aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/BitTracker.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/BitTracker.cpp1112
1 files changed, 1112 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp
new file mode 100644
index 000000000000..61d3630ac095
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp
@@ -0,0 +1,1112 @@
+//===--- BitTracker.cpp ---------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// SSA-based bit propagation.
+//
+// The purpose of this code is, for a given virtual register, to provide
+// information about the value of each bit in the register. The values
+// of bits are represented by the class BitValue, and take one of four
+// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
+// "ref" value means that the bit is a copy of another bit (which itself
+// cannot be a copy of yet another bit---such chains are not allowed).
+// A "ref" value is associated with a BitRef structure, which indicates
+// which virtual register, and which bit in that register is the origin
+// of the value. For example, given an instruction
+// vreg2 = ASL vreg1, 1
+// assuming that nothing is known about bits of vreg1, bit 1 of vreg2
+// will be a "ref" to (vreg1, 0). If there is a subsequent instruction
+// vreg3 = ASL vreg2, 2
+// then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well.
+// The "bottom" case means that the bit's value cannot be determined,
+// and that this virtual register actually defines it. The "bottom" case
+// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
+// to self", so for the vreg1 above, the bit 0 of it will be a "ref" to
+// (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc.
+//
+// The tracker implements the Wegman-Zadeck algorithm, originally developed
+// for SSA-based constant propagation. Each register is represented as
+// a sequence of bits, with the convention that bit 0 is the least signi-
+// ficant bit. Each bit is propagated individually. The class RegisterCell
+// implements the register's representation, and is also the subject of
+// the lattice operations in the tracker.
+//
+// The intended usage of the bit tracker is to create a target-specific
+// machine instruction evaluator, pass the evaluator to the BitTracker
+// object, and run the tracker. The tracker will then collect the bit
+// value information for a given machine function. After that, it can be
+// queried for the cells for each virtual register.
+// Sample code:
+// const TargetSpecificEvaluator TSE(TRI, MRI);
+// BitTracker BT(TSE, MF);
+// BT.run();
+// ...
+// unsigned Reg = interestingRegister();
+// RegisterCell RC = BT.get(Reg);
+// if (RC[3].is(1))
+// Reg0bit3 = 1;
+//
+// The code below is intended to be fully target-independent.
+
+#include "BitTracker.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <iterator>
+#include <cassert>
+#include <cstdint>
+
+using namespace llvm;
+
+typedef BitTracker BT;
+
+namespace {
+
+ // Local trickery to pretty print a register (without the whole "%vreg"
+ // business).
+ struct printv {
+ printv(unsigned r) : R(r) {}
+
+ unsigned R;
+ };
+
+ raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
+ if (PV.R)
+ OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
+ else
+ OS << 's';
+ return OS;
+ }
+
+} // end anonymous namespace
+
+namespace llvm {
+
+ raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
+ switch (BV.Type) {
+ case BT::BitValue::Top:
+ OS << 'T';
+ break;
+ case BT::BitValue::Zero:
+ OS << '0';
+ break;
+ case BT::BitValue::One:
+ OS << '1';
+ break;
+ case BT::BitValue::Ref:
+ OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
+ break;
+ }
+ return OS;
+ }
+
+ raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
+ unsigned n = RC.Bits.size();
+ OS << "{ w:" << n;
+ // Instead of printing each bit value individually, try to group them
+ // into logical segments, such as sequences of 0 or 1 bits or references
+ // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
+ // "Start" will be the index of the beginning of the most recent segment.
+ unsigned Start = 0;
+ bool SeqRef = false; // A sequence of refs to consecutive bits.
+ bool ConstRef = false; // A sequence of refs to the same bit.
+
+ for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
+ const BT::BitValue &V = RC[i];
+ const BT::BitValue &SV = RC[Start];
+ bool IsRef = (V.Type == BT::BitValue::Ref);
+ // If the current value is the same as Start, skip to the next one.
+ if (!IsRef && V == SV)
+ continue;
+ if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
+ if (Start+1 == i) {
+ SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
+ ConstRef = (V.RefI.Pos == SV.RefI.Pos);
+ }
+ if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
+ continue;
+ if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
+ continue;
+ }
+
+ // The current value is different. Print the previous one and reset
+ // the Start.
+ OS << " [" << Start;
+ unsigned Count = i - Start;
+ if (Count == 1) {
+ OS << "]:" << SV;
+ } else {
+ OS << '-' << i-1 << "]:";
+ if (SV.Type == BT::BitValue::Ref && SeqRef)
+ OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
+ << SV.RefI.Pos+(Count-1) << ']';
+ else
+ OS << SV;
+ }
+ Start = i;
+ SeqRef = ConstRef = false;
+ }
+
+ OS << " [" << Start;
+ unsigned Count = n - Start;
+ if (n-Start == 1) {
+ OS << "]:" << RC[Start];
+ } else {
+ OS << '-' << n-1 << "]:";
+ const BT::BitValue &SV = RC[Start];
+ if (SV.Type == BT::BitValue::Ref && SeqRef)
+ OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
+ << SV.RefI.Pos+(Count-1) << ']';
+ else
+ OS << SV;
+ }
+ OS << " }";
+
+ return OS;
+ }
+
+} // end namespace llvm
+
+void BitTracker::print_cells(raw_ostream &OS) const {
+ for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
+ dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n";
+}
+
+BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
+ : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {}
+
+BitTracker::~BitTracker() {
+ delete &Map;
+}
+
+// If we were allowed to update a cell for a part of a register, the meet
+// operation would need to be parametrized by the register number and the
+// exact part of the register, so that the computer BitRefs correspond to
+// the actual bits of the "self" register.
+// While this cannot happen in the current implementation, I'm not sure
+// if this should be ruled out in the future.
+bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
+ // An example when "meet" can be invoked with SelfR == 0 is a phi node
+ // with a physical register as an operand.
+ assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
+ bool Changed = false;
+ for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
+ const BitValue &RCV = RC[i];
+ Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
+ }
+ return Changed;
+}
+
+// Insert the entire cell RC into the current cell at position given by M.
+BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
+ const BitMask &M) {
+ uint16_t B = M.first(), E = M.last(), W = width();
+ // Sanity: M must be a valid mask for *this.
+ assert(B < W && E < W);
+ // Sanity: the masked part of *this must have the same number of bits
+ // as the source.
+ assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|.
+ assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|.
+ if (B <= E) {
+ for (uint16_t i = 0; i <= E-B; ++i)
+ Bits[i+B] = RC[i];
+ } else {
+ for (uint16_t i = 0; i < W-B; ++i)
+ Bits[i+B] = RC[i];
+ for (uint16_t i = 0; i <= E; ++i)
+ Bits[i] = RC[i+(W-B)];
+ }
+ return *this;
+}
+
+BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
+ uint16_t B = M.first(), E = M.last(), W = width();
+ assert(B < W && E < W);
+ if (B <= E) {
+ RegisterCell RC(E-B+1);
+ for (uint16_t i = B; i <= E; ++i)
+ RC.Bits[i-B] = Bits[i];
+ return RC;
+ }
+
+ RegisterCell RC(E+(W-B)+1);
+ for (uint16_t i = 0; i < W-B; ++i)
+ RC.Bits[i] = Bits[i+B];
+ for (uint16_t i = 0; i <= E; ++i)
+ RC.Bits[i+(W-B)] = Bits[i];
+ return RC;
+}
+
+BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
+ // Rotate left (i.e. towards increasing bit indices).
+ // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
+ uint16_t W = width();
+ Sh = Sh % W;
+ if (Sh == 0)
+ return *this;
+
+ RegisterCell Tmp(W-Sh);
+ // Tmp = [0..W-Sh-1].
+ for (uint16_t i = 0; i < W-Sh; ++i)
+ Tmp[i] = Bits[i];
+ // Shift [W-Sh..W-1] to [0..Sh-1].
+ for (uint16_t i = 0; i < Sh; ++i)
+ Bits[i] = Bits[W-Sh+i];
+ // Copy Tmp to [Sh..W-1].
+ for (uint16_t i = 0; i < W-Sh; ++i)
+ Bits[i+Sh] = Tmp.Bits[i];
+ return *this;
+}
+
+BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
+ const BitValue &V) {
+ assert(B <= E);
+ while (B < E)
+ Bits[B++] = V;
+ return *this;
+}
+
+BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
+ // Append the cell given as the argument to the "this" cell.
+ // Bit 0 of RC becomes bit W of the result, where W is this->width().
+ uint16_t W = width(), WRC = RC.width();
+ Bits.resize(W+WRC);
+ for (uint16_t i = 0; i < WRC; ++i)
+ Bits[i+W] = RC.Bits[i];
+ return *this;
+}
+
+uint16_t BT::RegisterCell::ct(bool B) const {
+ uint16_t W = width();
+ uint16_t C = 0;
+ BitValue V = B;
+ while (C < W && Bits[C] == V)
+ C++;
+ return C;
+}
+
+uint16_t BT::RegisterCell::cl(bool B) const {
+ uint16_t W = width();
+ uint16_t C = 0;
+ BitValue V = B;
+ while (C < W && Bits[W-(C+1)] == V)
+ C++;
+ return C;
+}
+
+bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
+ uint16_t W = Bits.size();
+ if (RC.Bits.size() != W)
+ return false;
+ for (uint16_t i = 0; i < W; ++i)
+ if (Bits[i] != RC[i])
+ return false;
+ return true;
+}
+
+BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
+ for (unsigned i = 0, n = width(); i < n; ++i) {
+ const BitValue &V = Bits[i];
+ if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
+ Bits[i].RefI = BitRef(R, i);
+ }
+ return *this;
+}
+
+uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
+ // The general problem is with finding a register class that corresponds
+ // to a given reference reg:sub. There can be several such classes, and
+ // since we only care about the register size, it does not matter which
+ // such class we would find.
+ // The easiest way to accomplish what we want is to
+ // 1. find a physical register PhysR from the same class as RR.Reg,
+ // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
+ // 3. find a register class that contains PhysS.
+ unsigned PhysR;
+ if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
+ const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg);
+ assert(VC->begin() != VC->end() && "Empty register class");
+ PhysR = *VC->begin();
+ } else {
+ assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
+ PhysR = RR.Reg;
+ }
+
+ unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub);
+ const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS);
+ uint16_t BW = RC->getSize()*8;
+ return BW;
+}
+
+BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
+ const CellMapType &M) const {
+ uint16_t BW = getRegBitWidth(RR);
+
+ // Physical registers are assumed to be present in the map with an unknown
+ // value. Don't actually insert anything in the map, just return the cell.
+ if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
+ return RegisterCell::self(0, BW);
+
+ assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
+ // For virtual registers that belong to a class that is not tracked,
+ // generate an "unknown" value as well.
+ const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
+ if (!track(C))
+ return RegisterCell::self(0, BW);
+
+ CellMapType::const_iterator F = M.find(RR.Reg);
+ if (F != M.end()) {
+ if (!RR.Sub)
+ return F->second;
+ BitMask M = mask(RR.Reg, RR.Sub);
+ return F->second.extract(M);
+ }
+ // If not found, create a "top" entry, but do not insert it in the map.
+ return RegisterCell::top(BW);
+}
+
+void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
+ CellMapType &M) const {
+ // While updating the cell map can be done in a meaningful way for
+ // a part of a register, it makes little sense to implement it as the
+ // SSA representation would never contain such "partial definitions".
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return;
+ assert(RR.Sub == 0 && "Unexpected sub-register in definition");
+ // Eliminate all ref-to-reg-0 bit values: replace them with "self".
+ M[RR.Reg] = RC.regify(RR.Reg);
+}
+
+// Check if the cell represents a compile-time integer value.
+bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
+ uint16_t W = A.width();
+ for (uint16_t i = 0; i < W; ++i)
+ if (!A[i].is(0) && !A[i].is(1))
+ return false;
+ return true;
+}
+
+// Convert a cell to the integer value. The result must fit in uint64_t.
+uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
+ assert(isInt(A));
+ uint64_t Val = 0;
+ uint16_t W = A.width();
+ for (uint16_t i = 0; i < W; ++i) {
+ Val <<= 1;
+ Val |= A[i].is(1);
+ }
+ return Val;
+}
+
+// Evaluator helper functions. These implement some common operation on
+// register cells that can be used to implement target-specific instructions
+// in a target-specific evaluator.
+
+BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
+ RegisterCell Res(W);
+ // For bits beyond the 63rd, this will generate the sign bit of V.
+ for (uint16_t i = 0; i < W; ++i) {
+ Res[i] = BitValue(V & 1);
+ V >>= 1;
+ }
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
+ const APInt &A = CI->getValue();
+ uint16_t BW = A.getBitWidth();
+ assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
+ RegisterCell Res(BW);
+ for (uint16_t i = 0; i < BW; ++i)
+ Res[i] = A[i];
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width();
+ assert(W == A2.width());
+ RegisterCell Res(W);
+ bool Carry = false;
+ uint16_t I;
+ for (I = 0; I < W; ++I) {
+ const BitValue &V1 = A1[I];
+ const BitValue &V2 = A2[I];
+ if (!V1.num() || !V2.num())
+ break;
+ unsigned S = bool(V1) + bool(V2) + Carry;
+ Res[I] = BitValue(S & 1);
+ Carry = (S > 1);
+ }
+ for (; I < W; ++I) {
+ const BitValue &V1 = A1[I];
+ const BitValue &V2 = A2[I];
+ // If the next bit is same as Carry, the result will be 0 plus the
+ // other bit. The Carry bit will remain unchanged.
+ if (V1.is(Carry))
+ Res[I] = BitValue::ref(V2);
+ else if (V2.is(Carry))
+ Res[I] = BitValue::ref(V1);
+ else
+ break;
+ }
+ for (; I < W; ++I)
+ Res[I] = BitValue::self();
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width();
+ assert(W == A2.width());
+ RegisterCell Res(W);
+ bool Borrow = false;
+ uint16_t I;
+ for (I = 0; I < W; ++I) {
+ const BitValue &V1 = A1[I];
+ const BitValue &V2 = A2[I];
+ if (!V1.num() || !V2.num())
+ break;
+ unsigned S = bool(V1) - bool(V2) - Borrow;
+ Res[I] = BitValue(S & 1);
+ Borrow = (S > 1);
+ }
+ for (; I < W; ++I) {
+ const BitValue &V1 = A1[I];
+ const BitValue &V2 = A2[I];
+ if (V1.is(Borrow)) {
+ Res[I] = BitValue::ref(V2);
+ break;
+ }
+ if (V2.is(Borrow))
+ Res[I] = BitValue::ref(V1);
+ else
+ break;
+ }
+ for (; I < W; ++I)
+ Res[I] = BitValue::self();
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width() + A2.width();
+ uint16_t Z = A1.ct(false) + A2.ct(false);
+ RegisterCell Res(W);
+ Res.fill(0, Z, BitValue::Zero);
+ Res.fill(Z, W, BitValue::self());
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width() + A2.width();
+ uint16_t Z = A1.ct(false) + A2.ct(false);
+ RegisterCell Res(W);
+ Res.fill(0, Z, BitValue::Zero);
+ Res.fill(Z, W, BitValue::self());
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
+ uint16_t Sh) const {
+ assert(Sh <= A1.width());
+ RegisterCell Res = RegisterCell::ref(A1);
+ Res.rol(Sh);
+ Res.fill(0, Sh, BitValue::Zero);
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
+ uint16_t Sh) const {
+ uint16_t W = A1.width();
+ assert(Sh <= W);
+ RegisterCell Res = RegisterCell::ref(A1);
+ Res.rol(W-Sh);
+ Res.fill(W-Sh, W, BitValue::Zero);
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
+ uint16_t Sh) const {
+ uint16_t W = A1.width();
+ assert(Sh <= W);
+ RegisterCell Res = RegisterCell::ref(A1);
+ BitValue Sign = Res[W-1];
+ Res.rol(W-Sh);
+ Res.fill(W-Sh, W, Sign);
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width();
+ assert(W == A2.width());
+ RegisterCell Res(W);
+ for (uint16_t i = 0; i < W; ++i) {
+ const BitValue &V1 = A1[i];
+ const BitValue &V2 = A2[i];
+ if (V1.is(1))
+ Res[i] = BitValue::ref(V2);
+ else if (V2.is(1))
+ Res[i] = BitValue::ref(V1);
+ else if (V1.is(0) || V2.is(0))
+ Res[i] = BitValue::Zero;
+ else if (V1 == V2)
+ Res[i] = V1;
+ else
+ Res[i] = BitValue::self();
+ }
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width();
+ assert(W == A2.width());
+ RegisterCell Res(W);
+ for (uint16_t i = 0; i < W; ++i) {
+ const BitValue &V1 = A1[i];
+ const BitValue &V2 = A2[i];
+ if (V1.is(1) || V2.is(1))
+ Res[i] = BitValue::One;
+ else if (V1.is(0))
+ Res[i] = BitValue::ref(V2);
+ else if (V2.is(0))
+ Res[i] = BitValue::ref(V1);
+ else if (V1 == V2)
+ Res[i] = V1;
+ else
+ Res[i] = BitValue::self();
+ }
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
+ const RegisterCell &A2) const {
+ uint16_t W = A1.width();
+ assert(W == A2.width());
+ RegisterCell Res(W);
+ for (uint16_t i = 0; i < W; ++i) {
+ const BitValue &V1 = A1[i];
+ const BitValue &V2 = A2[i];
+ if (V1.is(0))
+ Res[i] = BitValue::ref(V2);
+ else if (V2.is(0))
+ Res[i] = BitValue::ref(V1);
+ else if (V1 == V2)
+ Res[i] = BitValue::Zero;
+ else
+ Res[i] = BitValue::self();
+ }
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
+ uint16_t W = A1.width();
+ RegisterCell Res(W);
+ for (uint16_t i = 0; i < W; ++i) {
+ const BitValue &V = A1[i];
+ if (V.is(0))
+ Res[i] = BitValue::One;
+ else if (V.is(1))
+ Res[i] = BitValue::Zero;
+ else
+ Res[i] = BitValue::self();
+ }
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
+ uint16_t BitN) const {
+ assert(BitN < A1.width());
+ RegisterCell Res = RegisterCell::ref(A1);
+ Res[BitN] = BitValue::One;
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
+ uint16_t BitN) const {
+ assert(BitN < A1.width());
+ RegisterCell Res = RegisterCell::ref(A1);
+ Res[BitN] = BitValue::Zero;
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
+ uint16_t W) const {
+ uint16_t C = A1.cl(B), AW = A1.width();
+ // If the last leading non-B bit is not a constant, then we don't know
+ // the real count.
+ if ((C < AW && A1[AW-1-C].num()) || C == AW)
+ return eIMM(C, W);
+ return RegisterCell::self(0, W);
+}
+
+BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
+ uint16_t W) const {
+ uint16_t C = A1.ct(B), AW = A1.width();
+ // If the last trailing non-B bit is not a constant, then we don't know
+ // the real count.
+ if ((C < AW && A1[C].num()) || C == AW)
+ return eIMM(C, W);
+ return RegisterCell::self(0, W);
+}
+
+BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
+ uint16_t FromN) const {
+ uint16_t W = A1.width();
+ assert(FromN <= W);
+ RegisterCell Res = RegisterCell::ref(A1);
+ BitValue Sign = Res[FromN-1];
+ // Sign-extend "inreg".
+ Res.fill(FromN, W, Sign);
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
+ uint16_t FromN) const {
+ uint16_t W = A1.width();
+ assert(FromN <= W);
+ RegisterCell Res = RegisterCell::ref(A1);
+ Res.fill(FromN, W, BitValue::Zero);
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
+ uint16_t B, uint16_t E) const {
+ uint16_t W = A1.width();
+ assert(B < W && E <= W);
+ if (B == E)
+ return RegisterCell(0);
+ uint16_t Last = (E > 0) ? E-1 : W-1;
+ RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
+ // Return shorter cell.
+ return Res;
+}
+
+BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
+ const RegisterCell &A2, uint16_t AtN) const {
+ uint16_t W1 = A1.width(), W2 = A2.width();
+ (void)W1;
+ assert(AtN < W1 && AtN+W2 <= W1);
+ // Copy bits from A1, insert A2 at position AtN.
+ RegisterCell Res = RegisterCell::ref(A1);
+ if (W2 > 0)
+ Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
+ return Res;
+}
+
+BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
+ assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
+ uint16_t W = getRegBitWidth(Reg);
+ assert(W > 0 && "Cannot generate mask for empty register");
+ return BitMask(0, W-1);
+}
+
+bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
+ const CellMapType &Inputs,
+ CellMapType &Outputs) const {
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ case TargetOpcode::REG_SEQUENCE: {
+ RegisterRef RD = MI.getOperand(0);
+ assert(RD.Sub == 0);
+ RegisterRef RS = MI.getOperand(1);
+ unsigned SS = MI.getOperand(2).getImm();
+ RegisterRef RT = MI.getOperand(3);
+ unsigned ST = MI.getOperand(4).getImm();
+ assert(SS != ST);
+
+ uint16_t W = getRegBitWidth(RD);
+ RegisterCell Res(W);
+ Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
+ Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
+ putCell(RD, Res, Outputs);
+ break;
+ }
+
+ case TargetOpcode::COPY: {
+ // COPY can transfer a smaller register into a wider one.
+ // If that is the case, fill the remaining high bits with 0.
+ RegisterRef RD = MI.getOperand(0);
+ RegisterRef RS = MI.getOperand(1);
+ assert(RD.Sub == 0);
+ uint16_t WD = getRegBitWidth(RD);
+ uint16_t WS = getRegBitWidth(RS);
+ assert(WD >= WS);
+ RegisterCell Src = getCell(RS, Inputs);
+ RegisterCell Res(WD);
+ Res.insert(Src, BitMask(0, WS-1));
+ Res.fill(WS, WD, BitValue::Zero);
+ putCell(RD, Res, Outputs);
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+// Main W-Z implementation.
+
+void BT::visitPHI(const MachineInstr &PI) {
+ int ThisN = PI.getParent()->getNumber();
+ if (Trace)
+ dbgs() << "Visit FI(BB#" << ThisN << "): " << PI;
+
+ const MachineOperand &MD = PI.getOperand(0);
+ assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
+ RegisterRef DefRR(MD);
+ uint16_t DefBW = ME.getRegBitWidth(DefRR);
+
+ RegisterCell DefC = ME.getCell(DefRR, Map);
+ if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow
+ return;
+
+ bool Changed = false;
+
+ for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
+ const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
+ int PredN = PB->getNumber();
+ if (Trace)
+ dbgs() << " edge BB#" << PredN << "->BB#" << ThisN;
+ if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
+ if (Trace)
+ dbgs() << " not executable\n";
+ continue;
+ }
+
+ RegisterRef RU = PI.getOperand(i);
+ RegisterCell ResC = ME.getCell(RU, Map);
+ if (Trace)
+ dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
+ << " cell: " << ResC << "\n";
+ Changed |= DefC.meet(ResC, DefRR.Reg);
+ }
+
+ if (Changed) {
+ if (Trace)
+ dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
+ << " cell: " << DefC << "\n";
+ ME.putCell(DefRR, DefC, Map);
+ visitUsesOf(DefRR.Reg);
+ }
+}
+
+void BT::visitNonBranch(const MachineInstr &MI) {
+ if (Trace) {
+ int ThisN = MI.getParent()->getNumber();
+ dbgs() << "Visit MI(BB#" << ThisN << "): " << MI;
+ }
+ if (MI.isDebugValue())
+ return;
+ assert(!MI.isBranch() && "Unexpected branch instruction");
+
+ CellMapType ResMap;
+ bool Eval = ME.evaluate(MI, Map, ResMap);
+
+ if (Trace && Eval) {
+ for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ RegisterRef RU(MO);
+ dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
+ << " cell: " << ME.getCell(RU, Map) << "\n";
+ }
+ dbgs() << "Outputs:\n";
+ for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end();
+ I != E; ++I) {
+ RegisterRef RD(I->first);
+ dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: "
+ << ME.getCell(RD, ResMap) << "\n";
+ }
+ }
+
+ // Iterate over all definitions of the instruction, and update the
+ // cells accordingly.
+ for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ // Visit register defs only.
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ RegisterRef RD(MO);
+ assert(RD.Sub == 0 && "Unexpected sub-register in definition");
+ if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
+ continue;
+
+ bool Changed = false;
+ if (!Eval || ResMap.count(RD.Reg) == 0) {
+ // Set to "ref" (aka "bottom").
+ uint16_t DefBW = ME.getRegBitWidth(RD);
+ RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
+ if (RefC != ME.getCell(RD, Map)) {
+ ME.putCell(RD, RefC, Map);
+ Changed = true;
+ }
+ } else {
+ RegisterCell DefC = ME.getCell(RD, Map);
+ RegisterCell ResC = ME.getCell(RD, ResMap);
+ // This is a non-phi instruction, so the values of the inputs come
+ // from the same registers each time this instruction is evaluated.
+ // During the propagation, the values of the inputs can become lowered
+ // in the sense of the lattice operation, which may cause different
+ // results to be calculated in subsequent evaluations. This should
+ // not cause the bottoming of the result in the map, since the new
+ // result is already reflecting the lowered inputs.
+ for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
+ BitValue &V = DefC[i];
+ // Bits that are already "bottom" should not be updated.
+ if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
+ continue;
+ // Same for those that are identical in DefC and ResC.
+ if (V == ResC[i])
+ continue;
+ V = ResC[i];
+ Changed = true;
+ }
+ if (Changed)
+ ME.putCell(RD, DefC, Map);
+ }
+ if (Changed)
+ visitUsesOf(RD.Reg);
+ }
+}
+
+void BT::visitBranchesFrom(const MachineInstr &BI) {
+ const MachineBasicBlock &B = *BI.getParent();
+ MachineBasicBlock::const_iterator It = BI, End = B.end();
+ BranchTargetList Targets, BTs;
+ bool FallsThrough = true, DefaultToAll = false;
+ int ThisN = B.getNumber();
+
+ do {
+ BTs.clear();
+ const MachineInstr &MI = *It;
+ if (Trace)
+ dbgs() << "Visit BR(BB#" << ThisN << "): " << MI;
+ assert(MI.isBranch() && "Expecting branch instruction");
+ InstrExec.insert(&MI);
+ bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
+ if (!Eval) {
+ // If the evaluation failed, we will add all targets. Keep going in
+ // the loop to mark all executable branches as such.
+ DefaultToAll = true;
+ FallsThrough = true;
+ if (Trace)
+ dbgs() << " failed to evaluate: will add all CFG successors\n";
+ } else if (!DefaultToAll) {
+ // If evaluated successfully add the targets to the cumulative list.
+ if (Trace) {
+ dbgs() << " adding targets:";
+ for (unsigned i = 0, n = BTs.size(); i < n; ++i)
+ dbgs() << " BB#" << BTs[i]->getNumber();
+ if (FallsThrough)
+ dbgs() << "\n falls through\n";
+ else
+ dbgs() << "\n does not fall through\n";
+ }
+ Targets.insert(BTs.begin(), BTs.end());
+ }
+ ++It;
+ } while (FallsThrough && It != End);
+
+ typedef MachineBasicBlock::const_succ_iterator succ_iterator;
+ if (!DefaultToAll) {
+ // Need to add all CFG successors that lead to EH landing pads.
+ // There won't be explicit branches to these blocks, but they must
+ // be processed.
+ for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) {
+ const MachineBasicBlock *SB = *I;
+ if (SB->isEHPad())
+ Targets.insert(SB);
+ }
+ if (FallsThrough) {
+ MachineFunction::const_iterator BIt = B.getIterator();
+ MachineFunction::const_iterator Next = std::next(BIt);
+ if (Next != MF.end())
+ Targets.insert(&*Next);
+ }
+ } else {
+ for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I)
+ Targets.insert(*I);
+ }
+
+ for (unsigned i = 0, n = Targets.size(); i < n; ++i) {
+ int TargetN = Targets[i]->getNumber();
+ FlowQ.push(CFGEdge(ThisN, TargetN));
+ }
+}
+
+void BT::visitUsesOf(unsigned Reg) {
+ if (Trace)
+ dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n";
+
+ typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
+ use_iterator End = MRI.use_nodbg_end();
+ for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) {
+ MachineInstr *UseI = I->getParent();
+ if (!InstrExec.count(UseI))
+ continue;
+ if (UseI->isPHI())
+ visitPHI(*UseI);
+ else if (!UseI->isBranch())
+ visitNonBranch(*UseI);
+ else
+ visitBranchesFrom(*UseI);
+ }
+}
+
+BT::RegisterCell BT::get(RegisterRef RR) const {
+ return ME.getCell(RR, Map);
+}
+
+void BT::put(RegisterRef RR, const RegisterCell &RC) {
+ ME.putCell(RR, RC, Map);
+}
+
+// Replace all references to bits from OldRR with the corresponding bits
+// in NewRR.
+void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
+ assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
+ BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
+ BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
+ uint16_t OMB = OM.first(), OME = OM.last();
+ uint16_t NMB = NM.first(), NME = NM.last();
+ (void)NME;
+ assert((OME-OMB == NME-NMB) &&
+ "Substituting registers of different lengths");
+ for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ RegisterCell &RC = I->second;
+ for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
+ BitValue &V = RC[i];
+ if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
+ continue;
+ if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
+ continue;
+ V.RefI.Reg = NewRR.Reg;
+ V.RefI.Pos += NMB-OMB;
+ }
+ }
+}
+
+// Check if the block has been "executed" during propagation. (If not, the
+// block is dead, but it may still appear to be reachable.)
+bool BT::reached(const MachineBasicBlock *B) const {
+ int BN = B->getNumber();
+ assert(BN >= 0);
+ for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end();
+ I != E; ++I) {
+ if (I->second == BN)
+ return true;
+ }
+ return false;
+}
+
+// Visit an individual instruction. This could be a newly added instruction,
+// or one that has been modified by an optimization.
+void BT::visit(const MachineInstr &MI) {
+ assert(!MI.isBranch() && "Only non-branches are allowed");
+ InstrExec.insert(&MI);
+ visitNonBranch(MI);
+ // The call to visitNonBranch could propagate the changes until a branch
+ // is actually visited. This could result in adding CFG edges to the flow
+ // queue. Since the queue won't be processed, clear it.
+ while (!FlowQ.empty())
+ FlowQ.pop();
+}
+
+void BT::reset() {
+ EdgeExec.clear();
+ InstrExec.clear();
+ Map.clear();
+}
+
+void BT::run() {
+ reset();
+ assert(FlowQ.empty());
+
+ typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits;
+ const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
+
+ unsigned MaxBN = 0;
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ assert(I->getNumber() >= 0 && "Disconnected block");
+ unsigned BN = I->getNumber();
+ if (BN > MaxBN)
+ MaxBN = BN;
+ }
+
+ // Keep track of visited blocks.
+ BitVector BlockScanned(MaxBN+1);
+
+ int EntryN = Entry->getNumber();
+ // Generate a fake edge to get something to start with.
+ FlowQ.push(CFGEdge(-1, EntryN));
+
+ while (!FlowQ.empty()) {
+ CFGEdge Edge = FlowQ.front();
+ FlowQ.pop();
+
+ if (EdgeExec.count(Edge))
+ continue;
+ EdgeExec.insert(Edge);
+
+ const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
+ MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
+ // Visit PHI nodes first.
+ while (It != End && It->isPHI()) {
+ const MachineInstr &PI = *It++;
+ InstrExec.insert(&PI);
+ visitPHI(PI);
+ }
+
+ // If this block has already been visited through a flow graph edge,
+ // then the instructions have already been processed. Any updates to
+ // the cells would now only happen through visitUsesOf...
+ if (BlockScanned[Edge.second])
+ continue;
+ BlockScanned[Edge.second] = true;
+
+ // Visit non-branch instructions.
+ while (It != End && !It->isBranch()) {
+ const MachineInstr &MI = *It++;
+ InstrExec.insert(&MI);
+ visitNonBranch(MI);
+ }
+ // If block end has been reached, add the fall-through edge to the queue.
+ if (It == End) {
+ MachineFunction::const_iterator BIt = B.getIterator();
+ MachineFunction::const_iterator Next = std::next(BIt);
+ if (Next != MF.end() && B.isSuccessor(&*Next)) {
+ int ThisN = B.getNumber();
+ int NextN = Next->getNumber();
+ FlowQ.push(CFGEdge(ThisN, NextN));
+ }
+ } else {
+ // Handle the remaining sequence of branches. This function will update
+ // the work queue.
+ visitBranchesFrom(*It);
+ }
+ } // while (!FlowQ->empty())
+
+ if (Trace)
+ print_cells(dbgs() << "Cells after propagation:\n");
+}