aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMFastISel.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFastISel.cpp3087
1 files changed, 3087 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
new file mode 100644
index 000000000000..60048d4453d8
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
@@ -0,0 +1,3087 @@
+//===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ARM-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// ARMGenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMCallingConv.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMISelLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "Utils/ARMBaseInfo.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/CodeGen/RuntimeLibcalls.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <cassert>
+#include <cstdint>
+#include <utility>
+
+using namespace llvm;
+
+namespace {
+
+ // All possible address modes, plus some.
+ struct Address {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType = RegBase;
+
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+
+ int Offset = 0;
+
+ // Innocuous defaults for our address.
+ Address() {
+ Base.Reg = 0;
+ }
+ };
+
+class ARMFastISel final : public FastISel {
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+ Module &M;
+ const TargetMachine &TM;
+ const TargetInstrInfo &TII;
+ const TargetLowering &TLI;
+ ARMFunctionInfo *AFI;
+
+ // Convenience variables to avoid some queries.
+ bool isThumb2;
+ LLVMContext *Context;
+
+ public:
+ explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo),
+ Subtarget(
+ &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
+ M(const_cast<Module &>(*funcInfo.Fn->getParent())),
+ TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
+ TLI(*Subtarget->getTargetLowering()) {
+ AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
+ isThumb2 = AFI->isThumbFunction();
+ Context = &funcInfo.Fn->getContext();
+ }
+
+ private:
+ // Code from FastISel.cpp.
+
+ unsigned fastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill);
+ unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm);
+ unsigned fastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm);
+
+ // Backend specific FastISel code.
+
+ bool fastSelectInstruction(const Instruction *I) override;
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
+ bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) override;
+ bool fastLowerArguments() override;
+
+ #include "ARMGenFastISel.inc"
+
+ // Instruction selection routines.
+
+ bool SelectLoad(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+ bool SelectBranch(const Instruction *I);
+ bool SelectIndirectBr(const Instruction *I);
+ bool SelectCmp(const Instruction *I);
+ bool SelectFPExt(const Instruction *I);
+ bool SelectFPTrunc(const Instruction *I);
+ bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
+ bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
+ bool SelectIToFP(const Instruction *I, bool isSigned);
+ bool SelectFPToI(const Instruction *I, bool isSigned);
+ bool SelectDiv(const Instruction *I, bool isSigned);
+ bool SelectRem(const Instruction *I, bool isSigned);
+ bool SelectCall(const Instruction *I, const char *IntrMemName);
+ bool SelectIntrinsicCall(const IntrinsicInst &I);
+ bool SelectSelect(const Instruction *I);
+ bool SelectRet(const Instruction *I);
+ bool SelectTrunc(const Instruction *I);
+ bool SelectIntExt(const Instruction *I);
+ bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
+
+ // Utility routines.
+
+ bool isPositionIndependent() const;
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
+ bool isZExt, bool isEquality);
+ bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment = 0, bool isZExt = true,
+ bool allocReg = true);
+ bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment = 0);
+ bool ARMComputeAddress(const Value *Obj, Address &Addr);
+ void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
+ bool ARMIsMemCpySmall(uint64_t Len);
+ bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ unsigned Alignment);
+ unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned ARMMaterializeInt(const Constant *C, MVT VT);
+ unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
+ unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
+ unsigned ARMSelectCallOp(bool UseReg);
+ unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
+
+ const TargetLowering *getTargetLowering() { return &TLI; }
+
+ // Call handling routines.
+
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg);
+ bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool isVarArg);
+ unsigned getLibcallReg(const Twine &Name);
+ bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool isVarArg);
+ bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
+
+ // OptionalDef handling routines.
+
+ bool isARMNEONPred(const MachineInstr *MI);
+ bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
+ const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
+ void AddLoadStoreOperands(MVT VT, Address &Addr,
+ const MachineInstrBuilder &MIB,
+ MachineMemOperand::Flags Flags, bool useAM3);
+};
+
+} // end anonymous namespace
+
+#include "ARMGenCallingConv.inc"
+
+// DefinesOptionalPredicate - This is different from DefinesPredicate in that
+// we don't care about implicit defs here, just places we'll need to add a
+// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
+bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
+ if (!MI->hasOptionalDef())
+ return false;
+
+ // Look to see if our OptionalDef is defining CPSR or CCR.
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || !MO.isDef()) continue;
+ if (MO.getReg() == ARM::CPSR)
+ *CPSR = true;
+ }
+ return true;
+}
+
+bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
+ if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
+ AFI->isThumb2Function())
+ return MI->isPredicable();
+
+ for (const MCOperandInfo &opInfo : MCID.operands())
+ if (opInfo.isPredicate())
+ return true;
+
+ return false;
+}
+
+// If the machine is predicable go ahead and add the predicate operands, if
+// it needs default CC operands add those.
+// TODO: If we want to support thumb1 then we'll need to deal with optional
+// CPSR defs that need to be added before the remaining operands. See s_cc_out
+// for descriptions why.
+const MachineInstrBuilder &
+ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
+ MachineInstr *MI = &*MIB;
+
+ // Do we use a predicate? or...
+ // Are we NEON in ARM mode and have a predicate operand? If so, I know
+ // we're not predicable but add it anyways.
+ if (isARMNEONPred(MI))
+ MIB.add(predOps(ARMCC::AL));
+
+ // Do we optionally set a predicate? Preds is size > 0 iff the predicate
+ // defines CPSR. All other OptionalDefines in ARM are the CCR register.
+ bool CPSR = false;
+ if (DefinesOptionalPredicate(MI, &CPSR))
+ MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
+ return MIB;
+}
+
+unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operand is sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
+ ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operands are sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ Op1 = constrainOperandRegClass(II, Op1, 2);
+
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ // Make sure the input operand is sufficiently constrained to be legal
+ // for this instruction.
+ Op0 = constrainOperandRegClass(II, Op0, 1);
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1) {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
+ ResultReg).addImm(Imm));
+ } else {
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addImm(Imm));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(II.ImplicitDefs[0]));
+ }
+ return ResultReg;
+}
+
+// TODO: Don't worry about 64-bit now, but when this is fixed remove the
+// checks from the various callers.
+unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
+ if (VT == MVT::f64) return 0;
+
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVSR), MoveReg)
+ .addReg(SrcReg));
+ return MoveReg;
+}
+
+unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
+ if (VT == MVT::i64) return 0;
+
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRS), MoveReg)
+ .addReg(SrcReg));
+ return MoveReg;
+}
+
+// For double width floating point we need to materialize two constants
+// (the high and the low) into integer registers then use a move to get
+// the combined constant into an FP reg.
+unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
+ const APFloat Val = CFP->getValueAPF();
+ bool is64bit = VT == MVT::f64;
+
+ // This checks to see if we can use VFP3 instructions to materialize
+ // a constant, otherwise we have to go through the constant pool.
+ if (TLI.isFPImmLegal(Val, VT)) {
+ int Imm;
+ unsigned Opc;
+ if (is64bit) {
+ Imm = ARM_AM::getFP64Imm(Val);
+ Opc = ARM::FCONSTD;
+ } else {
+ Imm = ARM_AM::getFP32Imm(Val);
+ Opc = ARM::FCONSTS;
+ }
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg).addImm(Imm));
+ return DestReg;
+ }
+
+ // Require VFP2 for loading fp constants.
+ if (!Subtarget->hasVFP2()) return false;
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(CFP->getType());
+ }
+ unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
+
+ // The extra reg is for addrmode5.
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addConstantPoolIndex(Idx)
+ .addReg(0));
+ return DestReg;
+}
+
+unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
+ if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
+ return 0;
+
+ // If we can do this in a single instruction without a constant pool entry
+ // do so now.
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
+ unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
+ &ARM::GPRRegClass;
+ unsigned ImmReg = createResultReg(RC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ImmReg)
+ .addImm(CI->getZExtValue()));
+ return ImmReg;
+ }
+
+ // Use MVN to emit negative constants.
+ if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
+ unsigned Imm = (unsigned)~(CI->getSExtValue());
+ bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ if (UseImm) {
+ unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
+ &ARM::GPRRegClass;
+ unsigned ImmReg = createResultReg(RC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ImmReg)
+ .addImm(Imm));
+ return ImmReg;
+ }
+ }
+
+ unsigned ResultReg = 0;
+ if (Subtarget->useMovt(*FuncInfo.MF))
+ ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+
+ if (ResultReg)
+ return ResultReg;
+
+ // Load from constant pool. For now 32-bit only.
+ if (VT != MVT::i32)
+ return 0;
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(C->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(C->getType());
+ }
+ unsigned Idx = MCP.getConstantPoolIndex(C, Align);
+ ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ if (isThumb2)
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRpci), ResultReg)
+ .addConstantPoolIndex(Idx));
+ else {
+ // The extra immediate is for addrmode2.
+ ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRcp), ResultReg)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ }
+ return ResultReg;
+}
+
+bool ARMFastISel::isPositionIndependent() const {
+ return TLI.isPositionIndependent();
+}
+
+unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
+ // For now 32-bit only.
+ if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
+
+ // ROPI/RWPI not currently supported.
+ if (Subtarget->isROPI() || Subtarget->isRWPI())
+ return 0;
+
+ bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
+ : &ARM::GPRRegClass;
+ unsigned DestReg = createResultReg(RC);
+
+ // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ bool IsThreadLocal = GVar && GVar->isThreadLocal();
+ if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
+
+ bool IsPositionIndependent = isPositionIndependent();
+ // Use movw+movt when possible, it avoids constant pool entries.
+ // Non-darwin targets only support static movt relocations in FastISel.
+ if (Subtarget->useMovt(*FuncInfo.MF) &&
+ (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
+ unsigned Opc;
+ unsigned char TF = 0;
+ if (Subtarget->isTargetMachO())
+ TF = ARMII::MO_NONLAZY;
+
+ if (IsPositionIndependent)
+ Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
+ else
+ Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
+ } else {
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = DL.getPrefTypeAlignment(GV->getType());
+ if (Align == 0) {
+ // TODO: Figure out if this is correct.
+ Align = DL.getTypeAllocSize(GV->getType());
+ }
+
+ if (Subtarget->isTargetELF() && IsPositionIndependent)
+ return ARMLowerPICELF(GV, Align, VT);
+
+ // Grab index.
+ unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
+ unsigned Id = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
+ ARMCP::CPValue,
+ PCAdj);
+ unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
+
+ // Load value.
+ MachineInstrBuilder MIB;
+ if (isThumb2) {
+ unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ DestReg).addConstantPoolIndex(Idx);
+ if (IsPositionIndependent)
+ MIB.addImm(Id);
+ AddOptionalDefs(MIB);
+ } else {
+ // The extra immediate is for addrmode2.
+ DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRcp), DestReg)
+ .addConstantPoolIndex(Idx)
+ .addImm(0);
+ AddOptionalDefs(MIB);
+
+ if (IsPositionIndependent) {
+ unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
+ unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(Opc), NewDestReg)
+ .addReg(DestReg)
+ .addImm(Id);
+ AddOptionalDefs(MIB);
+ return NewDestReg;
+ }
+ }
+ }
+
+ if (IsIndirect) {
+ MachineInstrBuilder MIB;
+ unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
+ if (isThumb2)
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRi12), NewDestReg)
+ .addReg(DestReg)
+ .addImm(0);
+ else
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::LDRi12), NewDestReg)
+ .addReg(DestReg)
+ .addImm(0);
+ DestReg = NewDestReg;
+ AddOptionalDefs(MIB);
+ }
+
+ return DestReg;
+}
+
+unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(DL, C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple()) return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return ARMMaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return ARMMaterializeGV(GV, VT);
+ else if (isa<ConstantInt>(C))
+ return ARMMaterializeInt(C, VT);
+
+ return 0;
+}
+
+// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
+
+unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
+ // Don't handle dynamic allocas.
+ if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
+
+ MVT VT;
+ if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
+
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+
+ // This will get lowered later into the correct offsets and registers
+ // via rewriteXFrameIndex.
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
+ const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
+ unsigned ResultReg = createResultReg(RC);
+ ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
+
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addFrameIndex(SI->second)
+ .addImm(0));
+ return ResultReg;
+ }
+
+ return 0;
+}
+
+bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT evt = TLI.getValueType(DL, Ty, true);
+
+ // Only handle simple types.
+ if (evt == MVT::Other || !evt.isSimple()) return false;
+ VT = evt.getSimpleVT();
+
+ // Handle all legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT)) return true;
+
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now.
+ if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+ return true;
+
+ return false;
+}
+
+// Computes the address to get to an object.
+bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
+ // Some boilerplate from the X86 FastISel.
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+ // Don't walk into other basic blocks unless the object is an alloca from
+ // another block, otherwise it may not have a virtual register assigned.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::BitCast:
+ // Look through bitcasts.
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
+ TLI.getPointerTy(DL))
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
+ return ARMComputeAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::GetElementPtr: {
+ Address SavedAddr = Addr;
+ int TmpOffset = Addr.Offset;
+
+ // Iterate through the GEP folding the constants into offsets where
+ // we can.
+ gep_type_iterator GTI = gep_type_begin(U);
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+ i != e; ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+ TmpOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ while (true) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ TmpOffset += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ TmpOffset += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ // Unsupported
+ goto unsupported_gep;
+ }
+ }
+ }
+
+ // Try to grab the base operand now.
+ Addr.Offset = TmpOffset;
+ if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
+
+ // We failed, restore everything and try the other options.
+ Addr = SavedAddr;
+
+ unsupported_gep:
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(Obj);
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ Addr.BaseType = Address::FrameIndexBase;
+ Addr.Base.FI = SI->second;
+ return true;
+ }
+ break;
+ }
+ }
+
+ // Try to get this in a register if nothing else has worked.
+ if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
+ return Addr.Base.Reg != 0;
+}
+
+void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
+ bool needsLowering = false;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unhandled load/store type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (!useAM3) {
+ // Integer loads/stores handle 12-bit offsets.
+ needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
+ // Handle negative offsets.
+ if (needsLowering && isThumb2)
+ needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
+ Addr.Offset > -256);
+ } else {
+ // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
+ needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
+ }
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ // Floating point operands handle 8-bit offsets.
+ needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
+ break;
+ }
+
+ // If this is a stack pointer and the offset needs to be simplified then
+ // put the alloca address into a register, set the base type back to
+ // register and continue. This should almost never happen.
+ if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
+ unsigned ResultReg = createResultReg(RC);
+ unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addFrameIndex(Addr.Base.FI)
+ .addImm(0));
+ Addr.Base.Reg = ResultReg;
+ Addr.BaseType = Address::RegBase;
+ }
+
+ // Since the offset is too large for the load/store instruction
+ // get the reg+offset into a register.
+ if (needsLowering) {
+ Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
+ /*Op0IsKill*/false, Addr.Offset, MVT::i32);
+ Addr.Offset = 0;
+ }
+}
+
+void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
+ const MachineInstrBuilder &MIB,
+ MachineMemOperand::Flags Flags,
+ bool useAM3) {
+ // addrmode5 output depends on the selection dag addressing dividing the
+ // offset by 4 that it then later multiplies. Do this here as well.
+ if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
+ Addr.Offset /= 4;
+
+ // Frame base works a bit differently. Handle it separately.
+ if (Addr.BaseType == Address::FrameIndexBase) {
+ int FI = Addr.Base.FI;
+ int Offset = Addr.Offset;
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
+ MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+ // Now add the rest of the operands.
+ MIB.addFrameIndex(FI);
+
+ // ARM halfword load/stores and signed byte loads need an additional
+ // operand.
+ if (useAM3) {
+ int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
+ MIB.addReg(0);
+ MIB.addImm(Imm);
+ } else {
+ MIB.addImm(Addr.Offset);
+ }
+ MIB.addMemOperand(MMO);
+ } else {
+ // Now add the rest of the operands.
+ MIB.addReg(Addr.Base.Reg);
+
+ // ARM halfword load/stores and signed byte loads need an additional
+ // operand.
+ if (useAM3) {
+ int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
+ MIB.addReg(0);
+ MIB.addImm(Imm);
+ } else {
+ MIB.addImm(Addr.Offset);
+ }
+ }
+ AddOptionalDefs(MIB);
+}
+
+bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ unsigned Alignment, bool isZExt, bool allocReg) {
+ unsigned Opc;
+ bool useAM3 = false;
+ bool needVMOV = false;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
+ // This is mostly going to be Neon/vector support.
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
+ else
+ Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
+ } else {
+ if (isZExt) {
+ Opc = ARM::LDRBi12;
+ } else {
+ Opc = ARM::LDRSB;
+ useAM3 = true;
+ }
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::i16:
+ if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
+ else
+ Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
+ } else {
+ Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
+ useAM3 = true;
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::i32:
+ if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ Opc = ARM::t2LDRi8;
+ else
+ Opc = ARM::t2LDRi12;
+ } else {
+ Opc = ARM::LDRi12;
+ }
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2()) return false;
+ // Unaligned loads need special handling. Floats require word-alignment.
+ if (Alignment && Alignment < 4) {
+ needVMOV = true;
+ VT = MVT::i32;
+ Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
+ } else {
+ Opc = ARM::VLDRS;
+ RC = TLI.getRegClassFor(VT);
+ }
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) return false;
+ // FIXME: Unaligned loads need special handling. Doublewords require
+ // word-alignment.
+ if (Alignment && Alignment < 4)
+ return false;
+
+ Opc = ARM::VLDRD;
+ RC = TLI.getRegClassFor(VT);
+ break;
+ }
+ // Simplify this down to something we can handle.
+ ARMSimplifyAddress(Addr, VT, useAM3);
+
+ // Create the base instruction, then add the operands.
+ if (allocReg)
+ ResultReg = createResultReg(RC);
+ assert(ResultReg > 255 && "Expected an allocated virtual register.");
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
+
+ // If we had an unaligned load of a float we've converted it to an regular
+ // load. Now we must move from the GRP to the FP register.
+ if (needVMOV) {
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVSR), MoveReg)
+ .addReg(ResultReg));
+ ResultReg = MoveReg;
+ }
+ return true;
+}
+
+bool ARMFastISel::SelectLoad(const Instruction *I) {
+ // Atomic loads need special handling.
+ if (cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ const Value *SV = I->getOperand(0);
+ if (TLI.supportSwiftError()) {
+ // Swifterror values can come from either a function parameter with
+ // swifterror attribute or an alloca with swifterror attribute.
+ if (const Argument *Arg = dyn_cast<Argument>(SV)) {
+ if (Arg->hasSwiftErrorAttr())
+ return false;
+ }
+
+ if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
+ if (Alloca->isSwiftError())
+ return false;
+ }
+ }
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getType(), VT))
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
+
+ unsigned ResultReg;
+ if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
+ return false;
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ unsigned Alignment) {
+ unsigned StrOpc;
+ bool useAM3 = false;
+ switch (VT.SimpleTy) {
+ // This is mostly going to be Neon/vector support.
+ default: return false;
+ case MVT::i1: {
+ unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass);
+ unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
+ SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), Res)
+ .addReg(SrcReg).addImm(1));
+ SrcReg = Res;
+ LLVM_FALLTHROUGH;
+ }
+ case MVT::i8:
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRBi8;
+ else
+ StrOpc = ARM::t2STRBi12;
+ } else {
+ StrOpc = ARM::STRBi12;
+ }
+ break;
+ case MVT::i16:
+ if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRHi8;
+ else
+ StrOpc = ARM::t2STRHi12;
+ } else {
+ StrOpc = ARM::STRH;
+ useAM3 = true;
+ }
+ break;
+ case MVT::i32:
+ if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
+ return false;
+
+ if (isThumb2) {
+ if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
+ StrOpc = ARM::t2STRi8;
+ else
+ StrOpc = ARM::t2STRi12;
+ } else {
+ StrOpc = ARM::STRi12;
+ }
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2()) return false;
+ // Unaligned stores need special handling. Floats require word-alignment.
+ if (Alignment && Alignment < 4) {
+ unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRS), MoveReg)
+ .addReg(SrcReg));
+ SrcReg = MoveReg;
+ VT = MVT::i32;
+ StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
+ } else {
+ StrOpc = ARM::VSTRS;
+ }
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) return false;
+ // FIXME: Unaligned stores need special handling. Doublewords require
+ // word-alignment.
+ if (Alignment && Alignment < 4)
+ return false;
+
+ StrOpc = ARM::VSTRD;
+ break;
+ }
+ // Simplify this down to something we can handle.
+ ARMSimplifyAddress(Addr, VT, useAM3);
+
+ // Create the base instruction, then add the operands.
+ SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(StrOpc))
+ .addReg(SrcReg);
+ AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
+ return true;
+}
+
+bool ARMFastISel::SelectStore(const Instruction *I) {
+ Value *Op0 = I->getOperand(0);
+ unsigned SrcReg = 0;
+
+ // Atomic stores need special handling.
+ if (cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ const Value *PtrV = I->getOperand(1);
+ if (TLI.supportSwiftError()) {
+ // Swifterror values can come from either a function parameter with
+ // swifterror attribute or an alloca with swifterror attribute.
+ if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
+ if (Arg->hasSwiftErrorAttr())
+ return false;
+ }
+
+ if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
+ if (Alloca->isSwiftError())
+ return false;
+ }
+ }
+
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ // Get the value to be stored into a register.
+ SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0) return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
+ return false;
+ return true;
+}
+
+static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ // Needs two compares...
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UEQ:
+ default:
+ // AL is our "false" for now. The other two need more compares.
+ return ARMCC::AL;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::FCMP_OEQ:
+ return ARMCC::EQ;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::FCMP_OGT:
+ return ARMCC::GT;
+ case CmpInst::ICMP_SGE:
+ case CmpInst::FCMP_OGE:
+ return ARMCC::GE;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::FCMP_UGT:
+ return ARMCC::HI;
+ case CmpInst::FCMP_OLT:
+ return ARMCC::MI;
+ case CmpInst::ICMP_ULE:
+ case CmpInst::FCMP_OLE:
+ return ARMCC::LS;
+ case CmpInst::FCMP_ORD:
+ return ARMCC::VC;
+ case CmpInst::FCMP_UNO:
+ return ARMCC::VS;
+ case CmpInst::FCMP_UGE:
+ return ARMCC::PL;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::FCMP_ULT:
+ return ARMCC::LT;
+ case CmpInst::ICMP_SLE:
+ case CmpInst::FCMP_ULE:
+ return ARMCC::LE;
+ case CmpInst::FCMP_UNE:
+ case CmpInst::ICMP_NE:
+ return ARMCC::NE;
+ case CmpInst::ICMP_UGE:
+ return ARMCC::HS;
+ case CmpInst::ICMP_ULT:
+ return ARMCC::LO;
+ }
+}
+
+bool ARMFastISel::SelectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Simple branch support.
+
+ // If we can, avoid recomputing the compare - redoing it could lead to wonky
+ // behavior.
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
+ // Get the compare predicate.
+ // Try to take advantage of fallthrough opportunities.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ ARMCC::CondCodes ARMPred = getComparePred(Predicate);
+
+ // We may not handle every CC for now.
+ if (ARMPred == ARMCC::AL) return false;
+
+ // Emit the compare.
+ if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
+ CI->isEquality()))
+ return false;
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
+ finishCondBranch(BI->getParent(), TBB, FBB);
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
+ unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TstOpc))
+ .addReg(OpReg).addImm(1));
+
+ unsigned CCMode = ARMCC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CCMode = ARMCC::EQ;
+ }
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
+
+ finishCondBranch(BI->getParent(), TBB, FBB);
+ return true;
+ }
+ } else if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(BI->getCondition())) {
+ uint64_t Imm = CI->getZExtValue();
+ MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+ fastEmitBranch(Target, DbgLoc);
+ return true;
+ }
+
+ unsigned CmpReg = getRegForValue(BI->getCondition());
+ if (CmpReg == 0) return false;
+
+ // We've been divorced from our compare! Our block was split, and
+ // now our compare lives in a predecessor block. We musn't
+ // re-compare here, as the children of the compare aren't guaranteed
+ // live across the block boundary (we *could* check for this).
+ // Regardless, the compare has been done in the predecessor block,
+ // and it left a value for us in a virtual register. Ergo, we test
+ // the one-bit value left in the virtual register.
+ unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
+ CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
+ .addReg(CmpReg)
+ .addImm(1));
+
+ unsigned CCMode = ARMCC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CCMode = ARMCC::EQ;
+ }
+
+ unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
+ .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
+ finishCondBranch(BI->getParent(), TBB, FBB);
+ return true;
+}
+
+bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
+ unsigned AddrReg = getRegForValue(I->getOperand(0));
+ if (AddrReg == 0) return false;
+
+ unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
+ assert(isThumb2 || Subtarget->hasV4TOps());
+
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc)).addReg(AddrReg));
+
+ const IndirectBrInst *IB = cast<IndirectBrInst>(I);
+ for (const BasicBlock *SuccBB : IB->successors())
+ FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
+
+ return true;
+}
+
+bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
+ bool isZExt, bool isEquality) {
+ Type *Ty = Src1Value->getType();
+ EVT SrcEVT = TLI.getValueType(DL, Ty, true);
+ if (!SrcEVT.isSimple()) return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ if (Ty->isFloatTy() && !Subtarget->hasVFP2())
+ return false;
+
+ if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
+ return false;
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ int Imm = 0;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ // FIXME: At -O0 we don't have anything that canonicalizes operand order.
+ // Thus, Src1Value may be a ConstantInt, but we're missing it.
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
+ if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
+ SrcVT == MVT::i1) {
+ const APInt &CIVal = ConstInt->getValue();
+ Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
+ // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
+ // then a cmn, because there is no way to represent 2147483648 as a
+ // signed 32-bit int.
+ if (Imm < 0 && Imm != (int)0x80000000) {
+ isNegativeImm = true;
+ Imm = -Imm;
+ }
+ UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ }
+ } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
+ if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
+ if (ConstFP->isZero() && !ConstFP->isNegative())
+ UseImm = true;
+ }
+
+ unsigned CmpOpc;
+ bool isICmp = true;
+ bool needsExt = false;
+ switch (SrcVT.SimpleTy) {
+ default: return false;
+ // TODO: Verify compares.
+ case MVT::f32:
+ isICmp = false;
+ // Equality comparisons shouldn't raise Invalid on uordered inputs.
+ if (isEquality)
+ CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
+ else
+ CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
+ break;
+ case MVT::f64:
+ isICmp = false;
+ // Equality comparisons shouldn't raise Invalid on uordered inputs.
+ if (isEquality)
+ CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
+ else
+ CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
+ break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ needsExt = true;
+ LLVM_FALLTHROUGH;
+ case MVT::i32:
+ if (isThumb2) {
+ if (!UseImm)
+ CmpOpc = ARM::t2CMPrr;
+ else
+ CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
+ } else {
+ if (!UseImm)
+ CmpOpc = ARM::CMPrr;
+ else
+ CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
+ }
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(Src1Value);
+ if (SrcReg1 == 0) return false;
+
+ unsigned SrcReg2 = 0;
+ if (!UseImm) {
+ SrcReg2 = getRegForValue(Src2Value);
+ if (SrcReg2 == 0) return false;
+ }
+
+ // We have i1, i8, or i16, we need to either zero extend or sign extend.
+ if (needsExt) {
+ SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
+ if (SrcReg1 == 0) return false;
+ if (!UseImm) {
+ SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
+ if (SrcReg2 == 0) return false;
+ }
+ }
+
+ const MCInstrDesc &II = TII.get(CmpOpc);
+ SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
+ if (!UseImm) {
+ SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(SrcReg1).addReg(SrcReg2));
+ } else {
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
+ .addReg(SrcReg1);
+
+ // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
+ if (isICmp)
+ MIB.addImm(Imm);
+ AddOptionalDefs(MIB);
+ }
+
+ // For floating point we need to move the result to a comparison register
+ // that we can then use for branches.
+ if (Ty->isFloatTy() || Ty->isDoubleTy())
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::FMSTAT)));
+ return true;
+}
+
+bool ARMFastISel::SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ // Get the compare predicate.
+ ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
+
+ // We may not handle every CC for now.
+ if (ARMPred == ARMCC::AL) return false;
+
+ // Emit the compare.
+ if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
+ CI->isEquality()))
+ return false;
+
+ // Now set a register based on the comparison. Explicitly set the predicates
+ // here.
+ unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
+ : &ARM::GPRRegClass;
+ unsigned DestReg = createResultReg(RC);
+ Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
+ unsigned ZeroReg = fastMaterializeConstant(Zero);
+ // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
+ .addReg(ZeroReg).addImm(1)
+ .addImm(ARMPred).addReg(ARM::CPSR);
+
+ updateValueMap(I, DestReg);
+ return true;
+}
+
+bool ARMFastISel::SelectFPExt(const Instruction *I) {
+ // Make sure we have VFP and that we're extending float to double.
+ if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
+
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isDoubleTy() ||
+ !V->getType()->isFloatTy()) return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0) return false;
+
+ unsigned Result = createResultReg(&ARM::DPRRegClass);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VCVTDS), Result)
+ .addReg(Op));
+ updateValueMap(I, Result);
+ return true;
+}
+
+bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
+ // Make sure we have VFP and that we're truncating double to float.
+ if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
+
+ Value *V = I->getOperand(0);
+ if (!(I->getType()->isFloatTy() &&
+ V->getType()->isDoubleTy())) return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0) return false;
+
+ unsigned Result = createResultReg(&ARM::SPRRegClass);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VCVTSD), Result)
+ .addReg(Op));
+ updateValueMap(I, Result);
+ return true;
+}
+
+bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
+ // Make sure we have VFP.
+ if (!Subtarget->hasVFP2()) return false;
+
+ MVT DstVT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, DstVT))
+ return false;
+
+ Value *Src = I->getOperand(0);
+ EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (SrcReg == 0) return false;
+
+ // Handle sign-extension.
+ if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
+ SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
+ /*isZExt*/!isSigned);
+ if (SrcReg == 0) return false;
+ }
+
+ // The conversion routine works on fp-reg to fp-reg and the operand above
+ // was an integer, move it to the fp registers if possible.
+ unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
+ if (FP == 0) return false;
+
+ unsigned Opc;
+ if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
+ else if (Ty->isDoubleTy() && !Subtarget->isFPOnlySP())
+ Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
+ else return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg).addReg(FP));
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
+ // Make sure we have VFP.
+ if (!Subtarget->hasVFP2()) return false;
+
+ MVT DstVT;
+ Type *RetTy = I->getType();
+ if (!isTypeLegal(RetTy, DstVT))
+ return false;
+
+ unsigned Op = getRegForValue(I->getOperand(0));
+ if (Op == 0) return false;
+
+ unsigned Opc;
+ Type *OpTy = I->getOperand(0)->getType();
+ if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
+ else if (OpTy->isDoubleTy() && !Subtarget->isFPOnlySP())
+ Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
+ else return false;
+
+ // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg).addReg(Op));
+
+ // This result needs to be in an integer register, but the conversion only
+ // takes place in fp-regs.
+ unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
+ if (IntReg == 0) return false;
+
+ updateValueMap(I, IntReg);
+ return true;
+}
+
+bool ARMFastISel::SelectSelect(const Instruction *I) {
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ // Things need to be register sized for register moves.
+ if (VT != MVT::i32) return false;
+
+ unsigned CondReg = getRegForValue(I->getOperand(0));
+ if (CondReg == 0) return false;
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+
+ // Check to see if we can use an immediate in the conditional move.
+ int Imm = 0;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
+ assert(VT == MVT::i32 && "Expecting an i32.");
+ Imm = (int)ConstInt->getValue().getZExtValue();
+ if (Imm < 0) {
+ isNegativeImm = true;
+ Imm = ~Imm;
+ }
+ UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
+ (ARM_AM::getSOImmVal(Imm) != -1);
+ }
+
+ unsigned Op2Reg = 0;
+ if (!UseImm) {
+ Op2Reg = getRegForValue(I->getOperand(2));
+ if (Op2Reg == 0) return false;
+ }
+
+ unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
+ CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
+ AddOptionalDefs(
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
+ .addReg(CondReg)
+ .addImm(1));
+
+ unsigned MovCCOpc;
+ const TargetRegisterClass *RC;
+ if (!UseImm) {
+ RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
+ MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
+ } else {
+ RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
+ if (!isNegativeImm)
+ MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
+ else
+ MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
+ }
+ unsigned ResultReg = createResultReg(RC);
+ if (!UseImm) {
+ Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
+ Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
+ ResultReg)
+ .addReg(Op2Reg)
+ .addReg(Op1Reg)
+ .addImm(ARMCC::NE)
+ .addReg(ARM::CPSR);
+ } else {
+ Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
+ ResultReg)
+ .addReg(Op1Reg)
+ .addImm(Imm)
+ .addImm(ARMCC::EQ)
+ .addReg(ARM::CPSR);
+ }
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
+ MVT VT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, VT))
+ return false;
+
+ // If we have integer div support we should have selected this automagically.
+ // In case we have a real miss go ahead and return false and we'll pick
+ // it up later.
+ if (Subtarget->hasDivideInThumbMode())
+ return false;
+
+ // Otherwise emit a libcall.
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (VT == MVT::i8)
+ LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
+ else if (VT == MVT::i16)
+ LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
+ else if (VT == MVT::i32)
+ LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
+ else if (VT == MVT::i64)
+ LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
+ else if (VT == MVT::i128)
+ LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
+ assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
+
+ return ARMEmitLibcall(I, LC);
+}
+
+bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
+ MVT VT;
+ Type *Ty = I->getType();
+ if (!isTypeLegal(Ty, VT))
+ return false;
+
+ // Many ABIs do not provide a libcall for standalone remainder, so we need to
+ // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
+ // multi-reg returns, we'll have to bail out.
+ if (!TLI.hasStandaloneRem(VT)) {
+ return false;
+ }
+
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (VT == MVT::i8)
+ LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
+ else if (VT == MVT::i16)
+ LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
+ else if (VT == MVT::i32)
+ LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
+ else if (VT == MVT::i64)
+ LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
+ else if (VT == MVT::i128)
+ LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
+ assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
+
+ return ARMEmitLibcall(I, LC);
+}
+
+bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
+ EVT DestVT = TLI.getValueType(DL, I->getType(), true);
+
+ // We can get here in the case when we have a binary operation on a non-legal
+ // type and the target independent selector doesn't know how to handle it.
+ if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
+ return false;
+
+ unsigned Opc;
+ switch (ISDOpcode) {
+ default: return false;
+ case ISD::ADD:
+ Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
+ break;
+ case ISD::OR:
+ Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
+ break;
+ case ISD::SUB:
+ Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(I->getOperand(0));
+ if (SrcReg1 == 0) return false;
+
+ // TODO: Often the 2nd operand is an immediate, which can be encoded directly
+ // in the instruction, rather then materializing the value in a register.
+ unsigned SrcReg2 = getRegForValue(I->getOperand(1));
+ if (SrcReg2 == 0) return false;
+
+ unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
+ SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
+ SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(SrcReg1).addReg(SrcReg2));
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
+ EVT FPVT = TLI.getValueType(DL, I->getType(), true);
+ if (!FPVT.isSimple()) return false;
+ MVT VT = FPVT.getSimpleVT();
+
+ // FIXME: Support vector types where possible.
+ if (VT.isVector())
+ return false;
+
+ // We can get here in the case when we want to use NEON for our fp
+ // operations, but can't figure out how to. Just use the vfp instructions
+ // if we have them.
+ // FIXME: It'd be nice to use NEON instructions.
+ Type *Ty = I->getType();
+ if (Ty->isFloatTy() && !Subtarget->hasVFP2())
+ return false;
+ if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
+ return false;
+
+ unsigned Opc;
+ bool is64bit = VT == MVT::f64 || VT == MVT::i64;
+ switch (ISDOpcode) {
+ default: return false;
+ case ISD::FADD:
+ Opc = is64bit ? ARM::VADDD : ARM::VADDS;
+ break;
+ case ISD::FSUB:
+ Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
+ break;
+ case ISD::FMUL:
+ Opc = is64bit ? ARM::VMULD : ARM::VMULS;
+ break;
+ }
+ unsigned Op1 = getRegForValue(I->getOperand(0));
+ if (Op1 == 0) return false;
+
+ unsigned Op2 = getRegForValue(I->getOperand(1));
+ if (Op2 == 0) return false;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(Op1).addReg(Op2));
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+// Call Handling Code
+
+// This is largely taken directly from CCAssignFnForNode
+// TODO: We may not support all of this.
+CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) {
+ switch (CC) {
+ default:
+ report_fatal_error("Unsupported calling convention");
+ case CallingConv::Fast:
+ if (Subtarget->hasVFP2() && !isVarArg) {
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ // For AAPCS ABI targets, just use VFP variant of the calling convention.
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ }
+ LLVM_FALLTHROUGH;
+ case CallingConv::C:
+ case CallingConv::CXX_FAST_TLS:
+ // Use target triple & subtarget features to do actual dispatch.
+ if (Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() &&
+ TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ else
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ } else {
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ }
+ case CallingConv::ARM_AAPCS_VFP:
+ case CallingConv::Swift:
+ if (!isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ // Fall through to soft float variant, variadic functions don't
+ // use hard floating point ABI.
+ LLVM_FALLTHROUGH;
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ case CallingConv::GHC:
+ if (Return)
+ report_fatal_error("Can't return in GHC call convention");
+ else
+ return CC_ARM_APCS_GHC;
+ }
+}
+
+bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs,
+ CallingConv::ID CC,
+ unsigned &NumBytes,
+ bool isVarArg) {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
+ CCAssignFnForCall(CC, false, isVarArg));
+
+ // Check that we can handle all of the arguments. If we can't, then bail out
+ // now before we add code to the MBB.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // We don't handle NEON/vector parameters yet.
+ if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ return false;
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ continue;
+ } else if (VA.needsCustom()) {
+ // TODO: We need custom lowering for vector (v2f64) args.
+ if (VA.getLocVT() != MVT::f64 ||
+ // TODO: Only handle register args for now.
+ !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
+ return false;
+ } else {
+ switch (ArgVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ break;
+ case MVT::f32:
+ if (!Subtarget->hasVFP2())
+ return false;
+ break;
+ case MVT::f64:
+ if (!Subtarget->hasVFP2())
+ return false;
+ break;
+ }
+ }
+ }
+
+ // At the point, we are able to handle the call's arguments in fast isel.
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AdjStackDown))
+ .addImm(NumBytes).addImm(0));
+
+ // Process the args.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ const Value *ArgVal = Args[VA.getValNo()];
+ unsigned Arg = ArgRegs[VA.getValNo()];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
+ "We don't handle NEON/vector parameters yet.");
+
+ // Handle arg promotion, etc.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
+ assert(Arg != 0 && "Failed to emit a sext");
+ ArgVT = DestVT;
+ break;
+ }
+ case CCValAssign::AExt:
+ // Intentional fall-through. Handle AExt and ZExt.
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
+ assert(Arg != 0 && "Failed to emit a zext");
+ ArgVT = DestVT;
+ break;
+ }
+ case CCValAssign::BCvt: {
+ unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
+ /*TODO: Kill=*/false);
+ assert(BC != 0 && "Failed to emit a bitcast!");
+ Arg = BC;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ default: llvm_unreachable("Unknown arg promotion!");
+ }
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+ RegArgs.push_back(VA.getLocReg());
+ } else if (VA.needsCustom()) {
+ // TODO: We need custom lowering for vector (v2f64) args.
+ assert(VA.getLocVT() == MVT::f64 &&
+ "Custom lowering for v2f64 args not available");
+
+ // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
+ CCValAssign &NextVA = ArgLocs[++i];
+
+ assert(VA.isRegLoc() && NextVA.isRegLoc() &&
+ "We only handle register args!");
+
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVRRD), VA.getLocReg())
+ .addReg(NextVA.getLocReg(), RegState::Define)
+ .addReg(Arg));
+ RegArgs.push_back(VA.getLocReg());
+ RegArgs.push_back(NextVA.getLocReg());
+ } else {
+ assert(VA.isMemLoc());
+ // Need to store on the stack.
+
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
+ Address Addr;
+ Addr.BaseType = Address::RegBase;
+ Addr.Base.Reg = ARM::SP;
+ Addr.Offset = VA.getLocMemOffset();
+
+ bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
+ assert(EmitRet && "Could not emit a store for argument!");
+ }
+ }
+
+ return true;
+}
+
+bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes, bool isVarArg) {
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AdjStackUp))
+ .addImm(NumBytes).addImm(0));
+
+ // Now the return value.
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ if (RVLocs.size() == 2 && RetVT == MVT::f64) {
+ // For this move we copy into two registers and then move into the
+ // double fp reg we want.
+ MVT DestVT = RVLocs[0].getValVT();
+ const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
+ unsigned ResultReg = createResultReg(DstRC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::VMOVDRR), ResultReg)
+ .addReg(RVLocs[0].getLocReg())
+ .addReg(RVLocs[1].getLocReg()));
+
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[1].getLocReg());
+
+ // Finally update the result.
+ updateValueMap(I, ResultReg);
+ } else {
+ assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
+ MVT CopyVT = RVLocs[0].getValVT();
+
+ // Special handling for extended integers.
+ if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
+ CopyVT = MVT::i32;
+
+ const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
+
+ unsigned ResultReg = createResultReg(DstRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+
+ // Finally update the result.
+ updateValueMap(I, ResultReg);
+ }
+ }
+
+ return true;
+}
+
+bool ARMFastISel::SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ if (TLI.supportSwiftError() &&
+ F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
+ return false;
+
+ if (TLI.supportSplitCSR(FuncInfo.MF))
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ CallingConv::ID CC = F.getCallingConv();
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
+ F.isVarArg()));
+
+ const Value *RV = Ret->getOperand(0);
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ EVT RVEVT = TLI.getValueType(DL, RV->getType());
+ if (!RVEVT.isSimple()) return false;
+ MVT RVVT = RVEVT.getSimpleVT();
+ MVT DestVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (RVVT != DestVT) {
+ if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
+ return false;
+
+ assert(DestVT == MVT::i32 && "ARM should always ext to i32");
+
+ // Perform extension if flagged as either zext or sext. Otherwise, do
+ // nothing.
+ if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
+ SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
+ if (SrcReg == 0) return false;
+ }
+ }
+
+ // Make the copy.
+ unsigned DstReg = VA.getLocReg();
+ const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!SrcRC->contains(DstReg))
+ return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Subtarget->getReturnOpcode()));
+ AddOptionalDefs(MIB);
+ for (unsigned R : RetRegs)
+ MIB.addReg(R, RegState::Implicit);
+ return true;
+}
+
+unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
+ if (UseReg)
+ return isThumb2 ? ARM::tBLXr : ARM::BLX;
+ else
+ return isThumb2 ? ARM::tBL : ARM::BL;
+}
+
+unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
+ // Manually compute the global's type to avoid building it when unnecessary.
+ Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
+ EVT LCREVT = TLI.getValueType(DL, GVTy);
+ if (!LCREVT.isSimple()) return 0;
+
+ GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
+ GlobalValue::ExternalLinkage, nullptr,
+ Name);
+ assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
+ return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
+}
+
+// A quick function that will emit a call for a named libcall in F with the
+// vector of passed arguments for the Instruction in I. We can assume that we
+// can emit a call for any libcall we can produce. This is an abridged version
+// of the full call infrastructure since we won't need to worry about things
+// like computed function pointers or strange arguments at call sites.
+// TODO: Try to unify this and the normal call bits for ARM, then try to unify
+// with X86.
+bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
+ CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
+
+ // Handle *simple* calls for now.
+ Type *RetTy = I->getType();
+ MVT RetVT;
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ // Can't handle non-double multi-reg retvals.
+ if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
+ if (RVLocs.size() >= 2 && RetVT != MVT::f64)
+ return false;
+ }
+
+ // Set up the argument vectors.
+ SmallVector<Value*, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ Args.reserve(I->getNumOperands());
+ ArgRegs.reserve(I->getNumOperands());
+ ArgVTs.reserve(I->getNumOperands());
+ ArgFlags.reserve(I->getNumOperands());
+ for (Value *Op : I->operands()) {
+ unsigned Arg = getRegForValue(Op);
+ if (Arg == 0) return false;
+
+ Type *ArgTy = Op->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT)) return false;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(Op);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
+ RegArgs, CC, NumBytes, false))
+ return false;
+
+ unsigned CalleeReg = 0;
+ if (Subtarget->genLongCalls()) {
+ CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
+ if (CalleeReg == 0) return false;
+ }
+
+ // Issue the call.
+ unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(CallOpc));
+ // BL / BLX don't take a predicate, but tBL / tBLX do.
+ if (isThumb2)
+ MIB.add(predOps(ARMCC::AL));
+ if (Subtarget->genLongCalls())
+ MIB.addReg(CalleeReg);
+ else
+ MIB.addExternalSymbol(TLI.getLibcallName(Call));
+
+ // Add implicit physical register uses to the call.
+ for (unsigned R : RegArgs)
+ MIB.addReg(R, RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool ARMFastISel::SelectCall(const Instruction *I,
+ const char *IntrMemName = nullptr) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Can't handle inline asm.
+ if (isa<InlineAsm>(Callee)) return false;
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (CI->isTailCall()) return false;
+
+ // Check the calling convention.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+
+ // TODO: Avoid some calling conventions?
+
+ FunctionType *FTy = CS.getFunctionType();
+ bool isVarArg = FTy->isVarArg();
+
+ // Handle *simple* calls for now.
+ Type *RetTy = I->getType();
+ MVT RetVT;
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
+ RetVT != MVT::i8 && RetVT != MVT::i1)
+ return false;
+
+ // Can't handle non-double multi-reg retvals.
+ if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
+ RetVT != MVT::i16 && RetVT != MVT::i32) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
+ if (RVLocs.size() >= 2 && RetVT != MVT::f64)
+ return false;
+ }
+
+ // Set up the argument vectors.
+ SmallVector<Value*, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ unsigned arg_size = CS.arg_size();
+ Args.reserve(arg_size);
+ ArgRegs.reserve(arg_size);
+ ArgVTs.reserve(arg_size);
+ ArgFlags.reserve(arg_size);
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ // If we're lowering a memory intrinsic instead of a regular call, skip the
+ // last two arguments, which shouldn't be passed to the underlying function.
+ if (IntrMemName && e-i <= 2)
+ break;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned ArgIdx = i - CS.arg_begin();
+ if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
+ Flags.setZExt();
+
+ // FIXME: Only handle *easy* calls for now.
+ if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
+ CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
+ CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
+ CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
+ CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
+ CS.paramHasAttr(ArgIdx, Attribute::ByVal))
+ return false;
+
+ Type *ArgTy = (*i)->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
+ ArgVT != MVT::i1)
+ return false;
+
+ unsigned Arg = getRegForValue(*i);
+ if (Arg == 0)
+ return false;
+
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(*i);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
+ RegArgs, CC, NumBytes, isVarArg))
+ return false;
+
+ bool UseReg = false;
+ const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+ if (!GV || Subtarget->genLongCalls()) UseReg = true;
+
+ unsigned CalleeReg = 0;
+ if (UseReg) {
+ if (IntrMemName)
+ CalleeReg = getLibcallReg(IntrMemName);
+ else
+ CalleeReg = getRegForValue(Callee);
+
+ if (CalleeReg == 0) return false;
+ }
+
+ // Issue the call.
+ unsigned CallOpc = ARMSelectCallOp(UseReg);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DbgLoc, TII.get(CallOpc));
+
+ // ARM calls don't take a predicate, but tBL / tBLX do.
+ if(isThumb2)
+ MIB.add(predOps(ARMCC::AL));
+ if (UseReg)
+ MIB.addReg(CalleeReg);
+ else if (!IntrMemName)
+ MIB.addGlobalAddress(GV, 0, 0);
+ else
+ MIB.addExternalSymbol(IntrMemName, 0);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned R : RegArgs)
+ MIB.addReg(R, RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
+ return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
+ return Len <= 16;
+}
+
+bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
+ uint64_t Len, unsigned Alignment) {
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!ARMIsMemCpySmall(Len))
+ return false;
+
+ while (Len) {
+ MVT VT;
+ if (!Alignment || Alignment >= 4) {
+ if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ assert(Len == 1 && "Expected a length of 1!");
+ VT = MVT::i8;
+ }
+ } else {
+ // Bound based on alignment.
+ if (Len >= 2 && Alignment == 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ }
+
+ bool RV;
+ unsigned ResultReg;
+ RV = ARMEmitLoad(VT, ResultReg, Src);
+ assert(RV && "Should be able to handle this load.");
+ RV = ARMEmitStore(VT, ResultReg, Dest);
+ assert(RV && "Should be able to handle this store.");
+ (void)RV;
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ Dest.Offset += Size;
+ Src.Offset += Size;
+ }
+
+ return true;
+}
+
+bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
+ // FIXME: Handle more intrinsics.
+ switch (I.getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
+ MFI.setFrameAddressIsTaken(true);
+
+ unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
+
+ const ARMBaseRegisterInfo *RegInfo =
+ static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
+ unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ unsigned SrcReg = FramePtr;
+
+ // Recursively load frame address
+ // ldr r0 [fp]
+ // ldr r0 [r0]
+ // ldr r0 [r0]
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = createResultReg(RC);
+ AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(LdrOpc), DestReg)
+ .addReg(SrcReg).addImm(0));
+ SrcReg = DestReg;
+ }
+ updateValueMap(&I, SrcReg);
+ return true;
+ }
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ // Don't handle volatile.
+ if (MTI.isVolatile())
+ return false;
+
+ // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
+ // we would emit dead code because we don't currently handle memmoves.
+ bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ // Small memcpy's are common enough that we want to do them without a call
+ // if possible.
+ uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
+ if (ARMIsMemCpySmall(Len)) {
+ Address Dest, Src;
+ if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
+ !ARMComputeAddress(MTI.getRawSource(), Src))
+ return false;
+ unsigned Alignment = MTI.getAlignment();
+ if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ return true;
+ }
+ }
+
+ if (!MTI.getLength()->getType()->isIntegerTy(32))
+ return false;
+
+ if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ return false;
+
+ const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
+ return SelectCall(&I, IntrMemName);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+ // Don't handle volatile.
+ if (MSI.isVolatile())
+ return false;
+
+ if (!MSI.getLength()->getType()->isIntegerTy(32))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ return false;
+
+ return SelectCall(&I, "memset");
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
+ Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
+ return true;
+ }
+ }
+}
+
+bool ARMFastISel::SelectTrunc(const Instruction *I) {
+ // The high bits for a type smaller than the register size are assumed to be
+ // undefined.
+ Value *Op = I->getOperand(0);
+
+ EVT SrcVT, DestVT;
+ SrcVT = TLI.getValueType(DL, Op->getType(), true);
+ DestVT = TLI.getValueType(DL, I->getType(), true);
+
+ if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
+ return false;
+ if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Op);
+ if (!SrcReg) return false;
+
+ // Because the high bits are undefined, a truncate doesn't generate
+ // any code.
+ updateValueMap(I, SrcReg);
+ return true;
+}
+
+unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool isZExt) {
+ if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
+ return 0;
+ if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
+ return 0;
+
+ // Table of which combinations can be emitted as a single instruction,
+ // and which will require two.
+ static const uint8_t isSingleInstrTbl[3][2][2][2] = {
+ // ARM Thumb
+ // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
+ // ext: s z s z s z s z
+ /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
+ /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
+ /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
+ };
+
+ // Target registers for:
+ // - For ARM can never be PC.
+ // - For 16-bit Thumb are restricted to lower 8 registers.
+ // - For 32-bit Thumb are restricted to non-SP and non-PC.
+ static const TargetRegisterClass *RCTbl[2][2] = {
+ // Instructions: Two Single
+ /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
+ /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
+ };
+
+ // Table governing the instruction(s) to be emitted.
+ static const struct InstructionTable {
+ uint32_t Opc : 16;
+ uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
+ uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
+ uint32_t Imm : 8; // All instructions have either a shift or a mask.
+ } IT[2][2][3][2] = {
+ { // Two instructions (first is left shift, second is in this table).
+ { // ARM Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
+ /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
+ /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
+ /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
+ /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
+ /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
+ },
+ { // Thumb Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
+ /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
+ /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
+ /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
+ /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
+ /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
+ }
+ },
+ { // Single instruction.
+ { // ARM Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
+ /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
+ /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
+ /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
+ /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
+ /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
+ },
+ { // Thumb Opc S Shift Imm
+ /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
+ /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
+ /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
+ /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
+ /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
+ /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
+ }
+ }
+ };
+
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ unsigned DestBits = DestVT.getSizeInBits();
+ (void) DestBits;
+ assert((SrcBits < DestBits) && "can only extend to larger types");
+ assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
+ "other sizes unimplemented");
+ assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
+ "other sizes unimplemented");
+
+ bool hasV6Ops = Subtarget->hasV6Ops();
+ unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
+ assert((Bitness < 3) && "sanity-check table bounds");
+
+ bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
+ const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
+ const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
+ unsigned Opc = ITP->Opc;
+ assert(ARM::KILL != Opc && "Invalid table entry");
+ unsigned hasS = ITP->hasS;
+ ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
+ assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
+ "only MOVsi has shift operand addressing mode");
+ unsigned Imm = ITP->Imm;
+
+ // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
+ bool setsCPSR = &ARM::tGPRRegClass == RC;
+ unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
+ unsigned ResultReg;
+ // MOVsi encodes shift and immediate in shift operand addressing mode.
+ // The following condition has the same value when emitting two
+ // instruction sequences: both are shifts.
+ bool ImmIsSO = (Shift != ARM_AM::no_shift);
+
+ // Either one or two instructions are emitted.
+ // They're always of the form:
+ // dst = in OP imm
+ // CPSR is set only by 16-bit Thumb instructions.
+ // Predicate, if any, is AL.
+ // S bit, if available, is always 0.
+ // When two are emitted the first's result will feed as the second's input,
+ // that value is then dead.
+ unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
+ for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
+ ResultReg = createResultReg(RC);
+ bool isLsl = (0 == Instr) && !isSingleInstr;
+ unsigned Opcode = isLsl ? LSLOpc : Opc;
+ ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
+ unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
+ bool isKill = 1 == Instr;
+ MachineInstrBuilder MIB = BuildMI(
+ *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
+ if (setsCPSR)
+ MIB.addReg(ARM::CPSR, RegState::Define);
+ SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
+ MIB.addReg(SrcReg, isKill * RegState::Kill)
+ .addImm(ImmEnc)
+ .add(predOps(ARMCC::AL));
+ if (hasS)
+ MIB.add(condCodeOp());
+ // Second instruction consumes the first's result.
+ SrcReg = ResultReg;
+ }
+
+ return ResultReg;
+}
+
+bool ARMFastISel::SelectIntExt(const Instruction *I) {
+ // On ARM, in general, integer casts don't involve legal types; this code
+ // handles promotable integers.
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool isZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg) return false;
+
+ EVT SrcEVT, DestEVT;
+ SrcEVT = TLI.getValueType(DL, SrcTy, true);
+ DestEVT = TLI.getValueType(DL, DestTy, true);
+ if (!SrcEVT.isSimple()) return false;
+ if (!DestEVT.isSimple()) return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+ unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
+ if (ResultReg == 0) return false;
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool ARMFastISel::SelectShift(const Instruction *I,
+ ARM_AM::ShiftOpc ShiftTy) {
+ // We handle thumb2 mode by target independent selector
+ // or SelectionDAG ISel.
+ if (isThumb2)
+ return false;
+
+ // Only handle i32 now.
+ EVT DestVT = TLI.getValueType(DL, I->getType(), true);
+ if (DestVT != MVT::i32)
+ return false;
+
+ unsigned Opc = ARM::MOVsr;
+ unsigned ShiftImm;
+ Value *Src2Value = I->getOperand(1);
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
+ ShiftImm = CI->getZExtValue();
+
+ // Fall back to selection DAG isel if the shift amount
+ // is zero or greater than the width of the value type.
+ if (ShiftImm == 0 || ShiftImm >=32)
+ return false;
+
+ Opc = ARM::MOVsi;
+ }
+
+ Value *Src1Value = I->getOperand(0);
+ unsigned Reg1 = getRegForValue(Src1Value);
+ if (Reg1 == 0) return false;
+
+ unsigned Reg2 = 0;
+ if (Opc == ARM::MOVsr) {
+ Reg2 = getRegForValue(Src2Value);
+ if (Reg2 == 0) return false;
+ }
+
+ unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
+ if(ResultReg == 0) return false;
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg)
+ .addReg(Reg1);
+
+ if (Opc == ARM::MOVsi)
+ MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
+ else if (Opc == ARM::MOVsr) {
+ MIB.addReg(Reg2);
+ MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
+ }
+
+ AddOptionalDefs(MIB);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+// TODO: SoftFP support.
+bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Br:
+ return SelectBranch(I);
+ case Instruction::IndirectBr:
+ return SelectIndirectBr(I);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return SelectCmp(I);
+ case Instruction::FPExt:
+ return SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return SelectFPTrunc(I);
+ case Instruction::SIToFP:
+ return SelectIToFP(I, /*isSigned*/ true);
+ case Instruction::UIToFP:
+ return SelectIToFP(I, /*isSigned*/ false);
+ case Instruction::FPToSI:
+ return SelectFPToI(I, /*isSigned*/ true);
+ case Instruction::FPToUI:
+ return SelectFPToI(I, /*isSigned*/ false);
+ case Instruction::Add:
+ return SelectBinaryIntOp(I, ISD::ADD);
+ case Instruction::Or:
+ return SelectBinaryIntOp(I, ISD::OR);
+ case Instruction::Sub:
+ return SelectBinaryIntOp(I, ISD::SUB);
+ case Instruction::FAdd:
+ return SelectBinaryFPOp(I, ISD::FADD);
+ case Instruction::FSub:
+ return SelectBinaryFPOp(I, ISD::FSUB);
+ case Instruction::FMul:
+ return SelectBinaryFPOp(I, ISD::FMUL);
+ case Instruction::SDiv:
+ return SelectDiv(I, /*isSigned*/ true);
+ case Instruction::UDiv:
+ return SelectDiv(I, /*isSigned*/ false);
+ case Instruction::SRem:
+ return SelectRem(I, /*isSigned*/ true);
+ case Instruction::URem:
+ return SelectRem(I, /*isSigned*/ false);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ return SelectIntrinsicCall(*II);
+ return SelectCall(I);
+ case Instruction::Select:
+ return SelectSelect(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ case Instruction::Trunc:
+ return SelectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return SelectIntExt(I);
+ case Instruction::Shl:
+ return SelectShift(I, ARM_AM::lsl);
+ case Instruction::LShr:
+ return SelectShift(I, ARM_AM::lsr);
+ case Instruction::AShr:
+ return SelectShift(I, ARM_AM::asr);
+ default: break;
+ }
+ return false;
+}
+
+// This table describes sign- and zero-extend instructions which can be
+// folded into a preceding load. All of these extends have an immediate
+// (sometimes a mask and sometimes a shift) that's applied after
+// extension.
+static const struct FoldableLoadExtendsStruct {
+ uint16_t Opc[2]; // ARM, Thumb.
+ uint8_t ExpectedImm;
+ uint8_t isZExt : 1;
+ uint8_t ExpectedVT : 7;
+} FoldableLoadExtends[] = {
+ { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
+ { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
+ { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
+ { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
+ { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
+};
+
+/// \brief The specified machine instr operand is a vreg, and that
+/// vreg is being provided by the specified load instruction. If possible,
+/// try to fold the load as an operand to the instruction, returning true if
+/// successful.
+bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ // Verify we have a legal type before going any further.
+ MVT VT;
+ if (!isLoadTypeLegal(LI->getType(), VT))
+ return false;
+
+ // Combine load followed by zero- or sign-extend.
+ // ldrb r1, [r0] ldrb r1, [r0]
+ // uxtb r2, r1 =>
+ // mov r3, r2 mov r3, r1
+ if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
+ return false;
+ const uint64_t Imm = MI->getOperand(2).getImm();
+
+ bool Found = false;
+ bool isZExt;
+ for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
+ if (FLE.Opc[isThumb2] == MI->getOpcode() &&
+ (uint64_t)FLE.ExpectedImm == Imm &&
+ MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
+ Found = true;
+ isZExt = FLE.isZExt;
+ }
+ }
+ if (!Found) return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
+
+ unsigned ResultReg = MI->getOperand(0).getReg();
+ if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
+ return false;
+ MI->eraseFromParent();
+ return true;
+}
+
+unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
+ unsigned Align, MVT VT) {
+ bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
+
+ LLVMContext *Context = &MF->getFunction().getContext();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
+ GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
+ UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
+ /*AddCurrentAddress=*/UseGOT_PREL);
+
+ unsigned ConstAlign =
+ MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
+ unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
+
+ unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
+ unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
+ .addConstantPoolIndex(Idx);
+ if (Opc == ARM::LDRcp)
+ MIB.addImm(0);
+ MIB.add(predOps(ARMCC::AL));
+
+ // Fix the address by adding pc.
+ unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
+ : ARM::PICADD;
+ DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
+ .addReg(TempReg)
+ .addImm(ARMPCLabelIndex);
+ if (!Subtarget->isThumb())
+ MIB.add(predOps(ARMCC::AL));
+
+ if (UseGOT_PREL && Subtarget->isThumb()) {
+ unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(ARM::t2LDRi12), NewDestReg)
+ .addReg(DestReg)
+ .addImm(0);
+ DestReg = NewDestReg;
+ AddOptionalDefs(MIB);
+ }
+ return DestReg;
+}
+
+bool ARMFastISel::fastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ switch (CC) {
+ default:
+ return false;
+ case CallingConv::Fast:
+ case CallingConv::C:
+ case CallingConv::ARM_AAPCS_VFP:
+ case CallingConv::ARM_AAPCS:
+ case CallingConv::ARM_APCS:
+ case CallingConv::Swift:
+ break;
+ }
+
+ // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
+ // which are passed in r0 - r3.
+ for (const Argument &Arg : F->args()) {
+ if (Arg.getArgNo() >= 4)
+ return false;
+
+ if (Arg.hasAttribute(Attribute::InReg) ||
+ Arg.hasAttribute(Attribute::StructRet) ||
+ Arg.hasAttribute(Attribute::SwiftSelf) ||
+ Arg.hasAttribute(Attribute::SwiftError) ||
+ Arg.hasAttribute(Attribute::ByVal))
+ return false;
+
+ Type *ArgTy = Arg.getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(DL, ArgTy);
+ if (!ArgVT.isSimple()) return false;
+ switch (ArgVT.getSimpleVT().SimpleTy) {
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ break;
+ default:
+ return false;
+ }
+ }
+
+ static const MCPhysReg GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ const TargetRegisterClass *RC = &ARM::rGPRRegClass;
+ for (const Argument &Arg : F->args()) {
+ unsigned ArgNo = Arg.getArgNo();
+ unsigned SrcReg = GPRArgRegs[ArgNo];
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(DstReg, getKillRegState(true));
+ updateValueMap(&Arg, ResultReg);
+ }
+
+ return true;
+}
+
+namespace llvm {
+
+ FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
+ return new ARMFastISel(funcInfo, libInfo);
+
+ return nullptr;
+ }
+
+} // end namespace llvm