diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/BitTracker.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/BitTracker.cpp | 1112 |
1 files changed, 1112 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp new file mode 100644 index 000000000000..61d3630ac095 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp @@ -0,0 +1,1112 @@ +//===--- BitTracker.cpp ---------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +// SSA-based bit propagation. +// +// The purpose of this code is, for a given virtual register, to provide +// information about the value of each bit in the register. The values +// of bits are represented by the class BitValue, and take one of four +// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the +// "ref" value means that the bit is a copy of another bit (which itself +// cannot be a copy of yet another bit---such chains are not allowed). +// A "ref" value is associated with a BitRef structure, which indicates +// which virtual register, and which bit in that register is the origin +// of the value. For example, given an instruction +// vreg2 = ASL vreg1, 1 +// assuming that nothing is known about bits of vreg1, bit 1 of vreg2 +// will be a "ref" to (vreg1, 0). If there is a subsequent instruction +// vreg3 = ASL vreg2, 2 +// then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well. +// The "bottom" case means that the bit's value cannot be determined, +// and that this virtual register actually defines it. The "bottom" case +// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref +// to self", so for the vreg1 above, the bit 0 of it will be a "ref" to +// (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc. +// +// The tracker implements the Wegman-Zadeck algorithm, originally developed +// for SSA-based constant propagation. Each register is represented as +// a sequence of bits, with the convention that bit 0 is the least signi- +// ficant bit. Each bit is propagated individually. The class RegisterCell +// implements the register's representation, and is also the subject of +// the lattice operations in the tracker. +// +// The intended usage of the bit tracker is to create a target-specific +// machine instruction evaluator, pass the evaluator to the BitTracker +// object, and run the tracker. The tracker will then collect the bit +// value information for a given machine function. After that, it can be +// queried for the cells for each virtual register. +// Sample code: +// const TargetSpecificEvaluator TSE(TRI, MRI); +// BitTracker BT(TSE, MF); +// BT.run(); +// ... +// unsigned Reg = interestingRegister(); +// RegisterCell RC = BT.get(Reg); +// if (RC[3].is(1)) +// Reg0bit3 = 1; +// +// The code below is intended to be fully target-independent. + +#include "BitTracker.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Constants.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <iterator> +#include <cassert> +#include <cstdint> + +using namespace llvm; + +typedef BitTracker BT; + +namespace { + + // Local trickery to pretty print a register (without the whole "%vreg" + // business). + struct printv { + printv(unsigned r) : R(r) {} + + unsigned R; + }; + + raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { + if (PV.R) + OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); + else + OS << 's'; + return OS; + } + +} // end anonymous namespace + +namespace llvm { + + raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { + switch (BV.Type) { + case BT::BitValue::Top: + OS << 'T'; + break; + case BT::BitValue::Zero: + OS << '0'; + break; + case BT::BitValue::One: + OS << '1'; + break; + case BT::BitValue::Ref: + OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; + break; + } + return OS; + } + + raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { + unsigned n = RC.Bits.size(); + OS << "{ w:" << n; + // Instead of printing each bit value individually, try to group them + // into logical segments, such as sequences of 0 or 1 bits or references + // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). + // "Start" will be the index of the beginning of the most recent segment. + unsigned Start = 0; + bool SeqRef = false; // A sequence of refs to consecutive bits. + bool ConstRef = false; // A sequence of refs to the same bit. + + for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { + const BT::BitValue &V = RC[i]; + const BT::BitValue &SV = RC[Start]; + bool IsRef = (V.Type == BT::BitValue::Ref); + // If the current value is the same as Start, skip to the next one. + if (!IsRef && V == SV) + continue; + if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { + if (Start+1 == i) { + SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); + ConstRef = (V.RefI.Pos == SV.RefI.Pos); + } + if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) + continue; + if (ConstRef && V.RefI.Pos == SV.RefI.Pos) + continue; + } + + // The current value is different. Print the previous one and reset + // the Start. + OS << " [" << Start; + unsigned Count = i - Start; + if (Count == 1) { + OS << "]:" << SV; + } else { + OS << '-' << i-1 << "]:"; + if (SV.Type == BT::BitValue::Ref && SeqRef) + OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' + << SV.RefI.Pos+(Count-1) << ']'; + else + OS << SV; + } + Start = i; + SeqRef = ConstRef = false; + } + + OS << " [" << Start; + unsigned Count = n - Start; + if (n-Start == 1) { + OS << "]:" << RC[Start]; + } else { + OS << '-' << n-1 << "]:"; + const BT::BitValue &SV = RC[Start]; + if (SV.Type == BT::BitValue::Ref && SeqRef) + OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' + << SV.RefI.Pos+(Count-1) << ']'; + else + OS << SV; + } + OS << " }"; + + return OS; + } + +} // end namespace llvm + +void BitTracker::print_cells(raw_ostream &OS) const { + for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) + dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n"; +} + +BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) + : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {} + +BitTracker::~BitTracker() { + delete ⤅ +} + +// If we were allowed to update a cell for a part of a register, the meet +// operation would need to be parametrized by the register number and the +// exact part of the register, so that the computer BitRefs correspond to +// the actual bits of the "self" register. +// While this cannot happen in the current implementation, I'm not sure +// if this should be ruled out in the future. +bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { + // An example when "meet" can be invoked with SelfR == 0 is a phi node + // with a physical register as an operand. + assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); + bool Changed = false; + for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { + const BitValue &RCV = RC[i]; + Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); + } + return Changed; +} + +// Insert the entire cell RC into the current cell at position given by M. +BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, + const BitMask &M) { + uint16_t B = M.first(), E = M.last(), W = width(); + // Sanity: M must be a valid mask for *this. + assert(B < W && E < W); + // Sanity: the masked part of *this must have the same number of bits + // as the source. + assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. + assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. + if (B <= E) { + for (uint16_t i = 0; i <= E-B; ++i) + Bits[i+B] = RC[i]; + } else { + for (uint16_t i = 0; i < W-B; ++i) + Bits[i+B] = RC[i]; + for (uint16_t i = 0; i <= E; ++i) + Bits[i] = RC[i+(W-B)]; + } + return *this; +} + +BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { + uint16_t B = M.first(), E = M.last(), W = width(); + assert(B < W && E < W); + if (B <= E) { + RegisterCell RC(E-B+1); + for (uint16_t i = B; i <= E; ++i) + RC.Bits[i-B] = Bits[i]; + return RC; + } + + RegisterCell RC(E+(W-B)+1); + for (uint16_t i = 0; i < W-B; ++i) + RC.Bits[i] = Bits[i+B]; + for (uint16_t i = 0; i <= E; ++i) + RC.Bits[i+(W-B)] = Bits[i]; + return RC; +} + +BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { + // Rotate left (i.e. towards increasing bit indices). + // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] + uint16_t W = width(); + Sh = Sh % W; + if (Sh == 0) + return *this; + + RegisterCell Tmp(W-Sh); + // Tmp = [0..W-Sh-1]. + for (uint16_t i = 0; i < W-Sh; ++i) + Tmp[i] = Bits[i]; + // Shift [W-Sh..W-1] to [0..Sh-1]. + for (uint16_t i = 0; i < Sh; ++i) + Bits[i] = Bits[W-Sh+i]; + // Copy Tmp to [Sh..W-1]. + for (uint16_t i = 0; i < W-Sh; ++i) + Bits[i+Sh] = Tmp.Bits[i]; + return *this; +} + +BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, + const BitValue &V) { + assert(B <= E); + while (B < E) + Bits[B++] = V; + return *this; +} + +BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { + // Append the cell given as the argument to the "this" cell. + // Bit 0 of RC becomes bit W of the result, where W is this->width(). + uint16_t W = width(), WRC = RC.width(); + Bits.resize(W+WRC); + for (uint16_t i = 0; i < WRC; ++i) + Bits[i+W] = RC.Bits[i]; + return *this; +} + +uint16_t BT::RegisterCell::ct(bool B) const { + uint16_t W = width(); + uint16_t C = 0; + BitValue V = B; + while (C < W && Bits[C] == V) + C++; + return C; +} + +uint16_t BT::RegisterCell::cl(bool B) const { + uint16_t W = width(); + uint16_t C = 0; + BitValue V = B; + while (C < W && Bits[W-(C+1)] == V) + C++; + return C; +} + +bool BT::RegisterCell::operator== (const RegisterCell &RC) const { + uint16_t W = Bits.size(); + if (RC.Bits.size() != W) + return false; + for (uint16_t i = 0; i < W; ++i) + if (Bits[i] != RC[i]) + return false; + return true; +} + +BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { + for (unsigned i = 0, n = width(); i < n; ++i) { + const BitValue &V = Bits[i]; + if (V.Type == BitValue::Ref && V.RefI.Reg == 0) + Bits[i].RefI = BitRef(R, i); + } + return *this; +} + +uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { + // The general problem is with finding a register class that corresponds + // to a given reference reg:sub. There can be several such classes, and + // since we only care about the register size, it does not matter which + // such class we would find. + // The easiest way to accomplish what we want is to + // 1. find a physical register PhysR from the same class as RR.Reg, + // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, + // 3. find a register class that contains PhysS. + unsigned PhysR; + if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { + const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg); + assert(VC->begin() != VC->end() && "Empty register class"); + PhysR = *VC->begin(); + } else { + assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); + PhysR = RR.Reg; + } + + unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub); + const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS); + uint16_t BW = RC->getSize()*8; + return BW; +} + +BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, + const CellMapType &M) const { + uint16_t BW = getRegBitWidth(RR); + + // Physical registers are assumed to be present in the map with an unknown + // value. Don't actually insert anything in the map, just return the cell. + if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) + return RegisterCell::self(0, BW); + + assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); + // For virtual registers that belong to a class that is not tracked, + // generate an "unknown" value as well. + const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); + if (!track(C)) + return RegisterCell::self(0, BW); + + CellMapType::const_iterator F = M.find(RR.Reg); + if (F != M.end()) { + if (!RR.Sub) + return F->second; + BitMask M = mask(RR.Reg, RR.Sub); + return F->second.extract(M); + } + // If not found, create a "top" entry, but do not insert it in the map. + return RegisterCell::top(BW); +} + +void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, + CellMapType &M) const { + // While updating the cell map can be done in a meaningful way for + // a part of a register, it makes little sense to implement it as the + // SSA representation would never contain such "partial definitions". + if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return; + assert(RR.Sub == 0 && "Unexpected sub-register in definition"); + // Eliminate all ref-to-reg-0 bit values: replace them with "self". + M[RR.Reg] = RC.regify(RR.Reg); +} + +// Check if the cell represents a compile-time integer value. +bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { + uint16_t W = A.width(); + for (uint16_t i = 0; i < W; ++i) + if (!A[i].is(0) && !A[i].is(1)) + return false; + return true; +} + +// Convert a cell to the integer value. The result must fit in uint64_t. +uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { + assert(isInt(A)); + uint64_t Val = 0; + uint16_t W = A.width(); + for (uint16_t i = 0; i < W; ++i) { + Val <<= 1; + Val |= A[i].is(1); + } + return Val; +} + +// Evaluator helper functions. These implement some common operation on +// register cells that can be used to implement target-specific instructions +// in a target-specific evaluator. + +BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { + RegisterCell Res(W); + // For bits beyond the 63rd, this will generate the sign bit of V. + for (uint16_t i = 0; i < W; ++i) { + Res[i] = BitValue(V & 1); + V >>= 1; + } + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { + const APInt &A = CI->getValue(); + uint16_t BW = A.getBitWidth(); + assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); + RegisterCell Res(BW); + for (uint16_t i = 0; i < BW; ++i) + Res[i] = A[i]; + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width(); + assert(W == A2.width()); + RegisterCell Res(W); + bool Carry = false; + uint16_t I; + for (I = 0; I < W; ++I) { + const BitValue &V1 = A1[I]; + const BitValue &V2 = A2[I]; + if (!V1.num() || !V2.num()) + break; + unsigned S = bool(V1) + bool(V2) + Carry; + Res[I] = BitValue(S & 1); + Carry = (S > 1); + } + for (; I < W; ++I) { + const BitValue &V1 = A1[I]; + const BitValue &V2 = A2[I]; + // If the next bit is same as Carry, the result will be 0 plus the + // other bit. The Carry bit will remain unchanged. + if (V1.is(Carry)) + Res[I] = BitValue::ref(V2); + else if (V2.is(Carry)) + Res[I] = BitValue::ref(V1); + else + break; + } + for (; I < W; ++I) + Res[I] = BitValue::self(); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width(); + assert(W == A2.width()); + RegisterCell Res(W); + bool Borrow = false; + uint16_t I; + for (I = 0; I < W; ++I) { + const BitValue &V1 = A1[I]; + const BitValue &V2 = A2[I]; + if (!V1.num() || !V2.num()) + break; + unsigned S = bool(V1) - bool(V2) - Borrow; + Res[I] = BitValue(S & 1); + Borrow = (S > 1); + } + for (; I < W; ++I) { + const BitValue &V1 = A1[I]; + const BitValue &V2 = A2[I]; + if (V1.is(Borrow)) { + Res[I] = BitValue::ref(V2); + break; + } + if (V2.is(Borrow)) + Res[I] = BitValue::ref(V1); + else + break; + } + for (; I < W; ++I) + Res[I] = BitValue::self(); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width() + A2.width(); + uint16_t Z = A1.ct(false) + A2.ct(false); + RegisterCell Res(W); + Res.fill(0, Z, BitValue::Zero); + Res.fill(Z, W, BitValue::self()); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width() + A2.width(); + uint16_t Z = A1.ct(false) + A2.ct(false); + RegisterCell Res(W); + Res.fill(0, Z, BitValue::Zero); + Res.fill(Z, W, BitValue::self()); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, + uint16_t Sh) const { + assert(Sh <= A1.width()); + RegisterCell Res = RegisterCell::ref(A1); + Res.rol(Sh); + Res.fill(0, Sh, BitValue::Zero); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, + uint16_t Sh) const { + uint16_t W = A1.width(); + assert(Sh <= W); + RegisterCell Res = RegisterCell::ref(A1); + Res.rol(W-Sh); + Res.fill(W-Sh, W, BitValue::Zero); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, + uint16_t Sh) const { + uint16_t W = A1.width(); + assert(Sh <= W); + RegisterCell Res = RegisterCell::ref(A1); + BitValue Sign = Res[W-1]; + Res.rol(W-Sh); + Res.fill(W-Sh, W, Sign); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width(); + assert(W == A2.width()); + RegisterCell Res(W); + for (uint16_t i = 0; i < W; ++i) { + const BitValue &V1 = A1[i]; + const BitValue &V2 = A2[i]; + if (V1.is(1)) + Res[i] = BitValue::ref(V2); + else if (V2.is(1)) + Res[i] = BitValue::ref(V1); + else if (V1.is(0) || V2.is(0)) + Res[i] = BitValue::Zero; + else if (V1 == V2) + Res[i] = V1; + else + Res[i] = BitValue::self(); + } + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width(); + assert(W == A2.width()); + RegisterCell Res(W); + for (uint16_t i = 0; i < W; ++i) { + const BitValue &V1 = A1[i]; + const BitValue &V2 = A2[i]; + if (V1.is(1) || V2.is(1)) + Res[i] = BitValue::One; + else if (V1.is(0)) + Res[i] = BitValue::ref(V2); + else if (V2.is(0)) + Res[i] = BitValue::ref(V1); + else if (V1 == V2) + Res[i] = V1; + else + Res[i] = BitValue::self(); + } + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, + const RegisterCell &A2) const { + uint16_t W = A1.width(); + assert(W == A2.width()); + RegisterCell Res(W); + for (uint16_t i = 0; i < W; ++i) { + const BitValue &V1 = A1[i]; + const BitValue &V2 = A2[i]; + if (V1.is(0)) + Res[i] = BitValue::ref(V2); + else if (V2.is(0)) + Res[i] = BitValue::ref(V1); + else if (V1 == V2) + Res[i] = BitValue::Zero; + else + Res[i] = BitValue::self(); + } + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { + uint16_t W = A1.width(); + RegisterCell Res(W); + for (uint16_t i = 0; i < W; ++i) { + const BitValue &V = A1[i]; + if (V.is(0)) + Res[i] = BitValue::One; + else if (V.is(1)) + Res[i] = BitValue::Zero; + else + Res[i] = BitValue::self(); + } + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, + uint16_t BitN) const { + assert(BitN < A1.width()); + RegisterCell Res = RegisterCell::ref(A1); + Res[BitN] = BitValue::One; + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, + uint16_t BitN) const { + assert(BitN < A1.width()); + RegisterCell Res = RegisterCell::ref(A1); + Res[BitN] = BitValue::Zero; + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, + uint16_t W) const { + uint16_t C = A1.cl(B), AW = A1.width(); + // If the last leading non-B bit is not a constant, then we don't know + // the real count. + if ((C < AW && A1[AW-1-C].num()) || C == AW) + return eIMM(C, W); + return RegisterCell::self(0, W); +} + +BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, + uint16_t W) const { + uint16_t C = A1.ct(B), AW = A1.width(); + // If the last trailing non-B bit is not a constant, then we don't know + // the real count. + if ((C < AW && A1[C].num()) || C == AW) + return eIMM(C, W); + return RegisterCell::self(0, W); +} + +BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, + uint16_t FromN) const { + uint16_t W = A1.width(); + assert(FromN <= W); + RegisterCell Res = RegisterCell::ref(A1); + BitValue Sign = Res[FromN-1]; + // Sign-extend "inreg". + Res.fill(FromN, W, Sign); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, + uint16_t FromN) const { + uint16_t W = A1.width(); + assert(FromN <= W); + RegisterCell Res = RegisterCell::ref(A1); + Res.fill(FromN, W, BitValue::Zero); + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, + uint16_t B, uint16_t E) const { + uint16_t W = A1.width(); + assert(B < W && E <= W); + if (B == E) + return RegisterCell(0); + uint16_t Last = (E > 0) ? E-1 : W-1; + RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); + // Return shorter cell. + return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, + const RegisterCell &A2, uint16_t AtN) const { + uint16_t W1 = A1.width(), W2 = A2.width(); + (void)W1; + assert(AtN < W1 && AtN+W2 <= W1); + // Copy bits from A1, insert A2 at position AtN. + RegisterCell Res = RegisterCell::ref(A1); + if (W2 > 0) + Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); + return Res; +} + +BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { + assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); + uint16_t W = getRegBitWidth(Reg); + assert(W > 0 && "Cannot generate mask for empty register"); + return BitMask(0, W-1); +} + +bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, + const CellMapType &Inputs, + CellMapType &Outputs) const { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case TargetOpcode::REG_SEQUENCE: { + RegisterRef RD = MI.getOperand(0); + assert(RD.Sub == 0); + RegisterRef RS = MI.getOperand(1); + unsigned SS = MI.getOperand(2).getImm(); + RegisterRef RT = MI.getOperand(3); + unsigned ST = MI.getOperand(4).getImm(); + assert(SS != ST); + + uint16_t W = getRegBitWidth(RD); + RegisterCell Res(W); + Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); + Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); + putCell(RD, Res, Outputs); + break; + } + + case TargetOpcode::COPY: { + // COPY can transfer a smaller register into a wider one. + // If that is the case, fill the remaining high bits with 0. + RegisterRef RD = MI.getOperand(0); + RegisterRef RS = MI.getOperand(1); + assert(RD.Sub == 0); + uint16_t WD = getRegBitWidth(RD); + uint16_t WS = getRegBitWidth(RS); + assert(WD >= WS); + RegisterCell Src = getCell(RS, Inputs); + RegisterCell Res(WD); + Res.insert(Src, BitMask(0, WS-1)); + Res.fill(WS, WD, BitValue::Zero); + putCell(RD, Res, Outputs); + break; + } + + default: + return false; + } + + return true; +} + +// Main W-Z implementation. + +void BT::visitPHI(const MachineInstr &PI) { + int ThisN = PI.getParent()->getNumber(); + if (Trace) + dbgs() << "Visit FI(BB#" << ThisN << "): " << PI; + + const MachineOperand &MD = PI.getOperand(0); + assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); + RegisterRef DefRR(MD); + uint16_t DefBW = ME.getRegBitWidth(DefRR); + + RegisterCell DefC = ME.getCell(DefRR, Map); + if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow + return; + + bool Changed = false; + + for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { + const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); + int PredN = PB->getNumber(); + if (Trace) + dbgs() << " edge BB#" << PredN << "->BB#" << ThisN; + if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { + if (Trace) + dbgs() << " not executable\n"; + continue; + } + + RegisterRef RU = PI.getOperand(i); + RegisterCell ResC = ME.getCell(RU, Map); + if (Trace) + dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) + << " cell: " << ResC << "\n"; + Changed |= DefC.meet(ResC, DefRR.Reg); + } + + if (Changed) { + if (Trace) + dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub) + << " cell: " << DefC << "\n"; + ME.putCell(DefRR, DefC, Map); + visitUsesOf(DefRR.Reg); + } +} + +void BT::visitNonBranch(const MachineInstr &MI) { + if (Trace) { + int ThisN = MI.getParent()->getNumber(); + dbgs() << "Visit MI(BB#" << ThisN << "): " << MI; + } + if (MI.isDebugValue()) + return; + assert(!MI.isBranch() && "Unexpected branch instruction"); + + CellMapType ResMap; + bool Eval = ME.evaluate(MI, Map, ResMap); + + if (Trace && Eval) { + for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + RegisterRef RU(MO); + dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) + << " cell: " << ME.getCell(RU, Map) << "\n"; + } + dbgs() << "Outputs:\n"; + for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end(); + I != E; ++I) { + RegisterRef RD(I->first); + dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: " + << ME.getCell(RD, ResMap) << "\n"; + } + } + + // Iterate over all definitions of the instruction, and update the + // cells accordingly. + for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { + const MachineOperand &MO = MI.getOperand(i); + // Visit register defs only. + if (!MO.isReg() || !MO.isDef()) + continue; + RegisterRef RD(MO); + assert(RD.Sub == 0 && "Unexpected sub-register in definition"); + if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) + continue; + + bool Changed = false; + if (!Eval || ResMap.count(RD.Reg) == 0) { + // Set to "ref" (aka "bottom"). + uint16_t DefBW = ME.getRegBitWidth(RD); + RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); + if (RefC != ME.getCell(RD, Map)) { + ME.putCell(RD, RefC, Map); + Changed = true; + } + } else { + RegisterCell DefC = ME.getCell(RD, Map); + RegisterCell ResC = ME.getCell(RD, ResMap); + // This is a non-phi instruction, so the values of the inputs come + // from the same registers each time this instruction is evaluated. + // During the propagation, the values of the inputs can become lowered + // in the sense of the lattice operation, which may cause different + // results to be calculated in subsequent evaluations. This should + // not cause the bottoming of the result in the map, since the new + // result is already reflecting the lowered inputs. + for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { + BitValue &V = DefC[i]; + // Bits that are already "bottom" should not be updated. + if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) + continue; + // Same for those that are identical in DefC and ResC. + if (V == ResC[i]) + continue; + V = ResC[i]; + Changed = true; + } + if (Changed) + ME.putCell(RD, DefC, Map); + } + if (Changed) + visitUsesOf(RD.Reg); + } +} + +void BT::visitBranchesFrom(const MachineInstr &BI) { + const MachineBasicBlock &B = *BI.getParent(); + MachineBasicBlock::const_iterator It = BI, End = B.end(); + BranchTargetList Targets, BTs; + bool FallsThrough = true, DefaultToAll = false; + int ThisN = B.getNumber(); + + do { + BTs.clear(); + const MachineInstr &MI = *It; + if (Trace) + dbgs() << "Visit BR(BB#" << ThisN << "): " << MI; + assert(MI.isBranch() && "Expecting branch instruction"); + InstrExec.insert(&MI); + bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); + if (!Eval) { + // If the evaluation failed, we will add all targets. Keep going in + // the loop to mark all executable branches as such. + DefaultToAll = true; + FallsThrough = true; + if (Trace) + dbgs() << " failed to evaluate: will add all CFG successors\n"; + } else if (!DefaultToAll) { + // If evaluated successfully add the targets to the cumulative list. + if (Trace) { + dbgs() << " adding targets:"; + for (unsigned i = 0, n = BTs.size(); i < n; ++i) + dbgs() << " BB#" << BTs[i]->getNumber(); + if (FallsThrough) + dbgs() << "\n falls through\n"; + else + dbgs() << "\n does not fall through\n"; + } + Targets.insert(BTs.begin(), BTs.end()); + } + ++It; + } while (FallsThrough && It != End); + + typedef MachineBasicBlock::const_succ_iterator succ_iterator; + if (!DefaultToAll) { + // Need to add all CFG successors that lead to EH landing pads. + // There won't be explicit branches to these blocks, but they must + // be processed. + for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) { + const MachineBasicBlock *SB = *I; + if (SB->isEHPad()) + Targets.insert(SB); + } + if (FallsThrough) { + MachineFunction::const_iterator BIt = B.getIterator(); + MachineFunction::const_iterator Next = std::next(BIt); + if (Next != MF.end()) + Targets.insert(&*Next); + } + } else { + for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) + Targets.insert(*I); + } + + for (unsigned i = 0, n = Targets.size(); i < n; ++i) { + int TargetN = Targets[i]->getNumber(); + FlowQ.push(CFGEdge(ThisN, TargetN)); + } +} + +void BT::visitUsesOf(unsigned Reg) { + if (Trace) + dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n"; + + typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; + use_iterator End = MRI.use_nodbg_end(); + for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) { + MachineInstr *UseI = I->getParent(); + if (!InstrExec.count(UseI)) + continue; + if (UseI->isPHI()) + visitPHI(*UseI); + else if (!UseI->isBranch()) + visitNonBranch(*UseI); + else + visitBranchesFrom(*UseI); + } +} + +BT::RegisterCell BT::get(RegisterRef RR) const { + return ME.getCell(RR, Map); +} + +void BT::put(RegisterRef RR, const RegisterCell &RC) { + ME.putCell(RR, RC, Map); +} + +// Replace all references to bits from OldRR with the corresponding bits +// in NewRR. +void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { + assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); + BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); + BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); + uint16_t OMB = OM.first(), OME = OM.last(); + uint16_t NMB = NM.first(), NME = NM.last(); + (void)NME; + assert((OME-OMB == NME-NMB) && + "Substituting registers of different lengths"); + for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) { + RegisterCell &RC = I->second; + for (uint16_t i = 0, w = RC.width(); i < w; ++i) { + BitValue &V = RC[i]; + if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) + continue; + if (V.RefI.Pos < OMB || V.RefI.Pos > OME) + continue; + V.RefI.Reg = NewRR.Reg; + V.RefI.Pos += NMB-OMB; + } + } +} + +// Check if the block has been "executed" during propagation. (If not, the +// block is dead, but it may still appear to be reachable.) +bool BT::reached(const MachineBasicBlock *B) const { + int BN = B->getNumber(); + assert(BN >= 0); + for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end(); + I != E; ++I) { + if (I->second == BN) + return true; + } + return false; +} + +// Visit an individual instruction. This could be a newly added instruction, +// or one that has been modified by an optimization. +void BT::visit(const MachineInstr &MI) { + assert(!MI.isBranch() && "Only non-branches are allowed"); + InstrExec.insert(&MI); + visitNonBranch(MI); + // The call to visitNonBranch could propagate the changes until a branch + // is actually visited. This could result in adding CFG edges to the flow + // queue. Since the queue won't be processed, clear it. + while (!FlowQ.empty()) + FlowQ.pop(); +} + +void BT::reset() { + EdgeExec.clear(); + InstrExec.clear(); + Map.clear(); +} + +void BT::run() { + reset(); + assert(FlowQ.empty()); + + typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits; + const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); + + unsigned MaxBN = 0; + for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); + I != E; ++I) { + assert(I->getNumber() >= 0 && "Disconnected block"); + unsigned BN = I->getNumber(); + if (BN > MaxBN) + MaxBN = BN; + } + + // Keep track of visited blocks. + BitVector BlockScanned(MaxBN+1); + + int EntryN = Entry->getNumber(); + // Generate a fake edge to get something to start with. + FlowQ.push(CFGEdge(-1, EntryN)); + + while (!FlowQ.empty()) { + CFGEdge Edge = FlowQ.front(); + FlowQ.pop(); + + if (EdgeExec.count(Edge)) + continue; + EdgeExec.insert(Edge); + + const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); + MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); + // Visit PHI nodes first. + while (It != End && It->isPHI()) { + const MachineInstr &PI = *It++; + InstrExec.insert(&PI); + visitPHI(PI); + } + + // If this block has already been visited through a flow graph edge, + // then the instructions have already been processed. Any updates to + // the cells would now only happen through visitUsesOf... + if (BlockScanned[Edge.second]) + continue; + BlockScanned[Edge.second] = true; + + // Visit non-branch instructions. + while (It != End && !It->isBranch()) { + const MachineInstr &MI = *It++; + InstrExec.insert(&MI); + visitNonBranch(MI); + } + // If block end has been reached, add the fall-through edge to the queue. + if (It == End) { + MachineFunction::const_iterator BIt = B.getIterator(); + MachineFunction::const_iterator Next = std::next(BIt); + if (Next != MF.end() && B.isSuccessor(&*Next)) { + int ThisN = B.getNumber(); + int NextN = Next->getNumber(); + FlowQ.push(CFGEdge(ThisN, NextN)); + } + } else { + // Handle the remaining sequence of branches. This function will update + // the work queue. + visitBranchesFrom(*It); + } + } // while (!FlowQ->empty()) + + if (Trace) + print_cells(dbgs() << "Cells after propagation:\n"); +} |