aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp8305
1 files changed, 8305 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
new file mode 100644
index 000000000000..e3f9e0dc609a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -0,0 +1,8305 @@
+//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBuildAttrs.h"
+#include "ARMFPUName.h"
+#include "ARMFeatures.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MCTargetDesc/ARMMCExpr.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+class ARMOperand;
+
+enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
+
+class ARMAsmParser : public MCTargetAsmParser {
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ const MCInstrInfo &MII;
+ const MCRegisterInfo *MRI;
+
+ ARMTargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = getParser().getStreamer().getTargetStreamer();
+ return static_cast<ARMTargetStreamer &>(TS);
+ }
+
+ // Unwind directives state
+ SMLoc FnStartLoc;
+ SMLoc CantUnwindLoc;
+ SMLoc PersonalityLoc;
+ SMLoc HandlerDataLoc;
+ int FPReg;
+ void resetUnwindDirectiveParserState() {
+ FnStartLoc = SMLoc();
+ CantUnwindLoc = SMLoc();
+ PersonalityLoc = SMLoc();
+ HandlerDataLoc = SMLoc();
+ FPReg = -1;
+ }
+
+ // Map of register aliases registers via the .req directive.
+ StringMap<unsigned> RegisterReqs;
+
+ bool NextSymbolIsThumb;
+
+ struct {
+ ARMCC::CondCodes Cond; // Condition for IT block.
+ unsigned Mask:4; // Condition mask for instructions.
+ // Starting at first 1 (from lsb).
+ // '1' condition as indicated in IT.
+ // '0' inverse of condition (else).
+ // Count of instructions in IT block is
+ // 4 - trailingzeroes(mask)
+
+ bool FirstCond; // Explicit flag for when we're parsing the
+ // First instruction in the IT block. It's
+ // implied in the mask, so needs special
+ // handling.
+
+ unsigned CurPosition; // Current position in parsing of IT
+ // block. In range [0,3]. Initialized
+ // according to count of instructions in block.
+ // ~0U if no active IT block.
+ } ITState;
+ bool inITBlock() { return ITState.CurPosition != ~0U;}
+ void forwardITPosition() {
+ if (!inITBlock()) return;
+ // Move to the next instruction in the IT block, if there is one. If not,
+ // mark the block as done.
+ unsigned TZ = countTrailingZeros(ITState.Mask);
+ if (++ITState.CurPosition == 5 - TZ)
+ ITState.CurPosition = ~0U; // Done with the IT block after this.
+ }
+
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ bool Warning(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None) {
+ return Parser.Warning(L, Msg, Ranges);
+ }
+ bool Error(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None) {
+ return Parser.Error(L, Msg, Ranges);
+ }
+
+ int tryParseRegister();
+ bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
+ int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
+ bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
+ bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
+ bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
+ bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
+ bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
+ unsigned &ShiftAmount);
+ bool parseDirectiveWord(unsigned Size, SMLoc L);
+ bool parseDirectiveThumb(SMLoc L);
+ bool parseDirectiveARM(SMLoc L);
+ bool parseDirectiveThumbFunc(SMLoc L);
+ bool parseDirectiveCode(SMLoc L);
+ bool parseDirectiveSyntax(SMLoc L);
+ bool parseDirectiveReq(StringRef Name, SMLoc L);
+ bool parseDirectiveUnreq(SMLoc L);
+ bool parseDirectiveArch(SMLoc L);
+ bool parseDirectiveEabiAttr(SMLoc L);
+ bool parseDirectiveCPU(SMLoc L);
+ bool parseDirectiveFPU(SMLoc L);
+ bool parseDirectiveFnStart(SMLoc L);
+ bool parseDirectiveFnEnd(SMLoc L);
+ bool parseDirectiveCantUnwind(SMLoc L);
+ bool parseDirectivePersonality(SMLoc L);
+ bool parseDirectiveHandlerData(SMLoc L);
+ bool parseDirectiveSetFP(SMLoc L);
+ bool parseDirectivePad(SMLoc L);
+ bool parseDirectiveRegSave(SMLoc L, bool IsVector);
+
+ StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
+ bool &CarrySetting, unsigned &ProcessorIMod,
+ StringRef &ITMask);
+ void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
+ bool &CanAcceptCarrySet,
+ bool &CanAcceptPredicationCode);
+
+ bool isThumb() const {
+ // FIXME: Can tablegen auto-generate this?
+ return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
+ }
+ bool isThumbOne() const {
+ return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
+ }
+ bool isThumbTwo() const {
+ return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
+ }
+ bool hasThumb() const {
+ return STI.getFeatureBits() & ARM::HasV4TOps;
+ }
+ bool hasV6Ops() const {
+ return STI.getFeatureBits() & ARM::HasV6Ops;
+ }
+ bool hasV6MOps() const {
+ return STI.getFeatureBits() & ARM::HasV6MOps;
+ }
+ bool hasV7Ops() const {
+ return STI.getFeatureBits() & ARM::HasV7Ops;
+ }
+ bool hasV8Ops() const {
+ return STI.getFeatureBits() & ARM::HasV8Ops;
+ }
+ bool hasARM() const {
+ return !(STI.getFeatureBits() & ARM::FeatureNoARM);
+ }
+
+ void SwitchMode() {
+ unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
+ setAvailableFeatures(FB);
+ }
+ bool isMClass() const {
+ return STI.getFeatureBits() & ARM::FeatureMClass;
+ }
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "ARMGenAsmMatcher.inc"
+
+ /// }
+
+ OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseCoprocNumOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseCoprocRegOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseCoprocOptionOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseMemBarrierOptOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseInstSyncBarrierOptOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseProcIFlagsOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseMSRMaskOperand(
+ SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
+ StringRef Op, int Low, int High);
+ OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
+ return parsePKHImm(O, "lsl", 0, 31);
+ }
+ OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
+ return parsePKHImm(O, "asr", 1, 32);
+ }
+ OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
+ OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
+ SMLoc &EndLoc);
+
+ // Asm Match Converter Methods
+ void cvtThumbMultiply(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &);
+ void cvtThumbBranches(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &);
+
+ bool validateInstruction(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
+ bool processInstruction(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
+ bool shouldOmitCCOutOperand(StringRef Mnemonic,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands);
+ bool shouldOmitPredicateOperand(StringRef Mnemonic,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands);
+public:
+ enum ARMMatchResultTy {
+ Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
+ Match_RequiresNotITBlock,
+ Match_RequiresV6,
+ Match_RequiresThumb2,
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "ARMGenAsmMatcher.inc"
+
+ };
+
+ ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &MII)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), FPReg(-1) {
+ MCAsmParserExtension::Initialize(_Parser);
+
+ // Cache the MCRegisterInfo.
+ MRI = getContext().getRegisterInfo();
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+
+ // Not in an ITBlock to start with.
+ ITState.CurPosition = ~0U;
+
+ NextSymbolIsThumb = false;
+ }
+
+ // Implementation of the MCTargetAsmParser interface:
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands);
+ bool ParseDirective(AsmToken DirectiveID);
+
+ unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
+ unsigned checkTargetMatchPredicate(MCInst &Inst);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm);
+ void onLabelParsed(MCSymbol *Symbol);
+
+};
+} // end anonymous namespace
+
+namespace {
+
+/// ARMOperand - Instances of this class represent a parsed ARM machine
+/// operand.
+class ARMOperand : public MCParsedAsmOperand {
+ enum KindTy {
+ k_CondCode,
+ k_CCOut,
+ k_ITCondMask,
+ k_CoprocNum,
+ k_CoprocReg,
+ k_CoprocOption,
+ k_Immediate,
+ k_MemBarrierOpt,
+ k_InstSyncBarrierOpt,
+ k_Memory,
+ k_PostIndexRegister,
+ k_MSRMask,
+ k_ProcIFlags,
+ k_VectorIndex,
+ k_Register,
+ k_RegisterList,
+ k_DPRRegisterList,
+ k_SPRRegisterList,
+ k_VectorList,
+ k_VectorListAllLanes,
+ k_VectorListIndexed,
+ k_ShiftedRegister,
+ k_ShiftedImmediate,
+ k_ShifterImmediate,
+ k_RotateImmediate,
+ k_BitfieldDescriptor,
+ k_Token
+ } Kind;
+
+ SMLoc StartLoc, EndLoc;
+ SmallVector<unsigned, 8> Registers;
+
+ struct CCOp {
+ ARMCC::CondCodes Val;
+ };
+
+ struct CopOp {
+ unsigned Val;
+ };
+
+ struct CoprocOptionOp {
+ unsigned Val;
+ };
+
+ struct ITMaskOp {
+ unsigned Mask:4;
+ };
+
+ struct MBOptOp {
+ ARM_MB::MemBOpt Val;
+ };
+
+ struct ISBOptOp {
+ ARM_ISB::InstSyncBOpt Val;
+ };
+
+ struct IFlagsOp {
+ ARM_PROC::IFlags Val;
+ };
+
+ struct MMaskOp {
+ unsigned Val;
+ };
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct RegOp {
+ unsigned RegNum;
+ };
+
+ // A vector register list is a sequential list of 1 to 4 registers.
+ struct VectorListOp {
+ unsigned RegNum;
+ unsigned Count;
+ unsigned LaneIndex;
+ bool isDoubleSpaced;
+ };
+
+ struct VectorIndexOp {
+ unsigned Val;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ /// Combined record for all forms of ARM address expressions.
+ struct MemoryOp {
+ unsigned BaseRegNum;
+ // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
+ // was specified.
+ const MCConstantExpr *OffsetImm; // Offset immediate value
+ unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
+ ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
+ unsigned ShiftImm; // shift for OffsetReg.
+ unsigned Alignment; // 0 = no alignment specified
+ // n = alignment in bytes (2, 4, 8, 16, or 32)
+ unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
+ };
+
+ struct PostIdxRegOp {
+ unsigned RegNum;
+ bool isAdd;
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned ShiftImm;
+ };
+
+ struct ShifterImmOp {
+ bool isASR;
+ unsigned Imm;
+ };
+
+ struct RegShiftedRegOp {
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned SrcReg;
+ unsigned ShiftReg;
+ unsigned ShiftImm;
+ };
+
+ struct RegShiftedImmOp {
+ ARM_AM::ShiftOpc ShiftTy;
+ unsigned SrcReg;
+ unsigned ShiftImm;
+ };
+
+ struct RotImmOp {
+ unsigned Imm;
+ };
+
+ struct BitfieldOp {
+ unsigned LSB;
+ unsigned Width;
+ };
+
+ union {
+ struct CCOp CC;
+ struct CopOp Cop;
+ struct CoprocOptionOp CoprocOption;
+ struct MBOptOp MBOpt;
+ struct ISBOptOp ISBOpt;
+ struct ITMaskOp ITMask;
+ struct IFlagsOp IFlags;
+ struct MMaskOp MMask;
+ struct TokOp Tok;
+ struct RegOp Reg;
+ struct VectorListOp VectorList;
+ struct VectorIndexOp VectorIndex;
+ struct ImmOp Imm;
+ struct MemoryOp Memory;
+ struct PostIdxRegOp PostIdxReg;
+ struct ShifterImmOp ShifterImm;
+ struct RegShiftedRegOp RegShiftedReg;
+ struct RegShiftedImmOp RegShiftedImm;
+ struct RotImmOp RotImm;
+ struct BitfieldOp Bitfield;
+ };
+
+ ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+public:
+ ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ switch (Kind) {
+ case k_CondCode:
+ CC = o.CC;
+ break;
+ case k_ITCondMask:
+ ITMask = o.ITMask;
+ break;
+ case k_Token:
+ Tok = o.Tok;
+ break;
+ case k_CCOut:
+ case k_Register:
+ Reg = o.Reg;
+ break;
+ case k_RegisterList:
+ case k_DPRRegisterList:
+ case k_SPRRegisterList:
+ Registers = o.Registers;
+ break;
+ case k_VectorList:
+ case k_VectorListAllLanes:
+ case k_VectorListIndexed:
+ VectorList = o.VectorList;
+ break;
+ case k_CoprocNum:
+ case k_CoprocReg:
+ Cop = o.Cop;
+ break;
+ case k_CoprocOption:
+ CoprocOption = o.CoprocOption;
+ break;
+ case k_Immediate:
+ Imm = o.Imm;
+ break;
+ case k_MemBarrierOpt:
+ MBOpt = o.MBOpt;
+ break;
+ case k_InstSyncBarrierOpt:
+ ISBOpt = o.ISBOpt;
+ case k_Memory:
+ Memory = o.Memory;
+ break;
+ case k_PostIndexRegister:
+ PostIdxReg = o.PostIdxReg;
+ break;
+ case k_MSRMask:
+ MMask = o.MMask;
+ break;
+ case k_ProcIFlags:
+ IFlags = o.IFlags;
+ break;
+ case k_ShifterImmediate:
+ ShifterImm = o.ShifterImm;
+ break;
+ case k_ShiftedRegister:
+ RegShiftedReg = o.RegShiftedReg;
+ break;
+ case k_ShiftedImmediate:
+ RegShiftedImm = o.RegShiftedImm;
+ break;
+ case k_RotateImmediate:
+ RotImm = o.RotImm;
+ break;
+ case k_BitfieldDescriptor:
+ Bitfield = o.Bitfield;
+ break;
+ case k_VectorIndex:
+ VectorIndex = o.VectorIndex;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const { return EndLoc; }
+ /// getLocRange - Get the range between the first and last token of this
+ /// operand.
+ SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
+
+ ARMCC::CondCodes getCondCode() const {
+ assert(Kind == k_CondCode && "Invalid access!");
+ return CC.Val;
+ }
+
+ unsigned getCoproc() const {
+ assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
+ return Cop.Val;
+ }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const {
+ assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ const SmallVectorImpl<unsigned> &getRegList() const {
+ assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
+ Kind == k_SPRRegisterList) && "Invalid access!");
+ return Registers;
+ }
+
+ const MCExpr *getImm() const {
+ assert(isImm() && "Invalid access!");
+ return Imm.Val;
+ }
+
+ unsigned getVectorIndex() const {
+ assert(Kind == k_VectorIndex && "Invalid access!");
+ return VectorIndex.Val;
+ }
+
+ ARM_MB::MemBOpt getMemBarrierOpt() const {
+ assert(Kind == k_MemBarrierOpt && "Invalid access!");
+ return MBOpt.Val;
+ }
+
+ ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
+ assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
+ return ISBOpt.Val;
+ }
+
+ ARM_PROC::IFlags getProcIFlags() const {
+ assert(Kind == k_ProcIFlags && "Invalid access!");
+ return IFlags.Val;
+ }
+
+ unsigned getMSRMask() const {
+ assert(Kind == k_MSRMask && "Invalid access!");
+ return MMask.Val;
+ }
+
+ bool isCoprocNum() const { return Kind == k_CoprocNum; }
+ bool isCoprocReg() const { return Kind == k_CoprocReg; }
+ bool isCoprocOption() const { return Kind == k_CoprocOption; }
+ bool isCondCode() const { return Kind == k_CondCode; }
+ bool isCCOut() const { return Kind == k_CCOut; }
+ bool isITMask() const { return Kind == k_ITCondMask; }
+ bool isITCondCode() const { return Kind == k_CondCode; }
+ bool isImm() const { return Kind == k_Immediate; }
+ // checks whether this operand is an unsigned offset which fits is a field
+ // of specified width and scaled by a specific number of bits
+ template<unsigned width, unsigned scale>
+ bool isUnsignedOffset() const {
+ if (!isImm()) return false;
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Align = 1LL << scale;
+ int64_t Max = Align * ((1LL << width) - 1);
+ return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
+ }
+ return false;
+ }
+ // checks whether this operand is an signed offset which fits is a field
+ // of specified width and scaled by a specific number of bits
+ template<unsigned width, unsigned scale>
+ bool isSignedOffset() const {
+ if (!isImm()) return false;
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
+ int64_t Val = CE->getValue();
+ int64_t Align = 1LL << scale;
+ int64_t Max = Align * ((1LL << (width-1)) - 1);
+ int64_t Min = -Align * (1LL << (width-1));
+ return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
+ }
+ return false;
+ }
+
+ // checks whether this operand is a memory operand computed as an offset
+ // applied to PC. the offset may have 8 bits of magnitude and is represented
+ // with two bits of shift. textually it may be either [pc, #imm], #imm or
+ // relocable expression...
+ bool isThumbMemPC() const {
+ int64_t Val = 0;
+ if (isImm()) {
+ if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
+ if (!CE) return false;
+ Val = CE->getValue();
+ }
+ else if (isMem()) {
+ if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
+ if(Memory.BaseRegNum != ARM::PC) return false;
+ Val = Memory.OffsetImm->getValue();
+ }
+ else return false;
+ return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
+ }
+ bool isFPImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
+ return Val != -1;
+ }
+ bool isFBits16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value <= 16;
+ }
+ bool isFBits32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 1 && Value <= 32;
+ }
+ bool isImm8s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
+ }
+ bool isImm0_1020s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
+ }
+ bool isImm0_508s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
+ }
+ bool isImm0_508s4Neg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = -CE->getValue();
+ // explicitly exclude zero. we want that to use the normal 0_508 version.
+ return ((Value & 3) == 0) && Value > 0 && Value <= 508;
+ }
+ bool isImm0_239() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 240;
+ }
+ bool isImm0_255() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 256;
+ }
+ bool isImm0_4095() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 4096;
+ }
+ bool isImm0_4095Neg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = -CE->getValue();
+ return Value > 0 && Value < 4096;
+ }
+ bool isImm0_1() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 2;
+ }
+ bool isImm0_3() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 4;
+ }
+ bool isImm0_7() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 8;
+ }
+ bool isImm0_15() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 16;
+ }
+ bool isImm0_31() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 32;
+ }
+ bool isImm0_63() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 64;
+ }
+ bool isImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 8;
+ }
+ bool isImm16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 16;
+ }
+ bool isImm32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 32;
+ }
+ bool isShrImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 8;
+ }
+ bool isShrImm16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 16;
+ }
+ bool isShrImm32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 32;
+ }
+ bool isShrImm64() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 64;
+ }
+ bool isImm1_7() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 8;
+ }
+ bool isImm1_15() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 16;
+ }
+ bool isImm1_31() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 32;
+ }
+ bool isImm1_16() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 17;
+ }
+ bool isImm1_32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 33;
+ }
+ bool isImm0_32() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 33;
+ }
+ bool isImm0_65535() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 65536;
+ }
+ bool isImm256_65535Expr() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // If it's not a constant expression, it'll generate a fixup and be
+ // handled later.
+ if (!CE) return true;
+ int64_t Value = CE->getValue();
+ return Value >= 256 && Value < 65536;
+ }
+ bool isImm0_65535Expr() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // If it's not a constant expression, it'll generate a fixup and be
+ // handled later.
+ if (!CE) return true;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 65536;
+ }
+ bool isImm24bit() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value <= 0xffffff;
+ }
+ bool isImmThumbSR() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value < 33;
+ }
+ bool isPKHLSLImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < 32;
+ }
+ bool isPKHASRImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= 32;
+ }
+ bool isAdrLabel() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, but it can't fit
+ // into shift immediate encoding, we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
+ else return (isARMSOImm() || isARMSOImmNeg());
+ }
+ bool isARMSOImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(Value) != -1;
+ }
+ bool isARMSOImmNot() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(~Value) != -1;
+ }
+ bool isARMSOImmNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // Only use this when not representable as a plain so_imm.
+ return ARM_AM::getSOImmVal(Value) == -1 &&
+ ARM_AM::getSOImmVal(-Value) != -1;
+ }
+ bool isT2SOImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getT2SOImmVal(Value) != -1;
+ }
+ bool isT2SOImmNot() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getT2SOImmVal(Value) == -1 &&
+ ARM_AM::getT2SOImmVal(~Value) != -1;
+ }
+ bool isT2SOImmNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // Only use this when not representable as a plain so_imm.
+ return ARM_AM::getT2SOImmVal(Value) == -1 &&
+ ARM_AM::getT2SOImmVal(-Value) != -1;
+ }
+ bool isSetEndImm() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return Value == 1 || Value == 0;
+ }
+ bool isReg() const { return Kind == k_Register; }
+ bool isRegList() const { return Kind == k_RegisterList; }
+ bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
+ bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
+ bool isToken() const { return Kind == k_Token; }
+ bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
+ bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
+ bool isMem() const { return Kind == k_Memory; }
+ bool isShifterImm() const { return Kind == k_ShifterImmediate; }
+ bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
+ bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
+ bool isRotImm() const { return Kind == k_RotateImmediate; }
+ bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
+ bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
+ bool isPostIdxReg() const {
+ return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
+ }
+ bool isMemNoOffset(bool alignOK = false) const {
+ if (!isMem())
+ return false;
+ // No offset of any kind.
+ return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
+ (alignOK || Memory.Alignment == 0);
+ }
+ bool isMemPCRelImm12() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base register must be PC.
+ if (Memory.BaseRegNum != ARM::PC)
+ return false;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
+ }
+ bool isAlignedMemory() const {
+ return isMemNoOffset(true);
+ }
+ bool isAddrMode2() const {
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return true;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val > -4096 && Val < 4096;
+ }
+ bool isAM2OffsetImm() const {
+ if (!isImm()) return false;
+ // Immediate offset in range [-4095, 4095].
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
+ }
+ bool isAddrMode3() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // No shifts are legal for AM3.
+ if (Memory.ShiftType != ARM_AM::no_shift) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return true;
+ // Immediate offset in range [-255, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ // The #-0 offset is encoded as INT32_MIN, and we have to check
+ // for this too.
+ return (Val > -256 && Val < 256) || Val == INT32_MIN;
+ }
+ bool isAM3Offset() const {
+ if (Kind != k_Immediate && Kind != k_PostIndexRegister)
+ return false;
+ if (Kind == k_PostIndexRegister)
+ return PostIdxReg.ShiftTy == ARM_AM::no_shift;
+ // Immediate offset in range [-255, 255].
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ // Special case, #-0 is INT32_MIN.
+ return (Val > -256 && Val < 256) || Val == INT32_MIN;
+ }
+ bool isAddrMode5() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.Alignment != 0) return false;
+ // Check for register offset.
+ if (Memory.OffsetRegNum) return false;
+ // Immediate offset in range [-1020, 1020] and a multiple of 4.
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
+ Val == INT32_MIN;
+ }
+ bool isMemTBB() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
+ return false;
+ return true;
+ }
+ bool isMemTBH() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
+ Memory.Alignment != 0 )
+ return false;
+ return true;
+ }
+ bool isMemRegOffset() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
+ return false;
+ return true;
+ }
+ bool isT2MemRegOffset() const {
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.Alignment != 0)
+ return false;
+ // Only lsl #{0, 1, 2, 3} allowed.
+ if (Memory.ShiftType == ARM_AM::no_shift)
+ return true;
+ if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
+ return false;
+ return true;
+ }
+ bool isMemThumbRR() const {
+ // Thumb reg+reg addressing is simple. Just two registers, a base and
+ // an offset. No shifts, negations or any other complicating factors.
+ if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
+ Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
+ return false;
+ return isARMLowRegister(Memory.BaseRegNum) &&
+ (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
+ }
+ bool isMemThumbRIs4() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 124].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 124 && (Val % 4) == 0;
+ }
+ bool isMemThumbRIs2() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 62].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 62 && (Val % 2) == 0;
+ }
+ bool isMemThumbRIs1() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 31].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 31;
+ }
+ bool isMemThumbSPI() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 ||
+ Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
+ return false;
+ // Immediate offset, multiple of 4 in range [0, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
+ }
+ bool isMemImm8s4Offset() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset a multiple of 4 in range [-1020, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ // Special case, #-0 is INT32_MIN.
+ return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
+ }
+ bool isMemImm0_1020s4Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset a multiple of 4 in range [0, 1020].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
+ }
+ bool isMemImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base reg of PC isn't allowed for these encodings.
+ if (Memory.BaseRegNum == ARM::PC) return false;
+ // Immediate offset in range [-255, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val == INT32_MIN) || (Val > -256 && Val < 256);
+ }
+ bool isMemPosImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 255].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return Val >= 0 && Val < 256;
+ }
+ bool isMemNegImm8Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Base reg of PC isn't allowed for these encodings.
+ if (Memory.BaseRegNum == ARM::PC) return false;
+ // Immediate offset in range [-255, -1].
+ if (!Memory.OffsetImm) return false;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val == INT32_MIN) || (Val > -256 && Val < 0);
+ }
+ bool isMemUImm12Offset() const {
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [0, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val >= 0 && Val < 4096);
+ }
+ bool isMemImm12Offset() const {
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+
+ if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
+ return false;
+ // Immediate offset in range [-4095, 4095].
+ if (!Memory.OffsetImm) return true;
+ int64_t Val = Memory.OffsetImm->getValue();
+ return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
+ }
+ bool isPostIdxImm8() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return (Val > -256 && Val < 256) || (Val == INT32_MIN);
+ }
+ bool isPostIdxImm8s4() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Val = CE->getValue();
+ return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
+ (Val == INT32_MIN);
+ }
+
+ bool isMSRMask() const { return Kind == k_MSRMask; }
+ bool isProcIFlags() const { return Kind == k_ProcIFlags; }
+
+ // NEON operands.
+ bool isSingleSpacedVectorList() const {
+ return Kind == k_VectorList && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorList() const {
+ return Kind == k_VectorList && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 1;
+ }
+
+ bool isVecListDPair() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListThreeD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourD() const {
+ if (!isSingleSpacedVectorList()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isVecListDPairSpaced() const {
+ if (isSingleSpacedVectorList()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListThreeQ() const {
+ if (!isDoubleSpacedVectorList()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourQ() const {
+ if (!isDoubleSpacedVectorList()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isSingleSpacedVectorAllLanes() const {
+ return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorAllLanes() const {
+ return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 1;
+ }
+
+ bool isVecListDPairAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return (ARMMCRegisterClasses[ARM::DPairRegClassID]
+ .contains(VectorList.RegNum));
+ }
+
+ bool isVecListDPairSpacedAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 2;
+ }
+
+ bool isVecListThreeDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListThreeQAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 3;
+ }
+
+ bool isVecListFourDAllLanes() const {
+ if (!isSingleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isVecListFourQAllLanes() const {
+ if (!isDoubleSpacedVectorAllLanes()) return false;
+ return VectorList.Count == 4;
+ }
+
+ bool isSingleSpacedVectorIndexed() const {
+ return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
+ }
+ bool isDoubleSpacedVectorIndexed() const {
+ return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
+ }
+ bool isVecListOneDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListOneDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListOneDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListTwoDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListTwoDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListTwoQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListTwoQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListTwoDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListThreeDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListThreeDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListThreeQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListThreeQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListThreeDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListFourDByteIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
+ }
+
+ bool isVecListFourDHWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListFourQWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVecListFourQHWordIndexed() const {
+ if (!isDoubleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
+ }
+
+ bool isVecListFourDWordIndexed() const {
+ if (!isSingleSpacedVectorIndexed()) return false;
+ return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
+ }
+
+ bool isVectorIndex8() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 8;
+ }
+ bool isVectorIndex16() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 4;
+ }
+ bool isVectorIndex32() const {
+ if (Kind != k_VectorIndex) return false;
+ return VectorIndex.Val < 2;
+ }
+
+ bool isNEONi8splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i8 value splatted across 8 bytes. The immediate is just the 8 byte
+ // value.
+ return Value >= 0 && Value < 256;
+ }
+
+ bool isNEONi16splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i16 value in the range [0,255] or [0x0100, 0xff00]
+ return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
+ }
+
+ bool isNEONi32splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000);
+ }
+
+ bool isNEONi32vmov() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
+ // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000) ||
+ (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
+ (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
+ }
+ bool isNEONi32vmovNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ int64_t Value = ~CE->getValue();
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
+ // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ return (Value >= 0 && Value < 256) ||
+ (Value >= 0x0100 && Value <= 0xff00) ||
+ (Value >= 0x010000 && Value <= 0xff0000) ||
+ (Value >= 0x01000000 && Value <= 0xff000000) ||
+ (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
+ (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
+ }
+
+ bool isNEONi64splat() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ uint64_t Value = CE->getValue();
+ // i64 value with each byte being either 0 or 0xff.
+ for (unsigned i = 0; i < 8; ++i)
+ if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
+ return true;
+ }
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (Expr == 0)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+ void addCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
+ unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
+ Inst.addOperand(MCOperand::CreateReg(RegNum));
+ }
+
+ void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getCoproc()));
+ }
+
+ void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getCoproc()));
+ }
+
+ void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
+ }
+
+ void addITMaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
+ }
+
+ void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
+ }
+
+ void addCCOutOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ assert(isRegShiftedReg() &&
+ "addRegShiftedRegOperands() on non RegShiftedReg!");
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
+ Inst.addOperand(MCOperand::CreateImm(
+ ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
+ }
+
+ void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ assert(isRegShiftedImm() &&
+ "addRegShiftedImmOperands() on non RegShiftedImm!");
+ Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
+ // Shift of #32 is encoded as 0 where permitted
+ unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
+ Inst.addOperand(MCOperand::CreateImm(
+ ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
+ }
+
+ void addShifterImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
+ ShifterImm.Imm));
+ }
+
+ void addRegListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const SmallVectorImpl<unsigned> &RegList = getRegList();
+ for (SmallVectorImpl<unsigned>::const_iterator
+ I = RegList.begin(), E = RegList.end(); I != E; ++I)
+ Inst.addOperand(MCOperand::CreateReg(*I));
+ }
+
+ void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
+ addRegListOperands(Inst, N);
+ }
+
+ void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
+ addRegListOperands(Inst, N);
+ }
+
+ void addRotImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // Encoded as val>>3. The printer handles display as 8, 16, 24.
+ Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
+ }
+
+ void addBitfieldOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // Munge the lsb/width into a bitfield mask.
+ unsigned lsb = Bitfield.LSB;
+ unsigned width = Bitfield.Width;
+ // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
+ uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
+ (32 - (lsb + width)));
+ Inst.addOperand(MCOperand::CreateImm(Mask));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ addExpr(Inst, getImm());
+ }
+
+ void addFBits16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
+ }
+
+ void addFBits32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
+ }
+
+ void addFPImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addImm8s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // FIXME: We really want to scale the value here, but the LDRD/STRD
+ // instruction don't encode operands that way yet.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ }
+
+ void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
+ }
+
+ void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
+ }
+
+ void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate is scaled by four in the encoding and is stored
+ // in the MCInst as such. Lop off the low two bits here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
+ }
+
+ void addImm1_16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate-1, and we store in the instruction
+ // the bits as encoded, so subtract off one here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
+ }
+
+ void addImm1_32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate-1, and we store in the instruction
+ // the bits as encoded, so subtract off one here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
+ }
+
+ void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The constant encodes as the immediate, except for 32, which encodes as
+ // zero.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Imm = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
+ }
+
+ void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // An ASR value of 32 encodes as 0, so that's how we want to add it to
+ // the instruction as well.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
+ }
+
+ void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a t2_so_imm, but we have its bitwise
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
+ }
+
+ void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a t2_so_imm, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually an imm0_4095, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
+ if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
+ return;
+ }
+
+ const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
+ assert(SR && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateExpr(SR));
+ }
+
+ void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ if (isImm()) {
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (CE) {
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ return;
+ }
+
+ const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
+ assert(SR && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateExpr(SR));
+ return;
+ }
+
+ assert(isMem() && "Unknown value type!");
+ assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
+ Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
+ }
+
+ void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a so_imm, but we have its bitwise
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
+ }
+
+ void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The operand is actually a so_imm, but we have its
+ // negation in the assembly source, so twiddle it here.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
+ }
+
+ void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
+ }
+
+ void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
+ }
+
+ void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ }
+
+ void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ int32_t Imm = Memory.OffsetImm->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ assert(isImm() && "Not an immediate!");
+
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup.
+ if (!isa<MCConstantExpr>(getImm())) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ return;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ int Val = CE->getValue();
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
+ }
+
+ void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ if (!Memory.OffsetRegNum) {
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
+ } else {
+ // For register offset, we encode the shift type and negation flag
+ // here.
+ Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
+ Memory.ShiftImm, Memory.ShiftType);
+ }
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant AM2OffsetImm operand!");
+ int32_t Val = CE->getValue();
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ if (!Memory.OffsetRegNum) {
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM3Opc(AddSub, Val);
+ } else {
+ // For register offset, we encode the shift type and negation flag
+ // here.
+ Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
+ }
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ if (Kind == k_PostIndexRegister) {
+ int32_t Val =
+ ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return;
+ }
+
+ // Constant offset.
+ const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
+ int32_t Val = CE->getValue();
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM3Opc(AddSub, Val);
+ Inst.addOperand(MCOperand::CreateReg(0));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // The lower two bits are always zero and as such are not encoded.
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
+ ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
+ // Special case for #-0
+ if (Val == INT32_MIN) Val = 0;
+ if (Val < 0) Val = -Val;
+ Val = ARM_AM::getAM5Opc(AddSub, Val);
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If we have an immediate that's not a constant, treat it as a label
+ // reference needing a fixup. If it is a constant, it's something else
+ // and we reject it.
+ if (isImm()) {
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // The lower two bits are always zero and as such are not encoded.
+ int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ addMemImm8OffsetOperands(Inst, N);
+ }
+
+ void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
+ addMemImm8OffsetOperands(Inst, N);
+ }
+
+ void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If this is an immediate, it's a label reference.
+ if (isImm()) {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // Otherwise, it's a normal memory reg+offset.
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ // If this is an immediate, it's a label reference.
+ if (isImm()) {
+ addExpr(Inst, getImm());
+ Inst.addOperand(MCOperand::CreateImm(0));
+ return;
+ }
+
+ // Otherwise, it's a normal memory reg+offset.
+ int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemTBBOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemTBHOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ unsigned Val =
+ ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
+ Memory.ShiftImm, Memory.ShiftType);
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
+ }
+
+ void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
+ }
+
+ void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
+ Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ }
+
+ void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant post-idx-imm8 operand!");
+ int Imm = CE->getValue();
+ bool isAdd = Imm >= 0;
+ if (Imm == INT32_MIN) Imm = 0;
+ Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ assert(CE && "non-constant post-idx-imm8s4 operand!");
+ int Imm = CE->getValue();
+ bool isAdd = Imm >= 0;
+ if (Imm == INT32_MIN) Imm = 0;
+ // Immediate is scaled by 4.
+ Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
+ }
+
+ void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
+ // The sign, shift type, and shift amount are encoded in a single operand
+ // using the AM2 encoding helpers.
+ ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
+ unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
+ PostIdxReg.ShiftTy);
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
+ }
+
+ void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
+ }
+
+ void addVecListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
+ }
+
+ void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
+ Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
+ }
+
+ void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
+ }
+
+ void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ // Mask in that this is an i8 splat.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
+ }
+
+ void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256)
+ Value = (Value >> 8) | 0xa00;
+ else
+ Value |= 0x800;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256 && Value <= 0xff00)
+ Value = (Value >> 8) | 0x200;
+ else if (Value > 0xffff && Value <= 0xff0000)
+ Value = (Value >> 16) | 0x400;
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ if (Value >= 256 && Value <= 0xffff)
+ Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
+ else if (Value > 0xffff && Value <= 0xffffff)
+ Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = ~CE->getValue();
+ if (Value >= 256 && Value <= 0xffff)
+ Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
+ else if (Value > 0xffff && Value <= 0xffffff)
+ Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+ unsigned Imm = 0;
+ for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
+ Imm |= (Value & 1) << i;
+ }
+ Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
+ }
+
+ virtual void print(raw_ostream &OS) const;
+
+ static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_ITCondMask);
+ Op->ITMask.Mask = Mask;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_CondCode);
+ Op->CC.Val = CC;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_CoprocNum);
+ Op->Cop.Val = CopVal;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_CoprocReg);
+ Op->Cop.Val = CopVal;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_CoprocOption);
+ Op->Cop.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_CCOut);
+ Op->Reg.RegNum = RegNum;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_Token);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_Register);
+ Op->Reg.RegNum = RegNum;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
+ unsigned SrcReg,
+ unsigned ShiftReg,
+ unsigned ShiftImm,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
+ Op->RegShiftedReg.ShiftTy = ShTy;
+ Op->RegShiftedReg.SrcReg = SrcReg;
+ Op->RegShiftedReg.ShiftReg = ShiftReg;
+ Op->RegShiftedReg.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
+ unsigned SrcReg,
+ unsigned ShiftImm,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
+ Op->RegShiftedImm.ShiftTy = ShTy;
+ Op->RegShiftedImm.SrcReg = SrcReg;
+ Op->RegShiftedImm.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
+ Op->ShifterImm.isASR = isASR;
+ Op->ShifterImm.Imm = Imm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_RotateImmediate);
+ Op->RotImm.Imm = Imm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
+ Op->Bitfield.LSB = LSB;
+ Op->Bitfield.Width = Width;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *
+ CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ assert (Regs.size() > 0 && "RegList contains no registers?");
+ KindTy Kind = k_RegisterList;
+
+ if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
+ Kind = k_DPRRegisterList;
+ else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
+ contains(Regs.front().second))
+ Kind = k_SPRRegisterList;
+
+ // Sort based on the register encoding values.
+ array_pod_sort(Regs.begin(), Regs.end());
+
+ ARMOperand *Op = new ARMOperand(Kind);
+ for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
+ I = Regs.begin(), E = Regs.end(); I != E; ++I)
+ Op->Registers.push_back(I->second);
+ Op->StartLoc = StartLoc;
+ Op->EndLoc = EndLoc;
+ return Op;
+ }
+
+ static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
+ bool isDoubleSpaced, SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_VectorList);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
+ bool isDoubleSpaced,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
+ unsigned Index,
+ bool isDoubleSpaced,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.LaneIndex = Index;
+ Op->VectorList.isDoubleSpaced = isDoubleSpaced;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
+ MCContext &Ctx) {
+ ARMOperand *Op = new ARMOperand(k_VectorIndex);
+ Op->VectorIndex.Val = Idx;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_Immediate);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateMem(unsigned BaseRegNum,
+ const MCConstantExpr *OffsetImm,
+ unsigned OffsetRegNum,
+ ARM_AM::ShiftOpc ShiftType,
+ unsigned ShiftImm,
+ unsigned Alignment,
+ bool isNegative,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_Memory);
+ Op->Memory.BaseRegNum = BaseRegNum;
+ Op->Memory.OffsetImm = OffsetImm;
+ Op->Memory.OffsetRegNum = OffsetRegNum;
+ Op->Memory.ShiftType = ShiftType;
+ Op->Memory.ShiftImm = ShiftImm;
+ Op->Memory.Alignment = Alignment;
+ Op->Memory.isNegative = isNegative;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
+ ARM_AM::ShiftOpc ShiftTy,
+ unsigned ShiftImm,
+ SMLoc S, SMLoc E) {
+ ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
+ Op->PostIdxReg.RegNum = RegNum;
+ Op->PostIdxReg.isAdd = isAdd;
+ Op->PostIdxReg.ShiftTy = ShiftTy;
+ Op->PostIdxReg.ShiftImm = ShiftImm;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
+ Op->MBOpt.Val = Opt;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
+ SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
+ Op->ISBOpt.Val = Opt;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_ProcIFlags);
+ Op->IFlags.Val = IFlags;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
+ ARMOperand *Op = new ARMOperand(k_MSRMask);
+ Op->MMask.Val = MMask;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+};
+
+} // end anonymous namespace.
+
+void ARMOperand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case k_CondCode:
+ OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
+ break;
+ case k_CCOut:
+ OS << "<ccout " << getReg() << ">";
+ break;
+ case k_ITCondMask: {
+ static const char *const MaskStr[] = {
+ "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
+ "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
+ };
+ assert((ITMask.Mask & 0xf) == ITMask.Mask);
+ OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
+ break;
+ }
+ case k_CoprocNum:
+ OS << "<coprocessor number: " << getCoproc() << ">";
+ break;
+ case k_CoprocReg:
+ OS << "<coprocessor register: " << getCoproc() << ">";
+ break;
+ case k_CoprocOption:
+ OS << "<coprocessor option: " << CoprocOption.Val << ">";
+ break;
+ case k_MSRMask:
+ OS << "<mask: " << getMSRMask() << ">";
+ break;
+ case k_Immediate:
+ getImm()->print(OS);
+ break;
+ case k_MemBarrierOpt:
+ OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
+ break;
+ case k_InstSyncBarrierOpt:
+ OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
+ break;
+ case k_Memory:
+ OS << "<memory "
+ << " base:" << Memory.BaseRegNum;
+ OS << ">";
+ break;
+ case k_PostIndexRegister:
+ OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
+ << PostIdxReg.RegNum;
+ if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
+ OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
+ << PostIdxReg.ShiftImm;
+ OS << ">";
+ break;
+ case k_ProcIFlags: {
+ OS << "<ARM_PROC::";
+ unsigned IFlags = getProcIFlags();
+ for (int i=2; i >= 0; --i)
+ if (IFlags & (1 << i))
+ OS << ARM_PROC::IFlagsToString(1 << i);
+ OS << ">";
+ break;
+ }
+ case k_Register:
+ OS << "<register " << getReg() << ">";
+ break;
+ case k_ShifterImmediate:
+ OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
+ << " #" << ShifterImm.Imm << ">";
+ break;
+ case k_ShiftedRegister:
+ OS << "<so_reg_reg "
+ << RegShiftedReg.SrcReg << " "
+ << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
+ << " " << RegShiftedReg.ShiftReg << ">";
+ break;
+ case k_ShiftedImmediate:
+ OS << "<so_reg_imm "
+ << RegShiftedImm.SrcReg << " "
+ << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
+ << " #" << RegShiftedImm.ShiftImm << ">";
+ break;
+ case k_RotateImmediate:
+ OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
+ break;
+ case k_BitfieldDescriptor:
+ OS << "<bitfield " << "lsb: " << Bitfield.LSB
+ << ", width: " << Bitfield.Width << ">";
+ break;
+ case k_RegisterList:
+ case k_DPRRegisterList:
+ case k_SPRRegisterList: {
+ OS << "<register_list ";
+
+ const SmallVectorImpl<unsigned> &RegList = getRegList();
+ for (SmallVectorImpl<unsigned>::const_iterator
+ I = RegList.begin(), E = RegList.end(); I != E; ) {
+ OS << *I;
+ if (++I < E) OS << ", ";
+ }
+
+ OS << ">";
+ break;
+ }
+ case k_VectorList:
+ OS << "<vector_list " << VectorList.Count << " * "
+ << VectorList.RegNum << ">";
+ break;
+ case k_VectorListAllLanes:
+ OS << "<vector_list(all lanes) " << VectorList.Count << " * "
+ << VectorList.RegNum << ">";
+ break;
+ case k_VectorListIndexed:
+ OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
+ << VectorList.Count << " * " << VectorList.RegNum << ">";
+ break;
+ case k_Token:
+ OS << "'" << getToken() << "'";
+ break;
+ case k_VectorIndex:
+ OS << "<vectorindex " << getVectorIndex() << ">";
+ break;
+ }
+}
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+bool ARMAsmParser::ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc, SMLoc &EndLoc) {
+ StartLoc = Parser.getTok().getLoc();
+ EndLoc = Parser.getTok().getEndLoc();
+ RegNo = tryParseRegister();
+
+ return (RegNo == (unsigned)-1);
+}
+
+/// Try to parse a register name. The token must be an Identifier when called,
+/// and if it is a register name the token is eaten and the register number is
+/// returned. Otherwise return -1.
+///
+int ARMAsmParser::tryParseRegister() {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) return -1;
+
+ std::string lowerCase = Tok.getString().lower();
+ unsigned RegNum = MatchRegisterName(lowerCase);
+ if (!RegNum) {
+ RegNum = StringSwitch<unsigned>(lowerCase)
+ .Case("r13", ARM::SP)
+ .Case("r14", ARM::LR)
+ .Case("r15", ARM::PC)
+ .Case("ip", ARM::R12)
+ // Additional register name aliases for 'gas' compatibility.
+ .Case("a1", ARM::R0)
+ .Case("a2", ARM::R1)
+ .Case("a3", ARM::R2)
+ .Case("a4", ARM::R3)
+ .Case("v1", ARM::R4)
+ .Case("v2", ARM::R5)
+ .Case("v3", ARM::R6)
+ .Case("v4", ARM::R7)
+ .Case("v5", ARM::R8)
+ .Case("v6", ARM::R9)
+ .Case("v7", ARM::R10)
+ .Case("v8", ARM::R11)
+ .Case("sb", ARM::R9)
+ .Case("sl", ARM::R10)
+ .Case("fp", ARM::R11)
+ .Default(0);
+ }
+ if (!RegNum) {
+ // Check for aliases registered via .req. Canonicalize to lower case.
+ // That's more consistent since register names are case insensitive, and
+ // it's how the original entry was passed in from MC/MCParser/AsmParser.
+ StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
+ // If no match, return failure.
+ if (Entry == RegisterReqs.end())
+ return -1;
+ Parser.Lex(); // Eat identifier token.
+ return Entry->getValue();
+ }
+
+ Parser.Lex(); // Eat identifier token.
+
+ return RegNum;
+}
+
+// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
+// If a recoverable error occurs, return 1. If an irrecoverable error
+// occurs, return -1. An irrecoverable error is one where tokens have been
+// consumed in the process of trying to parse the shifter (i.e., when it is
+// indeed a shifter operand, but malformed).
+int ARMAsmParser::tryParseShiftRegister(
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
+
+ std::string lowerCase = Tok.getString().lower();
+ ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
+ .Case("asl", ARM_AM::lsl)
+ .Case("lsl", ARM_AM::lsl)
+ .Case("lsr", ARM_AM::lsr)
+ .Case("asr", ARM_AM::asr)
+ .Case("ror", ARM_AM::ror)
+ .Case("rrx", ARM_AM::rrx)
+ .Default(ARM_AM::no_shift);
+
+ if (ShiftTy == ARM_AM::no_shift)
+ return 1;
+
+ Parser.Lex(); // Eat the operator.
+
+ // The source register for the shift has already been added to the
+ // operand list, so we need to pop it off and combine it into the shifted
+ // register operand instead.
+ OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
+ if (!PrevOp->isReg())
+ return Error(PrevOp->getStartLoc(), "shift must be of a register");
+ int SrcReg = PrevOp->getReg();
+
+ SMLoc EndLoc;
+ int64_t Imm = 0;
+ int ShiftReg = 0;
+ if (ShiftTy == ARM_AM::rrx) {
+ // RRX Doesn't have an explicit shift amount. The encoder expects
+ // the shift register to be the same as the source register. Seems odd,
+ // but OK.
+ ShiftReg = SrcReg;
+ } else {
+ // Figure out if this is shifted by a constant or a register (for non-RRX).
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar)) {
+ Parser.Lex(); // Eat hash.
+ SMLoc ImmLoc = Parser.getTok().getLoc();
+ const MCExpr *ShiftExpr = 0;
+ if (getParser().parseExpression(ShiftExpr, EndLoc)) {
+ Error(ImmLoc, "invalid immediate shift value");
+ return -1;
+ }
+ // The expression must be evaluatable as an immediate.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
+ if (!CE) {
+ Error(ImmLoc, "invalid immediate shift value");
+ return -1;
+ }
+ // Range check the immediate.
+ // lsl, ror: 0 <= imm <= 31
+ // lsr, asr: 0 <= imm <= 32
+ Imm = CE->getValue();
+ if (Imm < 0 ||
+ ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
+ ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
+ Error(ImmLoc, "immediate shift value out of range");
+ return -1;
+ }
+ // shift by zero is a nop. Always send it through as lsl.
+ // ('as' compatibility)
+ if (Imm == 0)
+ ShiftTy = ARM_AM::lsl;
+ } else if (Parser.getTok().is(AsmToken::Identifier)) {
+ SMLoc L = Parser.getTok().getLoc();
+ EndLoc = Parser.getTok().getEndLoc();
+ ShiftReg = tryParseRegister();
+ if (ShiftReg == -1) {
+ Error (L, "expected immediate or register in shift operand");
+ return -1;
+ }
+ } else {
+ Error (Parser.getTok().getLoc(),
+ "expected immediate or register in shift operand");
+ return -1;
+ }
+ }
+
+ if (ShiftReg && ShiftTy != ARM_AM::rrx)
+ Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
+ ShiftReg, Imm,
+ S, EndLoc));
+ else
+ Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
+ S, EndLoc));
+
+ return 0;
+}
+
+
+/// Try to parse a register name. The token must be an Identifier when called.
+/// If it's a register, an AsmOperand is created. Another AsmOperand is created
+/// if there is a "writeback". 'true' if it's not a register.
+///
+/// TODO this is likely to change to allow different register types and or to
+/// parse for a specific register type.
+bool ARMAsmParser::
+tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ const AsmToken &RegTok = Parser.getTok();
+ int RegNo = tryParseRegister();
+ if (RegNo == -1)
+ return true;
+
+ Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
+ RegTok.getEndLoc()));
+
+ const AsmToken &ExclaimTok = Parser.getTok();
+ if (ExclaimTok.is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
+ ExclaimTok.getLoc()));
+ Parser.Lex(); // Eat exclaim token
+ return false;
+ }
+
+ // Also check for an index operand. This is only legal for vector registers,
+ // but that'll get caught OK in operand matching, so we don't need to
+ // explicitly filter everything else out here.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ SMLoc SIdx = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return true;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (!MCE)
+ return TokError("immediate value expected for vector index");
+
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
+ SIdx, E,
+ getContext()));
+ }
+
+ return false;
+}
+
+/// MatchCoprocessorOperandName - Try to parse an coprocessor related
+/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
+/// "c5", ...
+static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
+ // Use the same layout as the tablegen'erated register name matcher. Ugly,
+ // but efficient.
+ switch (Name.size()) {
+ default: return -1;
+ case 2:
+ if (Name[0] != CoprocOp)
+ return -1;
+ switch (Name[1]) {
+ default: return -1;
+ case '0': return 0;
+ case '1': return 1;
+ case '2': return 2;
+ case '3': return 3;
+ case '4': return 4;
+ case '5': return 5;
+ case '6': return 6;
+ case '7': return 7;
+ case '8': return 8;
+ case '9': return 9;
+ }
+ case 3:
+ if (Name[0] != CoprocOp || Name[1] != '1')
+ return -1;
+ switch (Name[2]) {
+ default: return -1;
+ // p10 and p11 are invalid for coproc instructions (reserved for FP/NEON)
+ case '0': return CoprocOp == 'p'? -1: 10;
+ case '1': return CoprocOp == 'p'? -1: 11;
+ case '2': return 12;
+ case '3': return 13;
+ case '4': return 14;
+ case '5': return 15;
+ }
+ }
+}
+
+/// parseITCondCode - Try to parse a condition code for an IT instruction.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
+ .Case("eq", ARMCC::EQ)
+ .Case("ne", ARMCC::NE)
+ .Case("hs", ARMCC::HS)
+ .Case("cs", ARMCC::HS)
+ .Case("lo", ARMCC::LO)
+ .Case("cc", ARMCC::LO)
+ .Case("mi", ARMCC::MI)
+ .Case("pl", ARMCC::PL)
+ .Case("vs", ARMCC::VS)
+ .Case("vc", ARMCC::VC)
+ .Case("hi", ARMCC::HI)
+ .Case("ls", ARMCC::LS)
+ .Case("ge", ARMCC::GE)
+ .Case("lt", ARMCC::LT)
+ .Case("gt", ARMCC::GT)
+ .Case("le", ARMCC::LE)
+ .Case("al", ARMCC::AL)
+ .Default(~0U);
+ if (CC == ~0U)
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the token.
+
+ Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
+
+ return MatchOperand_Success;
+}
+
+/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
+/// token must be an Identifier when called, and if it is a coprocessor
+/// number, the token is eaten and the operand is added to the operand list.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
+ if (Num == -1)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
+ return MatchOperand_Success;
+}
+
+/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
+/// token must be an Identifier when called, and if it is a coprocessor
+/// number, the token is eaten and the operand is added to the operand list.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+
+ int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
+ if (Reg == -1)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
+ return MatchOperand_Success;
+}
+
+/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
+/// coproc_option : '{' imm0_255 '}'
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+
+ // If this isn't a '{', this isn't a coprocessor immediate operand.
+ if (Parser.getTok().isNot(AsmToken::LCurly))
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the '{'
+
+ const MCExpr *Expr;
+ SMLoc Loc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(Expr)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
+ Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
+ return MatchOperand_ParseFail;
+ }
+ int Val = CE->getValue();
+
+ // Check for and consume the closing '}'
+ if (Parser.getTok().isNot(AsmToken::RCurly))
+ return MatchOperand_ParseFail;
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the '}'
+
+ Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
+ return MatchOperand_Success;
+}
+
+// For register list parsing, we need to map from raw GPR register numbering
+// to the enumeration values. The enumeration values aren't sorted by
+// register number due to our using "sp", "lr" and "pc" as canonical names.
+static unsigned getNextRegister(unsigned Reg) {
+ // If this is a GPR, we need to do it manually, otherwise we can rely
+ // on the sort ordering of the enumeration since the other reg-classes
+ // are sane.
+ if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ return Reg + 1;
+ switch(Reg) {
+ default: llvm_unreachable("Invalid GPR number!");
+ case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
+ case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
+ case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
+ case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
+ case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
+ case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
+ case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
+ case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
+ }
+}
+
+// Return the low-subreg of a given Q register.
+static unsigned getDRegFromQReg(unsigned QReg) {
+ switch (QReg) {
+ default: llvm_unreachable("expected a Q register!");
+ case ARM::Q0: return ARM::D0;
+ case ARM::Q1: return ARM::D2;
+ case ARM::Q2: return ARM::D4;
+ case ARM::Q3: return ARM::D6;
+ case ARM::Q4: return ARM::D8;
+ case ARM::Q5: return ARM::D10;
+ case ARM::Q6: return ARM::D12;
+ case ARM::Q7: return ARM::D14;
+ case ARM::Q8: return ARM::D16;
+ case ARM::Q9: return ARM::D18;
+ case ARM::Q10: return ARM::D20;
+ case ARM::Q11: return ARM::D22;
+ case ARM::Q12: return ARM::D24;
+ case ARM::Q13: return ARM::D26;
+ case ARM::Q14: return ARM::D28;
+ case ARM::Q15: return ARM::D30;
+ }
+}
+
+/// Parse a register list.
+bool ARMAsmParser::
+parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ assert(Parser.getTok().is(AsmToken::LCurly) &&
+ "Token is not a Left Curly Brace");
+ SMLoc S = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat '{' token.
+ SMLoc RegLoc = Parser.getTok().getLoc();
+
+ // Check the first register in the list to see what register class
+ // this is a list of.
+ int Reg = tryParseRegister();
+ if (Reg == -1)
+ return Error(RegLoc, "register expected");
+
+ // The reglist instructions have at most 16 registers, so reserve
+ // space for that many.
+ int EReg = 0;
+ SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
+
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ ++Reg;
+ }
+ const MCRegisterClass *RC;
+ if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
+ else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
+ else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
+ RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
+ else
+ return Error(RegLoc, "invalid register in register list");
+
+ // Store the register.
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+
+ // This starts immediately after the first register token in the list,
+ // so we can see either a comma or a minus (range separator) as a legal
+ // next token.
+ while (Parser.getTok().is(AsmToken::Comma) ||
+ Parser.getTok().is(AsmToken::Minus)) {
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the minus.
+ SMLoc AfterMinusLoc = Parser.getTok().getLoc();
+ int EndReg = tryParseRegister();
+ if (EndReg == -1)
+ return Error(AfterMinusLoc, "register expected");
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
+ EndReg = getDRegFromQReg(EndReg) + 1;
+ // If the register is the same as the start reg, there's nothing
+ // more to do.
+ if (Reg == EndReg)
+ continue;
+ // The register must be in the same register class as the first.
+ if (!RC->contains(EndReg))
+ return Error(AfterMinusLoc, "invalid register in register list");
+ // Ranges must go from low to high.
+ if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
+ return Error(AfterMinusLoc, "bad range in register list");
+
+ // Add all the registers in the range to the register list.
+ while (Reg != EndReg) {
+ Reg = getNextRegister(Reg);
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ }
+ continue;
+ }
+ Parser.Lex(); // Eat the comma.
+ RegLoc = Parser.getTok().getLoc();
+ int OldReg = Reg;
+ const AsmToken RegTok = Parser.getTok();
+ Reg = tryParseRegister();
+ if (Reg == -1)
+ return Error(RegLoc, "register expected");
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ bool isQReg = false;
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ isQReg = true;
+ }
+ // The register must be in the same register class as the first.
+ if (!RC->contains(Reg))
+ return Error(RegLoc, "invalid register in register list");
+ // List must be monotonically increasing.
+ if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
+ if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
+ Warning(RegLoc, "register list not in ascending order");
+ else
+ return Error(RegLoc, "register list not in ascending order");
+ }
+ if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
+ Warning(RegLoc, "duplicated register (" + RegTok.getString() +
+ ") in register list");
+ continue;
+ }
+ // VFP register lists must also be contiguous.
+ if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
+ Reg != OldReg + 1)
+ return Error(RegLoc, "non-contiguous register range");
+ EReg = MRI->getEncodingValue(Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ if (isQReg) {
+ EReg = MRI->getEncodingValue(++Reg);
+ Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly))
+ return Error(Parser.getTok().getLoc(), "'}' expected");
+ SMLoc E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat '}' token.
+
+ // Push the register list operand.
+ Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
+
+ // The ARM system instruction variants for LDM/STM have a '^' token here.
+ if (Parser.getTok().is(AsmToken::Caret)) {
+ Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat '^' token.
+ }
+
+ return false;
+}
+
+// Helper function to parse the lane index for vector lists.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
+ Index = 0; // Always return a defined index value.
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ Parser.Lex(); // Eat the '['.
+ if (Parser.getTok().is(AsmToken::RBrac)) {
+ // "Dn[]" is the 'all lanes' syntax.
+ LaneKind = AllLanes;
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ']'.
+ return MatchOperand_Success;
+ }
+
+ // There's an optional '#' token here. Normally there wouldn't be, but
+ // inline assemble puts one in, and it's friendly to accept that.
+ if (Parser.getTok().is(AsmToken::Hash))
+ Parser.Lex(); // Eat '#' or '$'.
+
+ const MCExpr *LaneIndex;
+ SMLoc Loc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(LaneIndex)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
+ if (!CE) {
+ Error(Loc, "lane index must be empty or an integer");
+ return MatchOperand_ParseFail;
+ }
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ Error(Parser.getTok().getLoc(), "']' expected");
+ return MatchOperand_ParseFail;
+ }
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ']'.
+ int64_t Val = CE->getValue();
+
+ // FIXME: Make this range check context sensitive for .8, .16, .32.
+ if (Val < 0 || Val > 7) {
+ Error(Parser.getTok().getLoc(), "lane index out of range");
+ return MatchOperand_ParseFail;
+ }
+ Index = Val;
+ LaneKind = IndexedLane;
+ return MatchOperand_Success;
+ }
+ LaneKind = NoLanes;
+ return MatchOperand_Success;
+}
+
+// parse a vector register list
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ VectorLaneTy LaneKind;
+ unsigned LaneIndex;
+ SMLoc S = Parser.getTok().getLoc();
+ // As an extension (to match gas), support a plain D register or Q register
+ // (without encosing curly braces) as a single or double entry list,
+ // respectively.
+ if (Parser.getTok().is(AsmToken::Identifier)) {
+ SMLoc E = Parser.getTok().getEndLoc();
+ int Reg = tryParseRegister();
+ if (Reg == -1)
+ return MatchOperand_NoMatch;
+ if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
+ OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
+ if (Res != MatchOperand_Success)
+ return Res;
+ switch (LaneKind) {
+ case NoLanes:
+ Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
+ break;
+ case AllLanes:
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
+ LaneIndex,
+ false, S, E));
+ break;
+ }
+ return MatchOperand_Success;
+ }
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ Reg = getDRegFromQReg(Reg);
+ OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
+ if (Res != MatchOperand_Success)
+ return Res;
+ switch (LaneKind) {
+ case NoLanes:
+ Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
+ &ARMMCRegisterClasses[ARM::DPairRegClassID]);
+ Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
+ break;
+ case AllLanes:
+ Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
+ &ARMMCRegisterClasses[ARM::DPairRegClassID]);
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
+ LaneIndex,
+ false, S, E));
+ break;
+ }
+ return MatchOperand_Success;
+ }
+ Error(S, "vector register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ if (Parser.getTok().isNot(AsmToken::LCurly))
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat '{' token.
+ SMLoc RegLoc = Parser.getTok().getLoc();
+
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ Error(RegLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ unsigned Count = 1;
+ int Spacing = 0;
+ unsigned FirstReg = Reg;
+ // The list is of D registers, but we also allow Q regs and just interpret
+ // them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ FirstReg = Reg = getDRegFromQReg(Reg);
+ Spacing = 1; // double-spacing requires explicit D registers, otherwise
+ // it's ambiguous with four-register single spaced.
+ ++Reg;
+ ++Count;
+ }
+
+ SMLoc E;
+ if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ while (Parser.getTok().is(AsmToken::Comma) ||
+ Parser.getTok().is(AsmToken::Minus)) {
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ if (!Spacing)
+ Spacing = 1; // Register range implies a single spaced list.
+ else if (Spacing == 2) {
+ Error(Parser.getTok().getLoc(),
+ "sequential registers in double spaced list");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the minus.
+ SMLoc AfterMinusLoc = Parser.getTok().getLoc();
+ int EndReg = tryParseRegister();
+ if (EndReg == -1) {
+ Error(AfterMinusLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ // Allow Q regs and just interpret them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
+ EndReg = getDRegFromQReg(EndReg) + 1;
+ // If the register is the same as the start reg, there's nothing
+ // more to do.
+ if (Reg == EndReg)
+ continue;
+ // The register must be in the same register class as the first.
+ if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
+ Error(AfterMinusLoc, "invalid register in register list");
+ return MatchOperand_ParseFail;
+ }
+ // Ranges must go from low to high.
+ if (Reg > EndReg) {
+ Error(AfterMinusLoc, "bad range in register list");
+ return MatchOperand_ParseFail;
+ }
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
+ MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(AfterMinusLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+
+ // Add all the registers in the range to the register list.
+ Count += EndReg - Reg;
+ Reg = EndReg;
+ continue;
+ }
+ Parser.Lex(); // Eat the comma.
+ RegLoc = Parser.getTok().getLoc();
+ int OldReg = Reg;
+ Reg = tryParseRegister();
+ if (Reg == -1) {
+ Error(RegLoc, "register expected");
+ return MatchOperand_ParseFail;
+ }
+ // vector register lists must be contiguous.
+ // It's OK to use the enumeration values directly here rather, as the
+ // VFP register classes have the enum sorted properly.
+ //
+ // The list is of D registers, but we also allow Q regs and just interpret
+ // them as the two D sub-registers.
+ if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
+ if (!Spacing)
+ Spacing = 1; // Register range implies a single spaced list.
+ else if (Spacing == 2) {
+ Error(RegLoc,
+ "invalid register in double-spaced list (must be 'D' register')");
+ return MatchOperand_ParseFail;
+ }
+ Reg = getDRegFromQReg(Reg);
+ if (Reg != OldReg + 1) {
+ Error(RegLoc, "non-contiguous register range");
+ return MatchOperand_ParseFail;
+ }
+ ++Reg;
+ Count += 2;
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ SMLoc LaneLoc = Parser.getTok().getLoc();
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
+ MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(LaneLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+ continue;
+ }
+ // Normal D register.
+ // Figure out the register spacing (single or double) of the list if
+ // we don't know it already.
+ if (!Spacing)
+ Spacing = 1 + (Reg == OldReg + 2);
+
+ // Just check that it's contiguous and keep going.
+ if (Reg != OldReg + Spacing) {
+ Error(RegLoc, "non-contiguous register range");
+ return MatchOperand_ParseFail;
+ }
+ ++Count;
+ // Parse the lane specifier if present.
+ VectorLaneTy NextLaneKind;
+ unsigned NextLaneIndex;
+ SMLoc EndLoc = Parser.getTok().getLoc();
+ if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+ if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
+ Error(EndLoc, "mismatched lane index in register list");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly)) {
+ Error(Parser.getTok().getLoc(), "'}' expected");
+ return MatchOperand_ParseFail;
+ }
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat '}' token.
+
+ switch (LaneKind) {
+ case NoLanes:
+ // Two-register operands have been converted to the
+ // composite register classes.
+ if (Count == 2) {
+ const MCRegisterClass *RC = (Spacing == 1) ?
+ &ARMMCRegisterClasses[ARM::DPairRegClassID] :
+ &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
+ FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
+ }
+
+ Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
+ (Spacing == 2), S, E));
+ break;
+ case AllLanes:
+ // Two-register operands have been converted to the
+ // composite register classes.
+ if (Count == 2) {
+ const MCRegisterClass *RC = (Spacing == 1) ?
+ &ARMMCRegisterClasses[ARM::DPairRegClassID] :
+ &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
+ FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
+ }
+ Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
+ (Spacing == 2),
+ S, E));
+ break;
+ case IndexedLane:
+ Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
+ LaneIndex,
+ (Spacing == 2),
+ S, E));
+ break;
+ }
+ return MatchOperand_Success;
+}
+
+/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ unsigned Opt;
+
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef OptStr = Tok.getString();
+
+ Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
+ .Case("sy", ARM_MB::SY)
+ .Case("st", ARM_MB::ST)
+ .Case("ld", ARM_MB::LD)
+ .Case("sh", ARM_MB::ISH)
+ .Case("ish", ARM_MB::ISH)
+ .Case("shst", ARM_MB::ISHST)
+ .Case("ishst", ARM_MB::ISHST)
+ .Case("ishld", ARM_MB::ISHLD)
+ .Case("nsh", ARM_MB::NSH)
+ .Case("un", ARM_MB::NSH)
+ .Case("nshst", ARM_MB::NSHST)
+ .Case("nshld", ARM_MB::NSHLD)
+ .Case("unst", ARM_MB::NSHST)
+ .Case("osh", ARM_MB::OSH)
+ .Case("oshst", ARM_MB::OSHST)
+ .Case("oshld", ARM_MB::OSHLD)
+ .Default(~0U);
+
+ // ishld, oshld, nshld and ld are only available from ARMv8.
+ if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
+ Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
+ Opt = ~0U;
+
+ if (Opt == ~0U)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ } else if (Tok.is(AsmToken::Hash) ||
+ Tok.is(AsmToken::Dollar) ||
+ Tok.is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ const MCExpr *MemBarrierID;
+ if (getParser().parseExpression(MemBarrierID)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+
+ int Val = CE->getValue();
+ if (Val & ~0xf) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Opt = ARM_MB::RESERVED_0 + Val;
+ } else
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
+ return MatchOperand_Success;
+}
+
+/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ unsigned Opt;
+
+ if (Tok.is(AsmToken::Identifier)) {
+ StringRef OptStr = Tok.getString();
+
+ if (OptStr.equals_lower("sy"))
+ Opt = ARM_ISB::SY;
+ else
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ } else if (Tok.is(AsmToken::Hash) ||
+ Tok.is(AsmToken::Dollar) ||
+ Tok.is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ const MCExpr *ISBarrierID;
+ if (getParser().parseExpression(ISBarrierID)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+
+ int Val = CE->getValue();
+ if (Val & ~0xf) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Opt = ARM_ISB::RESERVED_0 + Val;
+ } else
+ return MatchOperand_ParseFail;
+
+ Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
+ (ARM_ISB::InstSyncBOpt)Opt, S));
+ return MatchOperand_Success;
+}
+
+
+/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef IFlagsStr = Tok.getString();
+
+ // An iflags string of "none" is interpreted to mean that none of the AIF
+ // bits are set. Not a terribly useful instruction, but a valid encoding.
+ unsigned IFlags = 0;
+ if (IFlagsStr != "none") {
+ for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
+ unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
+ .Case("a", ARM_PROC::A)
+ .Case("i", ARM_PROC::I)
+ .Case("f", ARM_PROC::F)
+ .Default(~0U);
+
+ // If some specific iflag is already set, it means that some letter is
+ // present more than once, this is not acceptable.
+ if (Flag == ~0U || (IFlags & Flag))
+ return MatchOperand_NoMatch;
+
+ IFlags |= Flag;
+ }
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
+ return MatchOperand_Success;
+}
+
+/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef Mask = Tok.getString();
+
+ if (isMClass()) {
+ // See ARMv6-M 10.1.1
+ std::string Name = Mask.lower();
+ unsigned FlagsVal = StringSwitch<unsigned>(Name)
+ // Note: in the documentation:
+ // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
+ // for MSR APSR_nzcvq.
+ // but we do make it an alias here. This is so to get the "mask encoding"
+ // bits correct on MSR APSR writes.
+ //
+ // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
+ // should really only be allowed when writing a special register. Note
+ // they get dropped in the MRS instruction reading a special register as
+ // the SYSm field is only 8 bits.
+ //
+ // FIXME: the _g and _nzcvqg versions are only allowed if the processor
+ // includes the DSP extension but that is not checked.
+ .Case("apsr", 0x800)
+ .Case("apsr_nzcvq", 0x800)
+ .Case("apsr_g", 0x400)
+ .Case("apsr_nzcvqg", 0xc00)
+ .Case("iapsr", 0x801)
+ .Case("iapsr_nzcvq", 0x801)
+ .Case("iapsr_g", 0x401)
+ .Case("iapsr_nzcvqg", 0xc01)
+ .Case("eapsr", 0x802)
+ .Case("eapsr_nzcvq", 0x802)
+ .Case("eapsr_g", 0x402)
+ .Case("eapsr_nzcvqg", 0xc02)
+ .Case("xpsr", 0x803)
+ .Case("xpsr_nzcvq", 0x803)
+ .Case("xpsr_g", 0x403)
+ .Case("xpsr_nzcvqg", 0xc03)
+ .Case("ipsr", 0x805)
+ .Case("epsr", 0x806)
+ .Case("iepsr", 0x807)
+ .Case("msp", 0x808)
+ .Case("psp", 0x809)
+ .Case("primask", 0x810)
+ .Case("basepri", 0x811)
+ .Case("basepri_max", 0x812)
+ .Case("faultmask", 0x813)
+ .Case("control", 0x814)
+ .Default(~0U);
+
+ if (FlagsVal == ~0U)
+ return MatchOperand_NoMatch;
+
+ if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
+ // basepri, basepri_max and faultmask only valid for V7m.
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
+ return MatchOperand_Success;
+ }
+
+ // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
+ size_t Start = 0, Next = Mask.find('_');
+ StringRef Flags = "";
+ std::string SpecReg = Mask.slice(Start, Next).lower();
+ if (Next != StringRef::npos)
+ Flags = Mask.slice(Next+1, Mask.size());
+
+ // FlagsVal contains the complete mask:
+ // 3-0: Mask
+ // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
+ unsigned FlagsVal = 0;
+
+ if (SpecReg == "apsr") {
+ FlagsVal = StringSwitch<unsigned>(Flags)
+ .Case("nzcvq", 0x8) // same as CPSR_f
+ .Case("g", 0x4) // same as CPSR_s
+ .Case("nzcvqg", 0xc) // same as CPSR_fs
+ .Default(~0U);
+
+ if (FlagsVal == ~0U) {
+ if (!Flags.empty())
+ return MatchOperand_NoMatch;
+ else
+ FlagsVal = 8; // No flag
+ }
+ } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
+ // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
+ if (Flags == "all" || Flags == "")
+ Flags = "fc";
+ for (int i = 0, e = Flags.size(); i != e; ++i) {
+ unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
+ .Case("c", 1)
+ .Case("x", 2)
+ .Case("s", 4)
+ .Case("f", 8)
+ .Default(~0U);
+
+ // If some specific flag is already set, it means that some letter is
+ // present more than once, this is not acceptable.
+ if (FlagsVal == ~0U || (FlagsVal & Flag))
+ return MatchOperand_NoMatch;
+ FlagsVal |= Flag;
+ }
+ } else // No match for special register.
+ return MatchOperand_NoMatch;
+
+ // Special register without flags is NOT equivalent to "fc" flags.
+ // NOTE: This is a divergence from gas' behavior. Uncommenting the following
+ // two lines would enable gas compatibility at the expense of breaking
+ // round-tripping.
+ //
+ // if (!FlagsVal)
+ // FlagsVal = 0x9;
+
+ // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
+ if (SpecReg == "spsr")
+ FlagsVal |= 16;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
+ int Low, int High) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), Op + " operand expected.");
+ return MatchOperand_ParseFail;
+ }
+ StringRef ShiftName = Tok.getString();
+ std::string LowerOp = Op.lower();
+ std::string UpperOp = Op.upper();
+ if (ShiftName != LowerOp && ShiftName != UpperOp) {
+ Error(Parser.getTok().getLoc(), Op + " operand expected.");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat shift type token.
+
+ // There must be a '#' and a shift amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *ShiftAmount;
+ SMLoc Loc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(Loc, "illegal expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(Loc, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+ int Val = CE->getValue();
+ if (Val < Low || Val > High) {
+ Error(Loc, "immediate value out of range");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(S, "'be' or 'le' operand expected");
+ return MatchOperand_ParseFail;
+ }
+ int Val = StringSwitch<int>(Tok.getString().lower())
+ .Case("be", 1)
+ .Case("le", 0)
+ .Default(-1);
+ Parser.Lex(); // Eat the token.
+
+ if (Val == -1) {
+ Error(S, "'be' or 'le' operand expected");
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
+ getContext()),
+ S, Tok.getEndLoc()));
+ return MatchOperand_Success;
+}
+
+/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
+/// instructions. Legal values are:
+/// lsl #n 'n' in [0,31]
+/// asr #n 'n' in [1,32]
+/// n == 32 encoded as n == 0.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(S, "shift operator 'asr' or 'lsl' expected");
+ return MatchOperand_ParseFail;
+ }
+ StringRef ShiftName = Tok.getString();
+ bool isASR;
+ if (ShiftName == "lsl" || ShiftName == "LSL")
+ isASR = false;
+ else if (ShiftName == "asr" || ShiftName == "ASR")
+ isASR = true;
+ else {
+ Error(S, "shift operator 'asr' or 'lsl' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat the operator.
+
+ // A '#' and a shift amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ SMLoc ExLoc = Parser.getTok().getLoc();
+
+ const MCExpr *ShiftAmount;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(ExLoc, "malformed shift expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(ExLoc, "shift amount must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Val = CE->getValue();
+ if (isASR) {
+ // Shift amount must be in [1,32]
+ if (Val < 1 || Val > 32) {
+ Error(ExLoc, "'asr' shift amount must be in range [1,32]");
+ return MatchOperand_ParseFail;
+ }
+ // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
+ if (isThumb() && Val == 32) {
+ Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
+ return MatchOperand_ParseFail;
+ }
+ if (Val == 32) Val = 0;
+ } else {
+ // Shift amount must be in [1,32]
+ if (Val < 0 || Val > 31) {
+ Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
+ return MatchOperand_ParseFail;
+ }
+ }
+
+ Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
+/// of instructions. Legal values are:
+/// ror #n 'n' in {0, 8, 16, 24}
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ if (Tok.isNot(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef ShiftName = Tok.getString();
+ if (ShiftName != "ror" && ShiftName != "ROR")
+ return MatchOperand_NoMatch;
+ Parser.Lex(); // Eat the operator.
+
+ // A '#' and a rotate amount.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ SMLoc ExLoc = Parser.getTok().getLoc();
+
+ const MCExpr *ShiftAmount;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(ShiftAmount, EndLoc)) {
+ Error(ExLoc, "malformed rotate expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
+ if (!CE) {
+ Error(ExLoc, "rotate amount must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Val = CE->getValue();
+ // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
+ // normally, zero is represented in asm by omitting the rotate operand
+ // entirely.
+ if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
+ Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S = Parser.getTok().getLoc();
+ // The bitfield descriptor is really two operands, the LSB and the width.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *LSBExpr;
+ SMLoc E = Parser.getTok().getLoc();
+ if (getParser().parseExpression(LSBExpr)) {
+ Error(E, "malformed immediate expression");
+ return MatchOperand_ParseFail;
+ }
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
+ if (!CE) {
+ Error(E, "'lsb' operand must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t LSB = CE->getValue();
+ // The LSB must be in the range [0,31]
+ if (LSB < 0 || LSB > 31) {
+ Error(E, "'lsb' operand must be in the range [0,31]");
+ return MatchOperand_ParseFail;
+ }
+ E = Parser.getTok().getLoc();
+
+ // Expect another immediate operand.
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(), "too few operands");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ Error(Parser.getTok().getLoc(), "'#' expected");
+ return MatchOperand_ParseFail;
+ }
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *WidthExpr;
+ SMLoc EndLoc;
+ if (getParser().parseExpression(WidthExpr, EndLoc)) {
+ Error(E, "malformed immediate expression");
+ return MatchOperand_ParseFail;
+ }
+ CE = dyn_cast<MCConstantExpr>(WidthExpr);
+ if (!CE) {
+ Error(E, "'width' operand must be an immediate");
+ return MatchOperand_ParseFail;
+ }
+
+ int64_t Width = CE->getValue();
+ // The LSB must be in the range [1,32-lsb]
+ if (Width < 1 || Width > 32 - LSB) {
+ Error(E, "'width' operand must be in the range [1,32-lsb]");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ // Check for a post-index addressing register operand. Specifically:
+ // postidx_reg := '+' register {, shift}
+ // | '-' register {, shift}
+ // | register {, shift}
+
+ // This method must return MatchOperand_NoMatch without consuming any tokens
+ // in the case where there is no match, as other alternatives take other
+ // parse methods.
+ AsmToken Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+ bool haveEaten = false;
+ bool isAdd = true;
+ if (Tok.is(AsmToken::Plus)) {
+ Parser.Lex(); // Eat the '+' token.
+ haveEaten = true;
+ } else if (Tok.is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the '-' token.
+ isAdd = false;
+ haveEaten = true;
+ }
+
+ SMLoc E = Parser.getTok().getEndLoc();
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ if (!haveEaten)
+ return MatchOperand_NoMatch;
+ Error(Parser.getTok().getLoc(), "register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
+ unsigned ShiftImm = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the ','.
+ if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
+ return MatchOperand_ParseFail;
+
+ // FIXME: Only approximates end...may include intervening whitespace.
+ E = Parser.getTok().getLoc();
+ }
+
+ Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
+ ShiftImm, S, E));
+
+ return MatchOperand_Success;
+}
+
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ // Check for a post-index addressing register operand. Specifically:
+ // am3offset := '+' register
+ // | '-' register
+ // | register
+ // | # imm
+ // | # + imm
+ // | # - imm
+
+ // This method must return MatchOperand_NoMatch without consuming any tokens
+ // in the case where there is no match, as other alternatives take other
+ // parse methods.
+ AsmToken Tok = Parser.getTok();
+ SMLoc S = Tok.getLoc();
+
+ // Do immediates first, as we always parse those if we have a '#'.
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar)) {
+ Parser.Lex(); // Eat '#' or '$'.
+ // Explicitly look for a '-', as we need to encode negative zero
+ // differently.
+ bool isNegative = Parser.getTok().is(AsmToken::Minus);
+ const MCExpr *Offset;
+ SMLoc E;
+ if (getParser().parseExpression(Offset, E))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
+ if (!CE) {
+ Error(S, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+ // Negative zero is encoded as the flag value INT32_MIN.
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ Val = INT32_MIN;
+
+ Operands.push_back(
+ ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
+
+ return MatchOperand_Success;
+ }
+
+
+ bool haveEaten = false;
+ bool isAdd = true;
+ if (Tok.is(AsmToken::Plus)) {
+ Parser.Lex(); // Eat the '+' token.
+ haveEaten = true;
+ } else if (Tok.is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the '-' token.
+ isAdd = false;
+ haveEaten = true;
+ }
+
+ Tok = Parser.getTok();
+ int Reg = tryParseRegister();
+ if (Reg == -1) {
+ if (!haveEaten)
+ return MatchOperand_NoMatch;
+ Error(Tok.getLoc(), "register expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
+ 0, S, Tok.getEndLoc()));
+
+ return MatchOperand_Success;
+}
+
+/// Convert parsed operands to MCInst. Needed here because this instruction
+/// only has two register operands, but multiplication is commutative so
+/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
+void ARMAsmParser::
+cvtThumbMultiply(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
+ ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
+ // If we have a three-operand form, make sure to set Rn to be the operand
+ // that isn't the same as Rd.
+ unsigned RegOp = 4;
+ if (Operands.size() == 6 &&
+ ((ARMOperand*)Operands[4])->getReg() ==
+ ((ARMOperand*)Operands[3])->getReg())
+ RegOp = 5;
+ ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
+ Inst.addOperand(Inst.getOperand(0));
+ ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
+}
+
+void ARMAsmParser::
+cvtThumbBranches(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ int CondOp = -1, ImmOp = -1;
+ switch(Inst.getOpcode()) {
+ case ARM::tB:
+ case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
+
+ case ARM::t2B:
+ case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
+
+ default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
+ }
+ // first decide whether or not the branch should be conditional
+ // by looking at it's location relative to an IT block
+ if(inITBlock()) {
+ // inside an IT block we cannot have any conditional branches. any
+ // such instructions needs to be converted to unconditional form
+ switch(Inst.getOpcode()) {
+ case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
+ case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
+ }
+ } else {
+ // outside IT blocks we can only have unconditional branches with AL
+ // condition code or conditional branches with non-AL condition code
+ unsigned Cond = static_cast<ARMOperand*>(Operands[CondOp])->getCondCode();
+ switch(Inst.getOpcode()) {
+ case ARM::tB:
+ case ARM::tBcc:
+ Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
+ break;
+ case ARM::t2B:
+ case ARM::t2Bcc:
+ Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
+ break;
+ }
+ }
+
+ // now decide on encoding size based on branch target range
+ switch(Inst.getOpcode()) {
+ // classify tB as either t2B or t1B based on range of immediate operand
+ case ARM::tB: {
+ ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
+ if(!op->isSignedOffset<11, 1>() && isThumbTwo())
+ Inst.setOpcode(ARM::t2B);
+ break;
+ }
+ // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
+ case ARM::tBcc: {
+ ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
+ if(!op->isSignedOffset<8, 1>() && isThumbTwo())
+ Inst.setOpcode(ARM::t2Bcc);
+ break;
+ }
+ }
+ ((ARMOperand*)Operands[ImmOp])->addImmOperands(Inst, 1);
+ ((ARMOperand*)Operands[CondOp])->addCondCodeOperands(Inst, 2);
+}
+
+/// Parse an ARM memory expression, return false if successful else return true
+/// or an error. The first token must be a '[' when called.
+bool ARMAsmParser::
+parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ SMLoc S, E;
+ assert(Parser.getTok().is(AsmToken::LBrac) &&
+ "Token is not a Left Bracket");
+ S = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat left bracket token.
+
+ const AsmToken &BaseRegTok = Parser.getTok();
+ int BaseRegNum = tryParseRegister();
+ if (BaseRegNum == -1)
+ return Error(BaseRegTok.getLoc(), "register expected");
+
+ // The next token must either be a comma, a colon or a closing bracket.
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
+ !Tok.is(AsmToken::RBrac))
+ return Error(Tok.getLoc(), "malformed memory operand");
+
+ if (Tok.is(AsmToken::RBrac)) {
+ E = Tok.getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
+ 0, 0, false, S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand. It's rather odd, but syntactically valid.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
+ "Lost colon or comma in memory operand?!");
+ if (Tok.is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ }
+
+ // If we have a ':', it's an alignment specifier.
+ if (Parser.getTok().is(AsmToken::Colon)) {
+ Parser.Lex(); // Eat the ':'.
+ E = Parser.getTok().getLoc();
+
+ const MCExpr *Expr;
+ if (getParser().parseExpression(Expr))
+ return true;
+
+ // The expression has to be a constant. Memory references with relocations
+ // don't come through here, as they use the <label> forms of the relevant
+ // instructions.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE)
+ return Error (E, "constant expression expected");
+
+ unsigned Align = 0;
+ switch (CE->getValue()) {
+ default:
+ return Error(E,
+ "alignment specifier must be 16, 32, 64, 128, or 256 bits");
+ case 16: Align = 2; break;
+ case 32: Align = 4; break;
+ case 64: Align = 8; break;
+ case 128: Align = 16; break;
+ case 256: Align = 32; break;
+ }
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ // Don't worry about range checking the value here. That's handled by
+ // the is*() predicates.
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
+ ARM_AM::no_shift, 0, Align,
+ false, S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ // If we have a '#', it's an immediate offset, else assume it's a register
+ // offset. Be friendly and also accept a plain integer (without a leading
+ // hash) for gas compatibility.
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar) ||
+ Parser.getTok().is(AsmToken::Integer)) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ Parser.Lex(); // Eat '#' or '$'.
+ E = Parser.getTok().getLoc();
+
+ bool isNegative = getParser().getTok().is(AsmToken::Minus);
+ const MCExpr *Offset;
+ if (getParser().parseExpression(Offset))
+ return true;
+
+ // The expression has to be a constant. Memory references with relocations
+ // don't come through here, as they use the <label> forms of the relevant
+ // instructions.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
+ if (!CE)
+ return Error (E, "constant expression expected");
+
+ // If the constant was #-0, represent it as INT32_MIN.
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ CE = MCConstantExpr::Create(INT32_MIN, getContext());
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ // Don't worry about range checking the value here. That's handled by
+ // the is*() predicates.
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
+ ARM_AM::no_shift, 0, 0,
+ false, S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+ }
+
+ // The register offset is optionally preceded by a '+' or '-'
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ Parser.Lex(); // Eat the '-'.
+ } else if (Parser.getTok().is(AsmToken::Plus)) {
+ // Nothing to do.
+ Parser.Lex(); // Eat the '+'.
+ }
+
+ E = Parser.getTok().getLoc();
+ int OffsetRegNum = tryParseRegister();
+ if (OffsetRegNum == -1)
+ return Error(E, "register expected");
+
+ // If there's a shift operator, handle it.
+ ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
+ unsigned ShiftImm = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the ','.
+ if (parseMemRegOffsetShift(ShiftType, ShiftImm))
+ return true;
+ }
+
+ // Now we should have the closing ']'
+ if (Parser.getTok().isNot(AsmToken::RBrac))
+ return Error(Parser.getTok().getLoc(), "']' expected");
+ E = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat right bracket token.
+
+ Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
+ ShiftType, ShiftImm, 0, isNegative,
+ S, E));
+
+ // If there's a pre-indexing writeback marker, '!', just add it as a token
+ // operand.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat the '!'.
+ }
+
+ return false;
+}
+
+/// parseMemRegOffsetShift - one of these two:
+/// ( lsl | lsr | asr | ror ) , # shift_amount
+/// rrx
+/// return true if it parses a shift otherwise it returns false.
+bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
+ unsigned &Amount) {
+ SMLoc Loc = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return true;
+ StringRef ShiftName = Tok.getString();
+ if (ShiftName == "lsl" || ShiftName == "LSL" ||
+ ShiftName == "asl" || ShiftName == "ASL")
+ St = ARM_AM::lsl;
+ else if (ShiftName == "lsr" || ShiftName == "LSR")
+ St = ARM_AM::lsr;
+ else if (ShiftName == "asr" || ShiftName == "ASR")
+ St = ARM_AM::asr;
+ else if (ShiftName == "ror" || ShiftName == "ROR")
+ St = ARM_AM::ror;
+ else if (ShiftName == "rrx" || ShiftName == "RRX")
+ St = ARM_AM::rrx;
+ else
+ return Error(Loc, "illegal shift operator");
+ Parser.Lex(); // Eat shift type token.
+
+ // rrx stands alone.
+ Amount = 0;
+ if (St != ARM_AM::rrx) {
+ Loc = Parser.getTok().getLoc();
+ // A '#' and a shift amount.
+ const AsmToken &HashTok = Parser.getTok();
+ if (HashTok.isNot(AsmToken::Hash) &&
+ HashTok.isNot(AsmToken::Dollar))
+ return Error(HashTok.getLoc(), "'#' expected");
+ Parser.Lex(); // Eat hash token.
+
+ const MCExpr *Expr;
+ if (getParser().parseExpression(Expr))
+ return true;
+ // Range check the immediate.
+ // lsl, ror: 0 <= imm <= 31
+ // lsr, asr: 0 <= imm <= 32
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
+ if (!CE)
+ return Error(Loc, "shift amount must be an immediate");
+ int64_t Imm = CE->getValue();
+ if (Imm < 0 ||
+ ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
+ ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
+ return Error(Loc, "immediate shift value out of range");
+ // If <ShiftTy> #0, turn it into a no_shift.
+ if (Imm == 0)
+ St = ARM_AM::lsl;
+ // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
+ if (Imm == 32)
+ Imm = 0;
+ Amount = Imm;
+ }
+
+ return false;
+}
+
+/// parseFPImm - A floating point immediate expression operand.
+ARMAsmParser::OperandMatchResultTy ARMAsmParser::
+parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ // Anything that can accept a floating point constant as an operand
+ // needs to go through here, as the regular parseExpression is
+ // integer only.
+ //
+ // This routine still creates a generic Immediate operand, containing
+ // a bitcast of the 64-bit floating point value. The various operands
+ // that accept floats can check whether the value is valid for them
+ // via the standard is*() predicates.
+
+ SMLoc S = Parser.getTok().getLoc();
+
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar))
+ return MatchOperand_NoMatch;
+
+ // Disambiguate the VMOV forms that can accept an FP immediate.
+ // vmov.f32 <sreg>, #imm
+ // vmov.f64 <dreg>, #imm
+ // vmov.f32 <dreg>, #imm @ vector f32x2
+ // vmov.f32 <qreg>, #imm @ vector f32x4
+ //
+ // There are also the NEON VMOV instructions which expect an
+ // integer constant. Make sure we don't try to parse an FPImm
+ // for these:
+ // vmov.i{8|16|32|64} <dreg|qreg>, #imm
+ ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
+ if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
+ TyOp->getToken() != ".f64"))
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat '#' or '$'.
+
+ // Handle negation, as that still comes through as a separate token.
+ bool isNegative = false;
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ isNegative = true;
+ Parser.Lex();
+ }
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Loc = Tok.getLoc();
+ if (Tok.is(AsmToken::Real)) {
+ APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
+ uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
+ // If we had a '-' in front, toggle the sign bit.
+ IntVal ^= (uint64_t)isNegative << 31;
+ Parser.Lex(); // Eat the token.
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(IntVal, getContext()),
+ S, Parser.getTok().getLoc()));
+ return MatchOperand_Success;
+ }
+ // Also handle plain integers. Instructions which allow floating point
+ // immediates also allow a raw encoded 8-bit value.
+ if (Tok.is(AsmToken::Integer)) {
+ int64_t Val = Tok.getIntVal();
+ Parser.Lex(); // Eat the token.
+ if (Val > 255 || Val < 0) {
+ Error(Loc, "encoded floating point value out of range");
+ return MatchOperand_ParseFail;
+ }
+ double RealVal = ARM_AM::getFPImmFloat(Val);
+ Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(Val, getContext()), S,
+ Parser.getTok().getLoc()));
+ return MatchOperand_Success;
+ }
+
+ Error(Loc, "invalid floating point immediate");
+ return MatchOperand_ParseFail;
+}
+
+/// Parse a arm instruction operand. For now this parses the operand regardless
+/// of the mnemonic.
+bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ StringRef Mnemonic) {
+ SMLoc S, E;
+
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ switch (getLexer().getKind()) {
+ default:
+ Error(Parser.getTok().getLoc(), "unexpected token in operand");
+ return true;
+ case AsmToken::Identifier: {
+ // If we've seen a branch mnemonic, the next operand must be a label. This
+ // is true even if the label is a register name. So "br r1" means branch to
+ // label "r1".
+ bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
+ if (!ExpectLabel) {
+ if (!tryParseRegisterWithWriteBack(Operands))
+ return false;
+ int Res = tryParseShiftRegister(Operands);
+ if (Res == 0) // success
+ return false;
+ else if (Res == -1) // irrecoverable error
+ return true;
+ // If this is VMRS, check for the apsr_nzcv operand.
+ if (Mnemonic == "vmrs" &&
+ Parser.getTok().getString().equals_lower("apsr_nzcv")) {
+ S = Parser.getTok().getLoc();
+ Parser.Lex();
+ Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
+ return false;
+ }
+ }
+
+ // Fall though for the Identifier case that is not a register or a
+ // special name.
+ }
+ case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
+ case AsmToken::Integer: // things like 1f and 2b as a branch targets
+ case AsmToken::String: // quoted label names.
+ case AsmToken::Dot: { // . as a branch target
+ // This was not a register so parse other operands that start with an
+ // identifier (like labels) as expressions and create them as immediates.
+ const MCExpr *IdVal;
+ S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return true;
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
+ return false;
+ }
+ case AsmToken::LBrac:
+ return parseMemory(Operands);
+ case AsmToken::LCurly:
+ return parseRegisterList(Operands);
+ case AsmToken::Dollar:
+ case AsmToken::Hash: {
+ // #42 -> immediate.
+ S = Parser.getTok().getLoc();
+ Parser.Lex();
+
+ if (Parser.getTok().isNot(AsmToken::Colon)) {
+ bool isNegative = Parser.getTok().is(AsmToken::Minus);
+ const MCExpr *ImmVal;
+ if (getParser().parseExpression(ImmVal))
+ return true;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
+ if (CE) {
+ int32_t Val = CE->getValue();
+ if (isNegative && Val == 0)
+ ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
+ }
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
+
+ // There can be a trailing '!' on operands that we want as a separate
+ // '!' Token operand. Handle that here. For example, the compatibilty
+ // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
+ if (Parser.getTok().is(AsmToken::Exclaim)) {
+ Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
+ Parser.getTok().getLoc()));
+ Parser.Lex(); // Eat exclaim token
+ }
+ return false;
+ }
+ // w/ a ':' after the '#', it's just like a plain ':'.
+ // FALLTHROUGH
+ }
+ case AsmToken::Colon: {
+ // ":lower16:" and ":upper16:" expression prefixes
+ // FIXME: Check it's an expression prefix,
+ // e.g. (FOO - :lower16:BAR) isn't legal.
+ ARMMCExpr::VariantKind RefKind;
+ if (parsePrefix(RefKind))
+ return true;
+
+ const MCExpr *SubExprVal;
+ if (getParser().parseExpression(SubExprVal))
+ return true;
+
+ const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
+ getContext());
+ E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
+ return false;
+ }
+ }
+}
+
+// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
+// :lower16: and :upper16:.
+bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
+ RefKind = ARMMCExpr::VK_ARM_None;
+
+ // :lower16: and :upper16: modifiers
+ assert(getLexer().is(AsmToken::Colon) && "expected a :");
+ Parser.Lex(); // Eat ':'
+
+ if (getLexer().isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
+ return true;
+ }
+
+ StringRef IDVal = Parser.getTok().getIdentifier();
+ if (IDVal == "lower16") {
+ RefKind = ARMMCExpr::VK_ARM_LO16;
+ } else if (IDVal == "upper16") {
+ RefKind = ARMMCExpr::VK_ARM_HI16;
+ } else {
+ Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
+ return true;
+ }
+ Parser.Lex();
+
+ if (getLexer().isNot(AsmToken::Colon)) {
+ Error(Parser.getTok().getLoc(), "unexpected token after prefix");
+ return true;
+ }
+ Parser.Lex(); // Eat the last ':'
+ return false;
+}
+
+/// \brief Given a mnemonic, split out possible predication code and carry
+/// setting letters to form a canonical mnemonic and flags.
+//
+// FIXME: Would be nice to autogen this.
+// FIXME: This is a bit of a maze of special cases.
+StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
+ unsigned &PredicationCode,
+ bool &CarrySetting,
+ unsigned &ProcessorIMod,
+ StringRef &ITMask) {
+ PredicationCode = ARMCC::AL;
+ CarrySetting = false;
+ ProcessorIMod = 0;
+
+ // Ignore some mnemonics we know aren't predicated forms.
+ //
+ // FIXME: Would be nice to autogen this.
+ if ((Mnemonic == "movs" && isThumb()) ||
+ Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
+ Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
+ Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
+ Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
+ Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
+ Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
+ Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
+ Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
+ Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
+ Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
+ Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
+ Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
+ return Mnemonic;
+
+ // First, split out any predication code. Ignore mnemonics we know aren't
+ // predicated but do have a carry-set and so weren't caught above.
+ if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
+ Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
+ Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
+ Mnemonic != "sbcs" && Mnemonic != "rscs") {
+ unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
+ .Case("eq", ARMCC::EQ)
+ .Case("ne", ARMCC::NE)
+ .Case("hs", ARMCC::HS)
+ .Case("cs", ARMCC::HS)
+ .Case("lo", ARMCC::LO)
+ .Case("cc", ARMCC::LO)
+ .Case("mi", ARMCC::MI)
+ .Case("pl", ARMCC::PL)
+ .Case("vs", ARMCC::VS)
+ .Case("vc", ARMCC::VC)
+ .Case("hi", ARMCC::HI)
+ .Case("ls", ARMCC::LS)
+ .Case("ge", ARMCC::GE)
+ .Case("lt", ARMCC::LT)
+ .Case("gt", ARMCC::GT)
+ .Case("le", ARMCC::LE)
+ .Case("al", ARMCC::AL)
+ .Default(~0U);
+ if (CC != ~0U) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
+ PredicationCode = CC;
+ }
+ }
+
+ // Next, determine if we have a carry setting bit. We explicitly ignore all
+ // the instructions we know end in 's'.
+ if (Mnemonic.endswith("s") &&
+ !(Mnemonic == "cps" || Mnemonic == "mls" ||
+ Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
+ Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
+ Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
+ Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
+ Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
+ Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
+ Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
+ Mnemonic == "vfms" || Mnemonic == "vfnms" ||
+ (Mnemonic == "movs" && isThumb()))) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
+ CarrySetting = true;
+ }
+
+ // The "cps" instruction can have a interrupt mode operand which is glued into
+ // the mnemonic. Check if this is the case, split it and parse the imod op
+ if (Mnemonic.startswith("cps")) {
+ // Split out any imod code.
+ unsigned IMod =
+ StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
+ .Case("ie", ARM_PROC::IE)
+ .Case("id", ARM_PROC::ID)
+ .Default(~0U);
+ if (IMod != ~0U) {
+ Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
+ ProcessorIMod = IMod;
+ }
+ }
+
+ // The "it" instruction has the condition mask on the end of the mnemonic.
+ if (Mnemonic.startswith("it")) {
+ ITMask = Mnemonic.slice(2, Mnemonic.size());
+ Mnemonic = Mnemonic.slice(0, 2);
+ }
+
+ return Mnemonic;
+}
+
+/// \brief Given a canonical mnemonic, determine if the instruction ever allows
+/// inclusion of carry set or predication code operands.
+//
+// FIXME: It would be nice to autogen this.
+void ARMAsmParser::
+getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
+ bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) {
+ if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
+ Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
+ Mnemonic == "add" || Mnemonic == "adc" ||
+ Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
+ Mnemonic == "orr" || Mnemonic == "mvn" ||
+ Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
+ Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
+ Mnemonic == "vfm" || Mnemonic == "vfnm" ||
+ (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
+ Mnemonic == "mla" || Mnemonic == "smlal" ||
+ Mnemonic == "umlal" || Mnemonic == "umull"))) {
+ CanAcceptCarrySet = true;
+ } else
+ CanAcceptCarrySet = false;
+
+ if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
+ Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
+ Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic.startswith("crc32") ||
+ Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
+ Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
+ Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
+ Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
+ Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
+ Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
+ (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
+ // These mnemonics are never predicable
+ CanAcceptPredicationCode = false;
+ } else if (!isThumb()) {
+ // Some instructions are only predicable in Thumb mode
+ CanAcceptPredicationCode
+ = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
+ Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
+ Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
+ Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
+ Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
+ Mnemonic != "stc2" && Mnemonic != "stc2l" &&
+ !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
+ } else if (isThumbOne()) {
+ if (hasV6MOps())
+ CanAcceptPredicationCode = Mnemonic != "movs";
+ else
+ CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
+ } else
+ CanAcceptPredicationCode = true;
+}
+
+bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ // FIXME: This is all horribly hacky. We really need a better way to deal
+ // with optional operands like this in the matcher table.
+
+ // The 'mov' mnemonic is special. One variant has a cc_out operand, while
+ // another does not. Specifically, the MOVW instruction does not. So we
+ // special case it here and remove the defaulted (non-setting) cc_out
+ // operand if that's the instruction we're trying to match.
+ //
+ // We do this as post-processing of the explicit operands rather than just
+ // conditionally adding the cc_out in the first place because we need
+ // to check the type of the parsed immediate operand.
+ if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
+ !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
+ static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
+ return true;
+
+ // Register-register 'add' for thumb does not have a cc_out operand
+ // when there are only two register operands.
+ if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
+ return true;
+ // Register-register 'add' for thumb does not have a cc_out operand
+ // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
+ // have to check the immediate range here since Thumb2 has a variant
+ // that can handle a different range and has a cc_out operand.
+ if (((isThumb() && Mnemonic == "add") ||
+ (isThumbTwo() && Mnemonic == "sub")) &&
+ Operands.size() == 6 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
+ ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
+ static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
+ return true;
+ // For Thumb2, add/sub immediate does not have a cc_out operand for the
+ // imm0_4095 variant. That's the least-preferred variant when
+ // selecting via the generic "add" mnemonic, so to know that we
+ // should remove the cc_out operand, we have to explicitly check that
+ // it's not one of the other variants. Ugh.
+ if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
+ Operands.size() == 6 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ static_cast<ARMOperand*>(Operands[5])->isImm()) {
+ // Nest conditions rather than one big 'if' statement for readability.
+ //
+ // If both registers are low, we're in an IT block, and the immediate is
+ // in range, we should use encoding T1 instead, which has a cc_out.
+ if (inITBlock() &&
+ isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
+ isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
+ static_cast<ARMOperand*>(Operands[5])->isImm0_7())
+ return false;
+ // Check against T3. If the second register is the PC, this is an
+ // alternate form of ADR, which uses encoding T4, so check for that too.
+ if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
+ static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
+ return false;
+
+ // Otherwise, we use encoding T4, which does not have a cc_out
+ // operand.
+ return true;
+ }
+
+ // The thumb2 multiply instruction doesn't have a CCOut register, so
+ // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
+ // use the 16-bit encoding or not.
+ if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ static_cast<ARMOperand*>(Operands[5])->isReg() &&
+ // If the registers aren't low regs, the destination reg isn't the
+ // same as one of the source regs, or the cc_out operand is zero
+ // outside of an IT block, we have to use the 32-bit encoding, so
+ // remove the cc_out operand.
+ (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
+ !inITBlock() ||
+ (static_cast<ARMOperand*>(Operands[3])->getReg() !=
+ static_cast<ARMOperand*>(Operands[5])->getReg() &&
+ static_cast<ARMOperand*>(Operands[3])->getReg() !=
+ static_cast<ARMOperand*>(Operands[4])->getReg())))
+ return true;
+
+ // Also check the 'mul' syntax variant that doesn't specify an explicit
+ // destination register.
+ if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ // If the registers aren't low regs or the cc_out operand is zero
+ // outside of an IT block, we have to use the 32-bit encoding, so
+ // remove the cc_out operand.
+ (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
+ !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
+ !inITBlock()))
+ return true;
+
+
+
+ // Register-register 'add/sub' for thumb does not have a cc_out operand
+ // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
+ // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
+ // right, this will result in better diagnostics (which operand is off)
+ // anyway.
+ if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
+ (Operands.size() == 5 || Operands.size() == 6) &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
+ static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
+ (static_cast<ARMOperand*>(Operands[4])->isImm() ||
+ (Operands.size() == 6 &&
+ static_cast<ARMOperand*>(Operands[5])->isImm())))
+ return true;
+
+ return false;
+}
+
+bool ARMAsmParser::shouldOmitPredicateOperand(
+ StringRef Mnemonic, SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
+ // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
+ unsigned RegIdx = 3;
+ if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
+ static_cast<ARMOperand *>(Operands[2])->getToken() == ".f32") {
+ if (static_cast<ARMOperand *>(Operands[3])->isToken() &&
+ static_cast<ARMOperand *>(Operands[3])->getToken() == ".f32")
+ RegIdx = 4;
+
+ if (static_cast<ARMOperand *>(Operands[RegIdx])->isReg() &&
+ (ARMMCRegisterClasses[ARM::DPRRegClassID]
+ .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg()) ||
+ ARMMCRegisterClasses[ARM::QPRRegClassID]
+ .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg())))
+ return true;
+ }
+ return false;
+}
+
+static bool isDataTypeToken(StringRef Tok) {
+ return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
+ Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
+ Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
+ Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
+ Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
+ Tok == ".f" || Tok == ".d";
+}
+
+// FIXME: This bit should probably be handled via an explicit match class
+// in the .td files that matches the suffix instead of having it be
+// a literal string token the way it is now.
+static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
+ return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
+}
+static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
+ unsigned VariantID);
+/// Parse an arm instruction mnemonic followed by its operands.
+bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ // Apply mnemonic aliases before doing anything else, as the destination
+ // mnemnonic may include suffices and we want to handle them normally.
+ // The generic tblgen'erated code does this later, at the start of
+ // MatchInstructionImpl(), but that's too late for aliases that include
+ // any sort of suffix.
+ unsigned AvailableFeatures = getAvailableFeatures();
+ unsigned AssemblerDialect = getParser().getAssemblerDialect();
+ applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
+
+ // First check for the ARM-specific .req directive.
+ if (Parser.getTok().is(AsmToken::Identifier) &&
+ Parser.getTok().getIdentifier() == ".req") {
+ parseDirectiveReq(Name, NameLoc);
+ // We always return 'error' for this, as we're done with this
+ // statement and don't need to match the 'instruction."
+ return true;
+ }
+
+ // Create the leading tokens for the mnemonic, split by '.' characters.
+ size_t Start = 0, Next = Name.find('.');
+ StringRef Mnemonic = Name.slice(Start, Next);
+
+ // Split out the predication code and carry setting flag from the mnemonic.
+ unsigned PredicationCode;
+ unsigned ProcessorIMod;
+ bool CarrySetting;
+ StringRef ITMask;
+ Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
+ ProcessorIMod, ITMask);
+
+ // In Thumb1, only the branch (B) instruction can be predicated.
+ if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "conditional execution not supported in Thumb1");
+ }
+
+ Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
+
+ // Handle the IT instruction ITMask. Convert it to a bitmask. This
+ // is the mask as it will be for the IT encoding if the conditional
+ // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
+ // where the conditional bit0 is zero, the instruction post-processing
+ // will adjust the mask accordingly.
+ if (Mnemonic == "it") {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
+ if (ITMask.size() > 3) {
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "too many conditions on IT instruction");
+ }
+ unsigned Mask = 8;
+ for (unsigned i = ITMask.size(); i != 0; --i) {
+ char pos = ITMask[i - 1];
+ if (pos != 't' && pos != 'e') {
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
+ }
+ Mask >>= 1;
+ if (ITMask[i - 1] == 't')
+ Mask |= 8;
+ }
+ Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
+ }
+
+ // FIXME: This is all a pretty gross hack. We should automatically handle
+ // optional operands like this via tblgen.
+
+ // Next, add the CCOut and ConditionCode operands, if needed.
+ //
+ // For mnemonics which can ever incorporate a carry setting bit or predication
+ // code, our matching model involves us always generating CCOut and
+ // ConditionCode operands to match the mnemonic "as written" and then we let
+ // the matcher deal with finding the right instruction or generating an
+ // appropriate error.
+ bool CanAcceptCarrySet, CanAcceptPredicationCode;
+ getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
+
+ // If we had a carry-set on an instruction that can't do that, issue an
+ // error.
+ if (!CanAcceptCarrySet && CarrySetting) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "instruction '" + Mnemonic +
+ "' can not set flags, but 's' suffix specified");
+ }
+ // If we had a predication code on an instruction that can't do that, issue an
+ // error.
+ if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "instruction '" + Mnemonic +
+ "' is not predicable, but condition code specified");
+ }
+
+ // Add the carry setting operand, if necessary.
+ if (CanAcceptCarrySet) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
+ Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
+ Loc));
+ }
+
+ // Add the predication code operand, if necessary.
+ if (CanAcceptPredicationCode) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
+ CarrySetting);
+ Operands.push_back(ARMOperand::CreateCondCode(
+ ARMCC::CondCodes(PredicationCode), Loc));
+ }
+
+ // Add the processor imod operand, if necessary.
+ if (ProcessorIMod) {
+ Operands.push_back(ARMOperand::CreateImm(
+ MCConstantExpr::Create(ProcessorIMod, getContext()),
+ NameLoc, NameLoc));
+ }
+
+ // Add the remaining tokens in the mnemonic.
+ while (Next != StringRef::npos) {
+ Start = Next;
+ Next = Name.find('.', Start + 1);
+ StringRef ExtraToken = Name.slice(Start, Next);
+
+ // Some NEON instructions have an optional datatype suffix that is
+ // completely ignored. Check for that.
+ if (isDataTypeToken(ExtraToken) &&
+ doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
+ continue;
+
+ // For for ARM mode generate an error if the .n qualifier is used.
+ if (ExtraToken == ".n" && !isThumb()) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
+ return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
+ "arm mode");
+ }
+
+ // The .n qualifier is always discarded as that is what the tables
+ // and matcher expect. In ARM mode the .w qualifier has no effect,
+ // so discard it to avoid errors that can be caused by the matcher.
+ if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
+ SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
+ Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
+ }
+ }
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Mnemonic)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+
+ // Parse and remember the operand.
+ if (parseOperand(Operands, Mnemonic)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ }
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+
+ // Some instructions, mostly Thumb, have forms for the same mnemonic that
+ // do and don't have a cc_out optional-def operand. With some spot-checks
+ // of the operand list, we can figure out which variant we're trying to
+ // parse and adjust accordingly before actually matching. We shouldn't ever
+ // try to remove a cc_out operand that was explicitly set on the the
+ // mnemonic, of course (CarrySetting == true). Reason number #317 the
+ // table driven matcher doesn't fit well with the ARM instruction set.
+ if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
+ ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
+ Operands.erase(Operands.begin() + 1);
+ delete Op;
+ }
+
+ // Some instructions have the same mnemonic, but don't always
+ // have a predicate. Distinguish them here and delete the
+ // predicate if needed.
+ if (shouldOmitPredicateOperand(Mnemonic, Operands)) {
+ ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
+ Operands.erase(Operands.begin() + 1);
+ delete Op;
+ }
+
+ // ARM mode 'blx' need special handling, as the register operand version
+ // is predicable, but the label operand version is not. So, we can't rely
+ // on the Mnemonic based checking to correctly figure out when to put
+ // a k_CondCode operand in the list. If we're trying to match the label
+ // version, remove the k_CondCode operand here.
+ if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
+ static_cast<ARMOperand*>(Operands[2])->isImm()) {
+ ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
+ Operands.erase(Operands.begin() + 1);
+ delete Op;
+ }
+
+ // Adjust operands of ldrexd/strexd to MCK_GPRPair.
+ // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
+ // a single GPRPair reg operand is used in the .td file to replace the two
+ // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
+ // expressed as a GPRPair, so we have to manually merge them.
+ // FIXME: We would really like to be able to tablegen'erate this.
+ if (!isThumb() && Operands.size() > 4 &&
+ (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
+ Mnemonic == "stlexd")) {
+ bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
+ unsigned Idx = isLoad ? 2 : 3;
+ ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
+ ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
+
+ const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
+ // Adjust only if Op1 and Op2 are GPRs.
+ if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
+ MRC.contains(Op2->getReg())) {
+ unsigned Reg1 = Op1->getReg();
+ unsigned Reg2 = Op2->getReg();
+ unsigned Rt = MRI->getEncodingValue(Reg1);
+ unsigned Rt2 = MRI->getEncodingValue(Reg2);
+
+ // Rt2 must be Rt + 1 and Rt must be even.
+ if (Rt + 1 != Rt2 || (Rt & 1)) {
+ Error(Op2->getStartLoc(), isLoad ?
+ "destination operands must be sequential" :
+ "source operands must be sequential");
+ return true;
+ }
+ unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
+ &(MRI->getRegClass(ARM::GPRPairRegClassID)));
+ Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
+ Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
+ NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
+ delete Op1;
+ delete Op2;
+ }
+ }
+
+ // FIXME: As said above, this is all a pretty gross hack. This instruction
+ // does not fit with other "subs" and tblgen.
+ // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
+ // so the Mnemonic is the original name "subs" and delete the predicate
+ // operand so it will match the table entry.
+ if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
+ static_cast<ARMOperand*>(Operands[3])->isReg() &&
+ static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::PC &&
+ static_cast<ARMOperand*>(Operands[4])->isReg() &&
+ static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::LR &&
+ static_cast<ARMOperand*>(Operands[5])->isImm()) {
+ ARMOperand *Op0 = static_cast<ARMOperand*>(Operands[0]);
+ Operands.erase(Operands.begin());
+ delete Op0;
+ Operands.insert(Operands.begin(), ARMOperand::CreateToken(Name, NameLoc));
+
+ ARMOperand *Op1 = static_cast<ARMOperand*>(Operands[1]);
+ Operands.erase(Operands.begin() + 1);
+ delete Op1;
+ }
+ return false;
+}
+
+// Validate context-sensitive operand constraints.
+
+// return 'true' if register list contains non-low GPR registers,
+// 'false' otherwise. If Reg is in the register list or is HiReg, set
+// 'containsReg' to true.
+static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
+ unsigned HiReg, bool &containsReg) {
+ containsReg = false;
+ for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
+ unsigned OpReg = Inst.getOperand(i).getReg();
+ if (OpReg == Reg)
+ containsReg = true;
+ // Anything other than a low register isn't legal here.
+ if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
+ return true;
+ }
+ return false;
+}
+
+// Check if the specified regisgter is in the register list of the inst,
+// starting at the indicated operand number.
+static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
+ for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
+ unsigned OpReg = Inst.getOperand(i).getReg();
+ if (OpReg == Reg)
+ return true;
+ }
+ return false;
+}
+
+// Return true if instruction has the interesting property of being
+// allowed in IT blocks, but not being predicable.
+static bool instIsBreakpoint(const MCInst &Inst) {
+ return Inst.getOpcode() == ARM::tBKPT ||
+ Inst.getOpcode() == ARM::BKPT ||
+ Inst.getOpcode() == ARM::tHLT ||
+ Inst.getOpcode() == ARM::HLT;
+
+}
+
+// FIXME: We would really like to be able to tablegen'erate this.
+bool ARMAsmParser::
+validateInstruction(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
+ SMLoc Loc = Operands[0]->getStartLoc();
+
+ // Check the IT block state first.
+ // NOTE: BKPT and HLT instructions have the interesting property of being
+ // allowed in IT blocks, but not being predicable. They just always execute.
+ if (inITBlock() && !instIsBreakpoint(Inst)) {
+ unsigned Bit = 1;
+ if (ITState.FirstCond)
+ ITState.FirstCond = false;
+ else
+ Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
+ // The instruction must be predicable.
+ if (!MCID.isPredicable())
+ return Error(Loc, "instructions in IT block must be predicable");
+ unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
+ unsigned ITCond = Bit ? ITState.Cond :
+ ARMCC::getOppositeCondition(ITState.Cond);
+ if (Cond != ITCond) {
+ // Find the condition code Operand to get its SMLoc information.
+ SMLoc CondLoc;
+ for (unsigned I = 1; I < Operands.size(); ++I)
+ if (static_cast<ARMOperand*>(Operands[I])->isCondCode())
+ CondLoc = Operands[I]->getStartLoc();
+ return Error(CondLoc, "incorrect condition in IT block; got '" +
+ StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
+ "', but expected '" +
+ ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
+ }
+ // Check for non-'al' condition codes outside of the IT block.
+ } else if (isThumbTwo() && MCID.isPredicable() &&
+ Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
+ ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
+ Inst.getOpcode() != ARM::t2Bcc)
+ return Error(Loc, "predicated instructions must be in IT block");
+
+ const unsigned Opcode = Inst.getOpcode();
+ switch (Opcode) {
+ case ARM::LDRD:
+ case ARM::LDRD_PRE:
+ case ARM::LDRD_POST: {
+ const unsigned RtReg = Inst.getOperand(0).getReg();
+
+ // Rt can't be R14.
+ if (RtReg == ARM::LR)
+ return Error(Operands[3]->getStartLoc(),
+ "Rt can't be R14");
+
+ const unsigned Rt = MRI->getEncodingValue(RtReg);
+ // Rt must be even-numbered.
+ if ((Rt & 1) == 1)
+ return Error(Operands[3]->getStartLoc(),
+ "Rt must be even-numbered");
+
+ // Rt2 must be Rt + 1.
+ const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "destination operands must be sequential");
+
+ if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
+ const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
+ // For addressing modes with writeback, the base register needs to be
+ // different from the destination registers.
+ if (Rn == Rt || Rn == Rt2)
+ return Error(Operands[3]->getStartLoc(),
+ "base register needs to be different from destination "
+ "registers");
+ }
+
+ return false;
+ }
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRD_PRE:
+ case ARM::t2LDRD_POST: {
+ // Rt2 must be different from Rt.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 == Rt)
+ return Error(Operands[3]->getStartLoc(),
+ "destination operands can't be identical");
+ return false;
+ }
+ case ARM::STRD: {
+ // Rt2 must be Rt + 1.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "source operands must be sequential");
+ return false;
+ }
+ case ARM::STRD_PRE:
+ case ARM::STRD_POST: {
+ // Rt2 must be Rt + 1.
+ unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
+ if (Rt2 != Rt + 1)
+ return Error(Operands[3]->getStartLoc(),
+ "source operands must be sequential");
+ return false;
+ }
+ case ARM::SBFX:
+ case ARM::UBFX: {
+ // Width must be in range [1, 32-lsb].
+ unsigned LSB = Inst.getOperand(2).getImm();
+ unsigned Widthm1 = Inst.getOperand(3).getImm();
+ if (Widthm1 >= 32 - LSB)
+ return Error(Operands[5]->getStartLoc(),
+ "bitfield width must be in range [1,32-lsb]");
+ return false;
+ }
+ // Notionally handles ARM::tLDMIA_UPD too.
+ case ARM::tLDMIA: {
+ // If we're parsing Thumb2, the .w variant is available and handles
+ // most cases that are normally illegal for a Thumb1 LDM instruction.
+ // We'll make the transformation in processInstruction() if necessary.
+ //
+ // Thumb LDM instructions are writeback iff the base register is not
+ // in the register list.
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool HasWritebackToken =
+ (static_cast<ARMOperand*>(Operands[3])->isToken() &&
+ static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
+ return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
+ "registers must be in range r0-r7");
+ // If we should have writeback, then there should be a '!' token.
+ if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "writeback operator '!' expected");
+ // If we should not have writeback, there must not be a '!'. This is
+ // true even for the 32-bit wide encodings.
+ if (ListContainsBase && HasWritebackToken)
+ return Error(Operands[3]->getStartLoc(),
+ "writeback operator '!' not allowed when base register "
+ "in register list");
+
+ break;
+ }
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::LDMDA_UPD:
+ // ARM variants loading and updating the same register are only officially
+ // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
+ if (!hasV7Ops())
+ break;
+ // Fallthrough
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
+ return Error(Operands.back()->getStartLoc(),
+ "writeback register not allowed in register list");
+ break;
+ }
+ case ARM::sysLDMIA_UPD:
+ case ARM::sysLDMDA_UPD:
+ case ARM::sysLDMDB_UPD:
+ case ARM::sysLDMIB_UPD:
+ if (!listContainsReg(Inst, 3, ARM::PC))
+ return Error(Operands[4]->getStartLoc(),
+ "writeback register only allowed on system LDM "
+ "if PC in register-list");
+ break;
+ case ARM::sysSTMIA_UPD:
+ case ARM::sysSTMDA_UPD:
+ case ARM::sysSTMDB_UPD:
+ case ARM::sysSTMIB_UPD:
+ return Error(Operands[2]->getStartLoc(),
+ "system STM cannot have writeback register");
+ break;
+ case ARM::tMUL: {
+ // The second source operand must be the same register as the destination
+ // operand.
+ //
+ // In this case, we must directly check the parsed operands because the
+ // cvtThumbMultiply() function is written in such a way that it guarantees
+ // this first statement is always true for the new Inst. Essentially, the
+ // destination is unconditionally copied into the second source operand
+ // without checking to see if it matches what we actually parsed.
+ if (Operands.size() == 6 &&
+ (((ARMOperand*)Operands[3])->getReg() !=
+ ((ARMOperand*)Operands[5])->getReg()) &&
+ (((ARMOperand*)Operands[3])->getReg() !=
+ ((ARMOperand*)Operands[4])->getReg())) {
+ return Error(Operands[3]->getStartLoc(),
+ "destination register must match source register");
+ }
+ break;
+ }
+ // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
+ // so only issue a diagnostic for thumb1. The instructions will be
+ // switched to the t2 encodings in processInstruction() if necessary.
+ case ARM::tPOP: {
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
+ !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "registers must be in range r0-r7 or pc");
+ break;
+ }
+ case ARM::tPUSH: {
+ bool ListContainsBase;
+ if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
+ !isThumbTwo())
+ return Error(Operands[2]->getStartLoc(),
+ "registers must be in range r0-r7 or lr");
+ break;
+ }
+ case ARM::tSTMIA_UPD: {
+ bool ListContainsBase, InvalidLowList;
+ InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
+ 0, ListContainsBase);
+ if (InvalidLowList && !isThumbTwo())
+ return Error(Operands[4]->getStartLoc(),
+ "registers must be in range r0-r7");
+
+ // This would be converted to a 32-bit stm, but that's not valid if the
+ // writeback register is in the list.
+ if (InvalidLowList && ListContainsBase)
+ return Error(Operands[4]->getStartLoc(),
+ "writeback operator '!' not allowed when base register "
+ "in register list");
+ break;
+ }
+ case ARM::tADDrSP: {
+ // If the non-SP source operand and the destination operand are not the
+ // same, we need thumb2 (for the wide encoding), or we have an error.
+ if (!isThumbTwo() &&
+ Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
+ return Error(Operands[4]->getStartLoc(),
+ "source register must be the same as destination");
+ }
+ break;
+ }
+ // Final range checking for Thumb unconditional branch instructions.
+ case ARM::tB:
+ if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<11, 1>())
+ return Error(Operands[2]->getStartLoc(), "branch target out of range");
+ break;
+ case ARM::t2B: {
+ int op = (Operands[2]->isImm()) ? 2 : 3;
+ if (!(static_cast<ARMOperand*>(Operands[op]))->isSignedOffset<24, 1>())
+ return Error(Operands[op]->getStartLoc(), "branch target out of range");
+ break;
+ }
+ // Final range checking for Thumb conditional branch instructions.
+ case ARM::tBcc:
+ if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<8, 1>())
+ return Error(Operands[2]->getStartLoc(), "branch target out of range");
+ break;
+ case ARM::t2Bcc: {
+ int Op = (Operands[2]->isImm()) ? 2 : 3;
+ if (!(static_cast<ARMOperand*>(Operands[Op]))->isSignedOffset<20, 1>())
+ return Error(Operands[Op]->getStartLoc(), "branch target out of range");
+ break;
+ }
+ }
+
+ return false;
+}
+
+static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
+ switch(Opc) {
+ default: llvm_unreachable("unexpected opcode!");
+ // VST1LN
+ case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
+ case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
+ case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
+ case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
+ case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
+ case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
+ case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
+ case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
+ case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
+
+ // VST2LN
+ case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
+ case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
+ case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
+ case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
+ case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
+
+ case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
+ case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
+ case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
+ case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
+ case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
+
+ case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
+ case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
+ case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
+ case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
+ case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
+
+ // VST3LN
+ case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
+ case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
+ case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
+ case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
+ case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
+ case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
+ case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
+ case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
+ case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
+ case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
+ case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
+ case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
+ case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
+ case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
+ case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
+
+ // VST3
+ case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
+ case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
+ case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
+ case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
+ case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
+ case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
+ case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
+ case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
+ case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
+ case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
+ case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
+ case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
+ case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
+ case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
+ case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
+ case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
+ case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
+ case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
+
+ // VST4LN
+ case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
+ case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
+ case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
+ case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
+ case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
+ case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
+ case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
+ case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
+ case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
+ case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
+ case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
+ case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
+ case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
+ case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
+ case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
+
+ // VST4
+ case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
+ case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
+ case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
+ case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
+ case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
+ case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
+ case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
+ case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
+ case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
+ case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
+ case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
+ case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
+ case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
+ case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
+ case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
+ case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
+ case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
+ case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
+ }
+}
+
+static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
+ switch(Opc) {
+ default: llvm_unreachable("unexpected opcode!");
+ // VLD1LN
+ case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
+ case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
+ case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
+ case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
+ case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
+ case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
+ case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
+ case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
+ case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
+
+ // VLD2LN
+ case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
+ case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
+ case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
+ case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
+ case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
+ case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
+ case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
+ case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
+ case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
+ case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
+ case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
+ case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
+ case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
+ case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
+ case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
+
+ // VLD3DUP
+ case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
+ case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
+ case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
+ case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
+ case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
+ case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
+ case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
+ case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
+ case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
+ case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
+ case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
+ case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
+
+ // VLD3LN
+ case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
+ case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
+ case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
+ case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
+ case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
+ case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
+ case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
+ case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
+ case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
+ case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
+ case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
+ case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
+ case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
+ case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
+ case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
+
+ // VLD3
+ case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
+ case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
+ case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
+ case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
+ case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
+ case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
+ case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
+ case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
+ case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
+ case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
+ case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
+ case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
+ case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
+ case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
+ case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
+ case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
+ case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
+ case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
+
+ // VLD4LN
+ case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
+ case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
+ case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
+ case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
+ case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
+ case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
+ case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
+ case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
+ case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
+ case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
+ case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
+ case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
+ case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
+ case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
+ case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
+
+ // VLD4DUP
+ case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
+ case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
+ case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
+ case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
+ case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
+ case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
+ case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
+ case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
+ case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
+ case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
+ case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
+ case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
+
+ // VLD4
+ case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
+ case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
+ case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
+ case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
+ case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
+ case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
+ case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
+ case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
+ case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
+ case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
+ case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
+ case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
+ case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
+ case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
+ case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
+ case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
+ case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
+ case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
+ }
+}
+
+bool ARMAsmParser::
+processInstruction(MCInst &Inst,
+ const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ switch (Inst.getOpcode()) {
+ // Alias for alternate form of 'ADR Rd, #imm' instruction.
+ case ARM::ADDri: {
+ if (Inst.getOperand(1).getReg() != ARM::PC ||
+ Inst.getOperand(5).getReg() != 0)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::ADR);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ // Aliases for alternate PC+imm syntax of LDR instructions.
+ case ARM::t2LDRpcrel:
+ // Select the narrow version if the immediate will fit.
+ if (Inst.getOperand(1).getImm() > 0 &&
+ Inst.getOperand(1).getImm() <= 0xff &&
+ !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
+ static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
+ Inst.setOpcode(ARM::tLDRpci);
+ else
+ Inst.setOpcode(ARM::t2LDRpci);
+ return true;
+ case ARM::t2LDRBpcrel:
+ Inst.setOpcode(ARM::t2LDRBpci);
+ return true;
+ case ARM::t2LDRHpcrel:
+ Inst.setOpcode(ARM::t2LDRHpci);
+ return true;
+ case ARM::t2LDRSBpcrel:
+ Inst.setOpcode(ARM::t2LDRSBpci);
+ return true;
+ case ARM::t2LDRSHpcrel:
+ Inst.setOpcode(ARM::t2LDRSHpci);
+ return true;
+ // Handle NEON VST complex aliases.
+ case ARM::VST1LNdWB_register_Asm_8:
+ case ARM::VST1LNdWB_register_Asm_16:
+ case ARM::VST1LNdWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdWB_register_Asm_8:
+ case ARM::VST2LNdWB_register_Asm_16:
+ case ARM::VST2LNdWB_register_Asm_32:
+ case ARM::VST2LNqWB_register_Asm_16:
+ case ARM::VST2LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdWB_register_Asm_8:
+ case ARM::VST3LNdWB_register_Asm_16:
+ case ARM::VST3LNdWB_register_Asm_32:
+ case ARM::VST3LNqWB_register_Asm_16:
+ case ARM::VST3LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdWB_register_Asm_8:
+ case ARM::VST4LNdWB_register_Asm_16:
+ case ARM::VST4LNdWB_register_Asm_32:
+ case ARM::VST4LNqWB_register_Asm_16:
+ case ARM::VST4LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST1LNdWB_fixed_Asm_8:
+ case ARM::VST1LNdWB_fixed_Asm_16:
+ case ARM::VST1LNdWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdWB_fixed_Asm_8:
+ case ARM::VST2LNdWB_fixed_Asm_16:
+ case ARM::VST2LNdWB_fixed_Asm_32:
+ case ARM::VST2LNqWB_fixed_Asm_16:
+ case ARM::VST2LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdWB_fixed_Asm_8:
+ case ARM::VST3LNdWB_fixed_Asm_16:
+ case ARM::VST3LNdWB_fixed_Asm_32:
+ case ARM::VST3LNqWB_fixed_Asm_16:
+ case ARM::VST3LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdWB_fixed_Asm_8:
+ case ARM::VST4LNdWB_fixed_Asm_16:
+ case ARM::VST4LNdWB_fixed_Asm_32:
+ case ARM::VST4LNqWB_fixed_Asm_16:
+ case ARM::VST4LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST1LNdAsm_8:
+ case ARM::VST1LNdAsm_16:
+ case ARM::VST1LNdAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST2LNdAsm_8:
+ case ARM::VST2LNdAsm_16:
+ case ARM::VST2LNdAsm_32:
+ case ARM::VST2LNqAsm_16:
+ case ARM::VST2LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3LNdAsm_8:
+ case ARM::VST3LNdAsm_16:
+ case ARM::VST3LNdAsm_32:
+ case ARM::VST3LNqAsm_16:
+ case ARM::VST3LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4LNdAsm_8:
+ case ARM::VST4LNdAsm_16:
+ case ARM::VST4LNdAsm_32:
+ case ARM::VST4LNqAsm_16:
+ case ARM::VST4LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // Handle NEON VLD complex aliases.
+ case ARM::VLD1LNdWB_register_Asm_8:
+ case ARM::VLD1LNdWB_register_Asm_16:
+ case ARM::VLD1LNdWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdWB_register_Asm_8:
+ case ARM::VLD2LNdWB_register_Asm_16:
+ case ARM::VLD2LNdWB_register_Asm_32:
+ case ARM::VLD2LNqWB_register_Asm_16:
+ case ARM::VLD2LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdWB_register_Asm_8:
+ case ARM::VLD3LNdWB_register_Asm_16:
+ case ARM::VLD3LNdWB_register_Asm_32:
+ case ARM::VLD3LNqWB_register_Asm_16:
+ case ARM::VLD3LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdWB_register_Asm_8:
+ case ARM::VLD4LNdWB_register_Asm_16:
+ case ARM::VLD4LNdWB_register_Asm_32:
+ case ARM::VLD4LNqWB_register_Asm_16:
+ case ARM::VLD4LNqWB_register_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(4)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(5)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD1LNdWB_fixed_Asm_8:
+ case ARM::VLD1LNdWB_fixed_Asm_16:
+ case ARM::VLD1LNdWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdWB_fixed_Asm_8:
+ case ARM::VLD2LNdWB_fixed_Asm_16:
+ case ARM::VLD2LNdWB_fixed_Asm_32:
+ case ARM::VLD2LNqWB_fixed_Asm_16:
+ case ARM::VLD2LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdWB_fixed_Asm_8:
+ case ARM::VLD3LNdWB_fixed_Asm_16:
+ case ARM::VLD3LNdWB_fixed_Asm_32:
+ case ARM::VLD3LNqWB_fixed_Asm_16:
+ case ARM::VLD3LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdWB_fixed_Asm_8:
+ case ARM::VLD4LNdWB_fixed_Asm_16:
+ case ARM::VLD4LNdWB_fixed_Asm_32:
+ case ARM::VLD4LNqWB_fixed_Asm_16:
+ case ARM::VLD4LNqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD1LNdAsm_8:
+ case ARM::VLD1LNdAsm_16:
+ case ARM::VLD1LNdAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD2LNdAsm_8:
+ case ARM::VLD2LNdAsm_16:
+ case ARM::VLD2LNdAsm_32:
+ case ARM::VLD2LNqAsm_16:
+ case ARM::VLD2LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3LNdAsm_8:
+ case ARM::VLD3LNdAsm_16:
+ case ARM::VLD3LNdAsm_32:
+ case ARM::VLD3LNqAsm_16:
+ case ARM::VLD3LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4LNdAsm_8:
+ case ARM::VLD4LNdAsm_16:
+ case ARM::VLD4LNdAsm_32:
+ case ARM::VLD4LNqAsm_16:
+ case ARM::VLD4LNqAsm_32: {
+ MCInst TmpInst;
+ // Shuffle the operands around so the lane index operand is in the
+ // right place.
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(2)); // Rn
+ TmpInst.addOperand(Inst.getOperand(3)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // lane
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD3DUP single 3-element structure to all lanes instructions.
+ case ARM::VLD3DUPdAsm_8:
+ case ARM::VLD3DUPdAsm_16:
+ case ARM::VLD3DUPdAsm_32:
+ case ARM::VLD3DUPqAsm_8:
+ case ARM::VLD3DUPqAsm_16:
+ case ARM::VLD3DUPqAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3DUPdWB_fixed_Asm_8:
+ case ARM::VLD3DUPdWB_fixed_Asm_16:
+ case ARM::VLD3DUPdWB_fixed_Asm_32:
+ case ARM::VLD3DUPqWB_fixed_Asm_8:
+ case ARM::VLD3DUPqWB_fixed_Asm_16:
+ case ARM::VLD3DUPqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3DUPdWB_register_Asm_8:
+ case ARM::VLD3DUPdWB_register_Asm_16:
+ case ARM::VLD3DUPdWB_register_Asm_32:
+ case ARM::VLD3DUPqWB_register_Asm_8:
+ case ARM::VLD3DUPqWB_register_Asm_16:
+ case ARM::VLD3DUPqWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD3 multiple 3-element structure instructions.
+ case ARM::VLD3dAsm_8:
+ case ARM::VLD3dAsm_16:
+ case ARM::VLD3dAsm_32:
+ case ARM::VLD3qAsm_8:
+ case ARM::VLD3qAsm_16:
+ case ARM::VLD3qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3dWB_fixed_Asm_8:
+ case ARM::VLD3dWB_fixed_Asm_16:
+ case ARM::VLD3dWB_fixed_Asm_32:
+ case ARM::VLD3qWB_fixed_Asm_8:
+ case ARM::VLD3qWB_fixed_Asm_16:
+ case ARM::VLD3qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD3dWB_register_Asm_8:
+ case ARM::VLD3dWB_register_Asm_16:
+ case ARM::VLD3dWB_register_Asm_32:
+ case ARM::VLD3qWB_register_Asm_8:
+ case ARM::VLD3qWB_register_Asm_16:
+ case ARM::VLD3qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD4DUP single 3-element structure to all lanes instructions.
+ case ARM::VLD4DUPdAsm_8:
+ case ARM::VLD4DUPdAsm_16:
+ case ARM::VLD4DUPdAsm_32:
+ case ARM::VLD4DUPqAsm_8:
+ case ARM::VLD4DUPqAsm_16:
+ case ARM::VLD4DUPqAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4DUPdWB_fixed_Asm_8:
+ case ARM::VLD4DUPdWB_fixed_Asm_16:
+ case ARM::VLD4DUPdWB_fixed_Asm_32:
+ case ARM::VLD4DUPqWB_fixed_Asm_8:
+ case ARM::VLD4DUPqWB_fixed_Asm_16:
+ case ARM::VLD4DUPqWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4DUPdWB_register_Asm_8:
+ case ARM::VLD4DUPdWB_register_Asm_16:
+ case ARM::VLD4DUPdWB_register_Asm_32:
+ case ARM::VLD4DUPqWB_register_Asm_8:
+ case ARM::VLD4DUPqWB_register_Asm_16:
+ case ARM::VLD4DUPqWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VLD4 multiple 4-element structure instructions.
+ case ARM::VLD4dAsm_8:
+ case ARM::VLD4dAsm_16:
+ case ARM::VLD4dAsm_32:
+ case ARM::VLD4qAsm_8:
+ case ARM::VLD4qAsm_16:
+ case ARM::VLD4qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4dWB_fixed_Asm_8:
+ case ARM::VLD4dWB_fixed_Asm_16:
+ case ARM::VLD4dWB_fixed_Asm_32:
+ case ARM::VLD4qWB_fixed_Asm_8:
+ case ARM::VLD4qWB_fixed_Asm_16:
+ case ARM::VLD4qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VLD4dWB_register_Asm_8:
+ case ARM::VLD4dWB_register_Asm_16:
+ case ARM::VLD4dWB_register_Asm_32:
+ case ARM::VLD4qWB_register_Asm_8:
+ case ARM::VLD4qWB_register_Asm_16:
+ case ARM::VLD4qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VST3 multiple 3-element structure instructions.
+ case ARM::VST3dAsm_8:
+ case ARM::VST3dAsm_16:
+ case ARM::VST3dAsm_32:
+ case ARM::VST3qAsm_8:
+ case ARM::VST3qAsm_16:
+ case ARM::VST3qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3dWB_fixed_Asm_8:
+ case ARM::VST3dWB_fixed_Asm_16:
+ case ARM::VST3dWB_fixed_Asm_32:
+ case ARM::VST3qWB_fixed_Asm_8:
+ case ARM::VST3qWB_fixed_Asm_16:
+ case ARM::VST3qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST3dWB_register_Asm_8:
+ case ARM::VST3dWB_register_Asm_16:
+ case ARM::VST3dWB_register_Asm_32:
+ case ARM::VST3qWB_register_Asm_8:
+ case ARM::VST3qWB_register_Asm_16:
+ case ARM::VST3qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // VST4 multiple 3-element structure instructions.
+ case ARM::VST4dAsm_8:
+ case ARM::VST4dAsm_16:
+ case ARM::VST4dAsm_32:
+ case ARM::VST4qAsm_8:
+ case ARM::VST4qAsm_16:
+ case ARM::VST4qAsm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4dWB_fixed_Asm_8:
+ case ARM::VST4dWB_fixed_Asm_16:
+ case ARM::VST4dWB_fixed_Asm_32:
+ case ARM::VST4qWB_fixed_Asm_8:
+ case ARM::VST4qWB_fixed_Asm_16:
+ case ARM::VST4qWB_fixed_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+
+ case ARM::VST4dWB_register_Asm_8:
+ case ARM::VST4dWB_register_Asm_16:
+ case ARM::VST4dWB_register_Asm_32:
+ case ARM::VST4qWB_register_Asm_8:
+ case ARM::VST4qWB_register_Asm_16:
+ case ARM::VST4qWB_register_Asm_32: {
+ MCInst TmpInst;
+ unsigned Spacing;
+ TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // alignment
+ TmpInst.addOperand(Inst.getOperand(3)); // Rm
+ TmpInst.addOperand(Inst.getOperand(0)); // Vd
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 2));
+ TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
+ Spacing * 3));
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+
+ // Handle encoding choice for the shift-immediate instructions.
+ case ARM::t2LSLri:
+ case ARM::t2LSRri:
+ case ARM::t2ASRri: {
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
+ !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
+ static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
+ case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
+ case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
+ }
+ // The Thumb1 operands aren't in the same order. Awesome, eh?
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+
+ // Handle the Thumb2 mode MOV complex aliases.
+ case ARM::t2MOVsr:
+ case ARM::t2MOVSsr: {
+ // Which instruction to expand to depends on the CCOut operand and
+ // whether we're in an IT block if the register operands are low
+ // registers.
+ bool isNarrow = false;
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg()) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
+ isNarrow = true;
+ MCInst TmpInst;
+ unsigned newOpc;
+ switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
+ case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
+ case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
+ case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
+ }
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ if (isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // Rm
+ TmpInst.addOperand(Inst.getOperand(4)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(5));
+ if (!isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2MOVsi:
+ case ARM::t2MOVSsi: {
+ // Which instruction to expand to depends on the CCOut operand and
+ // whether we're in an IT block if the register operands are low
+ // registers.
+ bool isNarrow = false;
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
+ isNarrow = true;
+ MCInst TmpInst;
+ unsigned newOpc;
+ switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
+ case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
+ case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
+ case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
+ case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
+ }
+ unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
+ if (Amount == 32) Amount = 0;
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ if (isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ if (newOpc != ARM::t2RRX)
+ TmpInst.addOperand(MCOperand::CreateImm(Amount));
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ if (!isNarrow)
+ TmpInst.addOperand(MCOperand::CreateReg(
+ Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
+ Inst = TmpInst;
+ return true;
+ }
+ // Handle the ARM mode MOV complex aliases.
+ case ARM::ASRr:
+ case ARM::LSRr:
+ case ARM::LSLr:
+ case ARM::RORr: {
+ ARM_AM::ShiftOpc ShiftTy;
+ switch(Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
+ case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
+ case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
+ case ARM::RORr: ShiftTy = ARM_AM::ror; break;
+ }
+ unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVsr);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(Inst.getOperand(2)); // Rm
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::ASRi:
+ case ARM::LSRi:
+ case ARM::LSLi:
+ case ARM::RORi: {
+ ARM_AM::ShiftOpc ShiftTy;
+ switch(Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
+ case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
+ case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
+ case ARM::RORi: ShiftTy = ARM_AM::ror; break;
+ }
+ // A shift by zero is a plain MOVr, not a MOVsi.
+ unsigned Amt = Inst.getOperand(2).getImm();
+ unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
+ // A shift by 32 should be encoded as 0 when permitted
+ if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
+ Amt = 0;
+ unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
+ MCInst TmpInst;
+ TmpInst.setOpcode(Opc);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ if (Opc == ARM::MOVsi)
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(3)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::RRXi: {
+ unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVsi);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rd
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4)); // cc_out
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2LDMIA_UPD: {
+ // If this is a load of a single register, then we should use
+ // a post-indexed LDR instruction instead, per the ARM ARM.
+ if (Inst.getNumOperands() != 5)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::t2LDR_POST);
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2STMDB_UPD: {
+ // If this is a store of a single register, then we should use
+ // a pre-indexed STR instruction instead, per the ARM ARM.
+ if (Inst.getNumOperands() != 5)
+ return false;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::t2STR_PRE);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateImm(-4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::LDMIA_UPD:
+ // If this is a load of a single register via a 'pop', then we should use
+ // a post-indexed LDR instruction instead, per the ARM ARM.
+ if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
+ Inst.getNumOperands() == 5) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::LDR_POST_IMM);
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(1)); // Rn
+ TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
+ TmpInst.addOperand(MCOperand::CreateImm(4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ case ARM::STMDB_UPD:
+ // If this is a store of a single register via a 'push', then we should use
+ // a pre-indexed STR instruction instead, per the ARM ARM.
+ if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
+ Inst.getNumOperands() == 5) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::STR_PRE_IMM);
+ TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
+ TmpInst.addOperand(Inst.getOperand(4)); // Rt
+ TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
+ TmpInst.addOperand(MCOperand::CreateImm(-4));
+ TmpInst.addOperand(Inst.getOperand(2)); // CondCode
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ }
+ break;
+ case ARM::t2ADDri12:
+ // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
+ // mnemonic was used (not "addw"), encoding T3 is preferred.
+ if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
+ ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
+ break;
+ Inst.setOpcode(ARM::t2ADDri);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ break;
+ case ARM::t2SUBri12:
+ // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
+ // mnemonic was used (not "subw"), encoding T3 is preferred.
+ if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
+ ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
+ break;
+ Inst.setOpcode(ARM::t2SUBri);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ break;
+ case ARM::tADDi8:
+ // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
+ // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
+ // to encoding T2 if <Rd> is specified and encoding T2 is preferred
+ // to encoding T1 if <Rd> is omitted."
+ if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
+ Inst.setOpcode(ARM::tADDi3);
+ return true;
+ }
+ break;
+ case ARM::tSUBi8:
+ // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
+ // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
+ // to encoding T2 if <Rd> is specified and encoding T2 is preferred
+ // to encoding T1 if <Rd> is omitted."
+ if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
+ Inst.setOpcode(ARM::tSUBi3);
+ return true;
+ }
+ break;
+ case ARM::t2ADDri:
+ case ARM::t2SUBri: {
+ // If the destination and first source operand are the same, and
+ // the flags are compatible with the current IT status, use encoding T2
+ // instead of T3. For compatibility with the system 'as'. Make sure the
+ // wide encoding wasn't explicit.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
+ !isARMLowRegister(Inst.getOperand(0).getReg()) ||
+ (unsigned)Inst.getOperand(2).getImm() > 255 ||
+ ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
+ (static_cast<ARMOperand*>(Operands[3])->isToken() &&
+ static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
+ break;
+ MCInst TmpInst;
+ TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
+ ARM::tADDi8 : ARM::tSUBi8);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::t2ADDrr: {
+ // If the destination and first source operand are the same, and
+ // there's no setting of the flags, use encoding T2 instead of T3.
+ // Note that this is only for ADD, not SUB. This mirrors the system
+ // 'as' behaviour. Make sure the wide encoding wasn't explicit.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
+ Inst.getOperand(5).getReg() != 0 ||
+ (static_cast<ARMOperand*>(Operands[3])->isToken() &&
+ static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
+ break;
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::tADDhirr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ case ARM::tADDrSP: {
+ // If the non-SP source operand and the destination operand are not the
+ // same, we need to use the 32-bit encoding if it's available.
+ if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
+ Inst.setOpcode(ARM::t2ADDrr);
+ Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
+ return true;
+ }
+ break;
+ }
+ case ARM::tB:
+ // A Thumb conditional branch outside of an IT block is a tBcc.
+ if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
+ Inst.setOpcode(ARM::tBcc);
+ return true;
+ }
+ break;
+ case ARM::t2B:
+ // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
+ if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
+ Inst.setOpcode(ARM::t2Bcc);
+ return true;
+ }
+ break;
+ case ARM::t2Bcc:
+ // If the conditional is AL or we're in an IT block, we really want t2B.
+ if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
+ Inst.setOpcode(ARM::t2B);
+ return true;
+ }
+ break;
+ case ARM::tBcc:
+ // If the conditional is AL, we really want tB.
+ if (Inst.getOperand(1).getImm() == ARMCC::AL) {
+ Inst.setOpcode(ARM::tB);
+ return true;
+ }
+ break;
+ case ARM::tLDMIA: {
+ // If the register list contains any high registers, or if the writeback
+ // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
+ // instead if we're in Thumb2. Otherwise, this should have generated
+ // an error in validateInstruction().
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool hasWritebackToken =
+ (static_cast<ARMOperand*>(Operands[3])->isToken() &&
+ static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
+ bool listContainsBase;
+ if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
+ (!listContainsBase && !hasWritebackToken) ||
+ (listContainsBase && hasWritebackToken)) {
+ // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
+ assert (isThumbTwo());
+ Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
+ // If we're switching to the updating version, we need to insert
+ // the writeback tied operand.
+ if (hasWritebackToken)
+ Inst.insert(Inst.begin(),
+ MCOperand::CreateReg(Inst.getOperand(0).getReg()));
+ return true;
+ }
+ break;
+ }
+ case ARM::tSTMIA_UPD: {
+ // If the register list contains any high registers, we need to use
+ // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
+ // should have generated an error in validateInstruction().
+ unsigned Rn = Inst.getOperand(0).getReg();
+ bool listContainsBase;
+ if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
+ // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2STMIA_UPD);
+ return true;
+ }
+ break;
+ }
+ case ARM::tPOP: {
+ bool listContainsBase;
+ // If the register list contains any high registers, we need to use
+ // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
+ // should have generated an error in validateInstruction().
+ if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
+ return false;
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2LDMIA_UPD);
+ // Add the base register and writeback operands.
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ return true;
+ }
+ case ARM::tPUSH: {
+ bool listContainsBase;
+ if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
+ return false;
+ assert (isThumbTwo());
+ Inst.setOpcode(ARM::t2STMDB_UPD);
+ // Add the base register and writeback operands.
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
+ return true;
+ }
+ case ARM::t2MOVi: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ (unsigned)Inst.getOperand(1).getImm() <= 255 &&
+ ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
+ Inst.getOperand(4).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
+ (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
+ static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
+ // The operands aren't in the same order for tMOVi8...
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::tMOVi8);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::t2MOVr: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ Inst.getOperand(2).getImm() == ARMCC::AL &&
+ Inst.getOperand(4).getReg() == ARM::CPSR &&
+ (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
+ static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
+ // The operands aren't the same for tMOV[S]r... (no cc_out)
+ MCInst TmpInst;
+ TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::t2SXTH:
+ case ARM::t2SXTB:
+ case ARM::t2UXTH:
+ case ARM::t2UXTB: {
+ // If we can use the 16-bit encoding and the user didn't explicitly
+ // request the 32-bit variant, transform it here.
+ if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ Inst.getOperand(2).getImm() == 0 &&
+ (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
+ static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Illegal opcode!");
+ case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
+ case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
+ case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
+ case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
+ }
+ // The operands aren't the same for thumb1 (no rotate operand).
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ break;
+ }
+ case ARM::MOVsi: {
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
+ // rrx shifts and asr/lsr of #32 is encoded as 0
+ if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
+ return false;
+ if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
+ // Shifting by zero is accepted as a vanilla 'MOVr'
+ MCInst TmpInst;
+ TmpInst.setOpcode(ARM::MOVr);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::ANDrsi:
+ case ARM::ORRrsi:
+ case ARM::EORrsi:
+ case ARM::BICrsi:
+ case ARM::SUBrsi:
+ case ARM::ADDrsi: {
+ unsigned newOpc;
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
+ if (SOpc == ARM_AM::rrx) return false;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
+ case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
+ case ARM::EORrsi: newOpc = ARM::EORrr; break;
+ case ARM::BICrsi: newOpc = ARM::BICrr; break;
+ case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
+ case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
+ }
+ // If the shift is by zero, use the non-shifted instruction definition.
+ // The exception is for right shifts, where 0 == 32
+ if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
+ !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(newOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(4));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(6));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::ITasm:
+ case ARM::t2IT: {
+ // The mask bits for all but the first condition are represented as
+ // the low bit of the condition code value implies 't'. We currently
+ // always have 1 implies 't', so XOR toggle the bits if the low bit
+ // of the condition code is zero.
+ MCOperand &MO = Inst.getOperand(1);
+ unsigned Mask = MO.getImm();
+ unsigned OrigMask = Mask;
+ unsigned TZ = countTrailingZeros(Mask);
+ if ((Inst.getOperand(0).getImm() & 1) == 0) {
+ assert(Mask && TZ <= 3 && "illegal IT mask value!");
+ Mask ^= (0xE << TZ) & 0xF;
+ }
+ MO.setImm(Mask);
+
+ // Set up the IT block state according to the IT instruction we just
+ // matched.
+ assert(!inITBlock() && "nested IT blocks?!");
+ ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
+ ITState.Mask = OrigMask; // Use the original mask, not the updated one.
+ ITState.CurPosition = 0;
+ ITState.FirstCond = true;
+ break;
+ }
+ case ARM::t2LSLrr:
+ case ARM::t2LSRrr:
+ case ARM::t2ASRrr:
+ case ARM::t2SBCrr:
+ case ARM::t2RORrr:
+ case ARM::t2BICrr:
+ {
+ // Assemblers should use the narrow encodings of these instructions when permissible.
+ if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg())) &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
+ ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
+ (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
+ !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
+ case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
+ case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
+ case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
+ case ARM::t2RORrr: NewOpc = ARM::tROR; break;
+ case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
+ }
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ case ARM::t2ANDrr:
+ case ARM::t2EORrr:
+ case ARM::t2ADCrr:
+ case ARM::t2ORRrr:
+ {
+ // Assemblers should use the narrow encodings of these instructions when permissible.
+ // These instructions are special in that they are commutable, so shorter encodings
+ // are available more often.
+ if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg())) &&
+ (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
+ Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
+ ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
+ (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
+ (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
+ !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
+ case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
+ case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
+ case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
+ }
+ MCInst TmpInst;
+ TmpInst.setOpcode(NewOpc);
+ TmpInst.addOperand(Inst.getOperand(0));
+ TmpInst.addOperand(Inst.getOperand(5));
+ if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
+ TmpInst.addOperand(Inst.getOperand(1));
+ TmpInst.addOperand(Inst.getOperand(2));
+ } else {
+ TmpInst.addOperand(Inst.getOperand(2));
+ TmpInst.addOperand(Inst.getOperand(1));
+ }
+ TmpInst.addOperand(Inst.getOperand(3));
+ TmpInst.addOperand(Inst.getOperand(4));
+ Inst = TmpInst;
+ return true;
+ }
+ return false;
+ }
+ }
+ return false;
+}
+
+unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
+ // 16-bit thumb arithmetic instructions either require or preclude the 'S'
+ // suffix depending on whether they're in an IT block or not.
+ unsigned Opc = Inst.getOpcode();
+ const MCInstrDesc &MCID = MII.get(Opc);
+ if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
+ assert(MCID.hasOptionalDef() &&
+ "optionally flag setting instruction missing optional def operand");
+ assert(MCID.NumOperands == Inst.getNumOperands() &&
+ "operand count mismatch!");
+ // Find the optional-def operand (cc_out).
+ unsigned OpNo;
+ for (OpNo = 0;
+ !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
+ ++OpNo)
+ ;
+ // If we're parsing Thumb1, reject it completely.
+ if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
+ return Match_MnemonicFail;
+ // If we're parsing Thumb2, which form is legal depends on whether we're
+ // in an IT block.
+ if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
+ !inITBlock())
+ return Match_RequiresITBlock;
+ if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
+ inITBlock())
+ return Match_RequiresNotITBlock;
+ }
+ // Some high-register supporting Thumb1 encodings only allow both registers
+ // to be from r0-r7 when in Thumb2.
+ else if (Opc == ARM::tADDhirr && isThumbOne() &&
+ isARMLowRegister(Inst.getOperand(1).getReg()) &&
+ isARMLowRegister(Inst.getOperand(2).getReg()))
+ return Match_RequiresThumb2;
+ // Others only require ARMv6 or later.
+ else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
+ isARMLowRegister(Inst.getOperand(0).getReg()) &&
+ isARMLowRegister(Inst.getOperand(1).getReg()))
+ return Match_RequiresV6;
+ return Match_Success;
+}
+
+static const char *getSubtargetFeatureName(unsigned Val);
+bool ARMAsmParser::
+MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ unsigned MatchResult;
+
+ MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm);
+ switch (MatchResult) {
+ default: break;
+ case Match_Success:
+ // Context sensitive operand constraints aren't handled by the matcher,
+ // so check them here.
+ if (validateInstruction(Inst, Operands)) {
+ // Still progress the IT block, otherwise one wrong condition causes
+ // nasty cascading errors.
+ forwardITPosition();
+ return true;
+ }
+
+ { // processInstruction() updates inITBlock state, we need to save it away
+ bool wasInITBlock = inITBlock();
+
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the
+ // individual transformations can chain off each other. E.g.,
+ // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
+ while (processInstruction(Inst, Operands))
+ ;
+
+ // Only after the instruction is fully processed, we can validate it
+ if (wasInITBlock && hasV8Ops() && isThumb() &&
+ !isV8EligibleForIT(&Inst, 2)) {
+ Warning(IDLoc, "deprecated instruction in IT block");
+ }
+ }
+
+ // Only move forward at the very end so that everything in validate
+ // and process gets a consistent answer about whether we're in an IT
+ // block.
+ forwardITPosition();
+
+ // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
+ // doesn't actually encode.
+ if (Inst.getOpcode() == ARM::ITasm)
+ return false;
+
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst);
+ return false;
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg);
+ }
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction",
+ ((ARMOperand*)Operands[0])->getLocRange());
+ case Match_RequiresNotITBlock:
+ return Error(IDLoc, "flag setting instruction only valid outside IT block");
+ case Match_RequiresITBlock:
+ return Error(IDLoc, "instruction only valid inside IT block");
+ case Match_RequiresV6:
+ return Error(IDLoc, "instruction variant requires ARMv6 or later");
+ case Match_RequiresThumb2:
+ return Error(IDLoc, "instruction variant requires Thumb2");
+ case Match_ImmRange0_15: {
+ SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
+ }
+ case Match_ImmRange0_239: {
+ SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
+ if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
+ return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
+ }
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+}
+
+/// parseDirective parses the arm specific directives
+bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return parseDirectiveWord(4, DirectiveID.getLoc());
+ else if (IDVal == ".thumb")
+ return parseDirectiveThumb(DirectiveID.getLoc());
+ else if (IDVal == ".arm")
+ return parseDirectiveARM(DirectiveID.getLoc());
+ else if (IDVal == ".thumb_func")
+ return parseDirectiveThumbFunc(DirectiveID.getLoc());
+ else if (IDVal == ".code")
+ return parseDirectiveCode(DirectiveID.getLoc());
+ else if (IDVal == ".syntax")
+ return parseDirectiveSyntax(DirectiveID.getLoc());
+ else if (IDVal == ".unreq")
+ return parseDirectiveUnreq(DirectiveID.getLoc());
+ else if (IDVal == ".arch")
+ return parseDirectiveArch(DirectiveID.getLoc());
+ else if (IDVal == ".eabi_attribute")
+ return parseDirectiveEabiAttr(DirectiveID.getLoc());
+ else if (IDVal == ".cpu")
+ return parseDirectiveCPU(DirectiveID.getLoc());
+ else if (IDVal == ".fpu")
+ return parseDirectiveFPU(DirectiveID.getLoc());
+ else if (IDVal == ".fnstart")
+ return parseDirectiveFnStart(DirectiveID.getLoc());
+ else if (IDVal == ".fnend")
+ return parseDirectiveFnEnd(DirectiveID.getLoc());
+ else if (IDVal == ".cantunwind")
+ return parseDirectiveCantUnwind(DirectiveID.getLoc());
+ else if (IDVal == ".personality")
+ return parseDirectivePersonality(DirectiveID.getLoc());
+ else if (IDVal == ".handlerdata")
+ return parseDirectiveHandlerData(DirectiveID.getLoc());
+ else if (IDVal == ".setfp")
+ return parseDirectiveSetFP(DirectiveID.getLoc());
+ else if (IDVal == ".pad")
+ return parseDirectivePad(DirectiveID.getLoc());
+ else if (IDVal == ".save")
+ return parseDirectiveRegSave(DirectiveID.getLoc(), false);
+ else if (IDVal == ".vsave")
+ return parseDirectiveRegSave(DirectiveID.getLoc(), true);
+ return true;
+}
+
+/// parseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveThumb
+/// ::= .thumb
+bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+
+ if (!hasThumb())
+ return Error(L, "target does not support Thumb mode");
+
+ if (!isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ return false;
+}
+
+/// parseDirectiveARM
+/// ::= .arm
+bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(L, "unexpected token in directive");
+ Parser.Lex();
+
+ if (!hasARM())
+ return Error(L, "target does not support ARM mode");
+
+ if (isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ return false;
+}
+
+void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
+ if (NextSymbolIsThumb) {
+ getParser().getStreamer().EmitThumbFunc(Symbol);
+ NextSymbolIsThumb = false;
+ }
+}
+
+/// parseDirectiveThumbFunc
+/// ::= .thumbfunc symbol_name
+bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
+ const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
+ bool isMachO = MAI->hasSubsectionsViaSymbols();
+
+ // Darwin asm has (optionally) function name after .thumb_func direction
+ // ELF doesn't
+ if (isMachO) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::EndOfStatement)) {
+ if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
+ return Error(L, "unexpected token in .thumb_func directive");
+ MCSymbol *Func =
+ getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
+ getParser().getStreamer().EmitThumbFunc(Func);
+ Parser.Lex(); // Consume the identifier token.
+ return false;
+ }
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(L, "unexpected token in directive");
+
+ NextSymbolIsThumb = true;
+
+ return false;
+}
+
+/// parseDirectiveSyntax
+/// ::= .syntax unified | divided
+bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return Error(L, "unexpected token in .syntax directive");
+ StringRef Mode = Tok.getString();
+ if (Mode == "unified" || Mode == "UNIFIED")
+ Parser.Lex();
+ else if (Mode == "divided" || Mode == "DIVIDED")
+ return Error(L, "'.syntax divided' arm asssembly not supported");
+ else
+ return Error(L, "unrecognized syntax mode in .syntax directive");
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ Parser.Lex();
+
+ // TODO tell the MC streamer the mode
+ // getParser().getStreamer().Emit???();
+ return false;
+}
+
+/// parseDirectiveCode
+/// ::= .code 16 | 32
+bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Integer))
+ return Error(L, "unexpected token in .code directive");
+ int64_t Val = Parser.getTok().getIntVal();
+ if (Val == 16)
+ Parser.Lex();
+ else if (Val == 32)
+ Parser.Lex();
+ else
+ return Error(L, "invalid operand to .code directive");
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ Parser.Lex();
+
+ if (Val == 16) {
+ if (!hasThumb())
+ return Error(L, "target does not support Thumb mode");
+
+ if (!isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ } else {
+ if (!hasARM())
+ return Error(L, "target does not support ARM mode");
+
+ if (isThumb())
+ SwitchMode();
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ }
+
+ return false;
+}
+
+/// parseDirectiveReq
+/// ::= name .req registername
+bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ Parser.Lex(); // Eat the '.req' token.
+ unsigned Reg;
+ SMLoc SRegLoc, ERegLoc;
+ if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
+ Parser.eatToEndOfStatement();
+ return Error(SRegLoc, "register name expected");
+ }
+
+ // Shouldn't be anything else.
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Parser.eatToEndOfStatement();
+ return Error(Parser.getTok().getLoc(),
+ "unexpected input in .req directive.");
+ }
+
+ Parser.Lex(); // Consume the EndOfStatement
+
+ if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
+ return Error(SRegLoc, "redefinition of '" + Name +
+ "' does not match original.");
+
+ return false;
+}
+
+/// parseDirectiveUneq
+/// ::= .unreq registername
+bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Parser.eatToEndOfStatement();
+ return Error(L, "unexpected input in .unreq directive.");
+ }
+ RegisterReqs.erase(Parser.getTok().getIdentifier());
+ Parser.Lex(); // Eat the identifier.
+ return false;
+}
+
+/// parseDirectiveArch
+/// ::= .arch token
+bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
+ return true;
+}
+
+/// parseDirectiveEabiAttr
+/// ::= .eabi_attribute int, int
+bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ return Error(L, "integer expected");
+ int64_t Tag = Parser.getTok().getIntVal();
+ Parser.Lex(); // eat tag integer
+
+ if (Parser.getTok().isNot(AsmToken::Comma))
+ return Error(L, "comma expected");
+ Parser.Lex(); // skip comma
+
+ L = Parser.getTok().getLoc();
+ if (Parser.getTok().isNot(AsmToken::Integer))
+ return Error(L, "integer expected");
+ int64_t Value = Parser.getTok().getIntVal();
+ Parser.Lex(); // eat value integer
+
+ getTargetStreamer().emitAttribute(Tag, Value);
+ return false;
+}
+
+/// parseDirectiveCPU
+/// ::= .cpu str
+bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
+ StringRef CPU = getParser().parseStringToEndOfStatement().trim();
+ getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
+ return false;
+}
+
+/// parseDirectiveFPU
+/// ::= .fpu str
+bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
+ StringRef FPU = getParser().parseStringToEndOfStatement().trim();
+
+ unsigned ID = StringSwitch<unsigned>(FPU)
+#define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
+#include "ARMFPUName.def"
+ .Default(ARM::INVALID_FPU);
+
+ if (ID == ARM::INVALID_FPU)
+ return Error(L, "Unknown FPU name");
+
+ getTargetStreamer().emitFPU(ID);
+ return false;
+}
+
+/// parseDirectiveFnStart
+/// ::= .fnstart
+bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
+ if (FnStartLoc.isValid()) {
+ Error(L, ".fnstart starts before the end of previous one");
+ Error(FnStartLoc, "previous .fnstart starts here");
+ return true;
+ }
+
+ FnStartLoc = L;
+ getTargetStreamer().emitFnStart();
+ return false;
+}
+
+/// parseDirectiveFnEnd
+/// ::= .fnend
+bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .fnend directive");
+
+ // Reset the unwind directives parser state
+ resetUnwindDirectiveParserState();
+ getTargetStreamer().emitFnEnd();
+ return false;
+}
+
+/// parseDirectiveCantUnwind
+/// ::= .cantunwind
+bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
+ // Check the ordering of unwind directives
+ CantUnwindLoc = L;
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .cantunwind directive");
+ if (HandlerDataLoc.isValid()) {
+ Error(L, ".cantunwind can't be used with .handlerdata directive");
+ Error(HandlerDataLoc, ".handlerdata was specified here");
+ return true;
+ }
+ if (PersonalityLoc.isValid()) {
+ Error(L, ".cantunwind can't be used with .personality directive");
+ Error(PersonalityLoc, ".personality was specified here");
+ return true;
+ }
+
+ getTargetStreamer().emitCantUnwind();
+ return false;
+}
+
+/// parseDirectivePersonality
+/// ::= .personality name
+bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
+ // Check the ordering of unwind directives
+ PersonalityLoc = L;
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .personality directive");
+ if (CantUnwindLoc.isValid()) {
+ Error(L, ".personality can't be used with .cantunwind directive");
+ Error(CantUnwindLoc, ".cantunwind was specified here");
+ return true;
+ }
+ if (HandlerDataLoc.isValid()) {
+ Error(L, ".personality must precede .handlerdata directive");
+ Error(HandlerDataLoc, ".handlerdata was specified here");
+ return true;
+ }
+
+ // Parse the name of the personality routine
+ if (Parser.getTok().isNot(AsmToken::Identifier)) {
+ Parser.eatToEndOfStatement();
+ return Error(L, "unexpected input in .personality directive.");
+ }
+ StringRef Name(Parser.getTok().getIdentifier());
+ Parser.Lex();
+
+ MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
+ getTargetStreamer().emitPersonality(PR);
+ return false;
+}
+
+/// parseDirectiveHandlerData
+/// ::= .handlerdata
+bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
+ // Check the ordering of unwind directives
+ HandlerDataLoc = L;
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .personality directive");
+ if (CantUnwindLoc.isValid()) {
+ Error(L, ".handlerdata can't be used with .cantunwind directive");
+ Error(CantUnwindLoc, ".cantunwind was specified here");
+ return true;
+ }
+
+ getTargetStreamer().emitHandlerData();
+ return false;
+}
+
+/// parseDirectiveSetFP
+/// ::= .setfp fpreg, spreg [, offset]
+bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .setfp directive");
+ if (HandlerDataLoc.isValid())
+ return Error(L, ".setfp must precede .handlerdata directive");
+
+ // Parse fpreg
+ SMLoc NewFPRegLoc = Parser.getTok().getLoc();
+ int NewFPReg = tryParseRegister();
+ if (NewFPReg == -1)
+ return Error(NewFPRegLoc, "frame pointer register expected");
+
+ // Consume comma
+ if (!Parser.getTok().is(AsmToken::Comma))
+ return Error(Parser.getTok().getLoc(), "comma expected");
+ Parser.Lex(); // skip comma
+
+ // Parse spreg
+ SMLoc NewSPRegLoc = Parser.getTok().getLoc();
+ int NewSPReg = tryParseRegister();
+ if (NewSPReg == -1)
+ return Error(NewSPRegLoc, "stack pointer register expected");
+
+ if (NewSPReg != ARM::SP && NewSPReg != FPReg)
+ return Error(NewSPRegLoc,
+ "register should be either $sp or the latest fp register");
+
+ // Update the frame pointer register
+ FPReg = NewFPReg;
+
+ // Parse offset
+ int64_t Offset = 0;
+ if (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // skip comma
+
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ return Error(Parser.getTok().getLoc(), "'#' expected");
+ }
+ Parser.Lex(); // skip hash token.
+
+ const MCExpr *OffsetExpr;
+ SMLoc ExLoc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(OffsetExpr, EndLoc))
+ return Error(ExLoc, "malformed setfp offset");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE)
+ return Error(ExLoc, "setfp offset must be an immediate");
+
+ Offset = CE->getValue();
+ }
+
+ getTargetStreamer().emitSetFP(static_cast<unsigned>(NewFPReg),
+ static_cast<unsigned>(NewSPReg), Offset);
+ return false;
+}
+
+/// parseDirective
+/// ::= .pad offset
+bool ARMAsmParser::parseDirectivePad(SMLoc L) {
+ // Check the ordering of unwind directives
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .pad directive");
+ if (HandlerDataLoc.isValid())
+ return Error(L, ".pad must precede .handlerdata directive");
+
+ // Parse the offset
+ if (Parser.getTok().isNot(AsmToken::Hash) &&
+ Parser.getTok().isNot(AsmToken::Dollar)) {
+ return Error(Parser.getTok().getLoc(), "'#' expected");
+ }
+ Parser.Lex(); // skip hash token.
+
+ const MCExpr *OffsetExpr;
+ SMLoc ExLoc = Parser.getTok().getLoc();
+ SMLoc EndLoc;
+ if (getParser().parseExpression(OffsetExpr, EndLoc))
+ return Error(ExLoc, "malformed pad offset");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
+ if (!CE)
+ return Error(ExLoc, "pad offset must be an immediate");
+
+ getTargetStreamer().emitPad(CE->getValue());
+ return false;
+}
+
+/// parseDirectiveRegSave
+/// ::= .save { registers }
+/// ::= .vsave { registers }
+bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
+ // Check the ordering of unwind directives
+ if (!FnStartLoc.isValid())
+ return Error(L, ".fnstart must precede .save or .vsave directives");
+ if (HandlerDataLoc.isValid())
+ return Error(L, ".save or .vsave must precede .handlerdata directive");
+
+ // RAII object to make sure parsed operands are deleted.
+ struct CleanupObject {
+ SmallVector<MCParsedAsmOperand *, 1> Operands;
+ ~CleanupObject() {
+ for (unsigned I = 0, E = Operands.size(); I != E; ++I)
+ delete Operands[I];
+ }
+ } CO;
+
+ // Parse the register list
+ if (parseRegisterList(CO.Operands))
+ return true;
+ ARMOperand *Op = (ARMOperand*)CO.Operands[0];
+ if (!IsVector && !Op->isRegList())
+ return Error(L, ".save expects GPR registers");
+ if (IsVector && !Op->isDPRRegList())
+ return Error(L, ".vsave expects DPR registers");
+
+ getTargetStreamer().emitRegSave(Op->getRegList(), IsVector);
+ return false;
+}
+
+/// Force static initialization.
+extern "C" void LLVMInitializeARMAsmParser() {
+ RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
+ RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#include "ARMGenAsmMatcher.inc"
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
+ unsigned Kind) {
+ ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
+ // If the kind is a token for a literal immediate, check if our asm
+ // operand matches. This is for InstAliases which have a fixed-value
+ // immediate in the syntax.
+ if (Kind == MCK__35_0 && Op->isImm()) {
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
+ if (!CE)
+ return Match_InvalidOperand;
+ if (CE->getValue() == 0)
+ return Match_Success;
+ }
+ return Match_InvalidOperand;
+}