aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp1081
1 files changed, 1081 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp
new file mode 100644
index 000000000000..03c4a83594b3
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp
@@ -0,0 +1,1081 @@
+//===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a Hexagon-specific if-conversion pass that runs on the
+// SSA form.
+// In SSA it is not straightforward to represent instructions that condi-
+// tionally define registers, since a conditionally-defined register may
+// only be used under the same condition on which the definition was based.
+// To avoid complications of this nature, this patch will only generate
+// predicated stores, and speculate other instructions from the "if-conver-
+// ted" block.
+// The code will recognize CFG patterns where a block with a conditional
+// branch "splits" into a "true block" and a "false block". Either of these
+// could be omitted (in case of a triangle, for example).
+// If after conversion of the side block(s) the CFG allows it, the resul-
+// ting blocks may be merged. If the "join" block contained PHI nodes, they
+// will be replaced with MUX (or MUX-like) instructions to maintain the
+// semantics of the PHI.
+//
+// Example:
+//
+// %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
+// %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
+// J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
+// J2_jump <BB#4>, %PC<imp-def,dead>
+// Successors according to CFG: BB#4(62) BB#5(62)
+//
+// BB#4: derived from LLVM BB %if.then
+// Predecessors according to CFG: BB#3
+// %vreg11<def> = A2_addp %vreg6, %vreg10
+// S2_storerd_io %vreg32, 16, %vreg11
+// Successors according to CFG: BB#5
+//
+// BB#5: derived from LLVM BB %if.end
+// Predecessors according to CFG: BB#3 BB#4
+// %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
+// %vreg13<def> = A2_addp %vreg7, %vreg12
+// %vreg42<def> = C2_cmpeqi %vreg9, 10
+// J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
+// J2_jump <BB#6>, %PC<imp-def,dead>
+// Successors according to CFG: BB#6(4) BB#3(124)
+//
+// would become:
+//
+// %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
+// %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
+// spec-> %vreg11<def> = A2_addp %vreg6, %vreg10
+// pred-> S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
+// %vreg46<def> = PS_pselect %vreg41, %vreg6, %vreg11
+// %vreg13<def> = A2_addp %vreg7, %vreg46
+// %vreg42<def> = C2_cmpeqi %vreg9, 10
+// J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
+// J2_jump <BB#6>, %PC<imp-def,dead>
+// Successors according to CFG: BB#6 BB#3
+
+#define DEBUG_TYPE "hexagon-eif"
+
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonSubtarget.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <cassert>
+#include <iterator>
+
+using namespace llvm;
+
+namespace llvm {
+
+ FunctionPass *createHexagonEarlyIfConversion();
+ void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
+
+} // end namespace llvm
+
+namespace {
+
+ cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
+ cl::init(false), cl::desc("Enable branch probability info"));
+ cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
+ cl::desc("Size limit in Hexagon early if-conversion"));
+ cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
+ cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));
+
+ struct PrintMB {
+ PrintMB(const MachineBasicBlock *B) : MB(B) {}
+ const MachineBasicBlock *MB;
+ };
+ raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
+ if (!P.MB)
+ return OS << "<none>";
+ return OS << '#' << P.MB->getNumber();
+ }
+
+ struct FlowPattern {
+ FlowPattern() = default;
+ FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
+ MachineBasicBlock *FB, MachineBasicBlock *JB)
+ : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
+
+ MachineBasicBlock *SplitB = nullptr;
+ MachineBasicBlock *TrueB = nullptr;
+ MachineBasicBlock *FalseB = nullptr;
+ MachineBasicBlock *JoinB = nullptr;
+ unsigned PredR = 0;
+ };
+
+ struct PrintFP {
+ PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
+ : FP(P), TRI(T) {}
+
+ const FlowPattern &FP;
+ const TargetRegisterInfo &TRI;
+ friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
+ };
+ raw_ostream &operator<<(raw_ostream &OS,
+ const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
+ raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
+ OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
+ << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
+ << ", TrueB:" << PrintMB(P.FP.TrueB)
+ << ", FalseB:" << PrintMB(P.FP.FalseB)
+ << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
+ return OS;
+ }
+
+ class HexagonEarlyIfConversion : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonEarlyIfConversion() : MachineFunctionPass(ID),
+ HII(nullptr), TRI(nullptr), MFN(nullptr), MRI(nullptr), MDT(nullptr),
+ MLI(nullptr) {
+ initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override {
+ return "Hexagon early if conversion";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ private:
+ typedef DenseSet<MachineBasicBlock*> BlockSetType;
+
+ bool isPreheader(const MachineBasicBlock *B) const;
+ bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
+ FlowPattern &FP);
+ bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
+ bool visitLoop(MachineLoop *L);
+
+ bool hasEHLabel(const MachineBasicBlock *B) const;
+ bool hasUncondBranch(const MachineBasicBlock *B) const;
+ bool isValidCandidate(const MachineBasicBlock *B) const;
+ bool usesUndefVReg(const MachineInstr *MI) const;
+ bool isValid(const FlowPattern &FP) const;
+ unsigned countPredicateDefs(const MachineBasicBlock *B) const;
+ unsigned computePhiCost(const MachineBasicBlock *B,
+ const FlowPattern &FP) const;
+ bool isProfitable(const FlowPattern &FP) const;
+ bool isPredicableStore(const MachineInstr *MI) const;
+ bool isSafeToSpeculate(const MachineInstr *MI) const;
+
+ unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
+ void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
+ MachineInstr *MI, unsigned PredR, bool IfTrue);
+ void predicateBlockNB(MachineBasicBlock *ToB,
+ MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
+ unsigned PredR, bool IfTrue);
+
+ unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
+ const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
+ unsigned TSR, unsigned FR, unsigned FSR);
+ void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
+ void convert(const FlowPattern &FP);
+
+ void removeBlock(MachineBasicBlock *B);
+ void eliminatePhis(MachineBasicBlock *B);
+ void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
+ void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
+ void simplifyFlowGraph(const FlowPattern &FP);
+
+ const HexagonInstrInfo *HII;
+ const TargetRegisterInfo *TRI;
+ MachineFunction *MFN;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *MDT;
+ MachineLoopInfo *MLI;
+ BlockSetType Deleted;
+ const MachineBranchProbabilityInfo *MBPI;
+ };
+
+ char HexagonEarlyIfConversion::ID = 0;
+
+} // end anonymous namespace
+
+INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
+ "Hexagon early if conversion", false, false)
+
+bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
+ if (B->succ_size() != 1)
+ return false;
+ MachineBasicBlock *SB = *B->succ_begin();
+ MachineLoop *L = MLI->getLoopFor(SB);
+ return L && SB == L->getHeader() && MDT->dominates(B, SB);
+}
+
+bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
+ MachineLoop *L, FlowPattern &FP) {
+ DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
+
+ // Interested only in conditional branches, no .new, no new-value, etc.
+ // Check the terminators directly, it's easier than handling all responses
+ // from AnalyzeBranch.
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
+ if (T1I == B->end())
+ return false;
+ unsigned Opc = T1I->getOpcode();
+ if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
+ return false;
+ unsigned PredR = T1I->getOperand(0).getReg();
+
+ // Get the layout successor, or 0 if B does not have one.
+ MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
+ MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;
+
+ MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
+ MachineBasicBlock::const_iterator T2I = std::next(T1I);
+ // The second terminator should be an unconditional branch.
+ assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
+ MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
+ : T2I->getOperand(0).getMBB();
+ if (T1B == T2B) {
+ // XXX merge if T1B == NextB, or convert branch to unconditional.
+ // mark as diamond with both sides equal?
+ return false;
+ }
+
+ // Record the true/false blocks in such a way that "true" means "if (PredR)",
+ // and "false" means "if (!PredR)".
+ if (Opc == Hexagon::J2_jumpt)
+ TB = T1B, FB = T2B;
+ else
+ TB = T2B, FB = T1B;
+
+ if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
+ return false;
+
+ // Detect triangle first. In case of a triangle, one of the blocks TB/FB
+ // can fall through into the other, in other words, it will be executed
+ // in both cases. We only want to predicate the block that is executed
+ // conditionally.
+ unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
+ unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
+
+ // A block is predicable if it has one predecessor (it must be B), and
+ // it has a single successor. In fact, the block has to end either with
+ // an unconditional branch (which can be predicated), or with a fall-
+ // through.
+ // Also, skip blocks that do not belong to the same loop.
+ bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
+ bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);
+
+ // If requested (via an option), do not consider branches where the
+ // true and false targets do not belong to the same loop.
+ if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
+ return false;
+
+ // If neither is predicable, there is nothing interesting.
+ if (!TOk && !FOk)
+ return false;
+
+ MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
+ MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
+ MachineBasicBlock *JB = nullptr;
+
+ if (TOk) {
+ if (FOk) {
+ if (TSB == FSB)
+ JB = TSB;
+ // Diamond: "if (P) then TB; else FB;".
+ } else {
+ // TOk && !FOk
+ if (TSB == FB)
+ JB = FB;
+ FB = nullptr;
+ }
+ } else {
+ // !TOk && FOk (at least one must be true by now).
+ if (FSB == TB)
+ JB = TB;
+ TB = nullptr;
+ }
+ // Don't try to predicate loop preheaders.
+ if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
+ DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
+ << " is a loop preheader. Skipping.\n");
+ return false;
+ }
+
+ FP = FlowPattern(B, PredR, TB, FB, JB);
+ DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
+ return true;
+}
+
+// KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
+// contains EH_LABEL.
+bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
+ for (auto &I : *B)
+ if (I.isEHLabel())
+ return true;
+ return false;
+}
+
+// KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
+// that a block can never fall-through.
+bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
+ const {
+ MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
+ while (I != E) {
+ if (I->isBarrier())
+ return true;
+ ++I;
+ }
+ return false;
+}
+
+bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
+ const {
+ if (!B)
+ return true;
+ if (B->isEHPad() || B->hasAddressTaken())
+ return false;
+ if (B->succ_size() == 0)
+ return false;
+
+ for (auto &MI : *B) {
+ if (MI.isDebugValue())
+ continue;
+ if (MI.isConditionalBranch())
+ return false;
+ unsigned Opc = MI.getOpcode();
+ bool IsJMP = (Opc == Hexagon::J2_jump);
+ if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
+ return false;
+ // Look for predicate registers defined by this instruction. It's ok
+ // to speculate such an instruction, but the predicate register cannot
+ // be used outside of this block (or else it won't be possible to
+ // update the use of it after predication). PHI uses will be updated
+ // to use a result of a MUX, and a MUX cannot be created for predicate
+ // registers.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ switch (MRI->getRegClass(R)->getID()) {
+ case Hexagon::PredRegsRegClassID:
+ case Hexagon::VecPredRegsRegClassID:
+ case Hexagon::VecPredRegs128BRegClassID:
+ break;
+ default:
+ continue;
+ }
+ for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
+ if (U->getParent()->isPHI())
+ return false;
+ }
+ }
+ return true;
+}
+
+bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ const MachineInstr *DefI = MRI->getVRegDef(R);
+ // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
+ assert(DefI && "Expecting a reaching def in MRI");
+ if (DefI->isImplicitDef())
+ return true;
+ }
+ return false;
+}
+
+bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
+ if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition
+ return false;
+ if (FP.TrueB && !isValidCandidate(FP.TrueB))
+ return false;
+ if (FP.FalseB && !isValidCandidate(FP.FalseB))
+ return false;
+ // Check the PHIs in the join block. If any of them use a register
+ // that is defined as IMPLICIT_DEF, do not convert this. This can
+ // legitimately happen if one side of the split never executes, but
+ // the compiler is unable to prove it. That side may then seem to
+ // provide an "undef" value to the join block, however it will never
+ // execute at run-time. If we convert this case, the "undef" will
+ // be used in a MUX instruction, and that may seem like actually
+ // using an undefined value to other optimizations. This could lead
+ // to trouble further down the optimization stream, cause assertions
+ // to fail, etc.
+ if (FP.JoinB) {
+ const MachineBasicBlock &B = *FP.JoinB;
+ for (auto &MI : B) {
+ if (!MI.isPHI())
+ break;
+ if (usesUndefVReg(&MI))
+ return false;
+ unsigned DefR = MI.getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI->getRegClass(DefR);
+ if (RC == &Hexagon::PredRegsRegClass)
+ return false;
+ }
+ }
+ return true;
+}
+
+unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
+ const FlowPattern &FP) const {
+ if (B->pred_size() < 2)
+ return 0;
+
+ unsigned Cost = 0;
+ for (const MachineInstr &MI : *B) {
+ if (!MI.isPHI())
+ break;
+ // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
+ // a MUX may be needed. Otherwise the PHI will need to be updated at
+ // no extra cost.
+ // Find the interesting PHI operands for further checks.
+ SmallVector<unsigned,2> Inc;
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
+ const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
+ if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
+ Inc.push_back(i);
+ }
+ assert(Inc.size() <= 2);
+ if (Inc.size() < 2)
+ continue;
+
+ const MachineOperand &RA = MI.getOperand(1);
+ const MachineOperand &RB = MI.getOperand(3);
+ assert(RA.isReg() && RB.isReg());
+ // Must have a MUX if the phi uses a subregister.
+ if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
+ Cost++;
+ continue;
+ }
+ const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
+ const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
+ if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
+ Cost++;
+ }
+ return Cost;
+}
+
+unsigned HexagonEarlyIfConversion::countPredicateDefs(
+ const MachineBasicBlock *B) const {
+ unsigned PredDefs = 0;
+ for (auto &MI : *B) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
+ PredDefs++;
+ }
+ }
+ return PredDefs;
+}
+
+bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
+ if (FP.TrueB && FP.FalseB) {
+ // Do not IfCovert if the branch is one sided.
+ if (MBPI) {
+ BranchProbability Prob(9, 10);
+ if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
+ return false;
+ if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
+ return false;
+ }
+
+ // If both sides are predicable, convert them if they join, and the
+ // join block has no other predecessors.
+ MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
+ MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
+ if (TSB != FSB)
+ return false;
+ if (TSB->pred_size() != 2)
+ return false;
+ }
+
+ // Calculate the total size of the predicated blocks.
+ // Assume instruction counts without branches to be the approximation of
+ // the code size. If the predicated blocks are smaller than a packet size,
+ // approximate the spare room in the packet that could be filled with the
+ // predicated/speculated instructions.
+ auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
+ if (!B)
+ return 0u;
+ unsigned T = std::distance(B->begin(), B->getFirstTerminator());
+ if (T < HEXAGON_PACKET_SIZE)
+ Spare += HEXAGON_PACKET_SIZE-T;
+ return T;
+ };
+ unsigned Spare = 0;
+ unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
+ DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
+ << TotalIn << ", spare room: " << Spare << "\n");
+ if (TotalIn >= SizeLimit+Spare)
+ return false;
+
+ // Count the number of PHI nodes that will need to be updated (converted
+ // to MUX). Those can be later converted to predicated instructions, so
+ // they aren't always adding extra cost.
+ // KLUDGE: Also, count the number of predicate register definitions in
+ // each block. The scheduler may increase the pressure of these and cause
+ // expensive spills (e.g. bitmnp01).
+ unsigned TotalPh = 0;
+ unsigned PredDefs = countPredicateDefs(FP.SplitB);
+ if (FP.JoinB) {
+ TotalPh = computePhiCost(FP.JoinB, FP);
+ PredDefs += countPredicateDefs(FP.JoinB);
+ } else {
+ if (FP.TrueB && FP.TrueB->succ_size() > 0) {
+ MachineBasicBlock *SB = *FP.TrueB->succ_begin();
+ TotalPh += computePhiCost(SB, FP);
+ PredDefs += countPredicateDefs(SB);
+ }
+ if (FP.FalseB && FP.FalseB->succ_size() > 0) {
+ MachineBasicBlock *SB = *FP.FalseB->succ_begin();
+ TotalPh += computePhiCost(SB, FP);
+ PredDefs += countPredicateDefs(SB);
+ }
+ }
+ DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
+ << TotalPh << "\n");
+ if (TotalIn+TotalPh >= SizeLimit+Spare)
+ return false;
+
+ DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
+ if (PredDefs > 4)
+ return false;
+
+ return true;
+}
+
+bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
+ MachineLoop *L) {
+ bool Changed = false;
+
+ // Visit all dominated blocks from the same loop first, then process B.
+ MachineDomTreeNode *N = MDT->getNode(B);
+ typedef GraphTraits<MachineDomTreeNode*> GTN;
+ // We will change CFG/DT during this traversal, so take precautions to
+ // avoid problems related to invalidated iterators. In fact, processing
+ // a child C of B cannot cause another child to be removed, but it can
+ // cause a new child to be added (which was a child of C before C itself
+ // was removed. This new child C, however, would have been processed
+ // prior to processing B, so there is no need to process it again.
+ // Simply keep a list of children of B, and traverse that list.
+ typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
+ DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
+ for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
+ MachineBasicBlock *SB = (*I)->getBlock();
+ if (!Deleted.count(SB))
+ Changed |= visitBlock(SB, L);
+ }
+ // When walking down the dominator tree, we want to traverse through
+ // blocks from nested (other) loops, because they can dominate blocks
+ // that are in L. Skip the non-L blocks only after the tree traversal.
+ if (MLI->getLoopFor(B) != L)
+ return Changed;
+
+ FlowPattern FP;
+ if (!matchFlowPattern(B, L, FP))
+ return Changed;
+
+ if (!isValid(FP)) {
+ DEBUG(dbgs() << "Conversion is not valid\n");
+ return Changed;
+ }
+ if (!isProfitable(FP)) {
+ DEBUG(dbgs() << "Conversion is not profitable\n");
+ return Changed;
+ }
+
+ convert(FP);
+ simplifyFlowGraph(FP);
+ return true;
+}
+
+bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
+ MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
+ DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
+ : dbgs() << "Visiting function") << "\n");
+ bool Changed = false;
+ if (L) {
+ for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ Changed |= visitLoop(*I);
+ }
+
+ MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
+ Changed |= visitBlock(L ? HB : EntryB, L);
+ return Changed;
+}
+
+bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
+ const {
+ // HexagonInstrInfo::isPredicable will consider these stores are non-
+ // -predicable if the offset would become constant-extended after
+ // predication.
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::S2_storerb_io:
+ case Hexagon::S2_storerbnew_io:
+ case Hexagon::S2_storerh_io:
+ case Hexagon::S2_storerhnew_io:
+ case Hexagon::S2_storeri_io:
+ case Hexagon::S2_storerinew_io:
+ case Hexagon::S2_storerd_io:
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S4_storeirh_io:
+ case Hexagon::S4_storeiri_io:
+ return true;
+ }
+
+ // TargetInstrInfo::isPredicable takes a non-const pointer.
+ return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
+}
+
+bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
+ const {
+ if (MI->mayLoad() || MI->mayStore())
+ return false;
+ if (MI->isCall() || MI->isBarrier() || MI->isBranch())
+ return false;
+ if (MI->hasUnmodeledSideEffects())
+ return false;
+
+ return true;
+}
+
+unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
+ bool IfTrue) const {
+ return HII->getCondOpcode(Opc, !IfTrue);
+}
+
+void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
+ MachineBasicBlock::iterator At, MachineInstr *MI,
+ unsigned PredR, bool IfTrue) {
+ DebugLoc DL;
+ if (At != ToB->end())
+ DL = At->getDebugLoc();
+ else if (!ToB->empty())
+ DL = ToB->back().getDebugLoc();
+
+ unsigned Opc = MI->getOpcode();
+
+ if (isPredicableStore(MI)) {
+ unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
+ assert(COpc);
+ MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
+ MachineInstr::mop_iterator MOI = MI->operands_begin();
+ if (HII->isPostIncrement(*MI)) {
+ MIB.add(*MOI);
+ ++MOI;
+ }
+ MIB.addReg(PredR);
+ for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
+ MIB.add(MO);
+
+ // Set memory references.
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+
+ MI->eraseFromParent();
+ return;
+ }
+
+ if (Opc == Hexagon::J2_jump) {
+ MachineBasicBlock *TB = MI->getOperand(0).getMBB();
+ const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
+ : Hexagon::J2_jumpf);
+ BuildMI(*ToB, At, DL, D)
+ .addReg(PredR)
+ .addMBB(TB);
+ MI->eraseFromParent();
+ return;
+ }
+
+ // Print the offending instruction unconditionally as we are about to
+ // abort.
+ dbgs() << *MI;
+ llvm_unreachable("Unexpected instruction");
+}
+
+// Predicate/speculate non-branch instructions from FromB into block ToB.
+// Leave the branches alone, they will be handled later. Btw, at this point
+// FromB should have at most one branch, and it should be unconditional.
+void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
+ MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
+ unsigned PredR, bool IfTrue) {
+ DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
+ MachineBasicBlock::iterator End = FromB->getFirstTerminator();
+ MachineBasicBlock::iterator I, NextI;
+
+ for (I = FromB->begin(); I != End; I = NextI) {
+ assert(!I->isPHI());
+ NextI = std::next(I);
+ if (isSafeToSpeculate(&*I))
+ ToB->splice(At, FromB, I);
+ else
+ predicateInstr(ToB, At, &*I, PredR, IfTrue);
+ }
+}
+
+unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
+ MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
+ unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
+ unsigned Opc = 0;
+ switch (DRC->getID()) {
+ case Hexagon::IntRegsRegClassID:
+ Opc = Hexagon::C2_mux;
+ break;
+ case Hexagon::DoubleRegsRegClassID:
+ Opc = Hexagon::PS_pselect;
+ break;
+ case Hexagon::VectorRegsRegClassID:
+ Opc = Hexagon::PS_vselect;
+ break;
+ case Hexagon::VecDblRegsRegClassID:
+ Opc = Hexagon::PS_wselect;
+ break;
+ case Hexagon::VectorRegs128BRegClassID:
+ Opc = Hexagon::PS_vselect_128B;
+ break;
+ case Hexagon::VecDblRegs128BRegClassID:
+ Opc = Hexagon::PS_wselect_128B;
+ break;
+ default:
+ llvm_unreachable("unexpected register type");
+ }
+ const MCInstrDesc &D = HII->get(Opc);
+
+ DebugLoc DL = B->findBranchDebugLoc();
+ unsigned MuxR = MRI->createVirtualRegister(DRC);
+ BuildMI(*B, At, DL, D, MuxR)
+ .addReg(PredR)
+ .addReg(TR, 0, TSR)
+ .addReg(FR, 0, FSR);
+ return MuxR;
+}
+
+void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
+ const FlowPattern &FP) {
+ // Visit all PHI nodes in the WhereB block and generate MUX instructions
+ // in the split block. Update the PHI nodes with the values of the MUX.
+ auto NonPHI = WhereB->getFirstNonPHI();
+ for (auto I = WhereB->begin(); I != NonPHI; ++I) {
+ MachineInstr *PN = &*I;
+ // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
+ unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
+ for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
+ const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
+ if (BO.getMBB() == FP.SplitB)
+ SR = RO.getReg(), SSR = RO.getSubReg();
+ else if (BO.getMBB() == FP.TrueB)
+ TR = RO.getReg(), TSR = RO.getSubReg();
+ else if (BO.getMBB() == FP.FalseB)
+ FR = RO.getReg(), FSR = RO.getSubReg();
+ else
+ continue;
+ PN->RemoveOperand(i+1);
+ PN->RemoveOperand(i);
+ }
+ if (TR == 0)
+ TR = SR, TSR = SSR;
+ else if (FR == 0)
+ FR = SR, FSR = SSR;
+
+ assert(TR || FR);
+ unsigned MuxR = 0, MuxSR = 0;
+
+ if (TR && FR) {
+ unsigned DR = PN->getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI->getRegClass(DR);
+ MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
+ FP.PredR, TR, TSR, FR, FSR);
+ } else if (TR) {
+ MuxR = TR;
+ MuxSR = TSR;
+ } else {
+ MuxR = FR;
+ MuxSR = FSR;
+ }
+
+ PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
+ false, false, MuxSR));
+ PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
+ }
+}
+
+void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
+ MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
+ MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
+ assert(OldTI != FP.SplitB->end());
+ DebugLoc DL = OldTI->getDebugLoc();
+
+ if (FP.TrueB) {
+ TSB = *FP.TrueB->succ_begin();
+ predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
+ }
+ if (FP.FalseB) {
+ FSB = *FP.FalseB->succ_begin();
+ MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
+ predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
+ }
+
+ // Regenerate new terminators in the split block and update the successors.
+ // First, remember any information that may be needed later and remove the
+ // existing terminators/successors from the split block.
+ MachineBasicBlock *SSB = nullptr;
+ FP.SplitB->erase(OldTI, FP.SplitB->end());
+ while (FP.SplitB->succ_size() > 0) {
+ MachineBasicBlock *T = *FP.SplitB->succ_begin();
+ // It's possible that the split block had a successor that is not a pre-
+ // dicated block. This could only happen if there was only one block to
+ // be predicated. Example:
+ // split_b:
+ // if (p) jump true_b
+ // jump unrelated2_b
+ // unrelated1_b:
+ // ...
+ // unrelated2_b: ; can have other predecessors, so it's not "false_b"
+ // jump other_b
+ // true_b: ; only reachable from split_b, can be predicated
+ // ...
+ //
+ // Find this successor (SSB) if it exists.
+ if (T != FP.TrueB && T != FP.FalseB) {
+ assert(!SSB);
+ SSB = T;
+ }
+ FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
+ }
+
+ // Insert new branches and update the successors of the split block. This
+ // may create unconditional branches to the layout successor, etc., but
+ // that will be cleaned up later. For now, make sure that correct code is
+ // generated.
+ if (FP.JoinB) {
+ assert(!SSB || SSB == FP.JoinB);
+ BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
+ .addMBB(FP.JoinB);
+ FP.SplitB->addSuccessor(FP.JoinB);
+ } else {
+ bool HasBranch = false;
+ if (TSB) {
+ BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
+ .addReg(FP.PredR)
+ .addMBB(TSB);
+ FP.SplitB->addSuccessor(TSB);
+ HasBranch = true;
+ }
+ if (FSB) {
+ const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
+ : HII->get(Hexagon::J2_jumpf);
+ MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
+ if (!HasBranch)
+ MIB.addReg(FP.PredR);
+ MIB.addMBB(FSB);
+ FP.SplitB->addSuccessor(FSB);
+ }
+ if (SSB) {
+ // This cannot happen if both TSB and FSB are set. [TF]SB are the
+ // successor blocks of the TrueB and FalseB (or null of the TrueB
+ // or FalseB block is null). SSB is the potential successor block
+ // of the SplitB that is neither TrueB nor FalseB.
+ BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
+ .addMBB(SSB);
+ FP.SplitB->addSuccessor(SSB);
+ }
+ }
+
+ // What is left to do is to update the PHI nodes that could have entries
+ // referring to predicated blocks.
+ if (FP.JoinB) {
+ updatePhiNodes(FP.JoinB, FP);
+ } else {
+ if (TSB)
+ updatePhiNodes(TSB, FP);
+ if (FSB)
+ updatePhiNodes(FSB, FP);
+ // Nothing to update in SSB, since SSB's predecessors haven't changed.
+ }
+}
+
+void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
+ DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
+
+ // Transfer the immediate dominator information from B to its descendants.
+ MachineDomTreeNode *N = MDT->getNode(B);
+ MachineDomTreeNode *IDN = N->getIDom();
+ if (IDN) {
+ MachineBasicBlock *IDB = IDN->getBlock();
+ typedef GraphTraits<MachineDomTreeNode*> GTN;
+ typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
+ DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
+ for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
+ MachineBasicBlock *SB = (*I)->getBlock();
+ MDT->changeImmediateDominator(SB, IDB);
+ }
+ }
+
+ while (B->succ_size() > 0)
+ B->removeSuccessor(B->succ_begin());
+
+ for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
+ (*I)->removeSuccessor(B, true);
+
+ Deleted.insert(B);
+ MDT->eraseNode(B);
+ MFN->erase(B->getIterator());
+}
+
+void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
+ DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
+ MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
+ for (I = B->begin(); I != NonPHI; I = NextI) {
+ NextI = std::next(I);
+ MachineInstr *PN = &*I;
+ assert(PN->getNumOperands() == 3 && "Invalid phi node");
+ MachineOperand &UO = PN->getOperand(1);
+ unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
+ unsigned DefR = PN->getOperand(0).getReg();
+ unsigned NewR = UseR;
+ if (UseSR) {
+ // MRI.replaceVregUsesWith does not allow to update the subregister,
+ // so instead of doing the use-iteration here, create a copy into a
+ // "non-subregistered" register.
+ const DebugLoc &DL = PN->getDebugLoc();
+ const TargetRegisterClass *RC = MRI->getRegClass(DefR);
+ NewR = MRI->createVirtualRegister(RC);
+ NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
+ .addReg(UseR, 0, UseSR);
+ }
+ MRI->replaceRegWith(DefR, NewR);
+ B->erase(I);
+ }
+}
+
+void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
+ MachineBasicBlock *NewB) {
+ for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
+ MachineBasicBlock *SB = *I;
+ MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
+ for (P = SB->begin(); P != N; ++P) {
+ MachineInstr &PN = *P;
+ for (MachineOperand &MO : PN.operands())
+ if (MO.isMBB() && MO.getMBB() == OldB)
+ MO.setMBB(NewB);
+ }
+ }
+}
+
+void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
+ MachineBasicBlock *SuccB) {
+ DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
+ << PrintMB(SuccB) << "\n");
+ bool TermOk = hasUncondBranch(SuccB);
+ eliminatePhis(SuccB);
+ HII->removeBranch(*PredB);
+ PredB->removeSuccessor(SuccB);
+ PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
+ MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
+ for (I = SuccB->succ_begin(); I != E; ++I)
+ PredB->addSuccessor(*I);
+ PredB->normalizeSuccProbs();
+ replacePhiEdges(SuccB, PredB);
+ removeBlock(SuccB);
+ if (!TermOk)
+ PredB->updateTerminator();
+}
+
+void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
+ if (FP.TrueB)
+ removeBlock(FP.TrueB);
+ if (FP.FalseB)
+ removeBlock(FP.FalseB);
+
+ FP.SplitB->updateTerminator();
+ if (FP.SplitB->succ_size() != 1)
+ return;
+
+ MachineBasicBlock *SB = *FP.SplitB->succ_begin();
+ if (SB->pred_size() != 1)
+ return;
+
+ // By now, the split block has only one successor (SB), and SB has only
+ // one predecessor. We can try to merge them. We will need to update ter-
+ // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
+ // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
+ // with an unconditional branch, we won't need to touch the terminators.
+ if (!hasEHLabel(SB) || hasUncondBranch(SB))
+ mergeBlocks(FP.SplitB, SB);
+}
+
+bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(*MF.getFunction()))
+ return false;
+
+ auto &ST = MF.getSubtarget<HexagonSubtarget>();
+ HII = ST.getInstrInfo();
+ TRI = ST.getRegisterInfo();
+ MFN = &MF;
+ MRI = &MF.getRegInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
+ nullptr;
+
+ Deleted.clear();
+ bool Changed = false;
+
+ for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
+ Changed |= visitLoop(*I);
+ Changed |= visitLoop(nullptr);
+
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+FunctionPass *llvm::createHexagonEarlyIfConversion() {
+ return new HexagonEarlyIfConversion();
+}