aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp3527
1 files changed, 3527 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
new file mode 100644
index 000000000000..87d15226947a
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -0,0 +1,3527 @@
+//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm-isel"
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMTargetMachine.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+DisableShifterOp("disable-shifter-op", cl::Hidden,
+ cl::desc("Disable isel of shifter-op"),
+ cl::init(false));
+
+static cl::opt<bool>
+CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
+ cl::desc("Check fp vmla / vmls hazard at isel time"),
+ cl::init(true));
+
+//===--------------------------------------------------------------------===//
+/// ARMDAGToDAGISel - ARM specific code to select ARM machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+
+enum AddrMode2Type {
+ AM2_BASE, // Simple AM2 (+-imm12)
+ AM2_SHOP // Shifter-op AM2
+};
+
+class ARMDAGToDAGISel : public SelectionDAGISel {
+ ARMBaseTargetMachine &TM;
+
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+
+public:
+ explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), TM(tm),
+ Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
+ }
+
+ virtual const char *getPassName() const {
+ return "ARM Instruction Selection";
+ }
+
+ virtual void PreprocessISelDAG();
+
+ /// getI32Imm - Return a target constant of type i32 with the specified
+ /// value.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ SDNode *Select(SDNode *N);
+
+
+ bool hasNoVMLxHazardUse(SDNode *N) const;
+ bool isShifterOpProfitable(const SDValue &Shift,
+ ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
+ bool SelectRegShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, SDValue &C,
+ bool CheckProfitability = true);
+ bool SelectImmShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, bool CheckProfitability = true);
+ bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
+ SDValue &B, SDValue &C) {
+ // Don't apply the profitability check
+ return SelectRegShifterOperand(N, A, B, C, false);
+ }
+ bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
+ SDValue &B) {
+ // Don't apply the profitability check
+ return SelectImmShifterOperand(N, A, B, false);
+ }
+
+ bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
+ bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
+
+ AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
+ }
+
+ bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
+ }
+
+ bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ SelectAddrMode2Worker(N, Base, Offset, Opc);
+// return SelectAddrMode2ShOp(N, Base, Offset, Opc);
+ // This always matches one way or another.
+ return true;
+ }
+
+ bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
+ const ConstantSDNode *CN = cast<ConstantSDNode>(N);
+ Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
+ Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
+ return true;
+ }
+
+ bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
+ bool SelectAddrMode3(SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode5(SDValue N, SDValue &Base,
+ SDValue &Offset);
+ bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
+ bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
+
+ bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
+
+ // Thumb Addressing Modes:
+ bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
+ unsigned Scale);
+ bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
+ bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
+
+ // Thumb 2 Addressing Modes:
+ bool SelectT2ShifterOperandReg(SDValue N,
+ SDValue &BaseReg, SDValue &Opc);
+ bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
+ bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm);
+ bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm);
+ bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
+
+ inline bool is_so_imm(unsigned Imm) const {
+ return ARM_AM::getSOImmVal(Imm) != -1;
+ }
+
+ inline bool is_so_imm_not(unsigned Imm) const {
+ return ARM_AM::getSOImmVal(~Imm) != -1;
+ }
+
+ inline bool is_t2_so_imm(unsigned Imm) const {
+ return ARM_AM::getT2SOImmVal(Imm) != -1;
+ }
+
+ inline bool is_t2_so_imm_not(unsigned Imm) const {
+ return ARM_AM::getT2SOImmVal(~Imm) != -1;
+ }
+
+ // Include the pieces autogenerated from the target description.
+#include "ARMGenDAGISel.inc"
+
+private:
+ /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
+ /// ARM.
+ SDNode *SelectARMIndexedLoad(SDNode *N);
+ SDNode *SelectT2IndexedLoad(SDNode *N);
+
+ /// SelectVLD - Select NEON load intrinsics. NumVecs should be
+ /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// loads of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
+
+ /// SelectVST - Select NEON store intrinsics. NumVecs should
+ /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// stores of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
+
+ /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
+ /// be 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// load/store of D registers and Q registers.
+ SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
+ bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes, const uint16_t *QOpcodes);
+
+ /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
+ /// should be 2, 3 or 4. The opcode array specifies the instructions used
+ /// for loading D registers. (Q registers are not supported.)
+ SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcodes);
+
+ /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
+ /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
+ /// generated to force the table registers to be consecutive.
+ SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
+
+ /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
+ SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
+
+ // Select special operations if node forms integer ABS pattern
+ SDNode *SelectABSOp(SDNode *N);
+
+ SDNode *SelectInlineAsm(SDNode *N);
+
+ SDNode *SelectConcatVector(SDNode *N);
+
+ SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32, unsigned Op64);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps);
+
+ // Form pairs of consecutive R, S, D, or Q registers.
+ SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
+ SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
+
+ // Form sequences of 4 consecutive S, D, or Q registers.
+ SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+ SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+ SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+
+ // Get the alignment operand for a NEON VLD or VST instruction.
+ SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
+};
+}
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc &&
+ isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+/// \brief Check whether a particular node is a constant value representable as
+/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
+///
+/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
+static bool isScaledConstantInRange(SDValue Node, int Scale,
+ int RangeMin, int RangeMax,
+ int &ScaledConstant) {
+ assert(Scale > 0 && "Invalid scale!");
+
+ // Check that this is a constant.
+ const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
+ if (!C)
+ return false;
+
+ ScaledConstant = (int) C->getZExtValue();
+ if ((ScaledConstant % Scale) != 0)
+ return false;
+
+ ScaledConstant /= Scale;
+ return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
+}
+
+void ARMDAGToDAGISel::PreprocessISelDAG() {
+ if (!Subtarget->hasV6T2Ops())
+ return;
+
+ bool isThumb2 = Subtarget->isThumb();
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ) {
+ SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
+
+ if (N->getOpcode() != ISD::ADD)
+ continue;
+
+ // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
+ // leading zeros, followed by consecutive set bits, followed by 1 or 2
+ // trailing zeros, e.g. 1020.
+ // Transform the expression to
+ // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
+ // of trailing zeros of c2. The left shift would be folded as an shifter
+ // operand of 'add' and the 'and' and 'srl' would become a bits extraction
+ // node (UBFX).
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned And_imm = 0;
+ if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
+ if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
+ std::swap(N0, N1);
+ }
+ if (!And_imm)
+ continue;
+
+ // Check if the AND mask is an immediate of the form: 000.....1111111100
+ unsigned TZ = countTrailingZeros(And_imm);
+ if (TZ != 1 && TZ != 2)
+ // Be conservative here. Shifter operands aren't always free. e.g. On
+ // Swift, left shifter operand of 1 / 2 for free but others are not.
+ // e.g.
+ // ubfx r3, r1, #16, #8
+ // ldr.w r3, [r0, r3, lsl #2]
+ // vs.
+ // mov.w r9, #1020
+ // and.w r2, r9, r1, lsr #14
+ // ldr r2, [r0, r2]
+ continue;
+ And_imm >>= TZ;
+ if (And_imm & (And_imm + 1))
+ continue;
+
+ // Look for (and (srl X, c1), c2).
+ SDValue Srl = N1.getOperand(0);
+ unsigned Srl_imm = 0;
+ if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
+ (Srl_imm <= 2))
+ continue;
+
+ // Make sure first operand is not a shifter operand which would prevent
+ // folding of the left shift.
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ SDValue CPTmp2;
+ if (isThumb2) {
+ if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
+ continue;
+ } else {
+ if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
+ SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
+ continue;
+ }
+
+ // Now make the transformation.
+ Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
+ Srl.getOperand(0),
+ CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
+ N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
+ Srl, CurDAG->getConstant(And_imm, MVT::i32));
+ N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
+ N1, CurDAG->getConstant(TZ, MVT::i32));
+ CurDAG->UpdateNodeOperands(N, N0, N1);
+ }
+}
+
+/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
+/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
+/// least on current ARM implementations) which should be avoidded.
+bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
+ if (OptLevel == CodeGenOpt::None)
+ return true;
+
+ if (!CheckVMLxHazard)
+ return true;
+
+ if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9() &&
+ !Subtarget->isSwift())
+ return true;
+
+ if (!N->hasOneUse())
+ return false;
+
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() == ISD::CopyToReg)
+ return true;
+ if (Use->isMachineOpcode()) {
+ const ARMBaseInstrInfo *TII =
+ static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+
+ const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
+ if (MCID.mayStore())
+ return true;
+ unsigned Opcode = MCID.getOpcode();
+ if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
+ return true;
+ // vmlx feeding into another vmlx. We actually want to unfold
+ // the use later in the MLxExpansion pass. e.g.
+ // vmla
+ // vmla (stall 8 cycles)
+ //
+ // vmul (5 cycles)
+ // vadd (5 cycles)
+ // vmla
+ // This adds up to about 18 - 19 cycles.
+ //
+ // vmla
+ // vmul (stall 4 cycles)
+ // vadd adds up to about 14 cycles.
+ return TII->isFpMLxInstruction(Opcode);
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
+ ARM_AM::ShiftOpc ShOpcVal,
+ unsigned ShAmt) {
+ if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
+ return true;
+ if (Shift.hasOneUse())
+ return true;
+ // R << 2 is free.
+ return ShOpcVal == ARM_AM::lsl &&
+ (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
+}
+
+bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
+ SDValue &BaseReg,
+ SDValue &Opc,
+ bool CheckProfitability) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!RHS) return false;
+ ShImmVal = RHS->getZExtValue() & 31;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
+ SDValue &BaseReg,
+ SDValue &ShReg,
+ SDValue &Opc,
+ bool CheckProfitability) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (RHS) return false;
+
+ ShReg = N.getOperand(1);
+ if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
+ return false;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
+ MVT::i32);
+ return true;
+}
+
+
+bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
+ SDValue &Base,
+ SDValue &OffImm) {
+ // Match simple R + imm12 operands.
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+
+
+bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::MUL &&
+ ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ // X * [3,5,9] -> X + X * [2,4,8] etc.
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC & 1) {
+ RHSC = RHSC & ~1;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ if (isPowerOf2_32(RHSC)) {
+ unsigned ShAmt = Log2_32(RHSC);
+ Base = Offset = N.getOperand(0);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
+ ARM_AM::lsl),
+ MVT::i32);
+ return true;
+ }
+ }
+ }
+ }
+
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ // ISD::OR that is equivalent to an ISD::ADD.
+ !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Leave simple R +/- imm12 operands for LDRi12
+ if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -0x1000+1, 0x1000, RHSC)) // 12 bits.
+ return false;
+ }
+
+ // Otherwise this is R +/- [possibly shifted] R.
+ ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
+ ARM_AM::ShiftOpc ShOpcVal =
+ ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
+ unsigned ShAmt = 0;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
+ Offset = N.getOperand(1).getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ // Try matching (R shl C) + (R).
+ if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
+ !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
+ N.getOperand(0).hasOneUse())) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't
+ // fold it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
+ Offset = N.getOperand(0).getOperand(0);
+ Base = N.getOperand(1);
+ } else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+
+//-----
+
+AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
+ SDValue &Base,
+ SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::MUL &&
+ (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ // X * [3,5,9] -> X + X * [2,4,8] etc.
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC & 1) {
+ RHSC = RHSC & ~1;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ if (isPowerOf2_32(RHSC)) {
+ unsigned ShAmt = Log2_32(RHSC);
+ Base = Offset = N.getOperand(0);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
+ ARM_AM::lsl),
+ MVT::i32);
+ return AM2_SHOP;
+ }
+ }
+ }
+ }
+
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ // ISD::OR that is equivalent to an ADD.
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+
+ // Match simple R +/- imm12 operands.
+ if (N.getOpcode() != ISD::SUB) {
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -0x1000+1, 0x1000, RHSC)) { // 12 bits.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+ }
+
+ if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
+ // Compute R +/- (R << N) and reuse it.
+ Base = N;
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return AM2_BASE;
+ }
+
+ // Otherwise this is R +/- [possibly shifted] R.
+ ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
+ ARM_AM::ShiftOpc ShOpcVal =
+ ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
+ unsigned ShAmt = 0;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
+ Offset = N.getOperand(1).getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ // Try matching (R shl C) + (R).
+ if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
+ !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
+ N.getOperand(0).hasOneUse())) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't
+ // fold it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
+ Offset = N.getOperand(0).getOperand(0);
+ Base = N.getOperand(1);
+ } else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return AM2_SHOP;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
+ return false;
+
+ Offset = N;
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+ unsigned ShAmt = 0;
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
+ Offset = N.getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
+ if (AddSub == ARM_AM::sub) Val *= -1;
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(Val, MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+
+bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
+ Base = N;
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
+ SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::SUB) {
+ // X - C is canonicalize to X + -C, no need to handle it here.
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
+ return true;
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
+ -256 + 1, 256, RHSC)) { // 8 bits.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = -RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ int Val;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
+ return true;
+ }
+
+ Offset = N;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
+ SDValue &Base, SDValue &Offset) {
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
+ -256 + 1, 256, RHSC)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = -RHSC;
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
+ MVT::i32);
+ return true;
+ }
+
+ Base = N;
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
+ SDValue &Align) {
+ Addr = N;
+
+ unsigned Alignment = 0;
+ if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
+ // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
+ // The maximum alignment is equal to the memory size being referenced.
+ unsigned LSNAlign = LSN->getAlignment();
+ unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
+ if (LSNAlign >= MemSize && MemSize > 1)
+ Alignment = MemSize;
+ } else {
+ // All other uses of addrmode6 are for intrinsics. For now just record
+ // the raw alignment value; it will be refined later based on the legal
+ // alignment operands for the intrinsic.
+ Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
+ }
+
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
+ SDValue &Offset) {
+ LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
+ ISD::MemIndexedMode AM = LdSt->getAddressingMode();
+ if (AM != ISD::POST_INC)
+ return false;
+ Offset = N;
+ if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
+ if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ }
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
+ SDValue &Offset, SDValue &Label) {
+ if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
+ Offset = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
+ MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Thumb Addressing Modes
+//===----------------------------------------------------------------------===//
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
+ SDValue &Base, SDValue &Offset){
+ if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
+ ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
+ if (!NC || !NC->isNullValue())
+ return false;
+
+ Base = Offset = N;
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
+ SDValue &Offset, unsigned Scale) {
+ if (Scale == 4) {
+ SDValue TmpBase, TmpOffImm;
+ if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
+ return false; // We want to select tLDRspi / tSTRspi instead.
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select tLDRpci instead.
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Thumb does not have [sp, r] address mode.
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
+ if ((LHSR && LHSR->getReg() == ARM::SP) ||
+ (RHSR && RHSR->getReg() == ARM::SP))
+ return false;
+
+ // FIXME: Why do we explicitly check for a match here and then return false?
+ // Presumably to allow something else to match, but shouldn't this be
+ // documented?
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
+ return false;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 1);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 2);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
+ SDValue &Base,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI(N, Base, Offset, 4);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
+ SDValue &Base, SDValue &OffImm) {
+ if (Scale == 4) {
+ SDValue TmpBase, TmpOffImm;
+ if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
+ return false; // We want to select tLDRspi / tSTRspi instead.
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select tLDRpci instead.
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ } else {
+ Base = N;
+ }
+
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
+ if ((LHSR && LHSR->getReg() == ARM::SP) ||
+ (RHSR && RHSR->getReg() == ARM::SP)) {
+ ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
+ unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
+
+ // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
+ if (LHSC != 0 || RHSC != 0) return false;
+
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ // If the RHS is + imm5 * scale, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
+ (LHSR && LHSR->getReg() == ARM::SP)) {
+ // If the RHS is + imm8 * scale, fold into addr mode.
+ int RHSC;
+ if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Thumb 2 Addressing Modes
+//===----------------------------------------------------------------------===//
+
+
+bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
+ SDValue &Opc) {
+ if (DisableShifterOp)
+ return false;
+
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShImmVal = RHS->getZExtValue() & 31;
+ Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R + imm12 operands.
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N)) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select t2LDRpci instead.
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ if (SelectT2AddrModeImm8(N, Base, OffImm))
+ // Let t2LDRi8 handle (R - imm8).
+ return false;
+
+ int RHSC = (int)RHS->getZExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R - imm8 operands.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
+ !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getSExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm){
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ int RHSC;
+ if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
+ OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
+ ? CurDAG->getTargetConstant(RHSC, MVT::i32)
+ : CurDAG->getTargetConstant(-RHSC, MVT::i32);
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
+ SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm) {
+ // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
+ if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
+ return false;
+
+ // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
+ return false;
+ else if (RHSC < 0 && RHSC >= -255) // 8 bits
+ return false;
+ }
+
+ // Look for (R + R) or (R + (R << [1,2,3])).
+ unsigned ShAmt = 0;
+ Base = N.getOperand(0);
+ OffReg = N.getOperand(1);
+
+ // Swap if it is ((R << c) + R).
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
+ if (ShOpcVal != ARM_AM::lsl) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
+ if (ShOpcVal == ARM_AM::lsl)
+ std::swap(Base, OffReg);
+ }
+
+ if (ShOpcVal == ARM_AM::lsl) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
+ OffReg = OffReg.getOperand(0);
+ else {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
+
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
+ SDValue &OffImm) {
+ // This *must* succeed since it's used for the irreplacable ldrex and strex
+ // instructions.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+
+ if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
+ return true;
+
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!RHS)
+ return true;
+
+ uint32_t RHSC = (int)RHS->getZExtValue();
+ if (RHSC > 1020 || RHSC % 4 != 0)
+ return true;
+
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
+ }
+
+ OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
+ return true;
+}
+
+//===--------------------------------------------------------------------===//
+
+/// getAL - Returns a ARMCC::AL immediate node.
+static inline SDValue getAL(SelectionDAG *CurDAG) {
+ return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
+}
+
+SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return NULL;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Offset, AMOpc;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (LoadedVT == MVT::i32 && isPre &&
+ SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = ARM::LDR_PRE_IMM;
+ Match = true;
+ } else if (LoadedVT == MVT::i32 && !isPre &&
+ SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = ARM::LDR_POST_IMM;
+ Match = true;
+ } else if (LoadedVT == MVT::i32 &&
+ SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
+ Match = true;
+
+ } else if (LoadedVT == MVT::i16 &&
+ SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
+ ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
+ : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
+ } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
+ if (LD->getExtensionType() == ISD::SEXTLOAD) {
+ if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
+ }
+ } else {
+ if (isPre &&
+ SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = ARM::LDRB_PRE_IMM;
+ } else if (!isPre &&
+ SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = ARM::LDRB_POST_IMM;
+ } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
+ }
+ }
+ }
+
+ if (Match) {
+ if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
+ MVT::i32, MVT::Other, Ops);
+ } else {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
+ MVT::i32, MVT::Other, Ops);
+ }
+ }
+
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return NULL;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
+ SDValue Offset;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ case MVT::i32:
+ Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
+ break;
+ case MVT::i16:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
+ break;
+ case MVT::i8:
+ case MVT::i1:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
+ break;
+ default:
+ return NULL;
+ }
+ Match = true;
+ }
+
+ if (Match) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
+ MVT::Other, Ops);
+ }
+
+ return NULL;
+}
+
+/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
+SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form a D register from a pair of S registers.
+SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form a quad register from a pair of D registers.
+SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive D registers from a pair of Q registers.
+SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive S registers.
+SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass =
+ CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive D registers.
+SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// \brief Form 4 consecutive Q registers.
+SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ SDLoc dl(V0.getNode());
+ SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
+ const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
+ V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
+}
+
+/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
+/// of a NEON VLD or VST instruction. The supported values depend on the
+/// number of registers being loaded.
+SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
+ bool is64BitVector) {
+ unsigned NumRegs = NumVecs;
+ if (!is64BitVector && NumVecs < 3)
+ NumRegs *= 2;
+
+ unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ if (Alignment >= 32 && NumRegs == 4)
+ Alignment = 32;
+ else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
+ Alignment = 16;
+ else if (Alignment >= 8)
+ Alignment = 8;
+ else
+ Alignment = 0;
+
+ return CurDAG->getTargetConstant(Alignment, MVT::i32);
+}
+
+// Get the register stride update opcode of a VLD/VST instruction that
+// is otherwise equivalent to the given fixed stride updating instruction.
+static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
+ switch (Opc) {
+ default: break;
+ case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
+ case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
+ case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
+ case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
+ case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
+ case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
+ case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
+ case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
+
+ case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
+ case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
+ case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
+ case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
+ case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
+ case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
+ case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
+ case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
+ case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
+ case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
+
+ case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
+ case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
+ case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
+ case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
+ case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
+ case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
+
+ case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
+ case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
+ case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
+ case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
+ case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
+ case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
+
+ case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
+ case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
+ case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
+ }
+ return Opc; // If not one we handle, return it unchanged.
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0,
+ const uint16_t *QOpcodes1) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ bool is64BitVector = VT.is64BitVector();
+ Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
+ break;
+ }
+
+ EVT ResTy;
+ if (NumVecs == 1)
+ ResTy = VT;
+ else {
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ if (!is64BitVector)
+ ResTyElts *= 2;
+ ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
+ }
+ std::vector<EVT> ResTys;
+ ResTys.push_back(ResTy);
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDNode *VLd;
+ SmallVector<SDValue, 7> Ops;
+
+ // Double registers and VLD1/VLD2 quad registers are directly supported.
+ if (is64BitVector || NumVecs <= 2) {
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes0[OpcodeIndex]);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
+ // case entirely when the rest are updated to that form, too.
+ if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
+ // check for that explicitly too. Horribly hacky, but temporary.
+ if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
+ !isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ } else {
+ // Otherwise, quad registers are loaded with two separate instructions,
+ // where one loads the even registers and the other loads the odd registers.
+ EVT AddrTy = MemAddr.getValueType();
+
+ // Load the even subregs. This is always an updating load, so that it
+ // provides the address to the second load for the odd subregs.
+ SDValue ImplDef =
+ SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
+ const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
+ SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
+ ResTy, AddrTy, MVT::Other, OpsA);
+ Chain = SDValue(VLdA, 2);
+
+ // Load the odd subregs.
+ Ops.push_back(SDValue(VLdA, 1));
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ assert(isa<ConstantSDNode>(Inc.getNode()) &&
+ "only constant post-increment update allowed for VLD3/4");
+ (void)Inc;
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(SDValue(VLdA, 0));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
+ }
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
+
+ if (NumVecs == 1)
+ return VLd;
+
+ // Extract out the subregisters.
+ SDValue SuperReg = SDValue(VLd, 0);
+ assert(ARM::dsub_7 == ARM::dsub_0+7 &&
+ ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes0,
+ const uint16_t *QOpcodes1) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return NULL;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+ Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VST1");
+ break;
+ }
+
+ std::vector<EVT> ResTys;
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SmallVector<SDValue, 7> Ops;
+
+ // Double registers and VST1/VST2 quad registers are directly supported.
+ if (is64BitVector || NumVecs <= 2) {
+ SDValue SrcReg;
+ if (NumVecs == 1) {
+ SrcReg = N->getOperand(Vec0Idx);
+ } else if (is64BitVector) {
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ if (NumVecs == 2)
+ SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
+ else {
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ // If it's a vst3, form a quad D-register and leave the last part as
+ // an undef.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+ } else {
+ // Form a QQ register.
+ SDValue Q0 = N->getOperand(Vec0Idx);
+ SDValue Q1 = N->getOperand(Vec0Idx + 1);
+ SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
+ }
+
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes0[OpcodeIndex]);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
+ // case entirely when the rest are updated to that form, too.
+ if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
+ // check for that explicitly too. Horribly hacky, but temporary.
+ if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
+ !isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
+ }
+ Ops.push_back(SrcReg);
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
+ cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
+
+ return VSt;
+ }
+
+ // Otherwise, quad registers are stored with two separate instructions,
+ // where one stores the even registers and the other stores the odd registers.
+
+ // Form the QQQQ REG_SEQUENCE.
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
+
+ // Store the even D registers. This is always an updating store, so that it
+ // provides the address to the second store for the odd subregs.
+ const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
+ SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
+ MemAddr.getValueType(),
+ MVT::Other, OpsA);
+ cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
+ Chain = SDValue(VStA, 1);
+
+ // Store the odd D registers.
+ Ops.push_back(SDValue(VStA, 0));
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ assert(isa<ConstantSDNode>(Inc.getNode()) &&
+ "only constant post-increment update allowed for VST3/4");
+ (void)Inc;
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(RegSeq);
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+ SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
+ Ops);
+ cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
+ return VStB;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
+ bool isUpdating, unsigned NumVecs,
+ const uint16_t *DOpcodes,
+ const uint16_t *QOpcodes) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
+ if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
+ return NULL;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ unsigned Lane =
+ cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+
+ unsigned Alignment = 0;
+ if (NumVecs != 3) {
+ Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
+ if (Alignment > NumBytes)
+ Alignment = NumBytes;
+ if (Alignment < 8 && Alignment < NumBytes)
+ Alignment = 0;
+ // Alignment must be a power of two; make sure of that.
+ Alignment = (Alignment & -Alignment);
+ if (Alignment == 1)
+ Alignment = 0;
+ }
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld/vst lane type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ // Quad-register operations:
+ case MVT::v8i16: OpcodeIndex = 0; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 1; break;
+ }
+
+ std::vector<EVT> ResTys;
+ if (IsLoad) {
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ if (!is64BitVector)
+ ResTyElts *= 2;
+ ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
+ MVT::i64, ResTyElts));
+ }
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
+ }
+
+ SDValue SuperReg;
+ SDValue V0 = N->getOperand(Vec0Idx + 0);
+ SDValue V1 = N->getOperand(Vec0Idx + 1);
+ if (NumVecs == 2) {
+ if (is64BitVector)
+ SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
+ else
+ SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
+ } else {
+ SDValue V2 = N->getOperand(Vec0Idx + 2);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(Vec0Idx + 3);
+ if (is64BitVector)
+ SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ else
+ SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
+ }
+ Ops.push_back(SuperReg);
+ Ops.push_back(getI32Imm(Lane));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+
+ unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
+ QOpcodes[OpcodeIndex]);
+ SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
+ if (!IsLoad)
+ return VLdLn;
+
+ // Extract the subregisters.
+ SuperReg = SDValue(VLdLn, 0);
+ assert(ARM::dsub_7 == ARM::dsub_0+7 &&
+ ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
+ unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
+ SDLoc dl(N);
+
+ SDValue MemAddr, Align;
+ if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
+ return NULL;
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ unsigned Alignment = 0;
+ if (NumVecs != 3) {
+ Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
+ if (Alignment > NumBytes)
+ Alignment = NumBytes;
+ if (Alignment < 8 && Alignment < NumBytes)
+ Alignment = 0;
+ // Alignment must be a power of two; make sure of that.
+ Alignment = (Alignment & -Alignment);
+ if (Alignment == 1)
+ Alignment = 0;
+ }
+ Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld-dup type");
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ }
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue SuperReg;
+ unsigned Opc = Opcodes[OpcodeIndex];
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+ if (isUpdating) {
+ // fixed-stride update instructions don't have an explicit writeback
+ // operand. It's implicit in the opcode itself.
+ SDValue Inc = N->getOperand(2);
+ if (!isa<ConstantSDNode>(Inc.getNode()))
+ Ops.push_back(Inc);
+ // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
+ else if (NumVecs > 2)
+ Ops.push_back(Reg0);
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+
+ unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
+ std::vector<EVT> ResTys;
+ ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
+ if (isUpdating)
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
+ SuperReg = SDValue(VLdDup, 0);
+
+ // Extract the subregisters.
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ unsigned SubIdx = ARM::dsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
+ unsigned Opc) {
+ assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ unsigned FirstTblReg = IsExt ? 2 : 1;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue RegSeq;
+ SDValue V0 = N->getOperand(FirstTblReg + 0);
+ SDValue V1 = N->getOperand(FirstTblReg + 1);
+ if (NumVecs == 2)
+ RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
+ else {
+ SDValue V2 = N->getOperand(FirstTblReg + 2);
+ // If it's a vtbl3, form a quad D-register and leave the last part as
+ // an undef.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
+ : N->getOperand(FirstTblReg + 3);
+ RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+
+ SmallVector<SDValue, 6> Ops;
+ if (IsExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
+ Ops.push_back(getAL(CurDAG)); // predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+}
+
+SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
+ bool isSigned) {
+ if (!Subtarget->hasV6T2Ops())
+ return NULL;
+
+ unsigned Opc = isSigned
+ ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
+ : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
+
+ // For unsigned extracts, check for a shift right and mask
+ unsigned And_imm = 0;
+ if (N->getOpcode() == ISD::AND) {
+ if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return NULL;
+
+ unsigned Srl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
+ Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = CountTrailingOnes_32(And_imm) - 1;
+ unsigned LSB = Srl_imm;
+
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
+ // It's cheaper to use a right shift to extract the top bits.
+ if (Subtarget->isThumb()) {
+ Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+
+ // ARM models shift instructions as MOVsi with shifter operand.
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
+ SDValue ShOpc =
+ CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
+ MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
+ getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5);
+ }
+
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ return NULL;
+ }
+
+ // Otherwise, we're looking for a shift of a shift
+ unsigned Shl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
+ unsigned Srl_imm = 0;
+ if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = 32 - Srl_imm - 1;
+ int LSB = Srl_imm - Shl_imm;
+ if (LSB < 0)
+ return NULL;
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ return NULL;
+}
+
+/// Target-specific DAG combining for ISD::XOR.
+/// Target-independent combining lowers SELECT_CC nodes of the form
+/// select_cc setg[ge] X, 0, X, -X
+/// select_cc setgt X, -1, X, -X
+/// select_cc setl[te] X, 0, -X, X
+/// select_cc setlt X, 1, -X, X
+/// which represent Integer ABS into:
+/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+/// ARM instruction selection detects the latter and matches it to
+/// ARM::ABS or ARM::t2ABS machine node.
+SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
+ SDValue XORSrc0 = N->getOperand(0);
+ SDValue XORSrc1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ if (Subtarget->isThumb1Only())
+ return NULL;
+
+ if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
+ return NULL;
+
+ SDValue ADDSrc0 = XORSrc0.getOperand(0);
+ SDValue ADDSrc1 = XORSrc0.getOperand(1);
+ SDValue SRASrc0 = XORSrc1.getOperand(0);
+ SDValue SRASrc1 = XORSrc1.getOperand(1);
+ ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
+ EVT XType = SRASrc0.getValueType();
+ unsigned Size = XType.getSizeInBits() - 1;
+
+ if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
+ XType.isInteger() && SRAConstant != NULL &&
+ Size == SRAConstant->getZExtValue()) {
+ unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
+ return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
+ }
+
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ EVT VT = N->getValueType(0);
+ if (!VT.is128BitVector() || N->getNumOperands() != 2)
+ llvm_unreachable("unexpected CONCAT_VECTORS");
+ return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
+}
+
+SDNode *ARMDAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
+ unsigned Op16,unsigned Op32,
+ unsigned Op64) {
+ // Mostly direct translation to the given operations, except that we preserve
+ // the AtomicOrdering for use later on.
+ AtomicSDNode *AN = cast<AtomicSDNode>(Node);
+ EVT VT = AN->getMemoryVT();
+
+ unsigned Op;
+ SDVTList VTs = CurDAG->getVTList(AN->getValueType(0), MVT::Other);
+ if (VT == MVT::i8)
+ Op = Op8;
+ else if (VT == MVT::i16)
+ Op = Op16;
+ else if (VT == MVT::i32)
+ Op = Op32;
+ else if (VT == MVT::i64) {
+ Op = Op64;
+ VTs = CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other);
+ } else
+ llvm_unreachable("Unexpected atomic operation");
+
+ SmallVector<SDValue, 6> Ops;
+ for (unsigned i = 1; i < AN->getNumOperands(); ++i)
+ Ops.push_back(AN->getOperand(i));
+
+ Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
+ Ops.push_back(AN->getOperand(0)); // Chain moves to the end
+
+ return CurDAG->SelectNodeTo(Node, Op, VTs, &Ops[0], Ops.size());
+}
+
+SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
+ SDLoc dl(N);
+
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return NULL; // Already selected.
+ }
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::INLINEASM: {
+ SDNode *ResNode = SelectInlineAsm(N);
+ if (ResNode)
+ return ResNode;
+ break;
+ }
+ case ISD::XOR: {
+ // Select special operations if XOR node forms integer ABS pattern
+ SDNode *ResNode = SelectABSOp(N);
+ if (ResNode)
+ return ResNode;
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::Constant: {
+ unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
+ bool UseCP = true;
+ if (Subtarget->hasThumb2())
+ // Thumb2-aware targets have the MOVT instruction, so all immediates can
+ // be done with MOV + MOVT, at worst.
+ UseCP = 0;
+ else {
+ if (Subtarget->isThumb()) {
+ UseCP = (Val > 255 && // MOV
+ ~Val > 255 && // MOV + MVN
+ !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
+ } else
+ UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
+ ARM_AM::getSOImmVal(~Val) == -1 && // MVN
+ !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
+ }
+
+ if (UseCP) {
+ SDValue CPIdx =
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
+ getTargetLowering()->getPointerTy());
+
+ SDNode *ResNode;
+ if (Subtarget->isThumb1Only()) {
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
+ ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
+ Ops);
+ } else {
+ SDValue Ops[] = {
+ CPIdx,
+ CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getEntryNode()
+ };
+ ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
+ Ops);
+ }
+ ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
+ return NULL;
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::FrameIndex: {
+ // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI,
+ getTargetLowering()->getPointerTy());
+ if (Subtarget->isThumb1Only()) {
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
+ } else {
+ unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
+ ARM::t2ADDri : ARM::ADDri);
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ case ISD::SRL:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+ break;
+ case ISD::SRA:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
+ return I;
+ break;
+ case ISD::MUL:
+ if (Subtarget->isThumb1Only())
+ break;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ unsigned RHSV = C->getZExtValue();
+ if (!RHSV) break;
+ if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
+ unsigned ShImm = Log2_32(RHSV-1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
+ }
+ }
+ if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
+ unsigned ShImm = Log2_32(RHSV+1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
+ }
+ }
+ }
+ break;
+ case ISD::AND: {
+ // Check for unsigned bitfield extract
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+
+ // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
+ // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
+ // are entirely contributed by c2 and lower 16-bits are entirely contributed
+ // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
+ // Select it to: "movt x, ((c1 & 0xffff) >> 16)
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ break;
+ unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ? ARM::t2MOVTi16
+ : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
+ if (!Opc)
+ break;
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (!N1C)
+ break;
+ if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
+ SDValue N2 = N0.getOperand(1);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+ if (!N2C)
+ break;
+ unsigned N1CVal = N1C->getZExtValue();
+ unsigned N2CVal = N2C->getZExtValue();
+ if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
+ (N1CVal & 0xffffU) == 0xffffU &&
+ (N2CVal & 0xffffU) == 0x0U) {
+ SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
+ MVT::i32);
+ SDValue Ops[] = { N0.getOperand(0), Imm16,
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
+ }
+ }
+ break;
+ }
+ case ARMISD::VMOVRRD:
+ return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
+ N->getOperand(0), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32));
+ case ISD::UMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::UMULL : ARM::UMULLv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ISD::SMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::SMULL : ARM::SMULLv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ARMISD::UMLAL:{
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32)};
+ return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
+ }else{
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::UMLAL : ARM::UMLALv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ARMISD::SMLAL:{
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32)};
+ return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
+ }else{
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
+ ARM::SMLAL : ARM::SMLALv5,
+ dl, MVT::i32, MVT::i32, Ops);
+ }
+ }
+ case ISD::LOAD: {
+ SDNode *ResNode = 0;
+ if (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ResNode = SelectT2IndexedLoad(N);
+ else
+ ResNode = SelectARMIndexedLoad(N);
+ if (ResNode)
+ return ResNode;
+ // Other cases are autogenerated.
+ break;
+ }
+ case ARMISD::BRCOND: {
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ unsigned Opc = Subtarget->isThumb() ?
+ ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
+ assert(N1.getOpcode() == ISD::BasicBlock);
+ assert(N2.getOpcode() == ISD::Constant);
+ assert(N3.getOpcode() == ISD::Register);
+
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
+ MVT::Glue, Ops);
+ Chain = SDValue(ResNode, 0);
+ if (N->getNumValues() == 2) {
+ InFlag = SDValue(ResNode, 1);
+ ReplaceUses(SDValue(N, 1), InFlag);
+ }
+ ReplaceUses(SDValue(N, 0),
+ SDValue(Chain.getNode(), Chain.getResNo()));
+ return NULL;
+ }
+ case ARMISD::VZIP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VZIPd8; break;
+ case MVT::v4i16: Opc = ARM::VZIPd16; break;
+ case MVT::v2f32:
+ // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VZIPq8; break;
+ case MVT::v8i16: Opc = ARM::VZIPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VZIPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::VUZP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VUZPd8; break;
+ case MVT::v4i16: Opc = ARM::VUZPd16; break;
+ case MVT::v2f32:
+ // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VUZPq8; break;
+ case MVT::v8i16: Opc = ARM::VUZPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VUZPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::VTRN: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VTRNd8; break;
+ case MVT::v4i16: Opc = ARM::VTRNd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VTRNq8; break;
+ case MVT::v8i16: Opc = ARM::VTRNq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VTRNq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
+ }
+ case ARMISD::BUILD_VECTOR: {
+ EVT VecVT = N->getValueType(0);
+ EVT EltVT = VecVT.getVectorElementType();
+ unsigned NumElts = VecVT.getVectorNumElements();
+ if (EltVT == MVT::f64) {
+ assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
+ return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
+ }
+ assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
+ if (NumElts == 2)
+ return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
+ assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
+ return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
+ N->getOperand(2), N->getOperand(3));
+ }
+
+ case ARMISD::VLD2DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
+ ARM::VLD2DUPd32 };
+ return SelectVLDDup(N, false, 2, Opcodes);
+ }
+
+ case ARMISD::VLD3DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
+ ARM::VLD3DUPd16Pseudo,
+ ARM::VLD3DUPd32Pseudo };
+ return SelectVLDDup(N, false, 3, Opcodes);
+ }
+
+ case ARMISD::VLD4DUP: {
+ static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
+ ARM::VLD4DUPd16Pseudo,
+ ARM::VLD4DUPd32Pseudo };
+ return SelectVLDDup(N, false, 4, Opcodes);
+ }
+
+ case ARMISD::VLD2DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
+ ARM::VLD2DUPd16wb_fixed,
+ ARM::VLD2DUPd32wb_fixed };
+ return SelectVLDDup(N, true, 2, Opcodes);
+ }
+
+ case ARMISD::VLD3DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
+ ARM::VLD3DUPd16Pseudo_UPD,
+ ARM::VLD3DUPd32Pseudo_UPD };
+ return SelectVLDDup(N, true, 3, Opcodes);
+ }
+
+ case ARMISD::VLD4DUP_UPD: {
+ static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
+ ARM::VLD4DUPd16Pseudo_UPD,
+ ARM::VLD4DUPd32Pseudo_UPD };
+ return SelectVLDDup(N, true, 4, Opcodes);
+ }
+
+ case ARMISD::VLD1_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
+ ARM::VLD1d16wb_fixed,
+ ARM::VLD1d32wb_fixed,
+ ARM::VLD1d64wb_fixed };
+ static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
+ ARM::VLD1q16wb_fixed,
+ ARM::VLD1q32wb_fixed,
+ ARM::VLD1q64wb_fixed };
+ return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case ARMISD::VLD2_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
+ ARM::VLD2d16wb_fixed,
+ ARM::VLD2d32wb_fixed,
+ ARM::VLD1q64wb_fixed};
+ static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
+ ARM::VLD2q16PseudoWB_fixed,
+ ARM::VLD2q32PseudoWB_fixed };
+ return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case ARMISD::VLD3_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
+ ARM::VLD3d16Pseudo_UPD,
+ ARM::VLD3d32Pseudo_UPD,
+ ARM::VLD1q64wb_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
+ ARM::VLD3q16Pseudo_UPD,
+ ARM::VLD3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
+ ARM::VLD3q16oddPseudo_UPD,
+ ARM::VLD3q32oddPseudo_UPD };
+ return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VLD4_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
+ ARM::VLD4d16Pseudo_UPD,
+ ARM::VLD4d32Pseudo_UPD,
+ ARM::VLD1q64wb_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
+ ARM::VLD4q16Pseudo_UPD,
+ ARM::VLD4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
+ ARM::VLD4q16oddPseudo_UPD,
+ ARM::VLD4q32oddPseudo_UPD };
+ return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VLD2LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
+ ARM::VLD2LNd16Pseudo_UPD,
+ ARM::VLD2LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
+ ARM::VLD2LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VLD3LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
+ ARM::VLD3LNd16Pseudo_UPD,
+ ARM::VLD3LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
+ ARM::VLD3LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VLD4LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
+ ARM::VLD4LNd16Pseudo_UPD,
+ ARM::VLD4LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
+ ARM::VLD4LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST1_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
+ ARM::VST1d16wb_fixed,
+ ARM::VST1d32wb_fixed,
+ ARM::VST1d64wb_fixed };
+ static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
+ ARM::VST1q16wb_fixed,
+ ARM::VST1q32wb_fixed,
+ ARM::VST1q64wb_fixed };
+ return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case ARMISD::VST2_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
+ ARM::VST2d16wb_fixed,
+ ARM::VST2d32wb_fixed,
+ ARM::VST1q64wb_fixed};
+ static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
+ ARM::VST2q16PseudoWB_fixed,
+ ARM::VST2q32PseudoWB_fixed };
+ return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case ARMISD::VST3_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
+ ARM::VST3d16Pseudo_UPD,
+ ARM::VST3d32Pseudo_UPD,
+ ARM::VST1d64TPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
+ ARM::VST3q16Pseudo_UPD,
+ ARM::VST3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
+ ARM::VST3q16oddPseudo_UPD,
+ ARM::VST3q32oddPseudo_UPD };
+ return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VST4_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
+ ARM::VST4d16Pseudo_UPD,
+ ARM::VST4d32Pseudo_UPD,
+ ARM::VST1d64QPseudoWB_fixed};
+ static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
+ ARM::VST4q16Pseudo_UPD,
+ ARM::VST4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
+ ARM::VST4q16oddPseudo_UPD,
+ ARM::VST4q32oddPseudo_UPD };
+ return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case ARMISD::VST2LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
+ ARM::VST2LNd16Pseudo_UPD,
+ ARM::VST2LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
+ ARM::VST2LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST3LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
+ ARM::VST3LNd16Pseudo_UPD,
+ ARM::VST3LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
+ ARM::VST3LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
+ }
+
+ case ARMISD::VST4LN_UPD: {
+ static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
+ ARM::VST4LNd16Pseudo_UPD,
+ ARM::VST4LNd32Pseudo_UPD };
+ static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
+ ARM::VST4LNq32Pseudo_UPD };
+ return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
+ }
+
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_ldrexd: {
+ SDValue MemAddr = N->getOperand(2);
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+
+ bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
+ unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD;
+
+ // arm_ldrexd returns a i64 value in {i32, i32}
+ std::vector<EVT> ResTys;
+ if (isThumb) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ } else
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(getAL(CurDAG));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(Chain);
+ SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+
+ // Remap uses.
+ SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
+ if (!SDValue(N, 0).use_empty()) {
+ SDValue Result;
+ if (isThumb)
+ Result = SDValue(Ld, 0);
+ else {
+ SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
+ SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
+ Result = SDValue(ResNode,0);
+ }
+ ReplaceUses(SDValue(N, 0), Result);
+ }
+ if (!SDValue(N, 1).use_empty()) {
+ SDValue Result;
+ if (isThumb)
+ Result = SDValue(Ld, 1);
+ else {
+ SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
+ SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
+ Result = SDValue(ResNode,0);
+ }
+ ReplaceUses(SDValue(N, 1), Result);
+ }
+ ReplaceUses(SDValue(N, 2), OutChain);
+ return NULL;
+ }
+
+ case Intrinsic::arm_strexd: {
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Val0 = N->getOperand(2);
+ SDValue Val1 = N->getOperand(3);
+ SDValue MemAddr = N->getOperand(4);
+
+ // Store exclusive double return a i32 value which is the return status
+ // of the issued store.
+ EVT ResTys[] = { MVT::i32, MVT::Other };
+
+ bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ if (isThumb) {
+ Ops.push_back(Val0);
+ Ops.push_back(Val1);
+ } else
+ // arm_strexd uses GPRPair.
+ Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
+ Ops.push_back(MemAddr);
+ Ops.push_back(getAL(CurDAG));
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32));
+ Ops.push_back(Chain);
+
+ unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD;
+
+ SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+ }
+
+ case Intrinsic::arm_neon_vld1: {
+ static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
+ ARM::VLD1d32, ARM::VLD1d64 };
+ static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
+ ARM::VLD1q32, ARM::VLD1q64};
+ return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vld2: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
+ ARM::VLD2d32, ARM::VLD1q64 };
+ static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
+ ARM::VLD2q32Pseudo };
+ return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vld3: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
+ ARM::VLD3d16Pseudo,
+ ARM::VLD3d32Pseudo,
+ ARM::VLD1d64TPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
+ ARM::VLD3q16Pseudo_UPD,
+ ARM::VLD3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
+ ARM::VLD3q16oddPseudo,
+ ARM::VLD3q32oddPseudo };
+ return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
+ ARM::VLD4d16Pseudo,
+ ARM::VLD4d32Pseudo,
+ ARM::VLD1d64QPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
+ ARM::VLD4q16Pseudo_UPD,
+ ARM::VLD4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
+ ARM::VLD4q16oddPseudo,
+ ARM::VLD4q32oddPseudo };
+ return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld2lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
+ ARM::VLD2LNd16Pseudo,
+ ARM::VLD2LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
+ ARM::VLD2LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vld3lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
+ ARM::VLD3LNd16Pseudo,
+ ARM::VLD3LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
+ ARM::VLD3LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vld4lane: {
+ static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
+ ARM::VLD4LNd16Pseudo,
+ ARM::VLD4LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
+ ARM::VLD4LNq32Pseudo };
+ return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst1: {
+ static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
+ ARM::VST1d32, ARM::VST1d64 };
+ static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
+ ARM::VST1q32, ARM::VST1q64 };
+ return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vst2: {
+ static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
+ ARM::VST2d32, ARM::VST1q64 };
+ static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
+ ARM::VST2q32Pseudo };
+ return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vst3: {
+ static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
+ ARM::VST3d16Pseudo,
+ ARM::VST3d32Pseudo,
+ ARM::VST1d64TPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
+ ARM::VST3q16Pseudo_UPD,
+ ARM::VST3q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
+ ARM::VST3q16oddPseudo,
+ ARM::VST3q32oddPseudo };
+ return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst4: {
+ static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
+ ARM::VST4d16Pseudo,
+ ARM::VST4d32Pseudo,
+ ARM::VST1d64QPseudo };
+ static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
+ ARM::VST4q16Pseudo_UPD,
+ ARM::VST4q32Pseudo_UPD };
+ static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
+ ARM::VST4q16oddPseudo,
+ ARM::VST4q32oddPseudo };
+ return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst2lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
+ ARM::VST2LNd16Pseudo,
+ ARM::VST2LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
+ ARM::VST2LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst3lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
+ ARM::VST3LNd16Pseudo,
+ ARM::VST3LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
+ ARM::VST3LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
+ }
+
+ case Intrinsic::arm_neon_vst4lane: {
+ static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
+ ARM::VST4LNd16Pseudo,
+ ARM::VST4LNd32Pseudo };
+ static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
+ ARM::VST4LNq32Pseudo };
+ return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
+ }
+ }
+ break;
+ }
+
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_neon_vtbl2:
+ return SelectVTBL(N, false, 2, ARM::VTBL2);
+ case Intrinsic::arm_neon_vtbl3:
+ return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
+ case Intrinsic::arm_neon_vtbl4:
+ return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
+
+ case Intrinsic::arm_neon_vtbx2:
+ return SelectVTBL(N, true, 2, ARM::VTBX2);
+ case Intrinsic::arm_neon_vtbx3:
+ return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
+ case Intrinsic::arm_neon_vtbx4:
+ return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
+ }
+ break;
+ }
+
+ case ARMISD::VTBL1: {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SmallVector<SDValue, 6> Ops;
+
+ Ops.push_back(N->getOperand(0));
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(getAL(CurDAG)); // Predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
+ return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
+ }
+ case ARMISD::VTBL2: {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(2));
+ Ops.push_back(getAL(CurDAG)); // Predicate
+ Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
+ return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
+ }
+
+ case ISD::CONCAT_VECTORS:
+ return SelectConcatVector(N);
+
+ case ISD::ATOMIC_LOAD:
+ if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
+ return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_LOAD_I64);
+ else
+ break;
+
+ case ISD::ATOMIC_STORE:
+ if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
+ return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_STORE_I64);
+ else
+ break;
+
+ case ISD::ATOMIC_LOAD_ADD:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_ADD_I8,
+ ARM::ATOMIC_LOAD_ADD_I16,
+ ARM::ATOMIC_LOAD_ADD_I32,
+ ARM::ATOMIC_LOAD_ADD_I64);
+ case ISD::ATOMIC_LOAD_SUB:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_SUB_I8,
+ ARM::ATOMIC_LOAD_SUB_I16,
+ ARM::ATOMIC_LOAD_SUB_I32,
+ ARM::ATOMIC_LOAD_SUB_I64);
+ case ISD::ATOMIC_LOAD_AND:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_AND_I8,
+ ARM::ATOMIC_LOAD_AND_I16,
+ ARM::ATOMIC_LOAD_AND_I32,
+ ARM::ATOMIC_LOAD_AND_I64);
+ case ISD::ATOMIC_LOAD_OR:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_OR_I8,
+ ARM::ATOMIC_LOAD_OR_I16,
+ ARM::ATOMIC_LOAD_OR_I32,
+ ARM::ATOMIC_LOAD_OR_I64);
+ case ISD::ATOMIC_LOAD_XOR:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_XOR_I8,
+ ARM::ATOMIC_LOAD_XOR_I16,
+ ARM::ATOMIC_LOAD_XOR_I32,
+ ARM::ATOMIC_LOAD_XOR_I64);
+ case ISD::ATOMIC_LOAD_NAND:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_NAND_I8,
+ ARM::ATOMIC_LOAD_NAND_I16,
+ ARM::ATOMIC_LOAD_NAND_I32,
+ ARM::ATOMIC_LOAD_NAND_I64);
+ case ISD::ATOMIC_LOAD_MIN:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_MIN_I8,
+ ARM::ATOMIC_LOAD_MIN_I16,
+ ARM::ATOMIC_LOAD_MIN_I32,
+ ARM::ATOMIC_LOAD_MIN_I64);
+ case ISD::ATOMIC_LOAD_MAX:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_MAX_I8,
+ ARM::ATOMIC_LOAD_MAX_I16,
+ ARM::ATOMIC_LOAD_MAX_I32,
+ ARM::ATOMIC_LOAD_MAX_I64);
+ case ISD::ATOMIC_LOAD_UMIN:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_UMIN_I8,
+ ARM::ATOMIC_LOAD_UMIN_I16,
+ ARM::ATOMIC_LOAD_UMIN_I32,
+ ARM::ATOMIC_LOAD_UMIN_I64);
+ case ISD::ATOMIC_LOAD_UMAX:
+ return SelectAtomic(N,
+ ARM::ATOMIC_LOAD_UMAX_I8,
+ ARM::ATOMIC_LOAD_UMAX_I16,
+ ARM::ATOMIC_LOAD_UMAX_I32,
+ ARM::ATOMIC_LOAD_UMAX_I64);
+ case ISD::ATOMIC_SWAP:
+ return SelectAtomic(N,
+ ARM::ATOMIC_SWAP_I8,
+ ARM::ATOMIC_SWAP_I16,
+ ARM::ATOMIC_SWAP_I32,
+ ARM::ATOMIC_SWAP_I64);
+ case ISD::ATOMIC_CMP_SWAP:
+ return SelectAtomic(N,
+ ARM::ATOMIC_CMP_SWAP_I8,
+ ARM::ATOMIC_CMP_SWAP_I16,
+ ARM::ATOMIC_CMP_SWAP_I32,
+ ARM::ATOMIC_CMP_SWAP_I64);
+ }
+
+ return SelectCode(N);
+}
+
+SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
+ std::vector<SDValue> AsmNodeOperands;
+ unsigned Flag, Kind;
+ bool Changed = false;
+ unsigned NumOps = N->getNumOperands();
+
+ // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
+ // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
+ // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
+ // respectively. Since there is no constraint to explicitly specify a
+ // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
+ // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
+ // them into a GPRPair.
+
+ SDLoc dl(N);
+ SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) : SDValue(0,0);
+
+ SmallVector<bool, 8> OpChanged;
+ // Glue node will be appended late.
+ for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
+ SDValue op = N->getOperand(i);
+ AsmNodeOperands.push_back(op);
+
+ if (i < InlineAsm::Op_FirstOperand)
+ continue;
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
+ Flag = C->getZExtValue();
+ Kind = InlineAsm::getKind(Flag);
+ }
+ else
+ continue;
+
+ // Immediate operands to inline asm in the SelectionDAG are modeled with
+ // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
+ // the second is a constant with the value of the immediate. If we get here
+ // and we have a Kind_Imm, skip the next operand, and continue.
+ if (Kind == InlineAsm::Kind_Imm) {
+ SDValue op = N->getOperand(++i);
+ AsmNodeOperands.push_back(op);
+ continue;
+ }
+
+ unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
+ if (NumRegs)
+ OpChanged.push_back(false);
+
+ unsigned DefIdx = 0;
+ bool IsTiedToChangedOp = false;
+ // If it's a use that is tied with a previous def, it has no
+ // reg class constraint.
+ if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
+ IsTiedToChangedOp = OpChanged[DefIdx];
+
+ if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
+ && Kind != InlineAsm::Kind_RegDefEarlyClobber)
+ continue;
+
+ unsigned RC;
+ bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
+ if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
+ || NumRegs != 2)
+ continue;
+
+ assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
+ SDValue V0 = N->getOperand(i+1);
+ SDValue V1 = N->getOperand(i+2);
+ unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
+ unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
+ SDValue PairedReg;
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ if (Kind == InlineAsm::Kind_RegDef ||
+ Kind == InlineAsm::Kind_RegDefEarlyClobber) {
+ // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
+ // the original GPRs.
+
+ unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
+ SDValue Chain = SDValue(N,0);
+
+ SDNode *GU = N->getGluedUser();
+ SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
+ Chain.getValue(1));
+
+ // Extract values from a GPRPair reg and copy to the original GPR reg.
+ SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
+ RegCopy);
+ SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
+ RegCopy);
+ SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
+ RegCopy.getValue(1));
+ SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
+
+ // Update the original glue user.
+ std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
+ Ops.push_back(T1.getValue(1));
+ CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size());
+ GU = T1.getNode();
+ }
+ else {
+ // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
+ // GPRPair and then pass the GPRPair to the inline asm.
+ SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
+
+ // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
+ SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
+ Chain.getValue(1));
+ SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
+ T0.getValue(1));
+ SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
+
+ // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
+ // i32 VRs of inline asm with it.
+ unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
+ PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
+ Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
+
+ AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
+ Glue = Chain.getValue(1);
+ }
+
+ Changed = true;
+
+ if(PairedReg.getNode()) {
+ OpChanged[OpChanged.size() -1 ] = true;
+ Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
+ if (IsTiedToChangedOp)
+ Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
+ else
+ Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
+ // Replace the current flag.
+ AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
+ Flag, MVT::i32);
+ // Add the new register node and skip the original two GPRs.
+ AsmNodeOperands.push_back(PairedReg);
+ // Skip the next two GPRs.
+ i += 2;
+ }
+ }
+
+ if (Glue.getNode())
+ AsmNodeOperands.push_back(Glue);
+ if (!Changed)
+ return NULL;
+
+ SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
+ CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0],
+ AsmNodeOperands.size());
+ New->setNodeId(-1);
+ return New.getNode();
+}
+
+
+bool ARMDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all ARM
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// createARMISelDag - This pass converts a legalized DAG into a
+/// ARM-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new ARMDAGToDAGISel(TM, OptLevel);
+}