not all. In the IR coming into this optimization, SI would not be
+ // considered live, since the defs would then not jointly dominate SI.
+ // That means that SI is an overwriting def, and no implicit use is
+ // needed at this point. Do not add SI to the extension points, since
+ // extendToIndices will abort if there is no joint dominance.
+ // If the abort was avoided by adding extra undefs added to Undefs,
+ // extendToIndices could actually indicate that SI is live, contrary
+ // to the original IR.
+ if (Dominate(Defs, BB))
+ ExtTo.push_back(SI);
+ }
+
+ if (!ExtTo.empty())
+ LIS->extendToIndices(Range, ExtTo, Undefs);
+
+ // Remove <dead> flags from all defs that are not dead after live range
+ // extension, and collect all def operands. They will be used to generate
+ // the necessary implicit uses.
+ // At the same time, add <dead> flag to all defs that are actually dead.
+ // This can happen, for example, when a mux with identical inputs is
+ // replaced with a COPY: the use of the predicate register disappears and
+ // the dead can become dead.
+ std::set<RegisterRef> DefRegs;
+ for (auto &Seg : Range) {
+ if (!Seg.start.isRegister())
+ continue;
+ MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
+ for (auto &Op : DefI->operands()) {
+ auto P = IsRegDef(Op);
+ if (P.second && Seg.end.isDead()) {
+ Op.setIsDead(true);
+ } else if (P.first) {
+ DefRegs.insert(Op);
+ Op.setIsDead(false);
+ }
+ }
+ }
+
+ // Now, add implicit uses to each predicated def that is reached
+ // by other defs.
+ for (auto &Seg : Range) {
+ if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
+ continue;
+ MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
+ if (!HII->isPredicated(*DefI))
+ continue;
+ // Construct the set of all necessary implicit uses, based on the def
+ // operands in the instruction.
+ std::set<RegisterRef> ImpUses;
+ for (auto &Op : DefI->operands())
+ if (Op.isReg() && Op.isDef() && DefRegs.count(Op))
+ ImpUses.insert(Op);
+ if (ImpUses.empty())
+ continue;
+ MachineFunction &MF = *DefI->getParent()->getParent();
+ for (RegisterRef R : ImpUses)
+ MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
+ }
+
+}
+
+void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
+ LiveInterval &LI = LIS->getInterval(Reg);
+ if (LI.hasSubRanges()) {
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ updateDeadsInRange(Reg, S.LaneMask, S);
+ LIS->shrinkToUses(S, Reg);
+ }
+ LI.clear();
+ LIS->constructMainRangeFromSubranges(LI);
+ } else {
+ updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
+ }
+}
+
+void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
+ LIS->removeInterval(Reg);
+ LIS->createAndComputeVirtRegInterval(Reg);
+}
+
+void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI.eraseFromParent();
+}
+
+void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
+ bool Recalc, bool UpdateKills, bool UpdateDeads) {
+ UpdateKills |= UpdateDeads;
+ for (auto R : RegSet) {
+ if (Recalc)
+ recalculateLiveInterval(R);
+ if (UpdateKills)
+ MRI->clearKillFlags(R);
+ if (UpdateDeads)
+ updateDeadFlags(R);
+ // Fixing <dead> flags may extend live ranges, so reset <kill> flags
+ // after that.
+ if (UpdateKills)
+ updateKillFlags(R);
+ LIS->getInterval(R).verify();
+ }
+}
+
+/// Get the opcode for a conditional transfer of the value in SO (source
+/// operand). The condition (true/false) is given in Cond.
+unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
+ bool IfTrue) {
+ using namespace Hexagon;
+
+ if (SO.isReg()) {
+ unsigned PhysR;
+ RegisterRef RS = SO;
+ if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
+ const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
+ assert(VC->begin() != VC->end() && "Empty register class");
+ PhysR = *VC->begin();
+ } else {
+ assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
+ PhysR = RS.Reg;
+ }
+ unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
+ switch (TRI->getRegSizeInBits(*RC)) {
+ case 32:
+ return IfTrue ? A2_tfrt : A2_tfrf;
+ case 64:
+ return IfTrue ? A2_tfrpt : A2_tfrpf;
+ }
+ llvm_unreachable("Invalid register operand");
+ }
+ switch (SO.getType()) {
+ case MachineOperand::MO_Immediate:
+ case MachineOperand::MO_FPImmediate:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_TargetIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_BlockAddress:
+ return IfTrue ? C2_cmoveit : C2_cmoveif;
+ default:
+ break;
+ }
+ llvm_unreachable("Unexpected source operand");
+}
+
+/// Generate a conditional transfer, copying the value SrcOp to the
+/// destination register DstR:DstSR, and using the predicate register from
+/// PredOp. The Cond argument specifies whether the predicate is to be
+/// if(PredOp), or if(!PredOp).
+MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
+ MachineBasicBlock::iterator At,
+ unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
+ bool PredSense, bool ReadUndef, bool ImpUse) {
+ MachineInstr *MI = SrcOp.getParent();
+ MachineBasicBlock &B = *At->getParent();
+ const DebugLoc &DL = MI->getDebugLoc();
+
+ // Don't avoid identity copies here (i.e. if the source and the destination
+ // are the same registers). It is actually better to generate them here,
+ // since this would cause the copy to potentially be predicated in the next
+ // step. The predication will remove such a copy if it is unable to
+ /// predicate.
+
+ unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
+ unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
+ unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
+ MachineInstrBuilder MIB;
+
+ if (SrcOp.isReg()) {
+ unsigned SrcState = getRegState(SrcOp);
+ if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
+ SrcState &= ~RegState::Kill;
+ MIB = BuildMI(B, At, DL, HII->get(Opc))
+ .addReg(DstR, DstState, DstSR)
+ .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
+ .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
+ } else {
+ MIB = BuildMI(B, At, DL, HII->get(Opc))
+ .addReg(DstR, DstState, DstSR)
+ .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
+ .add(SrcOp);
+ }
+
+ DEBUG(dbgs() << "created an initial copy: " << *MIB);
+ return &*MIB;
+}
+
+/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
+/// performs all necessary changes to complete the replacement.
+bool HexagonExpandCondsets::split(MachineInstr &MI,
+ std::set<unsigned> &UpdRegs) {
+ if (TfrLimitActive) {
+ if (TfrCounter >= TfrLimit)
+ return false;
+ TfrCounter++;
+ }
+ DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": "
+ << MI);
+ MachineOperand &MD = MI.getOperand(0); // Definition
+ MachineOperand &MP = MI.getOperand(1); // Predicate register
+ assert(MD.isDef());
+ unsigned DR = MD.getReg(), DSR = MD.getSubReg();
+ bool ReadUndef = MD.isUndef();
+ MachineBasicBlock::iterator At = MI;
+
+ auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
+ for (auto &Op : MI.operands())
+ if (Op.isReg())
+ UpdRegs.insert(Op.getReg());
+ };
+
+ // If this is a mux of the same register, just replace it with COPY.
+ // Ideally, this would happen earlier, so that register coalescing would
+ // see it.
+ MachineOperand &ST = MI.getOperand(2);
+ MachineOperand &SF = MI.getOperand(3);
+ if (ST.isReg() && SF.isReg()) {
+ RegisterRef RT(ST);
+ if (RT == RegisterRef(SF)) {
+ // Copy regs to update first.
+ updateRegs(MI);
+ MI.setDesc(HII->get(TargetOpcode::COPY));
+ unsigned S = getRegState(ST);
+ while (MI.getNumOperands() > 1)
+ MI.RemoveOperand(MI.getNumOperands()-1);
+ MachineFunction &MF = *MI.getParent()->getParent();
+ MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
+ return true;
+ }
+ }
+
+ // First, create the two invididual conditional transfers, and add each
+ // of them to the live intervals information. Do that first and then remove
+ // the old instruction from live intervals.
+ MachineInstr *TfrT =
+ genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
+ MachineInstr *TfrF =
+ genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
+ LIS->InsertMachineInstrInMaps(*TfrT);
+ LIS->InsertMachineInstrInMaps(*TfrF);
+
+ // Will need to recalculate live intervals for all registers in MI.
+ updateRegs(MI);
+
+ removeInstr(MI);
+ return true;
+}
+
+bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
+ if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
+ return false;
+ if (MI->hasUnmodeledSideEffects() || MI->mayStore())
+ return false;
+ // Reject instructions with multiple defs (e.g. post-increment loads).
+ bool HasDef = false;
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ if (HasDef)
+ return false;
+ HasDef = true;
+ }
+ for (auto &Mo : MI->memoperands())
+ if (Mo->isVolatile())
+ return false;
+ return true;
+}
+
+/// Find the reaching definition for a predicated use of RD. The RD is used
+/// under the conditions given by PredR and Cond, and this function will ignore
+/// definitions that set RD under the opposite conditions.
+MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
+ MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
+ MachineBasicBlock &B = *UseIt->getParent();
+ MachineBasicBlock::iterator I = UseIt, S = B.begin();
+ if (I == S)
+ return nullptr;
+
+ bool PredValid = true;
+ do {
+ --I;
+ MachineInstr *MI = &*I;
+ // Check if this instruction can be ignored, i.e. if it is predicated
+ // on the complementary condition.
+ if (PredValid && HII->isPredicated(*MI)) {
+ if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
+ continue;
+ }
+
+ // Check the defs. If the PredR is defined, invalidate it. If RD is
+ // defined, return the instruction or 0, depending on the circumstances.
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ RegisterRef RR = Op;
+ if (RR.Reg == PredR) {
+ PredValid = false;
+ continue;
+ }
+ if (RR.Reg != RD.Reg)
+ continue;
+ // If the "Reg" part agrees, there is still the subregister to check.
+ // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
+ // not vreg1 (w/o subregisters).
+ if (RR.Sub == RD.Sub)
+ return MI;
+ if (RR.Sub == 0 || RD.Sub == 0)
+ return nullptr;
+ // We have different subregisters, so we can continue looking.
+ }
+ } while (I != S);
+
+ return nullptr;
+}
+
+/// Check if the instruction MI can be safely moved over a set of instructions
+/// whose side-effects (in terms of register defs and uses) are expressed in
+/// the maps Defs and Uses. These maps reflect the conditional defs and uses
+/// that depend on the same predicate register to allow moving instructions
+/// over instructions predicated on the opposite condition.
+bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
+ ReferenceMap &Uses) {
+ // In order to be able to safely move MI over instructions that define
+ // "Defs" and use "Uses", no def operand from MI can be defined or used
+ // and no use operand can be defined.
+ for (auto &Op : MI.operands()) {
+ if (!Op.isReg())
+ continue;
+ RegisterRef RR = Op;
+ // For physical register we would need to check register aliases, etc.
+ // and we don't want to bother with that. It would be of little value
+ // before the actual register rewriting (from virtual to physical).
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+ // No redefs for any operand.
+ if (isRefInMap(RR, Defs, Exec_Then))
+ return false;
+ // For defs, there cannot be uses.
+ if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
+ return false;
+ }
+ return true;
+}
+
+/// Check if the instruction accessing memory (TheI) can be moved to the
+/// location ToI.
+bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
+ bool IsDown) {
+ bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
+ if (!IsLoad && !IsStore)
+ return true;
+ if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
+ return true;
+ if (TheI.hasUnmodeledSideEffects())
+ return false;
+
+ MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
+ MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
+ bool Ordered = TheI.hasOrderedMemoryRef();
+
+ // Search for aliased memory reference in (StartI, EndI).
+ for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
+ MachineInstr *MI = &*I;
+ if (MI->hasUnmodeledSideEffects())
+ return false;
+ bool L = MI->mayLoad(), S = MI->mayStore();
+ if (!L && !S)
+ continue;
+ if (Ordered && MI->hasOrderedMemoryRef())
+ return false;
+
+ bool Conflict = (L && IsStore) || S;
+ if (Conflict)
+ return false;
+ }
+ return true;
+}
+
+/// Generate a predicated version of MI (where the condition is given via
+/// PredR and Cond) at the point indicated by Where.
+void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
+ MachineInstr &MI,
+ MachineBasicBlock::iterator Where,
+ const MachineOperand &PredOp, bool Cond,
+ std::set<unsigned> &UpdRegs) {
+ // The problem with updating live intervals is that we can move one def
+ // past another def. In particular, this can happen when moving an A2_tfrt
+ // over an A2_tfrf defining the same register. From the point of view of
+ // live intervals, these two instructions are two separate definitions,
+ // and each one starts another live segment. LiveIntervals's "handleMove"
+ // does not allow such moves, so we need to handle it ourselves. To avoid
+ // invalidating liveness data while we are using it, the move will be
+ // implemented in 4 steps: (1) add a clone of the instruction MI at the
+ // target location, (2) update liveness, (3) delete the old instruction,
+ // and (4) update liveness again.
+
+ MachineBasicBlock &B = *MI.getParent();
+ DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
+ unsigned Opc = MI.getOpcode();
+ unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
+ MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
+ unsigned Ox = 0, NP = MI.getNumOperands();
+ // Skip all defs from MI first.
+ while (Ox < NP) {
+ MachineOperand &MO = MI.getOperand(Ox);
+ if (!MO.isReg() || !MO.isDef())
+ break;
+ Ox++;
+ }
+ // Add the new def, then the predicate register, then the rest of the
+ // operands.
+ MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
+ MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
+ PredOp.getSubReg());
+ while (Ox < NP) {
+ MachineOperand &MO = MI.getOperand(Ox);
+ if (!MO.isReg() || !MO.isImplicit())
+ MB.add(MO);
+ Ox++;
+ }
+
+ MachineFunction &MF = *B.getParent();
+ MachineInstr::mmo_iterator I = MI.memoperands_begin();
+ unsigned NR = std::distance(I, MI.memoperands_end());
+ MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
+ for (unsigned i = 0; i < NR; ++i)
+ MemRefs[i] = *I++;
+ MB.setMemRefs(MemRefs, MemRefs+NR);
+
+ MachineInstr *NewI = MB;
+ NewI->clearKillInfo();
+ LIS->InsertMachineInstrInMaps(*NewI);
+
+ for (auto &Op : NewI->operands())
+ if (Op.isReg())
+ UpdRegs.insert(Op.getReg());
+}
+
+/// In the range [First, Last], rename all references to the "old" register RO
+/// to the "new" register RN, but only in instructions predicated on the given
+/// condition.
+void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
+ unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
+ MachineBasicBlock::iterator Last) {
+ MachineBasicBlock::iterator End = std::next(Last);
+ for (MachineBasicBlock::iterator I = First; I != End; ++I) {
+ MachineInstr *MI = &*I;
+ // Do not touch instructions that are not predicated, or are predicated
+ // on the opposite condition.
+ if (!HII->isPredicated(*MI))
+ continue;
+ if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
+ continue;
+
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || RO != RegisterRef(Op))
+ continue;
+ Op.setReg(RN.Reg);
+ Op.setSubReg(RN.Sub);
+ // In practice, this isn't supposed to see any defs.
+ assert(!Op.isDef() && "Not expecting a def");
+ }
+ }
+}
+
+/// For a given conditional copy, predicate the definition of the source of
+/// the copy under the given condition (using the same predicate register as
+/// the copy).
+bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
+ std::set<unsigned> &UpdRegs) {
+ // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
+ unsigned Opc = TfrI.getOpcode();
+ (void)Opc;
+ assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
+ DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
+ << ": " << TfrI);
+
+ MachineOperand &MD = TfrI.getOperand(0);
+ MachineOperand &MP = TfrI.getOperand(1);
+ MachineOperand &MS = TfrI.getOperand(2);
+ // The source operand should be a <kill>. This is not strictly necessary,
+ // but it makes things a lot simpler. Otherwise, we would need to rename
+ // some registers, which would complicate the transformation considerably.
+ if (!MS.isKill())
+ return false;
+ // Avoid predicating instructions that define a subregister if subregister
+ // liveness tracking is not enabled.
+ if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
+ return false;
+
+ RegisterRef RT(MS);
+ unsigned PredR = MP.getReg();
+ MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
+ if (!DefI || !isPredicable(DefI))
+ return false;
+
+ DEBUG(dbgs() << "Source def: " << *DefI);
+
+ // Collect the information about registers defined and used between the
+ // DefI and the TfrI.
+ // Map: reg -> bitmask of subregs
+ ReferenceMap Uses, Defs;
+ MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
+
+ // Check if the predicate register is valid between DefI and TfrI.
+ // If it is, we can then ignore instructions predicated on the negated
+ // conditions when collecting def and use information.
+ bool PredValid = true;
+ for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+ if (!I->modifiesRegister(PredR, nullptr))
+ continue;
+ PredValid = false;
+ break;
+ }
+
+ for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+ MachineInstr *MI = &*I;
+ // If this instruction is predicated on the same register, it could
+ // potentially be ignored.
+ // By default assume that the instruction executes on the same condition
+ // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
+ unsigned Exec = Exec_Then | Exec_Else;
+ if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
+ Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
+
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg())
+ continue;
+ // We don't want to deal with physical registers. The reason is that
+ // they can be aliased with other physical registers. Aliased virtual
+ // registers must share the same register number, and can only differ
+ // in the subregisters, which we are keeping track of. Physical
+ // registers ters no longer have subregisters---their super- and
+ // subregisters are other physical registers, and we are not checking
+ // that.
+ RegisterRef RR = Op;
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+
+ ReferenceMap &Map = Op.isDef() ? Defs : Uses;
+ if (Op.isDef() && Op.isUndef()) {
+ assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
+ // If this is a <def,read-undef>, then it invalidates the non-written
+ // part of the register. For the purpose of checking the validity of
+ // the move, assume that it modifies the whole register.
+ RR.Sub = 0;
+ }
+ addRefToMap(RR, Map, Exec);
+ }
+ }
+
+ // The situation:
+ // RT = DefI
+ // ...
+ // RD = TfrI ..., RT
+
+ // If the register-in-the-middle (RT) is used or redefined between
+ // DefI and TfrI, we may not be able proceed with this transformation.
+ // We can ignore a def that will not execute together with TfrI, and a
+ // use that will. If there is such a use (that does execute together with
+ // TfrI), we will not be able to move DefI down. If there is a use that
+ // executed if TfrI's condition is false, then RT must be available
+ // unconditionally (cannot be predicated).
+ // Essentially, we need to be able to rename RT to RD in this segment.
+ if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
+ return false;
+ RegisterRef RD = MD;
+ // If the predicate register is defined between DefI and TfrI, the only
+ // potential thing to do would be to move the DefI down to TfrI, and then
+ // predicate. The reaching def (DefI) must be movable down to the location
+ // of the TfrI.
+ // If the target register of the TfrI (RD) is not used or defined between
+ // DefI and TfrI, consider moving TfrI up to DefI.
+ bool CanUp = canMoveOver(TfrI, Defs, Uses);
+ bool CanDown = canMoveOver(*DefI, Defs, Uses);
+ // The TfrI does not access memory, but DefI could. Check if it's safe
+ // to move DefI down to TfrI.
+ if (DefI->mayLoad() || DefI->mayStore())
+ if (!canMoveMemTo(*DefI, TfrI, true))
+ CanDown = false;
+
+ DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
+ << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
+ MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
+ if (CanUp)
+ predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
+ else if (CanDown)
+ predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
+ else
+ return false;
+
+ if (RT != RD) {
+ renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
+ UpdRegs.insert(RT.Reg);
+ }
+
+ removeInstr(TfrI);
+ removeInstr(*DefI);
+ return true;
+}
+
+/// Predicate all cases of conditional copies in the specified block.
+bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
+ std::set<unsigned> &UpdRegs) {
+ bool Changed = false;
+ MachineBasicBlock::iterator I, E, NextI;
+ for (I = B.begin(), E = B.end(); I != E; I = NextI) {
+ NextI = std::next(I);
+ unsigned Opc = I->getOpcode();
+ if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
+ bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
+ if (!Done) {
+ // If we didn't predicate I, we may need to remove it in case it is
+ // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1.
+ if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
+ for (auto &Op : I->operands())
+ if (Op.isReg())
+ UpdRegs.insert(Op.getReg());
+ removeInstr(*I);
+ }
+ }
+ Changed |= Done;
+ }
+ }
+ return Changed;
+}
+
+bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+ const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
+ if (RC == &Hexagon::IntRegsRegClass) {
+ BW = 32;
+ return true;
+ }
+ if (RC == &Hexagon::DoubleRegsRegClass) {
+ BW = (RR.Sub != 0) ? 32 : 64;
+ return true;
+ }
+ return false;
+}
+
+bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ LiveRange::Segment &LR = *I;
+ // Range must start at a register...
+ if (!LR.start.isRegister())
+ return false;
+ // ...and end in a register or in a dead slot.
+ if (!LR.end.isRegister() && !LR.end.isDead())
+ return false;
+ }
+ return true;
+}
+
+bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
+ if (CoaLimitActive) {
+ if (CoaCounter >= CoaLimit)
+ return false;
+ CoaCounter++;
+ }
+ unsigned BW1, BW2;
+ if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
+ return false;
+ if (MRI->isLiveIn(R1.Reg))
+ return false;
+ if (MRI->isLiveIn(R2.Reg))
+ return false;
+
+ LiveInterval &L1 = LIS->getInterval(R1.Reg);
+ LiveInterval &L2 = LIS->getInterval(R2.Reg);
+ if (L2.empty())
+ return false;
+ if (L1.hasSubRanges() || L2.hasSubRanges())
+ return false;
+ bool Overlap = L1.overlaps(L2);
+
+ DEBUG(dbgs() << "compatible registers: ("
+ << (Overlap ? "overlap" : "disjoint") << ")\n "
+ << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
+ << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
+ if (R1.Sub || R2.Sub)
+ return false;
+ if (Overlap)
+ return false;
+
+ // Coalescing could have a negative impact on scheduling, so try to limit
+ // to some reasonable extent. Only consider coalescing segments, when one
+ // of them does not cross basic block boundaries.
+ if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
+ return false;
+
+ MRI->replaceRegWith(R2.Reg, R1.Reg);
+
+ // Move all live segments from L2 to L1.
+ typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
+ ValueInfoMap VM;
+ for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
+ VNInfo *NewVN, *OldVN = I->valno;
+ ValueInfoMap::iterator F = VM.find(OldVN);
+ if (F == VM.end()) {
+ NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
+ VM.insert(std::make_pair(OldVN, NewVN));
+ } else {
+ NewVN = F->second;
+ }
+ L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
+ }
+ while (L2.begin() != L2.end())
+ L2.removeSegment(*L2.begin());
+ LIS->removeInterval(R2.Reg);
+
+ updateKillFlags(R1.Reg);
+ DEBUG(dbgs() << "coalesced: " << L1 << "\n");
+ L1.verify();
+
+ return true;
+}
+
+/// Attempt to coalesce one of the source registers to a MUX instruction with
+/// the destination register. This could lead to having only one predicated
+/// instruction in the end instead of two.
+bool HexagonExpandCondsets::coalesceSegments(
+ const SmallVectorImpl<MachineInstr*> &Condsets,
+ std::set<unsigned> &UpdRegs) {
+ SmallVector<MachineInstr*,16> TwoRegs;
+ for (MachineInstr *MI : Condsets) {
+ MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
+ if (!S1.isReg() && !S2.isReg())
+ continue;
+ TwoRegs.push_back(MI);
+ }
+
+ bool Changed = false;
+ for (MachineInstr *CI : TwoRegs) {
+ RegisterRef RD = CI->getOperand(0);
+ RegisterRef RP = CI->getOperand(1);
+ MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
+ bool Done = false;
+ // Consider this case:
+ // vreg1 = instr1 ...
+ // vreg2 = instr2 ...
+ // vreg0 = C2_mux ..., vreg1, vreg2
+ // If vreg0 was coalesced with vreg1, we could end up with the following
+ // code:
+ // vreg0 = instr1 ...
+ // vreg2 = instr2 ...
+ // vreg0 = A2_tfrf ..., vreg2
+ // which will later become:
+ // vreg0 = instr1 ...
+ // vreg0 = instr2_cNotPt ...
+ // i.e. there will be an unconditional definition (instr1) of vreg0
+ // followed by a conditional one. The output dependency was there before
+ // and it unavoidable, but if instr1 is predicable, we will no longer be
+ // able to predicate it here.
+ // To avoid this scenario, don't coalesce the destination register with
+ // a source register that is defined by a predicable instruction.
+ if (S1.isReg()) {
+ RegisterRef RS = S1;
+ MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
+ if (!RDef || !HII->isPredicable(*RDef)) {
+ Done = coalesceRegisters(RD, RegisterRef(S1));
+ if (Done) {
+ UpdRegs.insert(RD.Reg);
+ UpdRegs.insert(S1.getReg());
+ }
+ }
+ }
+ if (!Done && S2.isReg()) {
+ RegisterRef RS = S2;
+ MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
+ if (!RDef || !HII->isPredicable(*RDef)) {
+ Done = coalesceRegisters(RD, RegisterRef(S2));
+ if (Done) {
+ UpdRegs.insert(RD.Reg);
+ UpdRegs.insert(S2.getReg());
+ }
+ }
+ }
+ Changed |= Done;
+ }
+ return Changed;
+}
+
+bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(*MF.getFunction()))
+ return false;
+
+ HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ LIS = &getAnalysis<LiveIntervals>();
+ MRI = &MF.getRegInfo();
+
+ DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
+ MF.getFunction()->getParent()));
+
+ bool Changed = false;
+ std::set<unsigned> CoalUpd, PredUpd;
+
+ SmallVector<MachineInstr*,16> Condsets;
+ for (auto &B : MF)
+ for (auto &I : B)
+ if (isCondset(I))
+ Condsets.push_back(&I);
+
+ // Try to coalesce the target of a mux with one of its sources.
+ // This could eliminate a register copy in some circumstances.
+ Changed |= coalesceSegments(Condsets, CoalUpd);
+
+ // Update kill flags on all source operands. This is done here because
+ // at this moment (when expand-condsets runs), there are no kill flags
+ // in the IR (they have been removed by live range analysis).
+ // Updating them right before we split is the easiest, because splitting
+ // adds definitions which would interfere with updating kills afterwards.
+ std::set<unsigned> KillUpd;
+ for (MachineInstr *MI : Condsets)
+ for (MachineOperand &Op : MI->operands())
+ if (Op.isReg() && Op.isUse())
+ if (!CoalUpd.count(Op.getReg()))
+ KillUpd.insert(Op.getReg());
+ updateLiveness(KillUpd, false, true, false);
+ DEBUG(LIS->print(dbgs() << "After coalescing\n",
+ MF.getFunction()->getParent()));
+
+ // First, simply split all muxes into a pair of conditional transfers
+ // and update the live intervals to reflect the new arrangement. The
+ // goal is to update the kill flags, since predication will rely on
+ // them.
+ for (MachineInstr *MI : Condsets)
+ Changed |= split(*MI, PredUpd);
+ Condsets.clear(); // The contents of Condsets are invalid here anyway.
+
+ // Do not update live ranges after splitting. Recalculation of live
+ // intervals removes kill flags, which were preserved by splitting on
+ // the source operands of condsets. These kill flags are needed by
+ // predication, and after splitting they are difficult to recalculate
+ // (because of predicated defs), so make sure they are left untouched.
+ // Predication does not use live intervals.
+ DEBUG(LIS->print(dbgs() << "After splitting\n",
+ MF.getFunction()->getParent()));
+
+ // Traverse all blocks and collapse predicable instructions feeding
+ // conditional transfers into predicated instructions.
+ // Walk over all the instructions again, so we may catch pre-existing
+ // cases that were not created in the previous step.
+ for (auto &B : MF)
+ Changed |= predicateInBlock(B, PredUpd);
+ DEBUG(LIS->print(dbgs() << "After predicating\n",
+ MF.getFunction()->getParent()));
+
+ PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
+ updateLiveness(PredUpd, true, true, true);
+
+ DEBUG({
+ if (Changed)
+ LIS->print(dbgs() << "After expand-condsets\n",
+ MF.getFunction()->getParent());
+ });
+
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createHexagonExpandCondsets() {
+ return new HexagonExpandCondsets();
+}