aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp10445
1 files changed, 10445 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
new file mode 100644
index 000000000000..bb26090d2d8d
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -0,0 +1,10445 @@
+//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm-isel"
+#include "ARMISelLowering.h"
+#include "ARM.h"
+#include "ARMCallingConv.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMPerfectShuffle.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
+STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
+
+// This option should go away when tail calls fully work.
+static cl::opt<bool>
+EnableARMTailCalls("arm-tail-calls", cl::Hidden,
+ cl::desc("Generate tail calls (TEMPORARY OPTION)."),
+ cl::init(false));
+
+cl::opt<bool>
+EnableARMLongCalls("arm-long-calls", cl::Hidden,
+ cl::desc("Generate calls via indirect call instructions"),
+ cl::init(false));
+
+static cl::opt<bool>
+ARMInterworking("arm-interworking", cl::Hidden,
+ cl::desc("Enable / disable ARM interworking (for debugging only)"),
+ cl::init(true));
+
+namespace {
+ class ARMCCState : public CCState {
+ public:
+ ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
+ const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
+ LLVMContext &C, ParmContext PC)
+ : CCState(CC, isVarArg, MF, TM, locs, C) {
+ assert(((PC == Call) || (PC == Prologue)) &&
+ "ARMCCState users must specify whether their context is call"
+ "or prologue generation.");
+ CallOrPrologue = PC;
+ }
+ };
+}
+
+// The APCS parameter registers.
+static const uint16_t GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+};
+
+void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
+ MVT PromotedBitwiseVT) {
+ if (VT != PromotedLdStVT) {
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
+
+ setOperationAction(ISD::STORE, VT, Promote);
+ AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
+ }
+
+ MVT ElemTy = VT.getVectorElementType();
+ if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ if (ElemTy == MVT::i32) {
+ setOperationAction(ISD::SINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::UINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::FP_TO_SINT, VT, Custom);
+ setOperationAction(ISD::FP_TO_UINT, VT, Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ }
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+ if (VT.isInteger()) {
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::SRL, VT, Custom);
+ }
+
+ // Promote all bit-wise operations.
+ if (VT.isInteger() && VT != PromotedBitwiseVT) {
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
+ }
+
+ // Neon does not support vector divide/remainder operations.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+}
+
+void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::DPRRegClass);
+ addTypeForNEON(VT, MVT::f64, MVT::v2i32);
+}
+
+void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::QPRRegClass);
+ addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
+}
+
+static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
+ if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
+ return new TargetLoweringObjectFileMachO();
+
+ return new ARMElfTargetObjectFile();
+}
+
+ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(TM)) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+ RegInfo = TM.getRegisterInfo();
+ Itins = TM.getInstrItineraryData();
+
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ if (Subtarget->isTargetDarwin()) {
+ // Uses VFP for Thumb libfuncs if available.
+ if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
+ // Single-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
+ setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
+ setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
+ setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
+
+ // Double-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
+ setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
+ setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
+ setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
+
+ // Single-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
+ setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
+ setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
+ setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
+ setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
+ setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
+ setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
+ setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+
+ // Double-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
+ setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
+ setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
+ setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
+ setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
+ setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
+ setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
+ setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+
+ // Floating-point to integer conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
+
+ // Conversions between floating types.
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
+
+ // Integer to floating-point conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ // FIXME: There appears to be some naming inconsistency in ARM libgcc:
+ // e.g., __floatunsidf vs. __floatunssidfvfp.
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
+ }
+ }
+
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, 0);
+ setLibcallName(RTLIB::SRL_I128, 0);
+ setLibcallName(RTLIB::SRA_I128, 0);
+
+ if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
+ // Double-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 2
+ setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
+ setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
+ setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
+ setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
+ setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
+
+ // Double-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 3
+ setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
+ setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+ setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
+
+ // Single-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 4
+ setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
+ setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
+ setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
+ setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
+ setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
+
+ // Single-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 5
+ setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
+ setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+ setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
+
+ // Floating-point to integer conversions.
+ // RTABI chapter 4.1.2, Table 6
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
+ setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
+ setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
+ setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
+ setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
+ setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
+
+ // Conversions between floating types.
+ // RTABI chapter 4.1.2, Table 7
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
+
+ // Integer to floating-point conversions.
+ // RTABI chapter 4.1.2, Table 8
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
+ setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
+ setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
+ setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
+ setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
+ setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
+
+ // Long long helper functions
+ // RTABI chapter 4.2, Table 9
+ setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
+ setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
+ setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
+ setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
+ setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
+
+ // Integer division functions
+ // RTABI chapter 4.3.1
+ setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
+ setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
+ setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
+ setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
+ setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
+ setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
+ setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
+ setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
+ setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
+
+ // Memory operations
+ // RTABI chapter 4.3.4
+ setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
+ setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
+ setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
+ setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
+ }
+
+ // Use divmod compiler-rt calls for iOS 5.0 and later.
+ if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
+ !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
+ setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
+ setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
+ }
+
+ if (Subtarget->isThumb1Only())
+ addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
+ else
+ addRegisterClass(MVT::i32, &ARM::GPRRegClass);
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ addRegisterClass(MVT::f32, &ARM::SPRRegClass);
+ if (!Subtarget->isFPOnlySP())
+ addRegisterClass(MVT::f64, &ARM::DPRRegClass);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ }
+
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction((MVT::SimpleValueType)VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
+
+ if (Subtarget->hasNEON()) {
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+
+ // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
+ // neither Neon nor VFP support any arithmetic operations on it.
+ // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
+ // supported for v4f32.
+ setOperationAction(ISD::FADD, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
+ // FIXME: Code duplication: FDIV and FREM are expanded always, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v2f64, Expand);
+ // FIXME: Create unittest.
+ // In another words, find a way when "copysign" appears in DAG with vector
+ // operands.
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
+ // FIXME: Code duplication: SETCC has custom operation action, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FNEG and for FABS.
+ setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FABS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMA, MVT::v2f64, Expand);
+
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
+
+ // Mark v2f32 intrinsics.
+ setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
+
+ // Neon does not support some operations on v1i64 and v2i64 types.
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+ // Custom handling for some quad-vector types to detect VMULL.
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ // Custom handling for some vector types to avoid expensive expansions
+ setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
+ // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
+ // a destination type that is wider than the source, and nor does
+ // it have a FP_TO_[SU]INT instruction with a narrower destination than
+ // source.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
+
+ // Custom expand long extensions to vectors.
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
+
+ // NEON does not have single instruction CTPOP for vectors with element
+ // types wider than 8-bits. However, custom lowering can leverage the
+ // v8i8/v16i8 vcnt instruction.
+ setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
+
+ // NEON only has FMA instructions as of VFP4.
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::v2f32, Expand);
+ setOperationAction(ISD::FMA, MVT::v4f32, Expand);
+ }
+
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::FP_TO_SINT);
+ setTargetDAGCombine(ISD::FP_TO_UINT);
+ setTargetDAGCombine(ISD::FDIV);
+
+ // It is legal to extload from v4i8 to v4i16 or v4i32.
+ MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
+ MVT::v4i16, MVT::v2i16,
+ MVT::v2i32};
+ for (unsigned i = 0; i < 6; ++i) {
+ setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
+ setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
+ }
+ }
+
+ // ARM and Thumb2 support UMLAL/SMLAL.
+ if (!Subtarget->isThumb1Only())
+ setTargetDAGCombine(ISD::ADDC);
+
+
+ computeRegisterProperties();
+
+ // ARM does not have f32 extending load.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+
+ // ARM does not have i1 sign extending load.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // ARM supports all 4 flavors of integer indexed load / store.
+ if (!Subtarget->isThumb1Only()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i1, Legal);
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i1, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ }
+ }
+
+ // i64 operation support.
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ if (Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ }
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
+ || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL, MVT::i64, Custom);
+ setOperationAction(ISD::SRA, MVT::i64, Custom);
+
+ if (!Subtarget->isThumb1Only()) {
+ // FIXME: We should do this for Thumb1 as well.
+ setOperationAction(ISD::ADDC, MVT::i32, Custom);
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBC, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+ }
+
+ // ARM does not have ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ // These just redirect to CTTZ and CTLZ on ARM.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
+
+ // Only ARMv6 has BSWAP.
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
+ !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
+ // These are expanded into libcalls if the cpu doesn't have HW divider.
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ }
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ if (!Subtarget->isTargetDarwin()) {
+ // Non-Darwin platforms may return values in these registers via the
+ // personality function.
+ setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
+ setExceptionPointerRegister(ARM::R0);
+ setExceptionSelectorRegister(ARM::R1);
+ }
+
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+ // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
+ // the default expansion.
+ // FIXME: This should be checking for v6k, not just v6.
+ if (Subtarget->hasDataBarrier() ||
+ (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
+ // membarrier needs custom lowering; the rest are legal and handled
+ // normally.
+ setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+ // Custom lowering for 64-bit ops
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
+ // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
+ setInsertFencesForAtomic(true);
+ } else {
+ // Set them all for expansion, which will force libcalls.
+ setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
+ // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
+ // Unordered/Monotonic case.
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+ // Since the libcalls include locking, fold in the fences
+ setShouldFoldAtomicFences(true);
+ }
+
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
+ if (!Subtarget->hasV6Ops()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ }
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
+ // iff target supports vfp2.
+ setOperationAction(ISD::BITCAST, MVT::i64, Custom);
+ setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ if (Subtarget->isTargetDarwin()) {
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+ setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
+ }
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ // We don't support sin/cos/fmod/copysign/pow
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ }
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+ }
+
+ // Various VFP goodness
+ if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
+ // int <-> fp are custom expanded into bit_convert + ARMISD ops.
+ if (Subtarget->hasVFP2()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ }
+ // Special handling for half-precision FP.
+ if (!Subtarget->hasFP16()) {
+ setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
+ setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
+ }
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::XOR);
+
+ if (Subtarget->hasV6Ops())
+ setTargetDAGCombine(ISD::SRL);
+
+ setStackPointerRegisterToSaveRestore(ARM::SP);
+
+ if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
+ !Subtarget->hasVFP2())
+ setSchedulingPreference(Sched::RegPressure);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ //// temporary - rewrite interface to use type
+ MaxStoresPerMemset = 8;
+ MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+ MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
+ MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
+
+ // On ARM arguments smaller than 4 bytes are extended, so all arguments
+ // are at least 4 bytes aligned.
+ setMinStackArgumentAlignment(4);
+
+ // Prefer likely predicted branches to selects on out-of-order cores.
+ PredictableSelectIsExpensive = Subtarget->isLikeA9();
+
+ setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
+}
+
+// FIXME: It might make sense to define the representative register class as the
+// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
+// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
+// SPR's representative would be DPR_VFP2. This should work well if register
+// pressure tracking were modified such that a register use would increment the
+// pressure of the register class's representative and all of it's super
+// classes' representatives transitively. We have not implemented this because
+// of the difficulty prior to coalescing of modeling operand register classes
+// due to the common occurrence of cross class copies and subregister insertions
+// and extractions.
+std::pair<const TargetRegisterClass*, uint8_t>
+ARMTargetLowering::findRepresentativeClass(MVT VT) const{
+ const TargetRegisterClass *RRC = 0;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(VT);
+ // Use DPR as representative register class for all floating point
+ // and vector types. Since there are 32 SPR registers and 32 DPR registers so
+ // the cost is 1 for both f32 and f64.
+ case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
+ case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
+ RRC = &ARM::DPRRegClass;
+ // When NEON is used for SP, only half of the register file is available
+ // because operations that define both SP and DP results will be constrained
+ // to the VFP2 class (D0-D15). We currently model this constraint prior to
+ // coalescing by double-counting the SP regs. See the FIXME above.
+ if (Subtarget->useNEONForSinglePrecisionFP())
+ Cost = 2;
+ break;
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 2;
+ break;
+ case MVT::v4i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 4;
+ break;
+ case MVT::v8i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 8;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
+ case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
+ case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
+ case ARMISD::CALL: return "ARMISD::CALL";
+ case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
+ case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
+ case ARMISD::tCALL: return "ARMISD::tCALL";
+ case ARMISD::BRCOND: return "ARMISD::BRCOND";
+ case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
+ case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
+ case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
+ case ARMISD::CMP: return "ARMISD::CMP";
+ case ARMISD::CMN: return "ARMISD::CMN";
+ case ARMISD::CMPZ: return "ARMISD::CMPZ";
+ case ARMISD::CMPFP: return "ARMISD::CMPFP";
+ case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
+ case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
+ case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
+
+ case ARMISD::CMOV: return "ARMISD::CMOV";
+
+ case ARMISD::RBIT: return "ARMISD::RBIT";
+
+ case ARMISD::FTOSI: return "ARMISD::FTOSI";
+ case ARMISD::FTOUI: return "ARMISD::FTOUI";
+ case ARMISD::SITOF: return "ARMISD::SITOF";
+ case ARMISD::UITOF: return "ARMISD::UITOF";
+
+ case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
+ case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
+ case ARMISD::RRX: return "ARMISD::RRX";
+
+ case ARMISD::ADDC: return "ARMISD::ADDC";
+ case ARMISD::ADDE: return "ARMISD::ADDE";
+ case ARMISD::SUBC: return "ARMISD::SUBC";
+ case ARMISD::SUBE: return "ARMISD::SUBE";
+
+ case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
+ case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
+
+ case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
+ case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
+
+ case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
+
+ case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+
+ case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
+
+ case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
+ case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
+
+ case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
+
+ case ARMISD::VCEQ: return "ARMISD::VCEQ";
+ case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
+ case ARMISD::VCGE: return "ARMISD::VCGE";
+ case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
+ case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
+ case ARMISD::VCGEU: return "ARMISD::VCGEU";
+ case ARMISD::VCGT: return "ARMISD::VCGT";
+ case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
+ case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
+ case ARMISD::VCGTU: return "ARMISD::VCGTU";
+ case ARMISD::VTST: return "ARMISD::VTST";
+
+ case ARMISD::VSHL: return "ARMISD::VSHL";
+ case ARMISD::VSHRs: return "ARMISD::VSHRs";
+ case ARMISD::VSHRu: return "ARMISD::VSHRu";
+ case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
+ case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
+ case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
+ case ARMISD::VSHRN: return "ARMISD::VSHRN";
+ case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
+ case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
+ case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
+ case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
+ case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
+ case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
+ case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
+ case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
+ case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
+ case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
+ case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
+ case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
+ case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
+ case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
+ case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
+ case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
+ case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
+ case ARMISD::VDUP: return "ARMISD::VDUP";
+ case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
+ case ARMISD::VEXT: return "ARMISD::VEXT";
+ case ARMISD::VREV64: return "ARMISD::VREV64";
+ case ARMISD::VREV32: return "ARMISD::VREV32";
+ case ARMISD::VREV16: return "ARMISD::VREV16";
+ case ARMISD::VZIP: return "ARMISD::VZIP";
+ case ARMISD::VUZP: return "ARMISD::VUZP";
+ case ARMISD::VTRN: return "ARMISD::VTRN";
+ case ARMISD::VTBL1: return "ARMISD::VTBL1";
+ case ARMISD::VTBL2: return "ARMISD::VTBL2";
+ case ARMISD::VMULLs: return "ARMISD::VMULLs";
+ case ARMISD::VMULLu: return "ARMISD::VMULLu";
+ case ARMISD::UMLAL: return "ARMISD::UMLAL";
+ case ARMISD::SMLAL: return "ARMISD::SMLAL";
+ case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
+ case ARMISD::FMAX: return "ARMISD::FMAX";
+ case ARMISD::FMIN: return "ARMISD::FMIN";
+ case ARMISD::BFI: return "ARMISD::BFI";
+ case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
+ case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
+ case ARMISD::VBSL: return "ARMISD::VBSL";
+ case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
+ case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
+ case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
+ case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
+ case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
+ case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
+ case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
+ case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
+ case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
+ case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
+ case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
+ case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
+ case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
+ case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
+ case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
+ case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
+ case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
+ case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
+ case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
+ case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
+ }
+}
+
+EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
+ if (!VT.isVector()) return getPointerTy();
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// getRegClassFor - Return the register class that should be used for the
+/// specified value type.
+const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
+ // Map v4i64 to QQ registers but do not make the type legal. Similarly map
+ // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
+ // load / store 4 to 8 consecutive D registers.
+ if (Subtarget->hasNEON()) {
+ if (VT == MVT::v4i64)
+ return &ARM::QQPRRegClass;
+ if (VT == MVT::v8i64)
+ return &ARM::QQQQPRRegClass;
+ }
+ return TargetLowering::getRegClassFor(VT);
+}
+
+// Create a fast isel object.
+FastISel *
+ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return ARM::createFastISel(funcInfo, libInfo);
+}
+
+/// getMaximalGlobalOffset - Returns the maximal possible offset which can
+/// be used for loads / stores from the global.
+unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
+ return (Subtarget->isThumb1Only() ? 127 : 4095);
+}
+
+Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
+ unsigned NumVals = N->getNumValues();
+ if (!NumVals)
+ return Sched::RegPressure;
+
+ for (unsigned i = 0; i != NumVals; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
+ if (VT.isFloatingPoint() || VT.isVector())
+ return Sched::ILP;
+ }
+
+ if (!N->isMachineOpcode())
+ return Sched::RegPressure;
+
+ // Load are scheduled for latency even if there instruction itinerary
+ // is not available.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+
+ if (MCID.getNumDefs() == 0)
+ return Sched::RegPressure;
+ if (!Itins->isEmpty() &&
+ Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
+ return Sched::ILP;
+
+ return Sched::RegPressure;
+}
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
+static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE: return ARMCC::NE;
+ case ISD::SETEQ: return ARMCC::EQ;
+ case ISD::SETGT: return ARMCC::GT;
+ case ISD::SETGE: return ARMCC::GE;
+ case ISD::SETLT: return ARMCC::LT;
+ case ISD::SETLE: return ARMCC::LE;
+ case ISD::SETUGT: return ARMCC::HI;
+ case ISD::SETUGE: return ARMCC::HS;
+ case ISD::SETULT: return ARMCC::LO;
+ case ISD::SETULE: return ARMCC::LS;
+ }
+}
+
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
+static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ ARMCC::CondCodes &CondCode2) {
+ CondCode2 = ARMCC::AL;
+ switch (CC) {
+ default: llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = ARMCC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = ARMCC::GE; break;
+ case ISD::SETOLT: CondCode = ARMCC::MI; break;
+ case ISD::SETOLE: CondCode = ARMCC::LS; break;
+ case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
+ case ISD::SETO: CondCode = ARMCC::VC; break;
+ case ISD::SETUO: CondCode = ARMCC::VS; break;
+ case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
+ case ISD::SETUGT: CondCode = ARMCC::HI; break;
+ case ISD::SETUGE: CondCode = ARMCC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = ARMCC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = ARMCC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = ARMCC::NE; break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "ARMGenCallingConv.inc"
+
+/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
+/// given CallingConvention value.
+CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ if (Subtarget->hasVFP2() && !isVarArg) {
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ // For AAPCS ABI targets, just use VFP variant of the calling convention.
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ }
+ // Fallthrough
+ case CallingConv::C: {
+ // Use target triple & subtarget features to do actual dispatch.
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
+ else if (Subtarget->hasVFP2() &&
+ getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
+ !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
+ }
+ case CallingConv::ARM_AAPCS_VFP:
+ if (!isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ // Fallthrough
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
+ case CallingConv::GHC:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallResult(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ true,
+ isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ SDValue Val;
+ if (VA.needsCustom()) {
+ // Handle f64 or half of a v2f64.
+ SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(0, MVT::i32));
+
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(1, MVT::i32));
+ }
+ } else {
+ Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
+ InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+ }
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack.
+SDValue
+ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ return DAG.getStore(Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(LocMemOffset),
+ false, false, 0);
+}
+
+void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
+ SDValue Chain, SDValue &Arg,
+ RegsToPassVector &RegsToPass,
+ CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &StackPtr,
+ SmallVector<SDValue, 8> &MemOpChains,
+ ISD::ArgFlagsTy Flags) const {
+
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
+
+ if (NextVA.isRegLoc())
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
+ else {
+ assert(NextVA.isMemLoc());
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
+ dl, DAG, NextVA,
+ Flags));
+ }
+}
+
+/// LowerCall - Lowering a call into a callseq_start <-
+/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
+/// nodes.
+SDValue
+ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ DebugLoc &dl = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool doesNotRet = CLI.DoesNotReturn;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ bool IsSibCall = false;
+ // Disable tail calls if they're not supported.
+ if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
+ isTailCall = false;
+ if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
+ Outs, OutVals, Ins, DAG);
+ // We don't support GuaranteedTailCallOpt for ARM, only automatically
+ // detected sibcalls.
+ if (isTailCall) {
+ ++NumTailCalls;
+ IsSibCall = true;
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // For tail calls, memory operands are available in our caller's stack.
+ if (IsSibCall)
+ NumBytes = 0;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!IsSibCall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ RegsToPassVector RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization, arguments are handled later.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+
+ PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ if (VA.isRegLoc()) {
+ PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+ } else {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
+ dl, DAG, VA, Flags));
+ }
+ } else {
+ PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
+ StackPtr, MemOpChains, Flags);
+ }
+ } else if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else if (isByVal) {
+ assert(VA.isMemLoc());
+ unsigned offset = 0;
+
+ // True if this byval aggregate will be split between registers
+ // and memory.
+ if (CCInfo.isFirstByValRegValid()) {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ unsigned int i, j;
+ for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
+ SDValue Const = DAG.getConstant(4*i, MVT::i32);
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(j, Load));
+ }
+ offset = ARM::R4 - CCInfo.getFirstByValReg();
+ CCInfo.clearFirstByValReg();
+ }
+
+ if (Flags.getByValSize() - 4*offset > 0) {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
+ StkPtrOff);
+ SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
+ SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
+ MVT::i32);
+ SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
+
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
+ MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
+ Ops, array_lengthof(Ops)));
+ }
+ } else if (!IsSibCall) {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ // Tail call byval lowering might overwrite argument registers so in case of
+ // tail call optimization the copies to registers are lowered later.
+ if (!isTailCall)
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slot.
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag =SDValue();
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool isDirect = false;
+ bool isARMFunc = false;
+ bool isLocalARMFunc = false;
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ if (EnableARMLongCalls) {
+ assert (getTargetMachine().getRelocationModel() == Reloc::Static
+ && "long-calls with non-static relocation model!");
+ // Handle a global address or an external symbol. If it's not one of
+ // those, the target's already in a register, so we don't need to do
+ // anything extra.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
+
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 0);
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ isDirect = true;
+ bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
+ bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // ARM call to a local ARM function is predicable.
+ isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
+ // tBX takes a register source operand.
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
+ getPointerTy(), Callee, PICLabel);
+ } else {
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ unsigned OpFlags = 0;
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ isDirect = true;
+ bool isStub = Subtarget->isTargetDarwin() &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // tBX takes a register source operand.
+ const char *Sym = S->getSymbol();
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
+ getPointerTy(), Callee, PICLabel);
+ } else {
+ unsigned OpFlags = 0;
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
+ }
+ }
+
+ // FIXME: handle tail calls differently.
+ unsigned CallOpc;
+ bool HasMinSizeAttr = MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ if (Subtarget->isThumb()) {
+ if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
+ } else {
+ if (!isDirect && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
+ // Emit regular call when code size is the priority
+ !HasMinSizeAttr)
+ // "mov lr, pc; b _foo" to avoid confusing the RSP
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ if (isTailCall)
+ return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
+
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+}
+
+/// HandleByVal - Every parameter *after* a byval parameter is passed
+/// on the stack. Remember the next parameter register to allocate,
+/// and then confiscate the rest of the parameter registers to insure
+/// this.
+void
+ARMTargetLowering::HandleByVal(
+ CCState *State, unsigned &size, unsigned Align) const {
+ unsigned reg = State->AllocateReg(GPRArgRegs, 4);
+ assert((State->getCallOrPrologue() == Prologue ||
+ State->getCallOrPrologue() == Call) &&
+ "unhandled ParmContext");
+ if ((!State->isFirstByValRegValid()) &&
+ (ARM::R0 <= reg) && (reg <= ARM::R3)) {
+ if (Subtarget->isAAPCS_ABI() && Align > 4) {
+ unsigned AlignInRegs = Align / 4;
+ unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
+ for (unsigned i = 0; i < Waste; ++i)
+ reg = State->AllocateReg(GPRArgRegs, 4);
+ }
+ if (reg != 0) {
+ State->setFirstByValReg(reg);
+ // At a call site, a byval parameter that is split between
+ // registers and memory needs its size truncated here. In a
+ // function prologue, such byval parameters are reassembled in
+ // memory, and are not truncated.
+ if (State->getCallOrPrologue() == Call) {
+ unsigned excess = 4 * (ARM::R4 - reg);
+ assert(size >= excess && "expected larger existing stack allocation");
+ size -= excess;
+ }
+ }
+ }
+ // Confiscate any remaining parameter registers to preclude their
+ // assignment to subsequent parameters.
+ while (State->AllocateReg(GPRArgRegs, 4))
+ ;
+}
+
+/// MatchingStackOffset - Return true if the given stack call argument is
+/// already available in the same position (relatively) of the caller's
+/// incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Do not sibcall optimize vararg calls unless the call site is not passing
+ // any arguments.
+ if (isVarArg && !Outs.empty())
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
+ // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
+ // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
+ // support in the assembler and linker to be used. This would need to be
+ // fixed to fully support tail calls in Thumb1.
+ //
+ // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
+ // LR. This means if we need to reload LR, it takes an extra instructions,
+ // which outweighs the value of the tail call; but here we don't know yet
+ // whether LR is going to be used. Probably the right approach is to
+ // generate the tail call here and turn it back into CALL/RET in
+ // emitEpilogue if LR is used.
+
+ // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
+ // but we need to make sure there are enough registers; the only valid
+ // registers are the 4 used for parameters. We don't currently do this
+ // case.
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // If Caller's vararg or byval argument has been split between registers and
+ // stack, do not perform tail call, since part of the argument is in caller's
+ // local frame.
+ const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
+ getInfo<ARMFunctionInfo>();
+ if (AFI_Caller->getVarArgsRegSaveSize())
+ return false;
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CalleeCC, false, isVarArg));
+ if (CCInfo.getNextStackOffset()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (VA.needsCustom()) {
+ // f64 and vector types are split into multiple registers or
+ // register/stack-slot combinations. The types will not match
+ // the registers; give up on memory f64 refs until we figure
+ // out what to do about this.
+ if (!VA.isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (RegVT == MVT::v2f64) {
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ }
+ } else if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+bool
+ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
+ isVarArg));
+}
+
+SDValue
+ARMTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ DebugLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
+ isVarArg));
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ // Extract the first half and return it in two registers.
+ SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Half);
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(1), Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+
+ // Extract the 2nd half and fall through to handle it as an f64 value.
+ Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+ }
+ // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
+ // available.
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
+ Flag);
+ } else
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+
+ // Guarantee that all emitted copies are
+ // stuck together, avoiding something bad.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
+ RetOps.data(), RetOps.size());
+}
+
+bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
+ SDNode *VMov = Copy;
+ // f64 returned in a pair of GPRs.
+ SmallPtrSet<SDNode*, 2> Copies;
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ Copies.insert(*UI);
+ }
+ if (Copies.size() > 2)
+ return false;
+
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ SDValue UseChain = UI->getOperand(0);
+ if (Copies.count(UseChain.getNode()))
+ // Second CopyToReg
+ Copy = *UI;
+ else
+ // First CopyToReg
+ TCChain = UseChain;
+ }
+ } else if (Copy->getOpcode() == ISD::BITCAST) {
+ // f32 returned in a single GPR.
+ if (!Copy->hasOneUse())
+ return false;
+ Copy = *Copy->use_begin();
+ if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
+ return false;
+ Chain = Copy->getOperand(0);
+ } else {
+ return false;
+ }
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ARMISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
+ return false;
+
+ if (!CI->isTailCall())
+ return false;
+
+ return !Subtarget->isThumb1Only();
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOVi.
+static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
+ EVT PtrVT = Op.getValueType();
+ // FIXME there is no actual debug info here
+ DebugLoc dl = Op.getDebugLoc();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
+ return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
+}
+
+unsigned ARMTargetLowering::getJumpTableEncoding() const {
+ return MachineJumpTableInfo::EK_Inline;
+}
+
+SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = 0;
+ DebugLoc DL = Op.getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static) {
+ CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
+ } else {
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
+ ARMCP::CPBlockAddress, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ if (RelocM == Reloc::Static)
+ return Result;
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+SDValue
+ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = GA->getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
+ SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
+ Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue Chain = Argument.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
+
+ // call __tls_get_addr.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
+ Args.push_back(Entry);
+ // FIXME: is there useful debug info available here?
+ TargetLowering::CallLoweringInfo CLI(Chain,
+ (Type *) Type::getInt32Ty(*DAG.getContext()),
+ false, false, false, false,
+ 0, CallingConv::C, /*isTailCall=*/false,
+ /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.first;
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or
+// "local exec" model.
+SDValue
+ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ TLSModel::Model model) const {
+ const GlobalValue *GV = GA->getGlobal();
+ DebugLoc dl = GA->getDebugLoc();
+ SDValue Offset;
+ SDValue Chain = DAG.getEntryNode();
+ EVT PtrVT = getPointerTy();
+ // Get the Thread Pointer
+ SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+
+ if (model == TLSModel::InitialExec) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ // Initial exec model.
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
+ true);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ Chain = Offset.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
+
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ } else {
+ // local exec model
+ assert(model == TLSModel::LocalExec);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+ // TODO: implement the "local dynamic" model
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ case TLSModel::LocalDynamic:
+ return LowerToTLSGeneralDynamicModel(GA, DAG);
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModels(GA, DAG, model);
+ }
+ llvm_unreachable("bogus TLS model");
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV,
+ UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue Chain = Result.getValue(1);
+ SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
+ if (!UseGOTOFF)
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+ return Result;
+ }
+
+ // If we have T2 ops, we can materialize the address directly via movt/movw
+ // pair. This is always cheaper.
+ if (Subtarget->useMovt()) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+ } else {
+ SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ }
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ // FIXME: Enable this for static codegen when tool issues are fixed. Also
+ // update ARMFastISel::ARMMaterializeGV.
+ if (Subtarget->useMovt() && RelocM != Reloc::Static) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ if (RelocM == Reloc::Static)
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+
+ unsigned Wrapper = (RelocM == Reloc::PIC_)
+ ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
+ SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+ return Result;
+ }
+
+ unsigned ARMPCLabelIndex = 0;
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static) {
+ CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ } else {
+ ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
+ ARMPCLabelIndex = AFI->createPICLabelUId();
+ unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
+ PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue Chain = Result.getValue(1);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
+ false, false, false, 0);
+
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() &&
+ "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
+ ARMPCLabelIndex, PCAdj);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Val = DAG.getConstant(0, MVT::i32);
+ return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
+ DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
+ Op.getOperand(1), Val);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(0, MVT::i32));
+}
+
+SDValue
+ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) const {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ DebugLoc dl = Op.getDebugLoc();
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ case Intrinsic::arm_thread_pointer: {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ }
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
+ ARMCP::CPLSDA, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+ return Result;
+ }
+ case Intrinsic::arm_neon_vmulls:
+ case Intrinsic::arm_neon_vmullu: {
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
+ ? ARMISD::VMULLs : ARMISD::VMULLu;
+ return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ }
+}
+
+static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ DebugLoc dl = Op.getDebugLoc();
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
+ "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
+ return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ SDValue Op5 = Op.getOperand(5);
+ bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
+ unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
+
+ ARM_MB::MemBOpt DMBOpt;
+ if (isDeviceBarrier)
+ DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
+ else
+ DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
+ return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(DMBOpt, MVT::i32));
+}
+
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // FIXME: handle "fence singlethread" more efficiently.
+ DebugLoc dl = Op.getDebugLoc();
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
+ "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
+ return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(ARM_MB::ISH, MVT::i32));
+}
+
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // ARM pre v5TE and Thumb1 does not have preload instructions.
+ if (!(Subtarget->isThumb2() ||
+ (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
+ // Just preserve the chain.
+ return Op.getOperand(0);
+
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
+ if (!isRead &&
+ (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
+ // ARMv7 with MP extension has PLDW.
+ return Op.getOperand(0);
+
+ unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+ if (Subtarget->isThumb()) {
+ // Invert the bits.
+ isRead = ~isRead & 1;
+ isData = ~isData & 1;
+ }
+
+ return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
+ DAG.getConstant(isData, MVT::i32));
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ DebugLoc dl = Op.getDebugLoc();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+SDValue
+ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = &ARM::tGPRRegClass;
+ else
+ RC = &ARM::GPRRegClass;
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+
+ SDValue ArgValue2;
+ if (NextVA.isMemLoc()) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
+
+ // Create load node to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ } else {
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+ }
+
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
+}
+
+void
+ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
+ unsigned &VARegSize, unsigned &VARegSaveSize)
+ const {
+ unsigned NumGPRs;
+ if (CCInfo.isFirstByValRegValid())
+ NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
+ else {
+ unsigned int firstUnalloced;
+ firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
+ sizeof(GPRArgRegs) /
+ sizeof(GPRArgRegs[0]));
+ NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
+ }
+
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ VARegSize = NumGPRs * 4;
+ VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
+}
+
+// The remaining GPRs hold either the beginning of variable-argument
+// data, or the beginning of an aggregate passed by value (usually
+// byval). Either way, we allocate stack slots adjacent to the data
+// provided by our caller, and store the unallocated registers there.
+// If this is a variadic function, the va_list pointer will begin with
+// these values; otherwise, this reassembles a (byval) structure that
+// was split between registers and memory.
+void
+ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
+ DebugLoc dl, SDValue &Chain,
+ const Value *OrigArg,
+ unsigned OffsetFromOrigArg,
+ unsigned ArgOffset,
+ bool ForceMutable) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned firstRegToSaveIndex;
+ if (CCInfo.isFirstByValRegValid())
+ firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
+ else {
+ firstRegToSaveIndex = CCInfo.getFirstUnallocated
+ (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
+ }
+
+ unsigned VARegSize, VARegSaveSize;
+ computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
+ if (VARegSaveSize) {
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ AFI->setVarArgsRegSaveSize(VARegSaveSize);
+ AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
+ ArgOffset + VARegSaveSize
+ - VARegSize,
+ false));
+ SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
+ getPointerTy());
+
+ SmallVector<SDValue, 4> MemOps;
+ for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
+ const TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = &ARM::tGPRRegClass;
+ else
+ RC = &ARM::GPRRegClass;
+
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
+ DAG.getConstant(4, getPointerTy()));
+ }
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
+ } else
+ // This will point to the next argument passed via stack.
+ AFI->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
+}
+
+SDValue
+ARMTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
+ CCInfo.AnalyzeFormalArguments(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ SmallVector<SDValue, 16> ArgValues;
+ int lastInsIndex = -1;
+ SDValue ArgValue;
+ Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+
+ if (VA.needsCustom()) {
+ // f64 and vector types are split up into multiple registers or
+ // combinations of registers and stack slots.
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ SDValue ArgValue2;
+ if (VA.isMemLoc()) {
+ int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ } else {
+ ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ }
+ ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
+ } else
+ ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
+
+ } else {
+ const TargetRegisterClass *RC;
+
+ if (RegVT == MVT::f32)
+ RC = &ARM::SPRRegClass;
+ else if (RegVT == MVT::f64)
+ RC = &ARM::DPRRegClass;
+ else if (RegVT == MVT::v2f64)
+ RC = &ARM::QPRRegClass;
+ else if (RegVT == MVT::i32)
+ RC = AFI->isThumb1OnlyFunction() ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+ assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
+
+ int index = ArgLocs[i].getValNo();
+
+ // Some Ins[] entries become multiple ArgLoc[] entries.
+ // Process them only once.
+ if (index != lastInsIndex)
+ {
+ ISD::ArgFlagsTy Flags = Ins[index].Flags;
+ // FIXME: For now, all byval parameter objects are marked mutable.
+ // This can be changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable.
+ // Since they could be overwritten by lowering of arguments in case of
+ // a tail call.
+ if (Flags.isByVal()) {
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (!AFI->getVarArgsFrameIndex()) {
+ VarArgStyleRegisters(CCInfo, DAG,
+ dl, Chain, CurOrigArg,
+ Ins[VA.getValNo()].PartOffset,
+ VA.getLocMemOffset(),
+ true /*force mutable frames*/);
+ int VAFrameIndex = AFI->getVarArgsFrameIndex();
+ InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
+ } else {
+ int FI = MFI->CreateFixedObject(Flags.getByValSize(),
+ VA.getLocMemOffset(), false);
+ InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
+ }
+ } else {
+ int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
+ VA.getLocMemOffset(), true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0));
+ }
+ lastInsIndex = index;
+ }
+ }
+ }
+
+ // varargs
+ if (isVarArg)
+ VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
+ CCInfo.getNextStackOffset());
+
+ return Chain;
+}
+
+/// isFloatingPointZero - Return true if this is +0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isPosZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
+ SDValue WrapperOp = Op.getOperand(1).getOperand(0);
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isPosZero();
+ }
+ }
+ return false;
+}
+
+/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
+/// the given operands.
+SDValue
+ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &ARMcc, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ unsigned C = RHSC->getZExtValue();
+ if (!isLegalICmpImmediate(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (C != 0 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ }
+ }
+ }
+
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMISD::NodeType CompareType;
+ switch (CondCode) {
+ default:
+ CompareType = ARMISD::CMP;
+ break;
+ case ARMCC::EQ:
+ case ARMCC::NE:
+ // Uses only Z Flag
+ CompareType = ARMISD::CMPZ;
+ break;
+ }
+ ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
+}
+
+/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
+SDValue
+ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ SDValue Cmp;
+ if (!isFloatingPointZero(RHS))
+ Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
+ else
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
+}
+
+/// duplicateCmp - Glue values can have only one use, so this function
+/// duplicates a comparison node.
+SDValue
+ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
+ unsigned Opc = Cmp.getOpcode();
+ DebugLoc DL = Cmp.getDebugLoc();
+ if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
+ return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+
+ assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
+ Cmp = Cmp.getOperand(0);
+ Opc = Cmp.getOpcode();
+ if (Opc == ARMISD::CMPFP)
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+ else {
+ assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
+}
+
+SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Cond = Op.getOperand(0);
+ SDValue SelectTrue = Op.getOperand(1);
+ SDValue SelectFalse = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Convert:
+ //
+ // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
+ // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
+ //
+ if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
+ const ConstantSDNode *CMOVTrue =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(0));
+ const ConstantSDNode *CMOVFalse =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+
+ if (CMOVTrue && CMOVFalse) {
+ unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
+ unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
+
+ SDValue True;
+ SDValue False;
+ if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
+ True = SelectTrue;
+ False = SelectFalse;
+ } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
+ True = SelectFalse;
+ False = SelectTrue;
+ }
+
+ if (True.getNode() && False.getNode()) {
+ EVT VT = Op.getValueType();
+ SDValue ARMcc = Cond.getOperand(2);
+ SDValue CCR = Cond.getOperand(3);
+ SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
+ assert(True.getValueType() == VT);
+ return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
+ }
+ }
+ }
+
+ // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
+ // undefined bits before doing a full-word comparison with zero.
+ Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ return DAG.getSelectCC(dl, Cond,
+ DAG.getConstant(0, Cond.getValueType()),
+ SelectTrue, SelectFalse, ISD::SETNE);
+}
+
+SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMcc;
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
+ ARMcc, CCR, Cmp);
+ if (CondCode2 != ARMCC::AL) {
+ SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
+ // FIXME: Needs another CMP because flag can have but one use.
+ SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
+ Result = DAG.getNode(ARMISD::CMOV, dl, VT,
+ Result, TrueVal, ARMcc2, CCR, Cmp2);
+ }
+ return Result;
+}
+
+/// canChangeToInt - Given the fp compare operand, return true if it is suitable
+/// to morph to an integer compare sequence.
+static bool canChangeToInt(SDValue Op, bool &SeenZero,
+ const ARMSubtarget *Subtarget) {
+ SDNode *N = Op.getNode();
+ if (!N->hasOneUse())
+ // Otherwise it requires moving the value from fp to integer registers.
+ return false;
+ if (!N->getNumValues())
+ return false;
+ EVT VT = Op.getValueType();
+ if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
+ // f32 case is generally profitable. f64 case only makes sense when vcmpe +
+ // vmrs are very slow, e.g. cortex-a8.
+ return false;
+
+ if (isFloatingPointZero(Op)) {
+ SeenZero = true;
+ return true;
+ }
+ return ISD::isNormalLoad(N);
+}
+
+static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
+ if (isFloatingPointZero(Op))
+ return DAG.getConstant(0, MVT::i32);
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
+ return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
+ Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
+ SDValue &RetVal1, SDValue &RetVal2) {
+ if (isFloatingPointZero(Op)) {
+ RetVal1 = DAG.getConstant(0, MVT::i32);
+ RetVal2 = DAG.getConstant(0, MVT::i32);
+ return;
+ }
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
+ SDValue Ptr = Ld->getBasePtr();
+ RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
+ Ld->getChain(), Ptr,
+ Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ EVT PtrType = Ptr.getValueType();
+ unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
+ SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
+ PtrType, Ptr, DAG.getConstant(4, PtrType));
+ RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
+ Ld->getChain(), NewPtr,
+ Ld->getPointerInfo().getWithOffset(4),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), NewAlign);
+ return;
+ }
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
+/// f32 and even f64 comparisons to integer ones.
+SDValue
+ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ DebugLoc dl = Op.getDebugLoc();
+
+ bool LHSSeenZero = false;
+ bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
+ bool RHSSeenZero = false;
+ bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
+ if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
+ // If unsafe fp math optimization is enabled and there are no other uses of
+ // the CMP operands, and the condition code is EQ or NE, we can optimize it
+ // to an integer comparison.
+ if (CC == ISD::SETOEQ)
+ CC = ISD::SETEQ;
+ else if (CC == ISD::SETUNE)
+ CC = ISD::SETNE;
+
+ SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
+ SDValue ARMcc;
+ if (LHS.getValueType() == MVT::f32) {
+ LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(LHS, DAG), Mask);
+ RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(RHS, DAG), Mask);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ SDValue LHS1, LHS2;
+ SDValue RHS1, RHS2;
+ expandf64Toi32(LHS, DAG, LHS1, LHS2);
+ expandf64Toi32(RHS, DAG, RHS1, RHS2);
+ LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
+ RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
+ return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
+ }
+
+ return SDValue();
+}
+
+SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMcc;
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ if (getTargetMachine().Options.UnsafeFPMath &&
+ (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
+ CC == ISD::SETNE || CC == ISD::SETUNE)) {
+ SDValue Result = OptimizeVFPBrcond(Op, DAG);
+ if (Result.getNode())
+ return Result;
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
+ SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
+ if (CondCode2 != ARMCC::AL) {
+ ARMcc = DAG.getConstant(CondCode2, MVT::i32);
+ SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
+ Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
+ }
+ return Res;
+}
+
+SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ EVT PTy = getPointerTy();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
+ SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
+ Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
+ Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+ if (Subtarget->isThumb2()) {
+ // Thumb2 uses a two-level jump. That is, it jumps into the jump table
+ // which does another jump to the destination. This also makes it easier
+ // to translate it to TBB / TBH later.
+ // FIXME: This might not work if the function is extremely large.
+ return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
+ Addr, Op.getOperand(2), JTI, UId);
+ }
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ } else {
+ Addr = DAG.getLoad(PTy, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ }
+}
+
+static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Op.getValueType().getVectorElementType() == MVT::i32) {
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4i16)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
+}
+
+static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorFP_TO_INT(Op, DAG);
+
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::FP_TO_SINT:
+ Opc = ARMISD::FTOSI;
+ break;
+ case ISD::FP_TO_UINT:
+ Opc = ARMISD::FTOUI;
+ break;
+ }
+ Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
+}
+
+static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
+ if (VT.getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4f32)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ unsigned CastOpc;
+ unsigned Opc;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ CastOpc = ISD::SIGN_EXTEND;
+ Opc = ISD::SINT_TO_FP;
+ break;
+ case ISD::UINT_TO_FP:
+ CastOpc = ISD::ZERO_EXTEND;
+ Opc = ISD::UINT_TO_FP;
+ break;
+ }
+
+ Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorINT_TO_FP(Op, DAG);
+
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ Opc = ARMISD::SITOF;
+ break;
+ case ISD::UINT_TO_FP:
+ Opc = ARMISD::UITOF;
+ break;
+ }
+
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ // Implement fcopysign with a fabs and a conditional fneg.
+ SDValue Tmp0 = Op.getOperand(0);
+ SDValue Tmp1 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Tmp1.getValueType();
+ bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
+ Tmp0.getOpcode() == ARMISD::VMOVDRR;
+ bool UseNEON = !InGPR && Subtarget->hasNEON();
+
+ if (UseNEON) {
+ // Use VBSL to copy the sign bit.
+ unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
+ SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
+ DAG.getTargetConstant(EncodedVal, MVT::i32));
+ EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
+ if (VT == MVT::f64)
+ Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
+ DAG.getConstant(32, MVT::i32));
+ else /*if (VT == MVT::f32)*/
+ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
+ if (SrcVT == MVT::f32) {
+ Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
+ if (VT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
+ DAG.getConstant(32, MVT::i32));
+ } else if (VT == MVT::f32)
+ Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
+ DAG.getConstant(32, MVT::i32));
+ Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
+
+ SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
+ MVT::i32);
+ AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
+ SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
+
+ SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
+ if (VT == MVT::f32) {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
+ DAG.getConstant(0, MVT::i32));
+ } else {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
+ }
+
+ return Res;
+ }
+
+ // Bitcast operand 1 to i32.
+ if (SrcVT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ &Tmp1, 1).getValue(1);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
+
+ // Or in the signbit with integer operations.
+ SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
+ SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
+ Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
+ if (VT == MVT::f32) {
+ Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
+ }
+
+ // f64: Or the high part with signbit and then combine two parts.
+ Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ &Tmp0, 1);
+ SDValue Lo = Tmp0.getValue(0);
+ SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
+ Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+}
+
+SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
+ ? ARM::R7 : ARM::R11;
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+/// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec),
+/// and size(DestVec) > 128-bits.
+/// This is achieved by doing the one extension from the SrcVec, splitting the
+/// result, extending these parts, and then concatenating these into the
+/// destination.
+static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) {
+ SDValue Op = N->getOperand(0);
+ EVT SrcVT = Op.getValueType();
+ EVT DestVT = N->getValueType(0);
+
+ assert(DestVT.getSizeInBits() > 128 &&
+ "Custom sext/zext expansion needs >128-bit vector.");
+ // If this is a normal length extension, use the default expansion.
+ if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() &&
+ SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits())
+ return SDValue();
+
+ DebugLoc dl = N->getDebugLoc();
+ unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
+ unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits();
+ unsigned NumElts = SrcVT.getVectorNumElements();
+ LLVMContext &Ctx = *DAG.getContext();
+ SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi;
+
+ EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
+ NumElts);
+ EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
+ NumElts/2);
+ EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize),
+ NumElts/2);
+
+ Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op);
+ SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
+ DAG.getIntPtrConstant(0));
+ SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
+ DAG.getIntPtrConstant(NumElts/2));
+ ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo);
+ ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi);
+}
+
+/// ExpandBITCAST - If the target supports VFP, this function is called to
+/// expand a bit convert where either the source or destination type is i64 to
+/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
+/// operand type is illegal (e.g., v2f32 for a target that doesn't support
+/// vectors), since the legalizer won't know what to do with that.
+static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ DebugLoc dl = N->getDebugLoc();
+ SDValue Op = N->getOperand(0);
+
+ // This function is only supposed to be called for i64 types, either as the
+ // source or destination of the bit convert.
+ EVT SrcVT = Op.getValueType();
+ EVT DstVT = N->getValueType(0);
+ assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
+ "ExpandBITCAST called for non-i64 type");
+
+ // Turn i64->f64 into VMOVDRR.
+ if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(1, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, DstVT,
+ DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
+ }
+
+ // Turn f64->i64 into VMOVRRD.
+ if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
+ SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
+ }
+
+ return SDValue();
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+/// Zero vectors are used to represent vector negation and in those cases
+/// will be implemented with the NEON VNEG instruction. However, VNEG does
+/// not support i64 elements, so sometimes the zero vectors will need to be
+/// explicitly constructed. Regardless, use a canonical VMOV to create the
+/// zero vector.
+static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+ // The canonical modified immediate encoding of a zero vector is....0!
+ SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
+ EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMcc, DAG, dl);
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMcc, DAG, dl);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ // The rounding mode is in bits 23:22 of the FPSCR.
+ // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
+ // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
+ // so that the shift + and get folded into a bitfield extract.
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
+ DAG.getConstant(Intrinsic::arm_get_fpscr,
+ MVT::i32));
+ SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
+ DAG.getConstant(1U << 22, MVT::i32));
+ SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
+ DAG.getConstant(22, MVT::i32));
+ return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
+ DAG.getConstant(3, MVT::i32));
+}
+
+static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ if (!ST->hasV6T2Ops())
+ return SDValue();
+
+ SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
+ return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
+}
+
+/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
+/// for each 16-bit element from operand, repeated. The basic idea is to
+/// leverage vcnt to get the 8-bit counts, gather and add the results.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
+/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
+/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
+/// [b0 b1 b2 b3 b4 b5 b6 b7]
+/// +[b1 b0 b3 b2 b5 b4 b7 b6]
+/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
+/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
+static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ DebugLoc DL = N->getDebugLoc();
+
+ EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
+ SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
+ SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
+ SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
+ return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
+}
+
+/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
+/// bit-count for each 16-bit element from the operand. We need slightly
+/// different sequencing for v4i16 and v8i16 to stay within NEON's available
+/// 64/128-bit registers.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
+/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
+/// v4i16:Extracted = [k0 k1 k2 k3 ]
+static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ DebugLoc DL = N->getDebugLoc();
+
+ SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
+ DAG.getIntPtrConstant(0));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
+ BitCounts, DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
+ }
+}
+
+/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
+/// bit-count for each 32-bit element from the operand. The idea here is
+/// to split the vector into 16-bit elements, leverage the 16-bit count
+/// routine, and then combine the results.
+///
+/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
+/// input = [v0 v1 ] (vi: 32-bit elements)
+/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
+/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
+/// vrev: N0 = [k1 k0 k3 k2 ]
+/// [k0 k1 k2 k3 ]
+/// N1 =+[k1 k0 k3 k2 ]
+/// [k0 k2 k1 k3 ]
+/// N2 =+[k1 k3 k0 k2 ]
+/// [k0 k2 k1 k3 ]
+/// Extended =+[k1 k3 k0 k2 ]
+/// [k0 k2 ]
+/// Extracted=+[k1 k3 ]
+///
+static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ DebugLoc DL = N->getDebugLoc();
+
+ EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
+
+ SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
+ SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
+ SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
+ SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
+
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
+ DAG.getIntPtrConstant(0));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
+ DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
+ }
+}
+
+static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+
+ assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
+ assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
+ VT == MVT::v4i16 || VT == MVT::v8i16) &&
+ "Unexpected type for custom ctpop lowering");
+
+ if (VT.getVectorElementType() == MVT::i32)
+ return lowerCTPOP32BitElements(N, DAG);
+ else
+ return lowerCTPOP16BitElements(N, DAG);
+}
+
+static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ if (!VT.isVector())
+ return SDValue();
+
+ // Lower vector shifts on NEON to use VSHL.
+ assert(ST->hasNEON() && "unexpected vector shift");
+
+ // Left shifts translate directly to the vshiftu intrinsic.
+ if (N->getOpcode() == ISD::SHL)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
+ N->getOperand(0), N->getOperand(1));
+
+ assert((N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
+
+ // NEON uses the same intrinsics for both left and right shifts. For
+ // right shifts, the shift amounts are negative, so negate the vector of
+ // shift amounts.
+ EVT ShiftVT = N->getOperand(1).getValueType();
+ SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
+ getZeroVector(ShiftVT, DAG, dl),
+ N->getOperand(1));
+ Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
+ Intrinsic::arm_neon_vshifts :
+ Intrinsic::arm_neon_vshiftu);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(vshiftInt, MVT::i32),
+ N->getOperand(0), NegatedCount);
+}
+
+static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ // We can get here for a node like i32 = ISD::SHL i32, i64
+ if (VT != MVT::i64)
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
+ "Unknown shift to lower!");
+
+ // We only lower SRA, SRL of 1 here, all others use generic lowering.
+ if (!isa<ConstantSDNode>(N->getOperand(1)) ||
+ cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
+ return SDValue();
+
+ // If we are in thumb mode, we don't have RRX.
+ if (ST->isThumb1Only()) return SDValue();
+
+ // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(1, MVT::i32));
+
+ // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
+ // captures the result into a carry flag.
+ unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
+ Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
+
+ // The low part is an ARMISD::RRX operand, which shifts the carry in.
+ Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
+ SDValue TmpOp0, TmpOp1;
+ bool Invert = false;
+ bool Swap = false;
+ unsigned Opc = 0;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ EVT VT = Op.getValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Op.getOperand(1).getValueType().isFloatingPoint()) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal FP comparison");
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; // Fallthrough
+ case ISD::SETOEQ:
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETOLT:
+ case ISD::SETLT: Swap = true; // Fallthrough
+ case ISD::SETOGT:
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETOLE:
+ case ISD::SETLE: Swap = true; // Fallthrough
+ case ISD::SETOGE:
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETUGE: Swap = true; // Fallthrough
+ case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
+ case ISD::SETUGT: Swap = true; // Fallthrough
+ case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
+ case ISD::SETUEQ: Invert = true; // Fallthrough
+ case ISD::SETONE:
+ // Expand this to (OLT | OGT).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
+ break;
+ case ISD::SETUO: Invert = true; // Fallthrough
+ case ISD::SETO:
+ // Expand this to (OLT | OGE).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
+ break;
+ }
+ } else {
+ // Integer comparisons.
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal integer comparison");
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETLE: Swap = true;
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
+ case ISD::SETULE: Swap = true;
+ case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
+ }
+
+ // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
+ if (Opc == ARMISD::VCEQ) {
+
+ SDValue AndOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ AndOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
+ AndOp = Op1;
+
+ // Ignore bitconvert.
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
+ AndOp = AndOp.getOperand(0);
+
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
+ Opc = ARMISD::VTST;
+ Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
+ Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
+ Invert = !Invert;
+ }
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // If one of the operands is a constant vector zero, attempt to fold the
+ // comparison to a specialized compare-against-zero form.
+ SDValue SingleOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ SingleOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
+ if (Opc == ARMISD::VCGE)
+ Opc = ARMISD::VCLEZ;
+ else if (Opc == ARMISD::VCGT)
+ Opc = ARMISD::VCLTZ;
+ SingleOp = Op1;
+ }
+
+ SDValue Result;
+ if (SingleOp.getNode()) {
+ switch (Opc) {
+ case ARMISD::VCEQ:
+ Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGE:
+ Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLEZ:
+ Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGT:
+ Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLTZ:
+ Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
+ default:
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
+ } else {
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ return Result;
+}
+
+/// isNEONModifiedImm - Check if the specified splat value corresponds to a
+/// valid vector constant for a NEON instruction with a "modified immediate"
+/// operand (e.g., VMOV). If so, return the encoded value.
+static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
+ unsigned SplatBitSize, SelectionDAG &DAG,
+ EVT &VT, bool is128Bits, NEONModImmType type) {
+ unsigned OpCmode, Imm;
+
+ // SplatBitSize is set to the smallest size that splats the vector, so a
+ // zero vector will always have SplatBitSize == 8. However, NEON modified
+ // immediate instructions others than VMOV do not support the 8-bit encoding
+ // of a zero vector, and the default encoding of zero is supposed to be the
+ // 32-bit version.
+ if (SplatBits == 0)
+ SplatBitSize = 32;
+
+ switch (SplatBitSize) {
+ case 8:
+ if (type != VMOVModImm)
+ return SDValue();
+ // Any 1-byte value is OK. Op=0, Cmode=1110.
+ assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
+ OpCmode = 0xe;
+ Imm = SplatBits;
+ VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
+ break;
+
+ case 16:
+ // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
+ VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x00nn: Op=x, Cmode=100x.
+ OpCmode = 0x8;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0xnn00: Op=x, Cmode=101x.
+ OpCmode = 0xa;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ return SDValue();
+
+ case 32:
+ // NEON's 32-bit VMOV supports splat values where:
+ // * only one byte is nonzero, or
+ // * the least significant byte is 0xff and the second byte is nonzero, or
+ // * the least significant 2 bytes are 0xff and the third is nonzero.
+ VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x000000nn: Op=x, Cmode=000x.
+ OpCmode = 0;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0x0000nn00: Op=x, Cmode=001x.
+ OpCmode = 0x2;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ if ((SplatBits & ~0xff0000) == 0) {
+ // Value = 0x00nn0000: Op=x, Cmode=010x.
+ OpCmode = 0x4;
+ Imm = SplatBits >> 16;
+ break;
+ }
+ if ((SplatBits & ~0xff000000) == 0) {
+ // Value = 0xnn000000: Op=x, Cmode=011x.
+ OpCmode = 0x6;
+ Imm = SplatBits >> 24;
+ break;
+ }
+
+ // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
+ if (type == OtherModImm) return SDValue();
+
+ if ((SplatBits & ~0xffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xff) == 0xff) {
+ // Value = 0x0000nnff: Op=x, Cmode=1100.
+ OpCmode = 0xc;
+ Imm = SplatBits >> 8;
+ SplatBits |= 0xff;
+ break;
+ }
+
+ if ((SplatBits & ~0xffffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
+ // Value = 0x00nnffff: Op=x, Cmode=1101.
+ OpCmode = 0xd;
+ Imm = SplatBits >> 16;
+ SplatBits |= 0xffff;
+ break;
+ }
+
+ // Note: there are a few 32-bit splat values (specifically: 00ffff00,
+ // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
+ // VMOV.I32. A (very) minor optimization would be to replicate the value
+ // and fall through here to test for a valid 64-bit splat. But, then the
+ // caller would also need to check and handle the change in size.
+ return SDValue();
+
+ case 64: {
+ if (type != VMOVModImm)
+ return SDValue();
+ // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
+ uint64_t BitMask = 0xff;
+ uint64_t Val = 0;
+ unsigned ImmMask = 1;
+ Imm = 0;
+ for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
+ Val |= BitMask;
+ Imm |= ImmMask;
+ } else if ((SplatBits & BitMask) != 0) {
+ return SDValue();
+ }
+ BitMask <<= 8;
+ ImmMask <<= 1;
+ }
+ // Op=1, Cmode=1110.
+ OpCmode = 0x1e;
+ SplatBits = Val;
+ VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
+ break;
+ }
+
+ default:
+ llvm_unreachable("unexpected size for isNEONModifiedImm");
+ }
+
+ unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
+ return DAG.getTargetConstant(EncodedVal, MVT::i32);
+}
+
+SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
+ return SDValue();
+
+ ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
+ assert(Op.getValueType() == MVT::f32 &&
+ "ConstantFP custom lowering should only occur for f32.");
+
+ // Try splatting with a VMOV.f32...
+ APFloat FPVal = CFP->getValueAPF();
+ int ImmVal = ARM_AM::getFP32Imm(FPVal);
+ if (ImmVal != -1) {
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
+ NewVal);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ // If that fails, try a VMOV.i32
+ EVT VMovVT;
+ unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
+ SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
+ VMOVModImm);
+ if (NewVal != SDValue()) {
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
+ NewVal);
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ // Finally, try a VMVN.i32
+ NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
+ VMVNModImm);
+ if (NewVal != SDValue()) {
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+// check if an VEXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are the same.
+static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, just follow it
+ // back to index zero and keep going.
+ ++ExpectedElt;
+ if (ExpectedElt == NumElts)
+ ExpectedElt = 0;
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ return true;
+}
+
+
+static bool isVEXTMask(ArrayRef<int> M, EVT VT,
+ bool &ReverseVEXT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+ ReverseVEXT = false;
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, it may still be
+ // a VEXT but the source vectors must be swapped.
+ ExpectedElt += 1;
+ if (ExpectedElt == NumElts * 2) {
+ ExpectedElt = 0;
+ ReverseVEXT = true;
+ }
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ // Adjust the index value if the source operands will be swapped.
+ if (ReverseVEXT)
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isVREVMask - Check if a vector shuffle corresponds to a VREV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
+ "Only possible block sizes for VREV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
+ // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
+ // range, then 0 is placed into the resulting vector. So pretty much any mask
+ // of 8 elements can work here.
+ return VT == MVT::v8i8 && M.size() == 8;
+}
+
+static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if ((unsigned) M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned Half = VT.getVectorNumElements() / 2;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned j = 0; j != 2; ++j) {
+ unsigned Idx = WhichResult;
+ for (unsigned i = 0; i != Half; ++i) {
+ int MIdx = M[i + j * Half];
+ if (MIdx >= 0 && (unsigned) MIdx != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
+ (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// \return true if this is a reverse operation on an vector.
+static bool isReverseMask(ArrayRef<int> M, EVT VT) {
+ unsigned NumElts = VT.getVectorNumElements();
+ // Make sure the mask has the right size.
+ if (NumElts != M.size())
+ return false;
+
+ // Look for <15, ..., 3, -1, 1, 0>.
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
+ return false;
+
+ return true;
+}
+
+// If N is an integer constant that can be moved into a register in one
+// instruction, return an SDValue of such a constant (will become a MOV
+// instruction). Otherwise return null.
+static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
+ const ARMSubtarget *ST, DebugLoc dl) {
+ uint64_t Val;
+ if (!isa<ConstantSDNode>(N))
+ return SDValue();
+ Val = cast<ConstantSDNode>(N)->getZExtValue();
+
+ if (ST->isThumb1Only()) {
+ if (Val <= 255 || ~Val <= 255)
+ return DAG.getConstant(Val, MVT::i32);
+ } else {
+ if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
+ return DAG.getConstant(Val, MVT::i32);
+ }
+ return SDValue();
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it.
+SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ // Check if an immediate VMOV works.
+ EVT VmovVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VmovVT, VT.is128BitVector(),
+ VMOVModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Try an immediate VMVN.
+ uint64_t NegatedImm = (~SplatBits).getZExtValue();
+ Val = isNEONModifiedImm(NegatedImm,
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VmovVT, VT.is128BitVector(),
+ VMVNModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
+ if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
+ int ImmVal = ARM_AM::getFP32Imm(SplatBits);
+ if (ImmVal != -1) {
+ SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
+ return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
+ }
+ }
+ }
+ }
+
+ // Scan through the operands to see if only one value is used.
+ //
+ // As an optimisation, even if more than one value is used it may be more
+ // profitable to splat with one value then change some lanes.
+ //
+ // Heuristically we decide to do this if the vector has a "dominant" value,
+ // defined as splatted to more than half of the lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool hasDominantValue = false;
+ bool isConstant = true;
+
+ // Map of the number of times a particular SDValue appears in the
+ // element list.
+ DenseMap<SDValue, unsigned> ValueCounts;
+ SDValue Value;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ ValueCounts.insert(std::make_pair(V, 0));
+ unsigned &Count = ValueCounts[V];
+
+ // Is this value dominant? (takes up more than half of the lanes)
+ if (++Count > (NumElts / 2)) {
+ hasDominantValue = true;
+ Value = V;
+ }
+ }
+ if (ValueCounts.size() != 1)
+ usesOnlyOneValue = false;
+ if (!Value.getNode() && ValueCounts.size() > 0)
+ Value = ValueCounts.begin()->first;
+
+ if (ValueCounts.size() == 0)
+ return DAG.getUNDEF(VT);
+
+ if (isOnlyLowElement)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ // Use VDUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (hasDominantValue && EltSize <= 32) {
+ if (!isConstant) {
+ SDValue N;
+
+ // If we are VDUPing a value that comes directly from a vector, that will
+ // cause an unnecessary move to and from a GPR, where instead we could
+ // just use VDUPLANE. We can only do this if the lane being extracted
+ // is at a constant index, as the VDUP from lane instructions only have
+ // constant-index forms.
+ if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(Value->getOperand(1))) {
+ // We need to create a new undef vector to use for the VDUPLANE if the
+ // size of the vector from which we get the value is different than the
+ // size of the vector that we need to create. We will insert the element
+ // such that the register coalescer will remove unnecessary copies.
+ if (VT != Value->getOperand(0).getValueType()) {
+ ConstantSDNode *constIndex;
+ constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
+ assert(constIndex && "The index is not a constant!");
+ unsigned index = constIndex->getAPIntValue().getLimitedValue() %
+ VT.getVectorNumElements();
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
+ Value, DAG.getConstant(index, MVT::i32)),
+ DAG.getConstant(index, MVT::i32));
+ } else
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ Value->getOperand(0), Value->getOperand(1));
+ } else
+ N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+
+ if (!usesOnlyOneValue) {
+ // The dominant value was splatted as 'N', but we now have to insert
+ // all differing elements.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ if (Op.getOperand(I) == Value)
+ continue;
+ SmallVector<SDValue, 3> Ops;
+ Ops.push_back(N);
+ Ops.push_back(Op.getOperand(I));
+ Ops.push_back(DAG.getConstant(I, MVT::i32));
+ N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
+ }
+ }
+ return N;
+ }
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
+ Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
+ Val = LowerBUILD_VECTOR(Val, DAG, ST);
+ if (Val.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+ if (usesOnlyOneValue) {
+ SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
+ if (isConstant && Val.getNode())
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
+ }
+ }
+
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
+ }
+
+ // Vectors with 32- or 64-bit elements can be built by directly assigning
+ // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
+ // will be legalized.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ return SDValue();
+}
+
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 2> SourceVecs;
+ SmallVector<unsigned, 2> MinElts;
+ SmallVector<unsigned, 2> MaxElts;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ } else if (V.getOperand(0).getValueType().getVectorElementType() !=
+ VT.getVectorElementType()) {
+ // This code doesn't know how to handle shuffles where the vector
+ // element types do not match (this happens because type legalization
+ // promotes the return type of EXTRACT_VECTOR_ELT).
+ // FIXME: It might be appropriate to extend this code to handle
+ // mismatched types.
+ return SDValue();
+ }
+
+ // Record this extraction against the appropriate vector if possible...
+ SDValue SourceVec = V.getOperand(0);
+ // If the element number isn't a constant, we can't effectively
+ // analyze what's going on.
+ if (!isa<ConstantSDNode>(V.getOperand(1)))
+ return SDValue();
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ bool FoundSource = false;
+ for (unsigned j = 0; j < SourceVecs.size(); ++j) {
+ if (SourceVecs[j] == SourceVec) {
+ if (MinElts[j] > EltNo)
+ MinElts[j] = EltNo;
+ if (MaxElts[j] < EltNo)
+ MaxElts[j] = EltNo;
+ FoundSource = true;
+ break;
+ }
+ }
+
+ // Or record a new source if not...
+ if (!FoundSource) {
+ SourceVecs.push_back(SourceVec);
+ MinElts.push_back(EltNo);
+ MaxElts.push_back(EltNo);
+ }
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // involved.
+ if (SourceVecs.size() > 2)
+ return SDValue();
+
+ SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
+ int VEXTOffsets[2] = {0, 0};
+
+ // This loop extracts the usage patterns of the source vectors
+ // and prepares appropriate SDValues for a shuffle if possible.
+ for (unsigned i = 0; i < SourceVecs.size(); ++i) {
+ if (SourceVecs[i].getValueType() == VT) {
+ // No VEXT necessary
+ ShuffleSrcs[i] = SourceVecs[i];
+ VEXTOffsets[i] = 0;
+ continue;
+ } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
+ // It probably isn't worth padding out a smaller vector just to
+ // break it down again in a shuffle.
+ return SDValue();
+ }
+
+ // Since only 64-bit and 128-bit vectors are legal on ARM and
+ // we've eliminated the other cases...
+ assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
+ "unexpected vector sizes in ReconstructShuffle");
+
+ if (MaxElts[i] - MinElts[i] >= NumElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (MinElts[i] >= NumElts) {
+ // The extraction can just take the second half
+ VEXTOffsets[i] = NumElts;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ } else if (MaxElts[i] < NumElts) {
+ // The extraction can just take the first half
+ VEXTOffsets[i] = 0;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ } else {
+ // An actual VEXT is needed
+ VEXTOffsets[i] = MinElts[i];
+ SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
+ DAG.getConstant(VEXTOffsets[i], MVT::i32));
+ }
+ }
+
+ SmallVector<int, 8> Mask;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ SDValue ExtractVec = Entry.getOperand(0);
+ int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
+ .getOperand(1))->getSExtValue();
+ if (ExtractVec == SourceVecs[0]) {
+ Mask.push_back(ExtractElt - VEXTOffsets[0]);
+ } else {
+ Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
+ }
+ }
+
+ // Final check before we try to produce nonsense...
+ if (isShuffleMaskLegal(Mask, VT))
+ return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
+ &Mask[0]);
+
+ return SDValue();
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm, WhichResult;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ return (EltSize >= 32 ||
+ ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isVREVMask(M, VT, 64) ||
+ isVREVMask(M, VT, 32) ||
+ isVREVMask(M, VT, 16) ||
+ isVEXTMask(M, VT, ReverseVEXT, Imm) ||
+ isVTBLMask(M, VT) ||
+ isVTRNMask(M, VT, WhichResult) ||
+ isVUZPMask(M, VT, WhichResult) ||
+ isVZIPMask(M, VT, WhichResult) ||
+ isVTRN_v_undef_Mask(M, VT, WhichResult) ||
+ isVUZP_v_undef_Mask(M, VT, WhichResult) ||
+ isVZIP_v_undef_Mask(M, VT, WhichResult) ||
+ ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ DebugLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ // VREV divides the vector in half and swaps within the half.
+ if (VT.getVectorElementType() == MVT::i32 ||
+ VT.getVectorElementType() == MVT::f32)
+ return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
+ // vrev <4 x i16> -> VREV32
+ if (VT.getVectorElementType() == MVT::i16)
+ return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
+ // vrev <4 x i8> -> VREV16
+ assert(VT.getVectorElementType() == MVT::i8);
+ return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3:
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3:
+ return DAG.getNode(ARMISD::VEXT, dl, VT,
+ OpLHS, OpRHS,
+ DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
+ case OP_VUZPL:
+ case OP_VUZPR:
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
+ case OP_VZIPL:
+ case OP_VZIPR:
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
+ case OP_VTRNL:
+ case OP_VTRNR:
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
+ }
+}
+
+static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
+ ArrayRef<int> ShuffleMask,
+ SelectionDAG &DAG) {
+ // Check to see if we can use the VTBL instruction.
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ DebugLoc DL = Op.getDebugLoc();
+
+ SmallVector<SDValue, 8> VTBLMask;
+ for (ArrayRef<int>::iterator
+ I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
+ VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
+
+ if (V2.getNode()->getOpcode() == ISD::UNDEF)
+ return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
+ &VTBLMask[0], 8));
+
+ return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
+ &VTBLMask[0], 8));
+}
+
+static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
+ SelectionDAG &DAG) {
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue OpLHS = Op.getOperand(0);
+ EVT VT = OpLHS.getValueType();
+
+ assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
+ "Expect an v8i16/v16i8 type");
+ OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
+ // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
+ // extract the first 8 bytes into the top double word and the last 8 bytes
+ // into the bottom double word. The v8i16 case is similar.
+ unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
+ return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
+ DAG.getConstant(ExtractNum, MVT::i32));
+}
+
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ // FIXME: floating-point vectors should be canonicalized to integer vectors
+ // of the same time so that they get CSEd properly.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize <= 32) {
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1) Lane = 0;
+
+ // Test if V1 is a SCALAR_TO_VECTOR.
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
+ // (and probably will turn into a SCALAR_TO_VECTOR once legalization
+ // reaches it).
+ if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(0))) {
+ bool IsScalarToVector = true;
+ for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
+ if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
+ IsScalarToVector = false;
+ break;
+ }
+ if (IsScalarToVector)
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, MVT::i32));
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm;
+ if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
+ if (ReverseVEXT)
+ std::swap(V1, V2);
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ if (isVREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
+
+ if (V2->getOpcode() == ISD::UNDEF &&
+ isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ // Check for Neon shuffles that modify both input vectors in place.
+ // If both results are used, i.e., if there are two shuffles with the same
+ // source operands and with masks corresponding to both results of one of
+ // these operations, DAG memoization will ensure that a single node is
+ // used for both shuffles.
+ unsigned WhichResult;
+ if (isVTRNMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVUZPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVZIPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+
+ if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ }
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (ShuffleMask[i] < 0)
+ Ops.push_back(DAG.getUNDEF(EltVT));
+ else
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ ShuffleMask[i] < (int)NumElts ? V1 : V2,
+ DAG.getConstant(ShuffleMask[i] & (NumElts-1),
+ MVT::i32)));
+ }
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
+ return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
+
+ if (VT == MVT::v8i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // INSERT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ return Op;
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(1);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ SDValue Vec = Op.getOperand(0);
+ if (Op.getValueType() == MVT::i32 &&
+ Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
+ DebugLoc dl = Op.getDebugLoc();
+ return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+ }
+
+ return Op;
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
+ "unexpected CONCAT_VECTORS");
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Val = DAG.getUNDEF(MVT::v2f64);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
+ DAG.getIntPtrConstant(0));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
+}
+
+/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
+/// element has been zero/sign-extended, depending on the isSigned parameter,
+/// from an integer type half its size.
+static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
+ bool isSigned) {
+ // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ if (BVN->getValueType(0) != MVT::v4i32 ||
+ BVN->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ unsigned HiElt = 1 - LoElt;
+ ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
+ ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
+ ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
+ ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
+ if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
+ return false;
+ if (isSigned) {
+ if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
+ Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
+ return true;
+ } else {
+ if (Hi0->isNullValue() && Hi1->isNullValue())
+ return true;
+ }
+ return false;
+ }
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ unsigned HalfSize = EltSize / 2;
+ if (isSigned) {
+ if (!isIntN(HalfSize, C->getSExtValue()))
+ return false;
+ } else {
+ if (!isUIntN(HalfSize, C->getZExtValue()))
+ return false;
+ }
+ continue;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// isSignExtended - Check if a node is a vector value that is sign-extended
+/// or a constant BUILD_VECTOR with sign-extended elements.
+static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, true))
+ return true;
+ return false;
+}
+
+/// isZeroExtended - Check if a node is a vector value that is zero-extended
+/// or a constant BUILD_VECTOR with zero-extended elements.
+static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, false))
+ return true;
+ return false;
+}
+
+/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
+/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
+/// We insert the required extension here to get the vector to fill a D register.
+static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
+ const EVT &OrigTy,
+ const EVT &ExtTy,
+ unsigned ExtOpcode) {
+ // The vector originally had a size of OrigTy. It was then extended to ExtTy.
+ // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
+ // 64-bits we need to insert a new extension so that it will be 64-bits.
+ assert(ExtTy.is128BitVector() && "Unexpected extension size");
+ if (OrigTy.getSizeInBits() >= 64)
+ return N;
+
+ // Must extend size to at least 64 bits to be used as an operand for VMULL.
+ MVT::SimpleValueType OrigSimpleTy = OrigTy.getSimpleVT().SimpleTy;
+ EVT NewVT;
+ switch (OrigSimpleTy) {
+ default: llvm_unreachable("Unexpected Orig Vector Type");
+ case MVT::v2i8:
+ case MVT::v2i16:
+ NewVT = MVT::v2i32;
+ break;
+ case MVT::v4i8:
+ NewVT = MVT::v4i16;
+ break;
+ }
+ return DAG.getNode(ExtOpcode, N->getDebugLoc(), NewVT, N);
+}
+
+/// SkipLoadExtensionForVMULL - return a load of the original vector size that
+/// does not do any sign/zero extension. If the original vector is less
+/// than 64 bits, an appropriate extension will be added after the load to
+/// reach a total size of 64 bits. We have to add the extension separately
+/// because ARM does not have a sign/zero extending load for vectors.
+static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
+ SDValue NonExtendingLoad =
+ DAG.getLoad(LD->getMemoryVT(), LD->getDebugLoc(), LD->getChain(),
+ LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+ unsigned ExtOp = 0;
+ switch (LD->getExtensionType()) {
+ default: llvm_unreachable("Unexpected LoadExtType");
+ case ISD::EXTLOAD:
+ case ISD::SEXTLOAD: ExtOp = ISD::SIGN_EXTEND; break;
+ case ISD::ZEXTLOAD: ExtOp = ISD::ZERO_EXTEND; break;
+ }
+ MVT::SimpleValueType MemType = LD->getMemoryVT().getSimpleVT().SimpleTy;
+ MVT::SimpleValueType ExtType = LD->getValueType(0).getSimpleVT().SimpleTy;
+ return AddRequiredExtensionForVMULL(NonExtendingLoad, DAG,
+ MemType, ExtType, ExtOp);
+}
+
+/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
+/// extending load, or BUILD_VECTOR with extended elements, return the
+/// unextended value. The unextended vector should be 64 bits so that it can
+/// be used as an operand to a VMULL instruction. If the original vector size
+/// before extension is less than 64 bits we add a an extension to resize
+/// the vector to 64 bits.
+static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
+ return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
+ N->getOperand(0)->getValueType(0),
+ N->getValueType(0),
+ N->getOpcode());
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
+ return SkipLoadExtensionForVMULL(LD, DAG);
+
+ // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
+ // have been legalized as a BITCAST from v4i32.
+ if (N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
+ BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
+ unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
+ BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
+ }
+ // Construct a new BUILD_VECTOR with elements truncated to half the size.
+ assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
+ EVT VT = N->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT TruncVT = MVT::getIntegerVT(EltSize);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
+ const APInt &CInt = C->getAPIntValue();
+ // Element types smaller than 32 bits are not legal, so use i32 elements.
+ // The values are implicitly truncated so sext vs. zext doesn't matter.
+ Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
+ MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
+}
+
+static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
+ }
+ return false;
+}
+
+static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
+ }
+ return false;
+}
+
+static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
+ // Multiplications are only custom-lowered for 128-bit vectors so that
+ // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
+ EVT VT = Op.getValueType();
+ assert(VT.is128BitVector() && VT.isInteger() &&
+ "unexpected type for custom-lowering ISD::MUL");
+ SDNode *N0 = Op.getOperand(0).getNode();
+ SDNode *N1 = Op.getOperand(1).getNode();
+ unsigned NewOpc = 0;
+ bool isMLA = false;
+ bool isN0SExt = isSignExtended(N0, DAG);
+ bool isN1SExt = isSignExtended(N1, DAG);
+ if (isN0SExt && isN1SExt)
+ NewOpc = ARMISD::VMULLs;
+ else {
+ bool isN0ZExt = isZeroExtended(N0, DAG);
+ bool isN1ZExt = isZeroExtended(N1, DAG);
+ if (isN0ZExt && isN1ZExt)
+ NewOpc = ARMISD::VMULLu;
+ else if (isN1SExt || isN1ZExt) {
+ // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
+ // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
+ if (isN1SExt && isAddSubSExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLs;
+ isMLA = true;
+ } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
+ std::swap(N0, N1);
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ }
+ }
+
+ if (!NewOpc) {
+ if (VT == MVT::v2i64)
+ // Fall through to expand this. It is not legal.
+ return SDValue();
+ else
+ // Other vector multiplications are legal.
+ return Op;
+ }
+ }
+
+ // Legalize to a VMULL instruction.
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue Op0;
+ SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
+ if (!isMLA) {
+ Op0 = SkipExtensionForVMULL(N0, DAG);
+ assert(Op0.getValueType().is64BitVector() &&
+ Op1.getValueType().is64BitVector() &&
+ "unexpected types for extended operands to VMULL");
+ return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
+ }
+
+ // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
+ // isel lowering to take advantage of no-stall back to back vmul + vmla.
+ // vmull q0, d4, d6
+ // vmlal q0, d5, d6
+ // is faster than
+ // vaddl q0, d4, d5
+ // vmovl q1, d6
+ // vmul q0, q0, q1
+ SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
+ SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
+ EVT Op1VT = Op1.getValueType();
+ return DAG.getNode(N0->getOpcode(), DL, VT,
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
+}
+
+static SDValue
+LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
+ // Convert to float
+ // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
+ // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
+ X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
+ Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
+ // Get reciprocal estimate.
+ // float4 recip = vrecpeq_f32(yf);
+ Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
+ // Because char has a smaller range than uchar, we can actually get away
+ // without any newton steps. This requires that we use a weird bias
+ // of 0xb000, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
+ X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
+ Y = DAG.getConstant(0xb000, MVT::i32);
+ Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
+ X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
+ // Convert back to short.
+ X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
+ X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
+ return X;
+}
+
+static SDValue
+LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
+ SDValue N2;
+ // Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_s16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_s16(x));
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and one refinement step.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Because short has a smaller range than ushort, we can actually get away
+ // with only a single newton step. This requires that we use a weird bias
+ // of 89, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0x89);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(0x89, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_s32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::SDIV");
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
+ return N0;
+ }
+ return LowerSDIV_v4i16(N0, N1, dl, DAG);
+}
+
+static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::UDIV");
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
+ DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
+ N0);
+ return N0;
+ }
+
+ // v4i16 sdiv ... Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_u16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_u16(x));
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and two refinement steps.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Simply multiplying by the reciprocal estimate can leave us a few ulps
+ // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
+ // and that it will never cause us to return an answer too large).
+ // float4 result = as_float4(as_int4(xf*recip) + 2);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(2, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_u32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getNode()->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid code");
+ case ISD::ADDC: Opc = ARMISD::ADDC; break;
+ case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
+ case ISD::SUBC: Opc = ARMISD::SUBC; break;
+ case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
+ Op.getOperand(1), Op.getOperand(2));
+}
+
+static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
+ // Monotonic load/store is legal for all targets
+ if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
+ return Op;
+
+ // Aquire/Release load/store is not legal for targets without a
+ // dmb or equivalent available.
+ return SDValue();
+}
+
+
+static void
+ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
+ SelectionDAG &DAG, unsigned NewOp) {
+ DebugLoc dl = Node->getDebugLoc();
+ assert (Node->getValueType(0) == MVT::i64 &&
+ "Only know how to expand i64 atomics");
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(Node->getOperand(0)); // Chain
+ Ops.push_back(Node->getOperand(1)); // Ptr
+ // Low part of Val1
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(2), DAG.getIntPtrConstant(0)));
+ // High part of Val1
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(2), DAG.getIntPtrConstant(1)));
+ if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
+ // High part of Val1
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(3), DAG.getIntPtrConstant(0)));
+ // High part of Val2
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(3), DAG.getIntPtrConstant(1)));
+ }
+ SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
+ SDValue Result =
+ DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
+ cast<MemSDNode>(Node)->getMemOperand());
+ SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
+ Results.push_back(Result.getValue(2));
+}
+
+SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress:
+ return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
+ LowerGlobalAddressELF(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
+ case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
+ Subtarget);
+ case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
+ case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
+ case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
+ case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
+ case ISD::SETCC: return LowerVSETCC(Op, DAG);
+ case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+ case ISD::SDIV: return LowerSDIV(Op, DAG);
+ case ISD::UDIV: return LowerUDIV(Op, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
+ }
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDValue Res;
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::BITCAST:
+ Res = ExpandBITCAST(N, DAG);
+ break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ Res = ExpandVectorExtension(N, DAG);
+ break;
+ case ISD::SRL:
+ case ISD::SRA:
+ Res = Expand64BitShift(N, DAG, Subtarget);
+ break;
+ case ISD::ATOMIC_LOAD_ADD:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_AND:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_NAND:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_OR:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_SUB:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_XOR:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
+ return;
+ case ISD::ATOMIC_SWAP:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
+ return;
+ case ISD::ATOMIC_CMP_SWAP:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_MIN:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_UMIN:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_MAX:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_UMAX:
+ ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
+ return;
+ }
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size) const {
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned oldval = MI->getOperand(2).getReg();
+ unsigned newval = MI->getOperand(3).getReg();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass);
+
+ if (isThumb2) {
+ MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
+ }
+
+ unsigned ldrOpc, strOpc;
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
+ case 1:
+ ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
+ break;
+ case 2:
+ ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
+ strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
+ break;
+ case 4:
+ ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
+ strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
+ break;
+ }
+
+ MachineFunction *MF = BB->getParent();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It; // insert the new blocks after the current block
+
+ MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loop1MBB);
+ MF->insert(It, loop2MBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loop1MBB
+ BB->addSuccessor(loop1MBB);
+
+ // loop1MBB:
+ // ldrex dest, [ptr]
+ // cmp dest, oldval
+ // bne exitMBB
+ BB = loop1MBB;
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+ if (ldrOpc == ARM::t2LDREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(dest).addReg(oldval));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(exitMBB);
+
+ // loop2MBB:
+ // strex scratch, newval, [ptr]
+ // cmp scratch, #0
+ // bne loop1MBB
+ BB = loop2MBB;
+ MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
+ if (strOpc == ARM::t2STREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(scratch).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Size, unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned incr = MI->getOperand(2).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ if (isThumb2) {
+ MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
+ }
+
+ unsigned ldrOpc, strOpc;
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
+ case 1:
+ ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
+ break;
+ case 2:
+ ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
+ strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
+ break;
+ case 4:
+ ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
+ strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
+ break;
+ }
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ const TargetRegisterClass *TRC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldrex dest, ptr
+ // <binop> scratch2, dest, incr
+ // strex scratch, scratch2, ptr
+ // cmp scratch, #0
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+ if (ldrOpc == ARM::t2LDREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+ if (BinOpcode) {
+ // operand order needs to go the other way for NAND
+ if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
+ addReg(incr).addReg(dest)).addReg(0);
+ else
+ AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
+ addReg(dest).addReg(incr)).addReg(0);
+ }
+
+ MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
+ if (strOpc == ARM::t2STREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(scratch).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size,
+ bool signExtend,
+ ARMCC::CondCodes Cond) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned incr = MI->getOperand(2).getReg();
+ unsigned oldval = dest;
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ if (isThumb2) {
+ MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
+ }
+
+ unsigned ldrOpc, strOpc, extendOpc;
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
+ case 1:
+ ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
+ extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
+ break;
+ case 2:
+ ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
+ strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
+ extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
+ break;
+ case 4:
+ ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
+ strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
+ extendOpc = 0;
+ break;
+ }
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ const TargetRegisterClass *TRC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ unsigned scratch2 = MRI.createVirtualRegister(TRC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldrex dest, ptr
+ // (sign extend dest, if required)
+ // cmp dest, incr
+ // cmov.cond scratch2, incr, dest
+ // strex scratch, scratch2, ptr
+ // cmp scratch, #0
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+ if (ldrOpc == ARM::t2LDREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+
+ // Sign extend the value, if necessary.
+ if (signExtend && extendOpc) {
+ oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
+ .addReg(dest)
+ .addImm(0));
+ }
+
+ // Build compare and cmov instructions.
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(oldval).addReg(incr));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
+ .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
+
+ MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
+ if (strOpc == ARM::t2STREX)
+ MIB.addImm(0);
+ AddDefaultPred(MIB);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(scratch).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Op1, unsigned Op2,
+ bool NeedsCarry, bool IsCmpxchg,
+ bool IsMinMax, ARMCC::CondCodes CC) const {
+ // This also handles ATOMIC_SWAP, indicated by Op1==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned destlo = MI->getOperand(0).getReg();
+ unsigned desthi = MI->getOperand(1).getReg();
+ unsigned ptr = MI->getOperand(2).getReg();
+ unsigned vallo = MI->getOperand(3).getReg();
+ unsigned valhi = MI->getOperand(4).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ if (isThumb2) {
+ MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
+ MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
+ }
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *contBB = 0, *cont2BB = 0;
+ if (IsCmpxchg || IsMinMax)
+ contBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ if (IsCmpxchg)
+ cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MF->insert(It, loopMBB);
+ if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
+ if (IsCmpxchg) MF->insert(It, cont2BB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ const TargetRegisterClass *TRC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ unsigned storesuccess = MRI.createVirtualRegister(TRC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldrexd r2, r3, ptr
+ // <binopa> r0, r2, incr
+ // <binopb> r1, r3, incr
+ // strexd storesuccess, r0, r1, ptr
+ // cmp storesuccess, #0
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+
+ // Load
+ if (isThumb2) {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD))
+ .addReg(destlo, RegState::Define)
+ .addReg(desthi, RegState::Define)
+ .addReg(ptr));
+ } else {
+ unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD))
+ .addReg(GPRPair0, RegState::Define).addReg(ptr));
+ // Copy r2/r3 into dest. (This copy will normally be coalesced.)
+ BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
+ .addReg(GPRPair0, 0, ARM::gsub_0);
+ BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
+ .addReg(GPRPair0, 0, ARM::gsub_1);
+ }
+
+ unsigned StoreLo, StoreHi;
+ if (IsCmpxchg) {
+ // Add early exit
+ for (unsigned i = 0; i < 2; i++) {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
+ ARM::CMPrr))
+ .addReg(i == 0 ? destlo : desthi)
+ .addReg(i == 0 ? vallo : valhi));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+ BB->addSuccessor(exitMBB);
+ BB->addSuccessor(i == 0 ? contBB : cont2BB);
+ BB = (i == 0 ? contBB : cont2BB);
+ }
+
+ // Copy to physregs for strexd
+ StoreLo = MI->getOperand(5).getReg();
+ StoreHi = MI->getOperand(6).getReg();
+ } else if (Op1) {
+ // Perform binary operation
+ unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
+ .addReg(destlo).addReg(vallo))
+ .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
+ unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
+ .addReg(desthi).addReg(valhi))
+ .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
+
+ StoreLo = tmpRegLo;
+ StoreHi = tmpRegHi;
+ } else {
+ // Copy to physregs for strexd
+ StoreLo = vallo;
+ StoreHi = valhi;
+ }
+ if (IsMinMax) {
+ // Compare and branch to exit block.
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
+ BB->addSuccessor(exitMBB);
+ BB->addSuccessor(contBB);
+ BB = contBB;
+ StoreLo = vallo;
+ StoreHi = valhi;
+ }
+
+ // Store
+ if (isThumb2) {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess)
+ .addReg(StoreLo).addReg(StoreHi).addReg(ptr));
+ } else {
+ // Marshal a pair...
+ unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
+ BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
+ .addReg(UndefPair)
+ .addReg(StoreLo)
+ .addImm(ARM::gsub_0);
+ BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
+ .addReg(r1)
+ .addReg(StoreHi)
+ .addImm(ARM::gsub_1);
+
+ // ...and store it
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess)
+ .addReg(StorePair).addReg(ptr));
+ }
+ // Cmp+jump
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(storesuccess).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
+/// registers the function context.
+void ARMTargetLowering::
+SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
+ MachineBasicBlock *DispatchBB, int FI) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ MachineConstantPool *MCP = MF->getConstantPool();
+ ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
+ const Function *F = MF->getFunction();
+
+ bool isThumb = Subtarget->isThumb();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
+ unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
+
+ const TargetRegisterClass *TRC = isThumb ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+
+ // Grab constant pool and fixed stack memory operands.
+ MachineMemOperand *CPMMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
+ MachineMemOperand::MOLoad, 4, 4);
+
+ MachineMemOperand *FIMMOSt =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore, 4, 4);
+
+ // Load the address of the dispatch MBB into the jump buffer.
+ if (isThumb2) {
+ // Incoming value: jbuf
+ // ldr.n r5, LCPI1_1
+ // orr r5, r5, #1
+ // add r5, pc
+ // str r5, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(0x01)));
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
+ .addReg(NewVReg2, RegState::Kill)
+ .addImm(PCLabelId);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
+ .addReg(NewVReg3, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ } else if (isThumb) {
+ // Incoming value: jbuf
+ // ldr.n r1, LCPI1_4
+ // add r1, pc
+ // mov r2, #1
+ // orrs r1, r2
+ // add r2, $jbuf, #+4 ; &jbuf[1]
+ // str r1, [r2]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId);
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addImm(1));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3, RegState::Kill));
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
+ .addFrameIndex(FI)
+ .addImm(36)); // &jbuf[1] :: pc
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg5, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(FIMMOSt));
+ } else {
+ // Incoming value: jbuf
+ // ldr r1, LCPI1_1
+ // add r1, pc, r1
+ // str r1, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addImm(0)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId));
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
+ .addReg(NewVReg2, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ }
+}
+
+MachineBasicBlock *ARMTargetLowering::
+EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ int FI = MFI->getFunctionContextIndex();
+
+ const TargetRegisterClass *TRC = Subtarget->isThumb() ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
+
+ // Get a mapping of the call site numbers to all of the landing pads they're
+ // associated with.
+ DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
+ unsigned MaxCSNum = 0;
+ MachineModuleInfo &MMI = MF->getMMI();
+ for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
+ ++BB) {
+ if (!BB->isLandingPad()) continue;
+
+ // FIXME: We should assert that the EH_LABEL is the first MI in the landing
+ // pad.
+ for (MachineBasicBlock::iterator
+ II = BB->begin(), IE = BB->end(); II != IE; ++II) {
+ if (!II->isEHLabel()) continue;
+
+ MCSymbol *Sym = II->getOperand(0).getMCSymbol();
+ if (!MMI.hasCallSiteLandingPad(Sym)) continue;
+
+ SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
+ for (SmallVectorImpl<unsigned>::iterator
+ CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
+ CSI != CSE; ++CSI) {
+ CallSiteNumToLPad[*CSI].push_back(BB);
+ MaxCSNum = std::max(MaxCSNum, *CSI);
+ }
+ break;
+ }
+ }
+
+ // Get an ordered list of the machine basic blocks for the jump table.
+ std::vector<MachineBasicBlock*> LPadList;
+ SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
+ LPadList.reserve(CallSiteNumToLPad.size());
+ for (unsigned I = 1; I <= MaxCSNum; ++I) {
+ SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
+ LPadList.push_back(*II);
+ InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
+ }
+ }
+
+ assert(!LPadList.empty() &&
+ "No landing pad destinations for the dispatch jump table!");
+
+ // Create the jump table and associated information.
+ MachineJumpTableInfo *JTI =
+ MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
+ unsigned MJTI = JTI->createJumpTableIndex(LPadList);
+ unsigned UId = AFI->createJumpTableUId();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ // Create the MBBs for the dispatch code.
+
+ // Shove the dispatch's address into the return slot in the function context.
+ MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
+ DispatchBB->setIsLandingPad();
+
+ MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
+ unsigned trap_opcode;
+ if (Subtarget->isThumb())
+ trap_opcode = ARM::tTRAP;
+ else
+ trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
+
+ BuildMI(TrapBB, dl, TII->get(trap_opcode));
+ DispatchBB->addSuccessor(TrapBB);
+
+ MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
+ DispatchBB->addSuccessor(DispContBB);
+
+ // Insert and MBBs.
+ MF->insert(MF->end(), DispatchBB);
+ MF->insert(MF->end(), DispContBB);
+ MF->insert(MF->end(), TrapBB);
+
+ // Insert code into the entry block that creates and registers the function
+ // context.
+ SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
+
+ MachineMemOperand *FIMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad |
+ MachineMemOperand::MOVolatile, 4, 4);
+
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
+
+ const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
+ const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
+
+ // Add a register mask with no preserved registers. This results in all
+ // registers being marked as clobbered.
+ MIB.addRegMask(RI.getNoPreservedMask());
+
+ unsigned NumLPads = LPadList.size();
+ if (Subtarget->isThumb2()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
+ .addReg(NewVReg1)
+ .addImm(LPadList.size()));
+ } else {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+
+ BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg1)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else if (Subtarget->isThumb()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(1)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
+ .addReg(NewVReg1)
+ .addReg(VReg1));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg1)
+ .addImm(2));
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3));
+
+ MachineMemOperand *JTMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
+ MachineMemOperand::MOLoad, 4, 4);
+
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
+ .addReg(NewVReg4, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ unsigned NewVReg6 = NewVReg5;
+ if (RelocM == Reloc::PIC_) {
+ NewVReg6 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg3));
+ }
+
+ BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
+ .addReg(NewVReg6, RegState::Kill)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg1, RegState::Kill));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId));
+
+ MachineMemOperand *JTMMOLd =
+ MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
+ MachineMemOperand::MOLoad, 4, 4);
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg4)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ if (RelocM == Reloc::PIC_) {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg4)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ } else {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
+ .addReg(NewVReg5, RegState::Kill)
+ .addJumpTableIndex(MJTI)
+ .addImm(UId);
+ }
+ }
+
+ // Add the jump table entries as successors to the MBB.
+ SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
+ for (std::vector<MachineBasicBlock*>::iterator
+ I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
+ MachineBasicBlock *CurMBB = *I;
+ if (SeenMBBs.insert(CurMBB))
+ DispContBB->addSuccessor(CurMBB);
+ }
+
+ // N.B. the order the invoke BBs are processed in doesn't matter here.
+ const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
+ SmallVector<MachineBasicBlock*, 64> MBBLPads;
+ for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
+ I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
+ MachineBasicBlock *BB = *I;
+
+ // Remove the landing pad successor from the invoke block and replace it
+ // with the new dispatch block.
+ SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
+ BB->succ_end());
+ while (!Successors.empty()) {
+ MachineBasicBlock *SMBB = Successors.pop_back_val();
+ if (SMBB->isLandingPad()) {
+ BB->removeSuccessor(SMBB);
+ MBBLPads.push_back(SMBB);
+ }
+ }
+
+ BB->addSuccessor(DispatchBB);
+
+ // Find the invoke call and mark all of the callee-saved registers as
+ // 'implicit defined' so that they're spilled. This prevents code from
+ // moving instructions to before the EH block, where they will never be
+ // executed.
+ for (MachineBasicBlock::reverse_iterator
+ II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
+ if (!II->isCall()) continue;
+
+ DenseMap<unsigned, bool> DefRegs;
+ for (MachineInstr::mop_iterator
+ OI = II->operands_begin(), OE = II->operands_end();
+ OI != OE; ++OI) {
+ if (!OI->isReg()) continue;
+ DefRegs[OI->getReg()] = true;
+ }
+
+ MachineInstrBuilder MIB(*MF, &*II);
+
+ for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
+ unsigned Reg = SavedRegs[i];
+ if (Subtarget->isThumb2() &&
+ !ARM::tGPRRegClass.contains(Reg) &&
+ !ARM::hGPRRegClass.contains(Reg))
+ continue;
+ if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
+ continue;
+ if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
+ continue;
+ if (!DefRegs[Reg])
+ MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
+ }
+
+ break;
+ }
+ }
+
+ // Mark all former landing pads as non-landing pads. The dispatch is the only
+ // landing pad now.
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
+ (*I)->setIsLandingPad(false);
+
+ // The instruction is gone now.
+ MI->eraseFromParent();
+
+ return MBB;
+}
+
+static
+MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I)
+ if (*I != Succ)
+ return *I;
+ llvm_unreachable("Expecting a BB with two successors!");
+}
+
+MachineBasicBlock *ARMTargetLowering::
+EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
+ // This pseudo instruction has 3 operands: dst, src, size
+ // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
+ // Otherwise, we will generate unrolled scalar copies.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned src = MI->getOperand(1).getReg();
+ unsigned SizeVal = MI->getOperand(2).getImm();
+ unsigned Align = MI->getOperand(3).getImm();
+ DebugLoc dl = MI->getDebugLoc();
+
+ bool isThumb2 = Subtarget->isThumb2();
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned ldrOpc, strOpc, UnitSize = 0;
+
+ const TargetRegisterClass *TRC = isThumb2 ?
+ (const TargetRegisterClass*)&ARM::tGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass;
+ const TargetRegisterClass *TRC_Vec = 0;
+
+ if (Align & 1) {
+ ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
+ strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
+ UnitSize = 1;
+ } else if (Align & 2) {
+ ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
+ strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
+ UnitSize = 2;
+ } else {
+ // Check whether we can use NEON instructions.
+ if (!MF->getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat) &&
+ Subtarget->hasNEON()) {
+ if ((Align % 16 == 0) && SizeVal >= 16) {
+ ldrOpc = ARM::VLD1q32wb_fixed;
+ strOpc = ARM::VST1q32wb_fixed;
+ UnitSize = 16;
+ TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
+ }
+ else if ((Align % 8 == 0) && SizeVal >= 8) {
+ ldrOpc = ARM::VLD1d32wb_fixed;
+ strOpc = ARM::VST1d32wb_fixed;
+ UnitSize = 8;
+ TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
+ }
+ }
+ // Can't use NEON instructions.
+ if (UnitSize == 0) {
+ ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
+ strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
+ UnitSize = 4;
+ }
+ }
+
+ unsigned BytesLeft = SizeVal % UnitSize;
+ unsigned LoopSize = SizeVal - BytesLeft;
+
+ if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
+ // Use LDR and STR to copy.
+ // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
+ // [destOut] = STR_POST(scratch, destIn, UnitSize)
+ unsigned srcIn = src;
+ unsigned destIn = dest;
+ for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
+ unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ if (UnitSize >= 8) {
+ AddDefaultPred(BuildMI(*BB, MI, dl,
+ TII->get(ldrOpc), scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
+
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
+ .addReg(destIn).addImm(0).addReg(scratch));
+ } else if (isThumb2) {
+ AddDefaultPred(BuildMI(*BB, MI, dl,
+ TII->get(ldrOpc), scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
+
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addImm(UnitSize));
+ } else {
+ AddDefaultPred(BuildMI(*BB, MI, dl,
+ TII->get(ldrOpc), scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
+ .addImm(UnitSize));
+
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addReg(0).addImm(UnitSize));
+ }
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ // Handle the leftover bytes with LDRB and STRB.
+ // [scratch, srcOut] = LDRB_POST(srcIn, 1)
+ // [destOut] = STRB_POST(scratch, destIn, 1)
+ ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
+ strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ if (isThumb2) {
+ AddDefaultPred(BuildMI(*BB, MI, dl,
+ TII->get(ldrOpc),scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
+
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addReg(0).addImm(1));
+ } else {
+ AddDefaultPred(BuildMI(*BB, MI, dl,
+ TII->get(ldrOpc),scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn)
+ .addReg(0).addImm(1));
+
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addReg(0).addImm(1));
+ }
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+ }
+
+ // Expand the pseudo op to a loop.
+ // thisMBB:
+ // ...
+ // movw varEnd, # --> with thumb2
+ // movt varEnd, #
+ // ldrcp varEnd, idx --> without thumb2
+ // fallthrough --> loopMBB
+ // loopMBB:
+ // PHI varPhi, varEnd, varLoop
+ // PHI srcPhi, src, srcLoop
+ // PHI destPhi, dst, destLoop
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
+ // subs varLoop, varPhi, #UnitSize
+ // bne loopMBB
+ // fallthrough --> exitMBB
+ // exitMBB:
+ // epilogue to handle left-over bytes
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Load an immediate to varEnd.
+ unsigned varEnd = MRI.createVirtualRegister(TRC);
+ if (isThumb2) {
+ unsigned VReg1 = varEnd;
+ if ((LoopSize & 0xFFFF0000) != 0)
+ VReg1 = MRI.createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
+ .addImm(LoopSize & 0xFFFF));
+
+ if ((LoopSize & 0xFFFF0000) != 0)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
+ .addReg(VReg1)
+ .addImm(LoopSize >> 16));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = getDataLayout()->getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
+ .addReg(varEnd, RegState::Define)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ }
+ BB->addSuccessor(loopMBB);
+
+ // Generate the loop body:
+ // varPhi = PHI(varLoop, varEnd)
+ // srcPhi = PHI(srcLoop, src)
+ // destPhi = PHI(destLoop, dst)
+ MachineBasicBlock *entryBB = BB;
+ BB = loopMBB;
+ unsigned varLoop = MRI.createVirtualRegister(TRC);
+ unsigned varPhi = MRI.createVirtualRegister(TRC);
+ unsigned srcLoop = MRI.createVirtualRegister(TRC);
+ unsigned srcPhi = MRI.createVirtualRegister(TRC);
+ unsigned destLoop = MRI.createVirtualRegister(TRC);
+ unsigned destPhi = MRI.createVirtualRegister(TRC);
+
+ BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
+ .addReg(varLoop).addMBB(loopMBB)
+ .addReg(varEnd).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
+ .addReg(srcLoop).addMBB(loopMBB)
+ .addReg(src).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
+ .addReg(destLoop).addMBB(loopMBB)
+ .addReg(dest).addMBB(entryBB);
+
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
+ unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
+ if (UnitSize >= 8) {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
+ .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
+
+ AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
+ .addReg(destPhi).addImm(0).addReg(scratch));
+ } else if (isThumb2) {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
+ .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
+
+ AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
+ .addReg(scratch).addReg(destPhi)
+ .addImm(UnitSize));
+ } else {
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
+ .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
+ .addImm(UnitSize));
+
+ AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
+ .addReg(scratch).addReg(destPhi)
+ .addReg(0).addImm(UnitSize));
+ }
+
+ // Decrement loop variable by UnitSize.
+ MachineInstrBuilder MIB = BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
+ AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
+ MIB->getOperand(5).setReg(ARM::CPSR);
+ MIB->getOperand(5).setIsDef(true);
+
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ // loopMBB can loop back to loopMBB or fall through to exitMBB.
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // Add epilogue to handle BytesLeft.
+ BB = exitMBB;
+ MachineInstr *StartOfExit = exitMBB->begin();
+ ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
+ strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
+
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ unsigned srcIn = srcLoop;
+ unsigned destIn = destLoop;
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ if (isThumb2) {
+ AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
+ TII->get(ldrOpc),scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
+
+ AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addImm(1));
+ } else {
+ AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
+ TII->get(ldrOpc),scratch)
+ .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
+
+ AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
+ .addReg(scratch).addReg(destIn)
+ .addReg(0).addImm(1));
+ }
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+ switch (MI->getOpcode()) {
+ default: {
+ MI->dump();
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+ // The Thumb2 pre-indexed stores have the same MI operands, they just
+ // define them differently in the .td files from the isel patterns, so
+ // they need pseudos.
+ case ARM::t2STR_preidx:
+ MI->setDesc(TII->get(ARM::t2STR_PRE));
+ return BB;
+ case ARM::t2STRB_preidx:
+ MI->setDesc(TII->get(ARM::t2STRB_PRE));
+ return BB;
+ case ARM::t2STRH_preidx:
+ MI->setDesc(TII->get(ARM::t2STRH_PRE));
+ return BB;
+
+ case ARM::STRi_preidx:
+ case ARM::STRBi_preidx: {
+ unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
+ ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
+ // Decode the offset.
+ unsigned Offset = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
+ Offset = ARM_AM::getAM2Offset(Offset);
+ if (isSub)
+ Offset = -Offset;
+
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ BuildMI(*BB, MI, dl, TII->get(NewOpc))
+ .addOperand(MI->getOperand(0)) // Rn_wb
+ .addOperand(MI->getOperand(1)) // Rt
+ .addOperand(MI->getOperand(2)) // Rn
+ .addImm(Offset) // offset (skip GPR==zero_reg)
+ .addOperand(MI->getOperand(5)) // pred
+ .addOperand(MI->getOperand(6))
+ .addMemOperand(MMO);
+ MI->eraseFromParent();
+ return BB;
+ }
+ case ARM::STRr_preidx:
+ case ARM::STRBr_preidx:
+ case ARM::STRH_preidx: {
+ unsigned NewOpc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
+ case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
+ case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
+ }
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
+ for (unsigned i = 0; i < MI->getNumOperands(); ++i)
+ MIB.addOperand(MI->getOperand(i));
+ MI->eraseFromParent();
+ return BB;
+ }
+ case ARM::ATOMIC_LOAD_ADD_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+ case ARM::ATOMIC_LOAD_ADD_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+ case ARM::ATOMIC_LOAD_ADD_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+
+ case ARM::ATOMIC_LOAD_AND_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+ case ARM::ATOMIC_LOAD_AND_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+ case ARM::ATOMIC_LOAD_AND_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+
+ case ARM::ATOMIC_LOAD_OR_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+ case ARM::ATOMIC_LOAD_OR_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+ case ARM::ATOMIC_LOAD_OR_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+
+ case ARM::ATOMIC_LOAD_XOR_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+ case ARM::ATOMIC_LOAD_XOR_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+ case ARM::ATOMIC_LOAD_XOR_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+
+ case ARM::ATOMIC_LOAD_NAND_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+ case ARM::ATOMIC_LOAD_NAND_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+ case ARM::ATOMIC_LOAD_NAND_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+
+ case ARM::ATOMIC_LOAD_SUB_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+ case ARM::ATOMIC_LOAD_SUB_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+ case ARM::ATOMIC_LOAD_SUB_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+
+ case ARM::ATOMIC_LOAD_MIN_I8:
+ return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
+ case ARM::ATOMIC_LOAD_MIN_I16:
+ return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
+ case ARM::ATOMIC_LOAD_MIN_I32:
+ return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
+
+ case ARM::ATOMIC_LOAD_MAX_I8:
+ return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
+ case ARM::ATOMIC_LOAD_MAX_I16:
+ return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
+ case ARM::ATOMIC_LOAD_MAX_I32:
+ return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
+
+ case ARM::ATOMIC_LOAD_UMIN_I8:
+ return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
+ case ARM::ATOMIC_LOAD_UMIN_I16:
+ return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
+ case ARM::ATOMIC_LOAD_UMIN_I32:
+ return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
+
+ case ARM::ATOMIC_LOAD_UMAX_I8:
+ return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
+ case ARM::ATOMIC_LOAD_UMAX_I16:
+ return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
+ case ARM::ATOMIC_LOAD_UMAX_I32:
+ return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
+
+ case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
+ case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
+ case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
+
+ case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
+ case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
+ case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
+
+
+ case ARM::ATOMADD6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
+ isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
+ /*NeedsCarry*/ true);
+ case ARM::ATOMSUB6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ true);
+ case ARM::ATOMOR6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
+ isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+ case ARM::ATOMXOR6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
+ isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+ case ARM::ATOMAND6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
+ isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+ case ARM::ATOMSWAP6432:
+ return EmitAtomicBinary64(MI, BB, 0, 0, false);
+ case ARM::ATOMCMPXCHG6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ false, /*IsCmpxchg*/true);
+ case ARM::ATOMMIN6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ true, /*IsCmpxchg*/false,
+ /*IsMinMax*/ true, ARMCC::LT);
+ case ARM::ATOMMAX6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ true, /*IsCmpxchg*/false,
+ /*IsMinMax*/ true, ARMCC::GE);
+ case ARM::ATOMUMIN6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ true, /*IsCmpxchg*/false,
+ /*IsMinMax*/ true, ARMCC::LO);
+ case ARM::ATOMUMAX6432:
+ return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
+ isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
+ /*NeedsCarry*/ true, /*IsCmpxchg*/false,
+ /*IsMinMax*/ true, ARMCC::HS);
+
+ case ARM::tMOVCCr_pseudo: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
+ .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII->get(ARM::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::BCCi64:
+ case ARM::BCCZi64: {
+ // If there is an unconditional branch to the other successor, remove it.
+ BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
+
+ // Compare both parts that make up the double comparison separately for
+ // equality.
+ bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
+
+ unsigned LHS1 = MI->getOperand(1).getReg();
+ unsigned LHS2 = MI->getOperand(2).getReg();
+ if (RHSisZero) {
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS1).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS2).addImm(0)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ } else {
+ unsigned RHS1 = MI->getOperand(3).getReg();
+ unsigned RHS2 = MI->getOperand(4).getReg();
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS1).addReg(RHS1));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS2).addReg(RHS2)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ }
+
+ MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
+ MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
+ if (MI->getOperand(0).getImm() == ARMCC::NE)
+ std::swap(destMBB, exitMBB);
+
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ if (isThumb2)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
+ else
+ BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ EmitSjLjDispatchBlock(MI, BB);
+ return BB;
+
+ case ARM::ABS:
+ case ARM::t2ABS: {
+ // To insert an ABS instruction, we have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // source vreg to test against 0, the destination vreg to set,
+ // the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ // It transforms
+ // V1 = ABS V0
+ // into
+ // V2 = MOVS V0
+ // BCC (branch to SinkBB if V0 >= 0)
+ // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
+ // SinkBB: V1 = PHI(V2, V3)
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator BBI = BB;
+ ++BBI;
+ MachineFunction *Fn = BB->getParent();
+ MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ Fn->insert(BBI, RSBBB);
+ Fn->insert(BBI, SinkBB);
+
+ unsigned int ABSSrcReg = MI->getOperand(1).getReg();
+ unsigned int ABSDstReg = MI->getOperand(0).getReg();
+ bool isThumb2 = Subtarget->isThumb2();
+ MachineRegisterInfo &MRI = Fn->getRegInfo();
+ // In Thumb mode S must not be specified if source register is the SP or
+ // PC and if destination register is the SP, so restrict register class
+ unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
+ (const TargetRegisterClass*)&ARM::rGPRRegClass :
+ (const TargetRegisterClass*)&ARM::GPRRegClass);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ SinkBB->splice(SinkBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ SinkBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(RSBBB);
+ BB->addSuccessor(SinkBB);
+
+ // fall through to SinkMBB
+ RSBBB->addSuccessor(SinkBB);
+
+ // insert a cmp at the end of BB
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(ABSSrcReg).addImm(0));
+
+ // insert a bcc with opposite CC to ARMCC::MI at the end of BB
+ BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
+ .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
+
+ // insert rsbri in RSBBB
+ // Note: BCC and rsbri will be converted into predicated rsbmi
+ // by if-conversion pass
+ BuildMI(*RSBBB, RSBBB->begin(), dl,
+ TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
+ .addReg(ABSSrcReg, RegState::Kill)
+ .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+
+ // insert PHI in SinkBB,
+ // reuse ABSDstReg to not change uses of ABS instruction
+ BuildMI(*SinkBB, SinkBB->begin(), dl,
+ TII->get(ARM::PHI), ABSDstReg)
+ .addReg(NewRsbDstReg).addMBB(RSBBB)
+ .addReg(ABSSrcReg).addMBB(BB);
+
+ // remove ABS instruction
+ MI->eraseFromParent();
+
+ // return last added BB
+ return SinkBB;
+ }
+ case ARM::COPY_STRUCT_BYVAL_I32:
+ ++NumLoopByVals;
+ return EmitStructByval(MI, BB);
+ }
+}
+
+void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const {
+ if (!MI->hasPostISelHook()) {
+ assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
+ "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
+ return;
+ }
+
+ const MCInstrDesc *MCID = &MI->getDesc();
+ // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
+ // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
+ // operand is still set to noreg. If needed, set the optional operand's
+ // register to CPSR, and remove the redundant implicit def.
+ //
+ // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
+
+ // Rename pseudo opcodes.
+ unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
+ if (NewOpc) {
+ const ARMBaseInstrInfo *TII =
+ static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
+ MCID = &TII->get(NewOpc);
+
+ assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
+ "converted opcode should be the same except for cc_out");
+
+ MI->setDesc(*MCID);
+
+ // Add the optional cc_out operand
+ MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
+ }
+ unsigned ccOutIdx = MCID->getNumOperands() - 1;
+
+ // Any ARM instruction that sets the 's' bit should specify an optional
+ // "cc_out" operand in the last operand position.
+ if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
+ // since we already have an optional CPSR def.
+ bool definesCPSR = false;
+ bool deadCPSR = false;
+ for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
+ definesCPSR = true;
+ if (MO.isDead())
+ deadCPSR = true;
+ MI->RemoveOperand(i);
+ break;
+ }
+ }
+ if (!definesCPSR) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
+ if (deadCPSR) {
+ assert(!MI->getOperand(ccOutIdx).getReg() &&
+ "expect uninitialized optional cc_out operand");
+ return;
+ }
+
+ // If this instruction was defined with an optional CPSR def and its dag node
+ // had a live implicit CPSR def, then activate the optional CPSR def.
+ MachineOperand &MO = MI->getOperand(ccOutIdx);
+ MO.setReg(ARM::CPSR);
+ MO.setIsDef(true);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+// Helper function that checks if N is a null or all ones constant.
+static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
+ if (!C)
+ return false;
+ return AllOnes ? C->isAllOnesValue() : C->isNullValue();
+}
+
+// Return true if N is conditionally 0 or all ones.
+// Detects these expressions where cc is an i1 value:
+//
+// (select cc 0, y) [AllOnes=0]
+// (select cc y, 0) [AllOnes=0]
+// (zext cc) [AllOnes=0]
+// (sext cc) [AllOnes=0/1]
+// (select cc -1, y) [AllOnes=1]
+// (select cc y, -1) [AllOnes=1]
+//
+// Invert is set when N is the null/all ones constant when CC is false.
+// OtherOp is set to the alternative value of N.
+static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
+ SDValue &CC, bool &Invert,
+ SDValue &OtherOp,
+ SelectionDAG &DAG) {
+ switch (N->getOpcode()) {
+ default: return false;
+ case ISD::SELECT: {
+ CC = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ if (isZeroOrAllOnes(N1, AllOnes)) {
+ Invert = false;
+ OtherOp = N2;
+ return true;
+ }
+ if (isZeroOrAllOnes(N2, AllOnes)) {
+ Invert = true;
+ OtherOp = N1;
+ return true;
+ }
+ return false;
+ }
+ case ISD::ZERO_EXTEND:
+ // (zext cc) can never be the all ones value.
+ if (AllOnes)
+ return false;
+ // Fall through.
+ case ISD::SIGN_EXTEND: {
+ EVT VT = N->getValueType(0);
+ CC = N->getOperand(0);
+ if (CC.getValueType() != MVT::i1)
+ return false;
+ Invert = !AllOnes;
+ if (AllOnes)
+ // When looking for an AllOnes constant, N is an sext, and the 'other'
+ // value is 0.
+ OtherOp = DAG.getConstant(0, VT);
+ else if (N->getOpcode() == ISD::ZERO_EXTEND)
+ // When looking for a 0 constant, N can be zext or sext.
+ OtherOp = DAG.getConstant(1, VT);
+ else
+ OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
+ return true;
+ }
+ }
+}
+
+// Combine a constant select operand into its use:
+//
+// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
+// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+//
+// The transform is rejected if the select doesn't have a constant operand that
+// is null, or all ones when AllOnes is set.
+//
+// Also recognize sext/zext from i1:
+//
+// (add (zext cc), x) -> (select cc (add x, 1), x)
+// (add (sext cc), x) -> (select cc (add x, -1), x)
+//
+// These transformations eventually create predicated instructions.
+//
+// @param N The node to transform.
+// @param Slct The N operand that is a select.
+// @param OtherOp The other N operand (x above).
+// @param DCI Context.
+// @param AllOnes Require the select constant to be all ones instead of null.
+// @returns The new node, or SDValue() on failure.
+static
+SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
+ TargetLowering::DAGCombinerInfo &DCI,
+ bool AllOnes = false) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDValue NonConstantVal;
+ SDValue CCOp;
+ bool SwapSelectOps;
+ if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
+ NonConstantVal, DAG))
+ return SDValue();
+
+ // Slct is now know to be the desired identity constant when CC is true.
+ SDValue TrueVal = OtherOp;
+ SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
+ OtherOp, NonConstantVal);
+ // Unless SwapSelectOps says CC should be false.
+ if (SwapSelectOps)
+ std::swap(TrueVal, FalseVal);
+
+ return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
+ CCOp, TrueVal, FalseVal);
+}
+
+// Attempt combineSelectAndUse on each operand of a commutative operator N.
+static
+SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ return SDValue();
+}
+
+// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
+// (only after legalization).
+static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Only perform optimization if after legalize, and if NEON is available. We
+ // also expected both operands to be BUILD_VECTORs.
+ if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
+ || N0.getOpcode() != ISD::BUILD_VECTOR
+ || N1.getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ // Check output type since VPADDL operand elements can only be 8, 16, or 32.
+ EVT VT = N->getValueType(0);
+ if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
+ return SDValue();
+
+ // Check that the vector operands are of the right form.
+ // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
+ // operands, where N is the size of the formed vector.
+ // Each EXTRACT_VECTOR should have the same input vector and odd or even
+ // index such that we have a pair wise add pattern.
+
+ // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
+ if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+ SDValue Vec = N0->getOperand(0)->getOperand(0);
+ SDNode *V = Vec.getNode();
+ unsigned nextIndex = 0;
+
+ // For each operands to the ADD which are BUILD_VECTORs,
+ // check to see if each of their operands are an EXTRACT_VECTOR with
+ // the same vector and appropriate index.
+ for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
+ if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
+ && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+
+ SDValue ExtVec0 = N0->getOperand(i);
+ SDValue ExtVec1 = N1->getOperand(i);
+
+ // First operand is the vector, verify its the same.
+ if (V != ExtVec0->getOperand(0).getNode() ||
+ V != ExtVec1->getOperand(0).getNode())
+ return SDValue();
+
+ // Second is the constant, verify its correct.
+ ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
+ ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
+
+ // For the constant, we want to see all the even or all the odd.
+ if (!C0 || !C1 || C0->getZExtValue() != nextIndex
+ || C1->getZExtValue() != nextIndex+1)
+ return SDValue();
+
+ // Increment index.
+ nextIndex+=2;
+ } else
+ return SDValue();
+ }
+
+ // Create VPADDL node.
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
+ TLI.getPointerTy()));
+
+ // Input is the vector.
+ Ops.push_back(Vec);
+
+ // Get widened type and narrowed type.
+ MVT widenType;
+ unsigned numElem = VT.getVectorNumElements();
+ switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
+ case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
+ case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
+ case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
+ default:
+ llvm_unreachable("Invalid vector element type for padd optimization.");
+ }
+
+ SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
+ widenType, &Ops[0], Ops.size());
+ return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
+}
+
+static SDValue findMUL_LOHI(SDValue V) {
+ if (V->getOpcode() == ISD::UMUL_LOHI ||
+ V->getOpcode() == ISD::SMUL_LOHI)
+ return V;
+ return SDValue();
+}
+
+static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ if (Subtarget->isThumb1Only()) return SDValue();
+
+ // Only perform the checks after legalize when the pattern is available.
+ if (DCI.isBeforeLegalize()) return SDValue();
+
+ // Look for multiply add opportunities.
+ // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
+ // each add nodes consumes a value from ISD::UMUL_LOHI and there is
+ // a glue link from the first add to the second add.
+ // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
+ // a S/UMLAL instruction.
+ // loAdd UMUL_LOHI
+ // \ / :lo \ :hi
+ // \ / \ [no multiline comment]
+ // ADDC | hiAdd
+ // \ :glue / /
+ // \ / /
+ // ADDE
+ //
+ assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
+ SDValue AddcOp0 = AddcNode->getOperand(0);
+ SDValue AddcOp1 = AddcNode->getOperand(1);
+
+ // Check if the two operands are from the same mul_lohi node.
+ if (AddcOp0.getNode() == AddcOp1.getNode())
+ return SDValue();
+
+ assert(AddcNode->getNumValues() == 2 &&
+ AddcNode->getValueType(0) == MVT::i32 &&
+ AddcNode->getValueType(1) == MVT::Glue &&
+ "Expect ADDC with two result values: i32, glue");
+
+ // Check that the ADDC adds the low result of the S/UMUL_LOHI.
+ if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::SMUL_LOHI)
+ return SDValue();
+
+ // Look for the glued ADDE.
+ SDNode* AddeNode = AddcNode->getGluedUser();
+ if (AddeNode == NULL)
+ return SDValue();
+
+ // Make sure it is really an ADDE.
+ if (AddeNode->getOpcode() != ISD::ADDE)
+ return SDValue();
+
+ assert(AddeNode->getNumOperands() == 3 &&
+ AddeNode->getOperand(2).getValueType() == MVT::Glue &&
+ "ADDE node has the wrong inputs");
+
+ // Check for the triangle shape.
+ SDValue AddeOp0 = AddeNode->getOperand(0);
+ SDValue AddeOp1 = AddeNode->getOperand(1);
+
+ // Make sure that the ADDE operands are not coming from the same node.
+ if (AddeOp0.getNode() == AddeOp1.getNode())
+ return SDValue();
+
+ // Find the MUL_LOHI node walking up ADDE's operands.
+ bool IsLeftOperandMUL = false;
+ SDValue MULOp = findMUL_LOHI(AddeOp0);
+ if (MULOp == SDValue())
+ MULOp = findMUL_LOHI(AddeOp1);
+ else
+ IsLeftOperandMUL = true;
+ if (MULOp == SDValue())
+ return SDValue();
+
+ // Figure out the right opcode.
+ unsigned Opc = MULOp->getOpcode();
+ unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
+
+ // Figure out the high and low input values to the MLAL node.
+ SDValue* HiMul = &MULOp;
+ SDValue* HiAdd = NULL;
+ SDValue* LoMul = NULL;
+ SDValue* LowAdd = NULL;
+
+ if (IsLeftOperandMUL)
+ HiAdd = &AddeOp1;
+ else
+ HiAdd = &AddeOp0;
+
+
+ if (AddcOp0->getOpcode() == Opc) {
+ LoMul = &AddcOp0;
+ LowAdd = &AddcOp1;
+ }
+ if (AddcOp1->getOpcode() == Opc) {
+ LoMul = &AddcOp1;
+ LowAdd = &AddcOp0;
+ }
+
+ if (LoMul == NULL)
+ return SDValue();
+
+ if (LoMul->getNode() != HiMul->getNode())
+ return SDValue();
+
+ // Create the merged node.
+ SelectionDAG &DAG = DCI.DAG;
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(LoMul->getOperand(0));
+ Ops.push_back(LoMul->getOperand(1));
+ Ops.push_back(*LowAdd);
+ Ops.push_back(*HiAdd);
+
+ SDValue MLALNode = DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
+ DAG.getVTList(MVT::i32, MVT::i32),
+ &Ops[0], Ops.size());
+
+ // Replace the ADDs' nodes uses by the MLA node's values.
+ SDValue HiMLALResult(MLALNode.getNode(), 1);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
+
+ SDValue LoMLALResult(MLALNode.getNode(), 0);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
+
+ // Return original node to notify the driver to stop replacing.
+ SDValue resNode(AddcNode, 0);
+ return resNode;
+}
+
+/// PerformADDCCombine - Target-specific dag combine transform from
+/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
+static SDValue PerformADDCCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ return AddCombineTo64bitMLAL(N, DCI, Subtarget);
+
+}
+
+/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
+/// operands N0 and N1. This is a helper for PerformADDCombine that is
+/// called with the default operands, and if that fails, with commuted
+/// operands.
+static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget){
+
+ // Attempt to create vpaddl for this add.
+ SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
+ if (Result.getNode()) return Result;
+ }
+ return SDValue();
+}
+
+/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
+///
+static SDValue PerformADDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // First try with the default operand order.
+ SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // If that didn't work, try again with the operands commuted.
+ return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
+}
+
+/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
+///
+static SDValue PerformSUBCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
+ if (Result.getNode()) return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMULCombine
+/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
+/// special multiplier accumulator forwarding.
+/// vmul d3, d0, d2
+/// vmla d3, d1, d2
+/// is faster than
+/// vadd d3, d0, d1
+/// vmul d3, d3, d2
+static SDValue PerformVMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ if (!Subtarget->hasVMLxForwarding())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned Opcode = N0.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB) {
+ Opcode = N1.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB)
+ return SDValue();
+ std::swap(N0, N1);
+ }
+
+ EVT VT = N->getValueType(0);
+ DebugLoc DL = N->getDebugLoc();
+ SDValue N00 = N0->getOperand(0);
+ SDValue N01 = N0->getOperand(1);
+ return DAG.getNode(Opcode, DL, VT,
+ DAG.getNode(ISD::MUL, DL, VT, N00, N1),
+ DAG.getNode(ISD::MUL, DL, VT, N01, N1));
+}
+
+static SDValue PerformMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ if (Subtarget->isThumb1Only())
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT.is64BitVector() || VT.is128BitVector())
+ return PerformVMULCombine(N, DCI, Subtarget);
+ if (VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ int64_t MulAmt = C->getSExtValue();
+ unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
+
+ ShiftAmt = ShiftAmt & (32 - 1);
+ SDValue V = N->getOperand(0);
+ DebugLoc DL = N->getDebugLoc();
+
+ SDValue Res;
+ MulAmt >>= ShiftAmt;
+
+ if (MulAmt >= 0) {
+ if (isPowerOf2_32(MulAmt - 1)) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt - 1),
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmt + 1)) {
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt + 1),
+ MVT::i32)),
+ V);
+ } else
+ return SDValue();
+ } else {
+ uint64_t MulAmtAbs = -MulAmt;
+ if (isPowerOf2_32(MulAmtAbs + 1)) {
+ // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs + 1),
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmtAbs - 1)) {
+ // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs-1),
+ MVT::i32)));
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, MVT::i32),Res);
+
+ } else
+ return SDValue();
+ }
+
+ if (ShiftAmt != 0)
+ Res = DAG.getNode(ISD::SHL, DL, VT,
+ Res, DAG.getConstant(ShiftAmt, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+}
+
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Attempt to use immediate-form VBIC
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VbicVT;
+ SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VbicVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
+ SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
+static SDValue PerformORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ // Attempt to use immediate-form VORR
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN && Subtarget->hasNEON() &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VorrVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VorrVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
+ SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // The code below optimizes (or (and X, Y), Z).
+ // The AND operand needs to have a single user to make these optimizations
+ // profitable.
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
+ return SDValue();
+ SDValue N1 = N->getOperand(1);
+
+ // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
+ if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
+ DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
+ APInt SplatBits0;
+ if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs) {
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
+ APInt SplatBits1;
+ if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs &&
+ SplatBits0 == ~SplatBits1) {
+ // Canonicalize the vector type to make instruction selection simpler.
+ EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
+ N0->getOperand(1), N0->getOperand(0),
+ N1->getOperand(0));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+ }
+ }
+
+ // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
+ // reasonable.
+
+ // BFI is only available on V6T2+
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
+ return SDValue();
+
+ DebugLoc DL = N->getDebugLoc();
+ // 1) or (and A, mask), val => ARMbfi A, val, mask
+ // iff (val & mask) == val
+ //
+ // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
+ // && mask == ~mask2
+ // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
+ // && ~mask == mask2
+ // (i.e., copy a bitfield value into another bitfield of the same width)
+
+ if (VT != MVT::i32)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+
+ // The value and the mask need to be constants so we can verify this is
+ // actually a bitfield set. If the mask is 0xffff, we can do better
+ // via a movt instruction, so don't use BFI in that case.
+ SDValue MaskOp = N0.getOperand(1);
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
+ if (!MaskC)
+ return SDValue();
+ unsigned Mask = MaskC->getZExtValue();
+ if (Mask == 0xffff)
+ return SDValue();
+ SDValue Res;
+ // Case (1): or (and A, mask), val => ARMbfi A, val, mask
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N1C) {
+ unsigned Val = N1C->getZExtValue();
+ if ((Val & ~Mask) != Val)
+ return SDValue();
+
+ if (ARM::isBitFieldInvertedMask(Mask)) {
+ Val >>= CountTrailingZeros_32(~Mask);
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
+ DAG.getConstant(Val, MVT::i32),
+ DAG.getConstant(Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ } else if (N1.getOpcode() == ISD::AND) {
+ // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned Mask2 = N11C->getZExtValue();
+
+ // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
+ // as is to match.
+ if (ARM::isBitFieldInvertedMask(Mask) &&
+ (Mask == ~Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask == 0xffff || Mask == 0xffff0000))
+ return SDValue();
+ // 2a
+ unsigned amt = CountTrailingZeros_32(Mask2);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
+ DAG.getConstant(amt, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
+ DAG.getConstant(Mask, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ } else if (ARM::isBitFieldInvertedMask(~Mask) &&
+ (~Mask == Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask2 == 0xffff || Mask2 == 0xffff0000))
+ return SDValue();
+ // 2b
+ unsigned lsb = CountTrailingZeros_32(Mask);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N00,
+ DAG.getConstant(lsb, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
+ DAG.getConstant(Mask2, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ }
+
+ if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
+ N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
+ ARM::isBitFieldInvertedMask(~Mask)) {
+ // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
+ // where lsb(mask) == #shamt and masked bits of B are known zero.
+ SDValue ShAmt = N00.getOperand(1);
+ unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
+ unsigned LSB = CountTrailingZeros_32(Mask);
+ if (ShAmtC != LSB)
+ return SDValue();
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
+ DAG.getConstant(~Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformXORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
+/// the bits being cleared by the AND are not demanded by the BFI.
+static SDValue PerformBFICombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() == ISD::AND) {
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ unsigned LSB = CountTrailingZeros_32(~InvMask);
+ unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
+ unsigned Mask = (1 << Width)-1;
+ unsigned Mask2 = N11C->getZExtValue();
+ if ((Mask & (~Mask2)) == 0)
+ return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(0), N1.getOperand(0),
+ N->getOperand(2));
+ }
+ return SDValue();
+}
+
+/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVRRD.
+static SDValue PerformVMOVRRDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // vmovrrd(vmovdrr x, y) -> x,y
+ SDValue InDouble = N->getOperand(0);
+ if (InDouble.getOpcode() == ARMISD::VMOVDRR)
+ return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
+
+ // vmovrrd(load f64) -> (load i32), (load i32)
+ SDNode *InNode = InDouble.getNode();
+ if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
+ InNode->getValueType(0) == MVT::f64 &&
+ InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
+ !cast<LoadSDNode>(InNode)->isVolatile()) {
+ // TODO: Should this be done for non-FrameIndex operands?
+ LoadSDNode *LD = cast<LoadSDNode>(InNode);
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = LD->getDebugLoc();
+ SDValue BasePtr = LD->getBasePtr();
+ SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, MVT::i32));
+ SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ std::min(4U, LD->getAlignment() / 2));
+
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
+ SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
+ DCI.RemoveFromWorklist(LD);
+ DAG.DeleteNode(LD);
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
+static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
+ // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() == ISD::BITCAST)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::BITCAST)
+ Op1 = Op1.getOperand(0);
+ if (Op0.getOpcode() == ARMISD::VMOVRRD &&
+ Op0.getNode() == Op1.getNode() &&
+ Op0.getResNo() == 0 && Op1.getResNo() == 1)
+ return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
+ N->getValueType(0), Op0.getOperand(0));
+ return SDValue();
+}
+
+/// PerformSTORECombine - Target-specific dag combine xforms for
+/// ISD::STORE.
+static SDValue PerformSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ if (St->isVolatile())
+ return SDValue();
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store. First,
+ // pack all of the elements in one place. Next, store to memory in fewer
+ // chunks.
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+ if (St->isTruncatingStore() && VT.isVector()) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT StVT = St->getMemoryVT();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
+
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
+
+ unsigned SizeRatio = FromEltSz / ToEltSz;
+ assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
+ NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ DebugLoc DL = St->getDebugLoc();
+ SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
+ DAG.getUNDEF(WideVec.getValueType()),
+ ShuffleVec.data());
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
+ tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
+ MVT Tp = (MVT::SimpleValueType)tp;
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
+ StoreType = Tp;
+ }
+ // Didn't find a legal store type.
+ if (!TLI.isTypeLegal(StoreType))
+ return SDValue();
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
+ TLI.getPointerTy());
+ SDValue BasePtr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
+ for (unsigned I = 0; I < E; I++) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(I));
+ SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
+ Increment);
+ Chains.push_back(Ch);
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
+ Chains.size());
+ }
+
+ if (!ISD::isNormalStore(St))
+ return SDValue();
+
+ // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
+ // ARM stores of arguments in the same cache line.
+ if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
+ StVal.getNode()->hasOneUse()) {
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = St->getDebugLoc();
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 = DAG.getStore(St->getChain(), DL,
+ StVal.getNode()->getOperand(0), BasePtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, MVT::i32));
+ return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
+ OffsetPtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(4U, St->getAlignment() / 2));
+ }
+
+ if (StVal.getValueType() != MVT::i64 ||
+ StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // Bitcast an i64 store extracted from a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc dl = StVal.getDebugLoc();
+ SDValue IntVec = StVal.getOperand(0);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ IntVec.getValueType().getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
+ SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ Vec, StVal.getOperand(1));
+ dl = N->getDebugLoc();
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(ExtElt.getNode());
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment(),
+ St->getTBAAInfo());
+}
+
+/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
+/// are normal, non-volatile loads. If so, it is profitable to bitcast an
+/// i64 vector to have f64 elements, since the value can then be loaded
+/// directly into a VFP register.
+static bool hasNormalLoadOperand(SDNode *N) {
+ unsigned NumElts = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
+ return true;
+ }
+ return false;
+}
+
+/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
+/// ISD::BUILD_VECTOR.
+static SDValue PerformBUILD_VECTORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI){
+ // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
+ // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
+ // into a pair of GPRs, which is fine when the value is used as a scalar,
+ // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
+ SelectionDAG &DAG = DCI.DAG;
+ if (N->getNumOperands() == 2) {
+ SDValue RV = PerformVMOVDRRCombine(N, DAG);
+ if (RV.getNode())
+ return RV;
+ }
+
+ // Load i64 elements as f64 values so that type legalization does not split
+ // them up into i32 values.
+ EVT VT = N->getValueType(0);
+ if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
+ return SDValue();
+ DebugLoc dl = N->getDebugLoc();
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
+ Ops.push_back(V);
+ // Make the DAGCombiner fold the bitcast.
+ DCI.AddToWorklist(V.getNode());
+ }
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
+ return DAG.getNode(ISD::BITCAST, dl, VT, BV);
+}
+
+/// PerformInsertEltCombine - Target-specific dag combine xforms for
+/// ISD::INSERT_VECTOR_ELT.
+static SDValue PerformInsertEltCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Bitcast an i64 load inserted into a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ EVT VT = N->getValueType(0);
+ SDNode *Elt = N->getOperand(1).getNode();
+ if (VT.getVectorElementType() != MVT::i64 ||
+ !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc dl = N->getDebugLoc();
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ VT.getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(V.getNode());
+ SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
+ Vec, V, N->getOperand(2));
+ return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
+}
+
+/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
+/// ISD::VECTOR_SHUFFLE.
+static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
+ // The LLVM shufflevector instruction does not require the shuffle mask
+ // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
+ // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
+ // operands do not match the mask length, they are extended by concatenating
+ // them with undef vectors. That is probably the right thing for other
+ // targets, but for NEON it is better to concatenate two double-register
+ // size vector operands into a single quad-register size vector. Do that
+ // transformation here:
+ // shuffle(concat(v1, undef), concat(v2, undef)) ->
+ // shuffle(concat(v1, v2), undef)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op1.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op0.getNumOperands() != 2 ||
+ Op1.getNumOperands() != 2)
+ return SDValue();
+ SDValue Concat0Op1 = Op0.getOperand(1);
+ SDValue Concat1Op1 = Op1.getOperand(1);
+ if (Concat0Op1.getOpcode() != ISD::UNDEF ||
+ Concat1Op1.getOpcode() != ISD::UNDEF)
+ return SDValue();
+ // Skip the transformation if any of the types are illegal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = N->getValueType(0);
+ if (!TLI.isTypeLegal(VT) ||
+ !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
+ !TLI.isTypeLegal(Concat1Op1.getValueType()))
+ return SDValue();
+
+ SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
+ Op0.getOperand(0), Op1.getOperand(0));
+ // Translate the shuffle mask.
+ SmallVector<int, 16> NewMask;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfElts = NumElts/2;
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned n = 0; n < NumElts; ++n) {
+ int MaskElt = SVN->getMaskElt(n);
+ int NewElt = -1;
+ if (MaskElt < (int)HalfElts)
+ NewElt = MaskElt;
+ else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
+ NewElt = HalfElts + MaskElt - NumElts;
+ NewMask.push_back(NewElt);
+ }
+ return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
+ DAG.getUNDEF(VT), NewMask.data());
+}
+
+/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
+/// NEON load/store intrinsics to merge base address updates.
+static SDValue CombineBaseUpdate(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+ unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool isLoad = true;
+ bool isLaneOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ if (isIntrinsic) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; break;
+ case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
+ NumVecs = 2; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
+ NumVecs = 3; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
+ NumVecs = 4; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
+ NumVecs = 2; isLoad = false; break;
+ case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
+ NumVecs = 3; isLoad = false; break;
+ case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
+ NumVecs = 4; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
+ NumVecs = 2; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
+ NumVecs = 3; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
+ NumVecs = 4; isLoad = false; isLaneOp = true; break;
+ }
+ } else {
+ isLaneOp = true;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode for Neon base update");
+ case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
+ case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
+ case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
+ }
+ }
+
+ // Find the size of memory referenced by the load/store.
+ EVT VecTy;
+ if (isLoad)
+ VecTy = N->getValueType(0);
+ else
+ VecTy = N->getOperand(AddrOpIdx+1).getValueType();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (isLaneOp)
+ NumBytes /= VecTy.getVectorNumElements();
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint64_t IncVal = CInc->getZExtValue();
+ if (IncVal != NumBytes)
+ continue;
+ } else if (NumBytes >= 3 * 16) {
+ // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
+ // separate instructions that make it harder to use a non-constant update.
+ continue;
+ }
+
+ // Create the new updating load/store node.
+ EVT Tys[6];
+ unsigned NumResultVecs = (isLoad ? NumVecs : 0);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i32;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // incoming chain
+ Ops.push_back(N->getOperand(AddrOpIdx));
+ Ops.push_back(Inc);
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
+ Ops.data(), Ops.size(),
+ MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
+/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
+/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
+/// return true.
+static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ // vldN-dup instructions only support 64-bit vectors for N > 1.
+ if (!VT.is64BitVector())
+ return false;
+
+ // Check if the VDUPLANE operand is a vldN-dup intrinsic.
+ SDNode *VLD = N->getOperand(0).getNode();
+ if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return false;
+ unsigned NumVecs = 0;
+ unsigned NewOpc = 0;
+ unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::arm_neon_vld2lane) {
+ NumVecs = 2;
+ NewOpc = ARMISD::VLD2DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
+ NumVecs = 3;
+ NewOpc = ARMISD::VLD3DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
+ NumVecs = 4;
+ NewOpc = ARMISD::VLD4DUP;
+ } else {
+ return false;
+ }
+
+ // First check that all the vldN-lane uses are VDUPLANEs and that the lane
+ // numbers match the load.
+ unsigned VLDLaneNo =
+ cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ // Ignore uses of the chain result.
+ if (UI.getUse().getResNo() == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ if (User->getOpcode() != ARMISD::VDUPLANE ||
+ VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
+ return false;
+ }
+
+ // Create the vldN-dup node.
+ EVT Tys[5];
+ unsigned n;
+ for (n = 0; n < NumVecs; ++n)
+ Tys[n] = VT;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
+ SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
+ MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
+ SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
+ Ops, 2, VLDMemInt->getMemoryVT(),
+ VLDMemInt->getMemOperand());
+
+ // Update the uses.
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ unsigned ResNo = UI.getUse().getResNo();
+ // Ignore uses of the chain result.
+ if (ResNo == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
+ }
+
+ // Now the vldN-lane intrinsic is dead except for its chain result.
+ // Update uses of the chain.
+ std::vector<SDValue> VLDDupResults;
+ for (unsigned n = 0; n < NumVecs; ++n)
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
+ DCI.CombineTo(VLD, VLDDupResults);
+
+ return true;
+}
+
+/// PerformVDUPLANECombine - Target-specific dag combine xforms for
+/// ARMISD::VDUPLANE.
+static SDValue PerformVDUPLANECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue Op = N->getOperand(0);
+
+ // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
+ // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
+ if (CombineVLDDUP(N, DCI))
+ return SDValue(N, 0);
+
+ // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
+ // redundant. Ignore bit_converts for now; element sizes are checked below.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
+ return SDValue();
+
+ // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
+ unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
+ // The canonical VMOV for a zero vector uses a 32-bit element size.
+ unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned EltBits;
+ if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
+ EltSize = 8;
+ EVT VT = N->getValueType(0);
+ if (EltSize > VT.getVectorElementType().getSizeInBits())
+ return SDValue();
+
+ return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
+}
+
+// isConstVecPow2 - Return true if each vector element is a power of 2, all
+// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
+static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
+{
+ integerPart cN;
+ integerPart c0 = 0;
+ for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
+ I != E; I++) {
+ ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
+ if (!C)
+ return false;
+
+ bool isExact;
+ APFloat APF = C->getValueAPF();
+ if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
+ != APFloat::opOK || !isExact)
+ return false;
+
+ c0 = (I == 0) ? cN : c0;
+ if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
+ return false;
+ }
+ C = c0;
+ return true;
+}
+
+/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
+/// can replace combinations of VMUL and VCVT (floating-point to integer)
+/// when the VMUL has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vmul.f32 d16, d17, d16
+/// vcvt.s32.f32 d16, d16
+/// becomes:
+/// vcvt.s32.f32 d16, d16, #3
+static SDValue PerformVCVTCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Op = N->getOperand(0);
+
+ if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
+ Op.getOpcode() != ISD::FMUL)
+ return SDValue();
+
+ uint64_t C;
+ SDValue N0 = Op->getOperand(0);
+ SDValue ConstVec = Op->getOperand(1);
+ bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
+ !isConstVecPow2(ConstVec, isSigned, C))
+ return SDValue();
+
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
+ Intrinsic::arm_neon_vcvtfp2fxu;
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
+ N->getValueType(0),
+ DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
+ DAG.getConstant(Log2_64(C), MVT::i32));
+}
+
+/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
+/// can replace combinations of VCVT (integer to floating-point) and VDIV
+/// when the VDIV has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vcvt.f32.s32 d16, d16
+/// vdiv.f32 d16, d17, d16
+/// becomes:
+/// vcvt.f32.s32 d16, d16, #3
+static SDValue PerformVDIVCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Op = N->getOperand(0);
+ unsigned OpOpcode = Op.getNode()->getOpcode();
+
+ if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
+ (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
+ return SDValue();
+
+ uint64_t C;
+ SDValue ConstVec = N->getOperand(1);
+ bool isSigned = OpOpcode == ISD::SINT_TO_FP;
+
+ if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
+ !isConstVecPow2(ConstVec, isSigned, C))
+ return SDValue();
+
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
+ Intrinsic::arm_neon_vcvtfxu2fp;
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
+ Op.getValueType(),
+ DAG.getConstant(IntrinsicOpcode, MVT::i32),
+ Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
+}
+
+/// Getvshiftimm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (isIntrinsic)
+ Cnt = -Cnt;
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
+}
+
+/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
+static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ // Don't do anything for most intrinsics.
+ break;
+
+ // Vector shifts: check for immediate versions and lower them.
+ // Note: This is done during DAG combining instead of DAG legalizing because
+ // the build_vectors for 64-bit vector element shift counts are generally
+ // not legal, and it is hard to see their values after they get legalized to
+ // loads from a constant pool.
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ case Intrinsic::arm_neon_vshiftn:
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ case Intrinsic::arm_neon_vqshiftsu:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
+ VShiftOpc = ARMISD::VSHL;
+ break;
+ }
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ break;
+ }
+ return SDValue();
+
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vshll intrinsic");
+
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshiftsu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vqshlu intrinsic");
+
+ case Intrinsic::arm_neon_vshiftn:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ // Narrowing shifts require an immediate right shift.
+ if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for narrowing vector shift "
+ "intrinsic");
+
+ default:
+ llvm_unreachable("unhandled vector shift");
+ }
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ // Opcode already set above.
+ break;
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ if (Cnt == VT.getVectorElementType().getSizeInBits())
+ VShiftOpc = ARMISD::VSHLLi;
+ else
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
+ ARMISD::VSHLLs : ARMISD::VSHLLu);
+ break;
+ case Intrinsic::arm_neon_vshiftn:
+ VShiftOpc = ARMISD::VSHRN; break;
+ case Intrinsic::arm_neon_vrshifts:
+ VShiftOpc = ARMISD::VRSHRs; break;
+ case Intrinsic::arm_neon_vrshiftu:
+ VShiftOpc = ARMISD::VRSHRu; break;
+ case Intrinsic::arm_neon_vrshiftn:
+ VShiftOpc = ARMISD::VRSHRN; break;
+ case Intrinsic::arm_neon_vqshifts:
+ VShiftOpc = ARMISD::VQSHLs; break;
+ case Intrinsic::arm_neon_vqshiftu:
+ VShiftOpc = ARMISD::VQSHLu; break;
+ case Intrinsic::arm_neon_vqshiftsu:
+ VShiftOpc = ARMISD::VQSHLsu; break;
+ case Intrinsic::arm_neon_vqshiftns:
+ VShiftOpc = ARMISD::VQSHRNs; break;
+ case Intrinsic::arm_neon_vqshiftnu:
+ VShiftOpc = ARMISD::VQSHRNu; break;
+ case Intrinsic::arm_neon_vqshiftnsu:
+ VShiftOpc = ARMISD::VQSHRNsu; break;
+ case Intrinsic::arm_neon_vqrshiftns:
+ VShiftOpc = ARMISD::VQRSHRNs; break;
+ case Intrinsic::arm_neon_vqrshiftnu:
+ VShiftOpc = ARMISD::VQRSHRNu; break;
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ VShiftOpc = ARMISD::VQRSHRNsu; break;
+ }
+
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vshiftins: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
+ VShiftOpc = ARMISD::VSLI;
+ else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
+ VShiftOpc = ARMISD::VSRI;
+ else {
+ llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
+ }
+
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vqrshifts:
+ case Intrinsic::arm_neon_vqrshiftu:
+ // No immediate versions of these to check for.
+ break;
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Checks for immediate versions of vector shifts and
+/// lowers them. As with the vector shift intrinsics, this is done during DAG
+/// combining instead of DAG legalizing because the build_vectors for 64-bit
+/// vector element shift counts are generally not legal, and it is hard to see
+/// their values after they get legalized to loads from a constant pool.
+static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
+ // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
+ // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
+ SDValue N1 = N->getOperand(1);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+ SDValue N0 = N->getOperand(0);
+ if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
+ DAG.MaskedValueIsZero(N0.getOperand(0),
+ APInt::getHighBitsSet(32, 16)))
+ return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
+ }
+ }
+
+ // Nothing to be done for scalar shifts.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!VT.isVector() || !TLI.isTypeLegal(VT))
+ return SDValue();
+
+ assert(ST->hasNEON() && "unexpected vector shift");
+ int64_t Cnt;
+
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
+ return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ break;
+
+ case ISD::SRA:
+ case ISD::SRL:
+ if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
+ unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+ }
+ return SDValue();
+}
+
+/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
+/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
+static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDValue N0 = N->getOperand(0);
+
+ // Check for sign- and zero-extensions of vector extract operations of 8-
+ // and 16-bit vector elements. NEON supports these directly. They are
+ // handled during DAG combining because type legalization will promote them
+ // to 32-bit types and it is messy to recognize the operations after that.
+ if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue Vec = N0.getOperand(0);
+ SDValue Lane = N0.getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT EltVT = N0.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (VT == MVT::i32 &&
+ (EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ TLI.isTypeLegal(Vec.getValueType()) &&
+ isa<ConstantSDNode>(Lane)) {
+
+ unsigned Opc = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ISD::SIGN_EXTEND:
+ Opc = ARMISD::VGETLANEs;
+ break;
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Opc = ARMISD::VGETLANEu;
+ break;
+ }
+ return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
+/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
+static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ // If the target supports NEON, try to use vmax/vmin instructions for f32
+ // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
+ // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
+ // a NaN; only do the transformation when it matches that behavior.
+
+ // For now only do this when using NEON for FP operations; if using VFP, it
+ // is not obvious that the benefit outweighs the cost of switching to the
+ // NEON pipeline.
+ if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
+ N->getValueType(0) != MVT::f32)
+ return SDValue();
+
+ SDValue CondLHS = N->getOperand(0);
+ SDValue CondRHS = N->getOperand(1);
+ SDValue LHS = N->getOperand(2);
+ SDValue RHS = N->getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+
+ unsigned Opcode = 0;
+ bool IsReversed;
+ if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
+ IsReversed = false; // x CC y ? x : y
+ } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
+ IsReversed = true ; // x CC y ? y : x
+ } else {
+ return SDValue();
+ }
+
+ bool IsUnordered;
+ switch (CC) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
+ // will return -0, so vmin can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
+ !DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
+ break;
+
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
+ // will return +0, so vmax can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
+ !DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
+ break;
+ }
+
+ if (!Opcode)
+ return SDValue();
+ return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
+}
+
+/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
+SDValue
+ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
+ SDValue Cmp = N->getOperand(4);
+ if (Cmp.getOpcode() != ARMISD::CMPZ)
+ // Only looking at EQ and NE cases.
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+ SDValue LHS = Cmp.getOperand(0);
+ SDValue RHS = Cmp.getOperand(1);
+ SDValue FalseVal = N->getOperand(0);
+ SDValue TrueVal = N->getOperand(1);
+ SDValue ARMcc = N->getOperand(2);
+ ARMCC::CondCodes CC =
+ (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
+
+ // Simplify
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, y
+ // moveq r0, x
+ // to
+ // cmp r0, x
+ // movne r0, y
+ //
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, x
+ // movne r0, y
+ // to
+ // cmp r0, x
+ // movne r0, y
+ /// FIXME: Turn this into a target neutral optimization?
+ SDValue Res;
+ if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
+ N->getOperand(3), Cmp);
+ } else if (CC == ARMCC::EQ && TrueVal == RHS) {
+ SDValue ARMcc;
+ SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
+ N->getOperand(3), NewCmp);
+ }
+
+ if (Res.getNode()) {
+ APInt KnownZero, KnownOne;
+ DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
+ // Capture demanded bits information that would be otherwise lost.
+ if (KnownZero == 0xfffffffe)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i1));
+ else if (KnownZero == 0xffffff00)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i8));
+ else if (KnownZero == 0xffff0000)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i16));
+ }
+
+ return Res;
+}
+
+SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
+ case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
+ case ISD::SUB: return PerformSUBCombine(N, DCI);
+ case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
+ case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
+ case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
+ case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
+ case ARMISD::BFI: return PerformBFICombine(N, DCI);
+ case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
+ case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
+ case ISD::STORE: return PerformSTORECombine(N, DCI);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
+ case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
+ case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
+ case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
+ case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
+ case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
+ case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
+ case ARMISD::VLD2DUP:
+ case ARMISD::VLD3DUP:
+ case ARMISD::VLD4DUP:
+ return CombineBaseUpdate(N, DCI);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane:
+ return CombineBaseUpdate(N, DCI);
+ default: break;
+ }
+ break;
+ }
+ return SDValue();
+}
+
+bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
+ EVT VT) const {
+ return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
+}
+
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
+ // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
+ bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32: {
+ // Unaligned access can use (for example) LRDB, LRDH, LDR
+ if (AllowsUnaligned) {
+ if (Fast)
+ *Fast = Subtarget->hasV7Ops();
+ return true;
+ }
+ return false;
+ }
+ case MVT::f64:
+ case MVT::v2f64: {
+ // For any little-endian targets with neon, we can support unaligned ld/st
+ // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
+ // A big-endian target may also explictly support unaligned accesses
+ if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
+ if (Fast)
+ *Fast = true;
+ return true;
+ }
+ return false;
+ }
+ }
+}
+
+static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
+ unsigned AlignCheck) {
+ return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
+ (DstAlign == 0 || DstAlign % AlignCheck == 0));
+}
+
+EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function *F = MF.getFunction();
+
+ // See if we can use NEON instructions for this...
+ if ((!IsMemset || ZeroMemset) &&
+ Subtarget->hasNEON() &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat)) {
+ bool Fast;
+ if (Size >= 16 &&
+ (memOpAlign(SrcAlign, DstAlign, 16) ||
+ (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
+ return MVT::v2f64;
+ } else if (Size >= 8 &&
+ (memOpAlign(SrcAlign, DstAlign, 8) ||
+ (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
+ return MVT::f64;
+ }
+ }
+
+ // Lowering to i32/i16 if the size permits.
+ if (Size >= 4)
+ return MVT::i32;
+ else if (Size >= 2)
+ return MVT::i16;
+
+ // Let the target-independent logic figure it out.
+ return MVT::Other;
+}
+
+bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ EVT VT1 = Val.getValueType();
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
+ return true;
+ }
+
+ return false;
+}
+
+static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == (V & ((1LL << 5) - 1));
+}
+
+static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ bool isNeg = false;
+ if (V < 0) {
+ isNeg = true;
+ V = - V;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // + imm12 or - imm8
+ if (isNeg)
+ return V == (V & ((1LL << 8) - 1));
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ // Same as ARM mode. FIXME: NEON?
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+static bool isLegalAddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ if (V == 0)
+ return true;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb1Only())
+ return isLegalT1AddressImmediate(V, VT);
+ else if (Subtarget->isThumb2())
+ return isLegalT2AddressImmediate(V, VT, Subtarget);
+
+ // ARM mode.
+ if (V < 0)
+ V = - V;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ // +- imm12
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::i16:
+ // +- imm8
+ return V == (V & ((1LL << 8) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) // FIXME: NEON?
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
+ EVT VT) const {
+ int Scale = AM.Scale;
+ if (Scale < 0)
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ Scale = Scale & ~1;
+ return Scale == 2 || Scale == 4 || Scale == 8;
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ EVT VT = getValueType(Ty, true);
+ if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
+ return false;
+
+ // Can never fold addr of global into load/store.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // no scale reg, must be "r+i" or "r", or "i".
+ break;
+ case 1:
+ if (Subtarget->isThumb1Only())
+ return false;
+ // FALL THROUGH.
+ default:
+ // ARM doesn't support any R+R*scale+imm addr modes.
+ if (AM.BaseOffs)
+ return false;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb2())
+ return isLegalT2ScaledAddressingMode(AM, VT);
+
+ int Scale = AM.Scale;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ if (Scale < 0) Scale = -Scale;
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ return isPowerOf2_32(Scale & ~1);
+ case MVT::i16:
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+ }
+ return true;
+}
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ // Thumb2 and ARM modes can use cmn for negative immediates.
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
+ // Thumb1 doesn't have cmn, and only 8-bit immediates.
+ return Imm >= 0 && Imm <= 255;
+}
+
+/// isLegalAddImmediate - Return true if the specified immediate is a legal add
+/// *or sub* immediate, that is the target has add or sub instructions which can
+/// add a register with the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Same encoding for add/sub, just flip the sign.
+ int64_t AbsImm = llvm::abs64(Imm);
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(AbsImm) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(AbsImm) != -1;
+ // Thumb1 only has 8-bit unsigned immediate.
+ return AbsImm >= 0 && AbsImm <= 255;
+}
+
+static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
+ // AddressingMode 3
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -256) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Offset = Ptr->getOperand(1);
+ return true;
+ } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
+ // AddressingMode 2
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x1000) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ Base = Ptr->getOperand(0);
+ return true;
+ }
+ }
+
+ if (Ptr->getOpcode() == ISD::ADD) {
+ isInc = true;
+ ARM_AM::ShiftOpc ShOpcVal=
+ ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ Base = Ptr->getOperand(1);
+ Offset = Ptr->getOperand(0);
+ } else {
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ }
+ return true;
+ }
+
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ return true;
+ }
+
+ // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
+ return false;
+}
+
+static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
+ isInc = Ptr->getOpcode() == ISD::ADD;
+ Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool
+ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ if (Ptr != Base) {
+ // Swap base ptr and offset to catch more post-index load / store when
+ // it's legal. In Thumb2 mode, offset must be an immediate.
+ if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
+ !Subtarget->isThumb2())
+ std::swap(Base, Offset);
+
+ // Post-indexed load / store update the base pointer.
+ if (Ptr != Base)
+ return false;
+ }
+
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case ARMISD::CMOV: {
+ // Bits are known zero/one if known on the LHS and RHS.
+ DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ if (KnownZero == 0 && KnownOne == 0) return;
+
+ APInt KnownZeroRHS, KnownOneRHS;
+ DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
+ KnownZero &= KnownZeroRHS;
+ KnownOne &= KnownOneRHS;
+ return;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ // Looking for "rev" which is V6+.
+ if (!Subtarget->hasV6Ops())
+ return false;
+
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::string AsmStr = IA->getAsmString();
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t,");
+
+ // rev $0, $1
+ if (AsmPieces.size() == 3 &&
+ AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
+ IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (Ty && Ty->getBitWidth() == 32)
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ }
+
+ return false;
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+ARMTargetLowering::ConstraintType
+ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'l': return C_RegisterClass;
+ case 'w': return C_RegisterClass;
+ case 'h': return C_RegisterClass;
+ case 'x': return C_RegisterClass;
+ case 't': return C_RegisterClass;
+ case 'j': return C_Other; // Constant for movw.
+ // An address with a single base register. Due to the way we
+ // currently handle addresses it is the same as an 'r' memory constraint.
+ case 'Q': return C_Memory;
+ }
+ } else if (Constraint.size() == 2) {
+ switch (Constraint[0]) {
+ default: break;
+ // All 'U+' constraints are addresses.
+ case 'U': return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ARMTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'l':
+ if (type->isIntegerTy()) {
+ if (Subtarget->isThumb())
+ weight = CW_SpecificReg;
+ else
+ weight = CW_Register;
+ }
+ break;
+ case 'w':
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+ }
+ return weight;
+}
+
+typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
+RCPair
+ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC ARM Constraint Letters
+ switch (Constraint[0]) {
+ case 'l': // Low regs or general regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::tGPRRegClass);
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'h': // High regs or no regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::hGPRRegClass);
+ break;
+ case 'r':
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'w':
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPRRegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPRRegClass);
+ break;
+ case 'x':
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPR_8RegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPR_8RegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPR_8RegClass);
+ break;
+ case 't':
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0, 0);
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'j':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ int64_t CVal64 = C->getSExtValue();
+ int CVal = (int) CVal64;
+ // None of these constraints allow values larger than 32 bits. Check
+ // that the value fits in an int.
+ if (CVal != CVal64)
+ return;
+
+ switch (ConstraintLetter) {
+ case 'j':
+ // Constant suitable for movw, must be between 0 and
+ // 65535.
+ if (Subtarget->hasV6T2Ops())
+ if (CVal >= 0 && CVal <= 65535)
+ break;
+ return;
+ case 'I':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between 0 and 255, for ADD
+ // immediates.
+ if (CVal >= 0 && CVal <= 255)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getT2SOImmVal(CVal) != -1)
+ break;
+ } else {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getSOImmVal(CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'J':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between -255 and -1, for negated ADD
+ // immediates. This can be used in GCC with an "n" modifier that
+ // prints the negated value, for use with SUB instructions. It is
+ // not useful otherwise but is implemented for compatibility.
+ if (CVal >= -255 && CVal <= -1)
+ break;
+ } else {
+ // This must be a constant between -4095 and 4095. It is not clear
+ // what this constraint is intended for. Implemented for
+ // compatibility with GCC.
+ if (CVal >= -4095 && CVal <= 4095)
+ break;
+ }
+ return;
+
+ case 'K':
+ if (Subtarget->isThumb1Only()) {
+ // A 32-bit value where only one byte has a nonzero value. Exclude
+ // zero to match GCC. This constraint is used by GCC internally for
+ // constants that can be loaded with a move/shift combination.
+ // It is not useful otherwise but is implemented for compatibility.
+ if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getT2SOImmVal(~CVal) != -1)
+ break;
+ } else {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getSOImmVal(~CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'L':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between -7 and 7,
+ // for 3-operand ADD/SUB immediate instructions.
+ if (CVal >= -7 && CVal < 7)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getT2SOImmVal(-CVal) != -1)
+ break;
+ } else {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getSOImmVal(-CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'M':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between 0 and 1020, for
+ // ADD sp + immediate.
+ if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
+ break;
+ } else {
+ // A power of two or a constant between 0 and 32. This is used in
+ // GCC for the shift amount on shifted register operands, but it is
+ // useful in general for any shift amounts.
+ if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
+ break;
+ }
+ return;
+
+ case 'N':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between 0 and 31, for shift amounts.
+ if (CVal >= 0 && CVal <= 31)
+ break;
+ }
+ return;
+
+ case 'O':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between -508 and 508, for
+ // ADD/SUB sp = sp + immediate.
+ if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
+ break;
+ }
+ return;
+ }
+ Result = DAG.getTargetConstant(CVal, Op.getValueType());
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+bool
+ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The ARM target isn't yet aware of offsets.
+ return false;
+}
+
+bool ARM::isBitFieldInvertedMask(unsigned v) {
+ if (v == 0xffffffff)
+ return 0;
+ // there can be 1's on either or both "outsides", all the "inside"
+ // bits must be 0's
+ unsigned int lsb = 0, msb = 31;
+ while (v & (1 << msb)) --msb;
+ while (v & (1 << lsb)) ++lsb;
+ for (unsigned int i = lsb; i <= msb; ++i) {
+ if (v & (1 << i))
+ return 0;
+ }
+ return 1;
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (!Subtarget->hasVFP3())
+ return false;
+ if (VT == MVT::f32)
+ return ARM_AM::getFP32Imm(Imm) != -1;
+ if (VT == MVT::f64)
+ return ARM_AM::getFP64Imm(Imm) != -1;
+ return false;
+}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_strexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(2);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_ldrexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}