aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp2258
1 files changed, 2258 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
new file mode 100644
index 000000000000..be1a37e3e362
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
@@ -0,0 +1,2258 @@
+//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that splits the constant pool up into 'islands'
+// which are scattered through-out the function. This is required due to the
+// limited pc-relative displacements that ARM has.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBasicBlockInfo.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-cp-islands"
+
+STATISTIC(NumCPEs, "Number of constpool entries");
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+STATISTIC(NumCBrFixed, "Number of cond branches fixed");
+STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+STATISTIC(NumTBs, "Number of table branches generated");
+STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
+STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
+STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
+STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
+STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
+
+
+static cl::opt<bool>
+AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
+ cl::desc("Adjust basic block layout to better use TB[BH]"));
+
+static cl::opt<unsigned>
+CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
+ cl::desc("The max number of iteration for converge"));
+
+static cl::opt<bool> SynthesizeThumb1TBB(
+ "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
+ cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
+ "equivalent to the TBB/TBH instructions"));
+
+namespace {
+ /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
+ /// requires constant pool entries to be scattered among the instructions
+ /// inside a function. To do this, it completely ignores the normal LLVM
+ /// constant pool; instead, it places constants wherever it feels like with
+ /// special instructions.
+ ///
+ /// The terminology used in this pass includes:
+ /// Islands - Clumps of constants placed in the function.
+ /// Water - Potential places where an island could be formed.
+ /// CPE - A constant pool entry that has been placed somewhere, which
+ /// tracks a list of users.
+ class ARMConstantIslands : public MachineFunctionPass {
+
+ std::vector<BasicBlockInfo> BBInfo;
+
+ /// WaterList - A sorted list of basic blocks where islands could be placed
+ /// (i.e. blocks that don't fall through to the following block, due
+ /// to a return, unreachable, or unconditional branch).
+ std::vector<MachineBasicBlock*> WaterList;
+
+ /// NewWaterList - The subset of WaterList that was created since the
+ /// previous iteration by inserting unconditional branches.
+ SmallSet<MachineBasicBlock*, 4> NewWaterList;
+
+ typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
+
+ /// CPUser - One user of a constant pool, keeping the machine instruction
+ /// pointer, the constant pool being referenced, and the max displacement
+ /// allowed from the instruction to the CP. The HighWaterMark records the
+ /// highest basic block where a new CPEntry can be placed. To ensure this
+ /// pass terminates, the CP entries are initially placed at the end of the
+ /// function and then move monotonically to lower addresses. The
+ /// exception to this rule is when the current CP entry for a particular
+ /// CPUser is out of range, but there is another CP entry for the same
+ /// constant value in range. We want to use the existing in-range CP
+ /// entry, but if it later moves out of range, the search for new water
+ /// should resume where it left off. The HighWaterMark is used to record
+ /// that point.
+ struct CPUser {
+ MachineInstr *MI;
+ MachineInstr *CPEMI;
+ MachineBasicBlock *HighWaterMark;
+ unsigned MaxDisp;
+ bool NegOk;
+ bool IsSoImm;
+ bool KnownAlignment;
+ CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
+ bool neg, bool soimm)
+ : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
+ KnownAlignment(false) {
+ HighWaterMark = CPEMI->getParent();
+ }
+ /// getMaxDisp - Returns the maximum displacement supported by MI.
+ /// Correct for unknown alignment.
+ /// Conservatively subtract 2 bytes to handle weird alignment effects.
+ unsigned getMaxDisp() const {
+ return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
+ }
+ };
+
+ /// CPUsers - Keep track of all of the machine instructions that use various
+ /// constant pools and their max displacement.
+ std::vector<CPUser> CPUsers;
+
+ /// CPEntry - One per constant pool entry, keeping the machine instruction
+ /// pointer, the constpool index, and the number of CPUser's which
+ /// reference this entry.
+ struct CPEntry {
+ MachineInstr *CPEMI;
+ unsigned CPI;
+ unsigned RefCount;
+ CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
+ : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
+ };
+
+ /// CPEntries - Keep track of all of the constant pool entry machine
+ /// instructions. For each original constpool index (i.e. those that existed
+ /// upon entry to this pass), it keeps a vector of entries. Original
+ /// elements are cloned as we go along; the clones are put in the vector of
+ /// the original element, but have distinct CPIs.
+ ///
+ /// The first half of CPEntries contains generic constants, the second half
+ /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
+ /// which vector it will be in here.
+ std::vector<std::vector<CPEntry> > CPEntries;
+
+ /// Maps a JT index to the offset in CPEntries containing copies of that
+ /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
+ DenseMap<int, int> JumpTableEntryIndices;
+
+ /// Maps a JT index to the LEA that actually uses the index to calculate its
+ /// base address.
+ DenseMap<int, int> JumpTableUserIndices;
+
+ /// ImmBranch - One per immediate branch, keeping the machine instruction
+ /// pointer, conditional or unconditional, the max displacement,
+ /// and (if isCond is true) the corresponding unconditional branch
+ /// opcode.
+ struct ImmBranch {
+ MachineInstr *MI;
+ unsigned MaxDisp : 31;
+ bool isCond : 1;
+ unsigned UncondBr;
+ ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
+ : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
+ };
+
+ /// ImmBranches - Keep track of all the immediate branch instructions.
+ ///
+ std::vector<ImmBranch> ImmBranches;
+
+ /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
+ ///
+ SmallVector<MachineInstr*, 4> PushPopMIs;
+
+ /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
+ SmallVector<MachineInstr*, 4> T2JumpTables;
+
+ /// HasFarJump - True if any far jump instruction has been emitted during
+ /// the branch fix up pass.
+ bool HasFarJump;
+
+ MachineFunction *MF;
+ MachineConstantPool *MCP;
+ const ARMBaseInstrInfo *TII;
+ const ARMSubtarget *STI;
+ ARMFunctionInfo *AFI;
+ bool isThumb;
+ bool isThumb1;
+ bool isThumb2;
+ bool isPositionIndependentOrROPI;
+ public:
+ static char ID;
+ ARMConstantIslands() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ StringRef getPassName() const override {
+ return "ARM constant island placement and branch shortening pass";
+ }
+
+ private:
+ void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
+ void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
+ bool BBHasFallthrough(MachineBasicBlock *MBB);
+ CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
+ unsigned getCPELogAlign(const MachineInstr *CPEMI);
+ void scanFunctionJumpTables();
+ void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
+ void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
+ void adjustBBOffsetsAfter(MachineBasicBlock *BB);
+ bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
+ unsigned getCombinedIndex(const MachineInstr *CPEMI);
+ int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
+ bool findAvailableWater(CPUser&U, unsigned UserOffset,
+ water_iterator &WaterIter, bool CloserWater);
+ void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
+ MachineBasicBlock *&NewMBB);
+ bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
+ void removeDeadCPEMI(MachineInstr *CPEMI);
+ bool removeUnusedCPEntries();
+ bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned Disp, bool NegOk,
+ bool DoDump = false);
+ bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
+ CPUser &U, unsigned &Growth);
+ bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
+ bool fixupImmediateBr(ImmBranch &Br);
+ bool fixupConditionalBr(ImmBranch &Br);
+ bool fixupUnconditionalBr(ImmBranch &Br);
+ bool undoLRSpillRestore();
+ bool optimizeThumb2Instructions();
+ bool optimizeThumb2Branches();
+ bool reorderThumb2JumpTables();
+ bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
+ unsigned &DeadSize, bool &CanDeleteLEA,
+ bool &BaseRegKill);
+ bool optimizeThumb2JumpTables();
+ MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
+ MachineBasicBlock *JTBB);
+
+ unsigned getOffsetOf(MachineInstr *MI) const;
+ unsigned getUserOffset(CPUser&) const;
+ void dumpBBs();
+ void verify();
+
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ unsigned Disp, bool NegativeOK, bool IsSoImm = false);
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ const CPUser &U) {
+ return isOffsetInRange(UserOffset, TrialOffset,
+ U.getMaxDisp(), U.NegOk, U.IsSoImm);
+ }
+ };
+ char ARMConstantIslands::ID = 0;
+}
+
+/// verify - check BBOffsets, BBSizes, alignment of islands
+void ARMConstantIslands::verify() {
+#ifndef NDEBUG
+ assert(std::is_sorted(MF->begin(), MF->end(),
+ [this](const MachineBasicBlock &LHS,
+ const MachineBasicBlock &RHS) {
+ return BBInfo[LHS.getNumber()].postOffset() <
+ BBInfo[RHS.getNumber()].postOffset();
+ }));
+ DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
+ CPUser &U = CPUsers[i];
+ unsigned UserOffset = getUserOffset(U);
+ // Verify offset using the real max displacement without the safety
+ // adjustment.
+ if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
+ /* DoDump = */ true)) {
+ DEBUG(dbgs() << "OK\n");
+ continue;
+ }
+ DEBUG(dbgs() << "Out of range.\n");
+ dumpBBs();
+ DEBUG(MF->dump());
+ llvm_unreachable("Constant pool entry out of range!");
+ }
+#endif
+}
+
+/// print block size and offset information - debugging
+void ARMConstantIslands::dumpBBs() {
+ DEBUG({
+ for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
+ const BasicBlockInfo &BBI = BBInfo[J];
+ dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
+ << " kb=" << unsigned(BBI.KnownBits)
+ << " ua=" << unsigned(BBI.Unalign)
+ << " pa=" << unsigned(BBI.PostAlign)
+ << format(" size=%#x\n", BBInfo[J].Size);
+ }
+ });
+}
+
+/// createARMConstantIslandPass - returns an instance of the constpool
+/// island pass.
+FunctionPass *llvm::createARMConstantIslandPass() {
+ return new ARMConstantIslands();
+}
+
+bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ MCP = mf.getConstantPool();
+
+ DEBUG(dbgs() << "***** ARMConstantIslands: "
+ << MCP->getConstants().size() << " CP entries, aligned to "
+ << MCP->getConstantPoolAlignment() << " bytes *****\n");
+
+ STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
+ TII = STI->getInstrInfo();
+ isPositionIndependentOrROPI =
+ STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
+ AFI = MF->getInfo<ARMFunctionInfo>();
+
+ isThumb = AFI->isThumbFunction();
+ isThumb1 = AFI->isThumb1OnlyFunction();
+ isThumb2 = AFI->isThumb2Function();
+
+ HasFarJump = false;
+ bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
+
+ // This pass invalidates liveness information when it splits basic blocks.
+ MF->getRegInfo().invalidateLiveness();
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ // Try to reorder and otherwise adjust the block layout to make good use
+ // of the TB[BH] instructions.
+ bool MadeChange = false;
+ if (GenerateTBB && AdjustJumpTableBlocks) {
+ scanFunctionJumpTables();
+ MadeChange |= reorderThumb2JumpTables();
+ // Data is out of date, so clear it. It'll be re-computed later.
+ T2JumpTables.clear();
+ // Blocks may have shifted around. Keep the numbering up to date.
+ MF->RenumberBlocks();
+ }
+
+ // Perform the initial placement of the constant pool entries. To start with,
+ // we put them all at the end of the function.
+ std::vector<MachineInstr*> CPEMIs;
+ if (!MCP->isEmpty())
+ doInitialConstPlacement(CPEMIs);
+
+ if (MF->getJumpTableInfo())
+ doInitialJumpTablePlacement(CPEMIs);
+
+ /// The next UID to take is the first unused one.
+ AFI->initPICLabelUId(CPEMIs.size());
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block, the location of all the water, and finding all of the
+ // constant pool users.
+ initializeFunctionInfo(CPEMIs);
+ CPEMIs.clear();
+ DEBUG(dumpBBs());
+
+ // Functions with jump tables need an alignment of 4 because they use the ADR
+ // instruction, which aligns the PC to 4 bytes before adding an offset.
+ if (!T2JumpTables.empty())
+ MF->ensureAlignment(2);
+
+ /// Remove dead constant pool entries.
+ MadeChange |= removeUnusedCPEntries();
+
+ // Iteratively place constant pool entries and fix up branches until there
+ // is no change.
+ unsigned NoCPIters = 0, NoBRIters = 0;
+ while (true) {
+ DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
+ bool CPChange = false;
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
+ // For most inputs, it converges in no more than 5 iterations.
+ // If it doesn't end in 10, the input may have huge BB or many CPEs.
+ // In this case, we will try different heuristics.
+ CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
+ if (CPChange && ++NoCPIters > CPMaxIteration)
+ report_fatal_error("Constant Island pass failed to converge!");
+ DEBUG(dumpBBs());
+
+ // Clear NewWaterList now. If we split a block for branches, it should
+ // appear as "new water" for the next iteration of constant pool placement.
+ NewWaterList.clear();
+
+ DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
+ bool BRChange = false;
+ for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
+ BRChange |= fixupImmediateBr(ImmBranches[i]);
+ if (BRChange && ++NoBRIters > 30)
+ report_fatal_error("Branch Fix Up pass failed to converge!");
+ DEBUG(dumpBBs());
+
+ if (!CPChange && !BRChange)
+ break;
+ MadeChange = true;
+ }
+
+ // Shrink 32-bit Thumb2 load and store instructions.
+ if (isThumb2 && !STI->prefers32BitThumb())
+ MadeChange |= optimizeThumb2Instructions();
+
+ // Shrink 32-bit branch instructions.
+ if (isThumb && STI->hasV8MBaselineOps())
+ MadeChange |= optimizeThumb2Branches();
+
+ // Optimize jump tables using TBB / TBH.
+ if (GenerateTBB && !STI->genExecuteOnly())
+ MadeChange |= optimizeThumb2JumpTables();
+
+ // After a while, this might be made debug-only, but it is not expensive.
+ verify();
+
+ // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
+ // undo the spill / restore of LR if possible.
+ if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
+ MadeChange |= undoLRSpillRestore();
+
+ // Save the mapping between original and cloned constpool entries.
+ for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
+ for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
+ const CPEntry & CPE = CPEntries[i][j];
+ if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
+ AFI->recordCPEClone(i, CPE.CPI);
+ }
+ }
+
+ DEBUG(dbgs() << '\n'; dumpBBs());
+
+ BBInfo.clear();
+ WaterList.clear();
+ CPUsers.clear();
+ CPEntries.clear();
+ JumpTableEntryIndices.clear();
+ JumpTableUserIndices.clear();
+ ImmBranches.clear();
+ PushPopMIs.clear();
+ T2JumpTables.clear();
+
+ return MadeChange;
+}
+
+/// \brief Perform the initial placement of the regular constant pool entries.
+/// To start with, we put them all at the end of the function.
+void
+ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
+ // Create the basic block to hold the CPE's.
+ MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
+ MF->push_back(BB);
+
+ // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
+ unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
+
+ // Mark the basic block as required by the const-pool.
+ BB->setAlignment(MaxAlign);
+
+ // The function needs to be as aligned as the basic blocks. The linker may
+ // move functions around based on their alignment.
+ MF->ensureAlignment(BB->getAlignment());
+
+ // Order the entries in BB by descending alignment. That ensures correct
+ // alignment of all entries as long as BB is sufficiently aligned. Keep
+ // track of the insertion point for each alignment. We are going to bucket
+ // sort the entries as they are created.
+ SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
+
+ // Add all of the constants from the constant pool to the end block, use an
+ // identity mapping of CPI's to CPE's.
+ const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
+
+ const DataLayout &TD = MF->getDataLayout();
+ for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
+ unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
+ assert(Size >= 4 && "Too small constant pool entry");
+ unsigned Align = CPs[i].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid alignment");
+ // Verify that all constant pool entries are a multiple of their alignment.
+ // If not, we would have to pad them out so that instructions stay aligned.
+ assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
+
+ // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
+ unsigned LogAlign = Log2_32(Align);
+ MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
+ MachineInstr *CPEMI =
+ BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
+ .addImm(i).addConstantPoolIndex(i).addImm(Size);
+ CPEMIs.push_back(CPEMI);
+
+ // Ensure that future entries with higher alignment get inserted before
+ // CPEMI. This is bucket sort with iterators.
+ for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
+ if (InsPoint[a] == InsAt)
+ InsPoint[a] = CPEMI;
+
+ // Add a new CPEntry, but no corresponding CPUser yet.
+ CPEntries.emplace_back(1, CPEntry(CPEMI, i));
+ ++NumCPEs;
+ DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
+ << Size << ", align = " << Align <<'\n');
+ }
+ DEBUG(BB->dump());
+}
+
+/// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH
+/// instructions can be made more efficient if the jump table immediately
+/// follows the instruction, it's best to place them immediately next to their
+/// jumps to begin with. In almost all cases they'll never be moved from that
+/// position.
+void ARMConstantIslands::doInitialJumpTablePlacement(
+ std::vector<MachineInstr *> &CPEMIs) {
+ unsigned i = CPEntries.size();
+ auto MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+
+ MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
+ for (MachineBasicBlock &MBB : *MF) {
+ auto MI = MBB.getLastNonDebugInstr();
+ if (MI == MBB.end())
+ continue;
+
+ unsigned JTOpcode;
+ switch (MI->getOpcode()) {
+ default:
+ continue;
+ case ARM::BR_JTadd:
+ case ARM::BR_JTr:
+ case ARM::tBR_JTr:
+ case ARM::BR_JTm:
+ JTOpcode = ARM::JUMPTABLE_ADDRS;
+ break;
+ case ARM::t2BR_JT:
+ JTOpcode = ARM::JUMPTABLE_INSTS;
+ break;
+ case ARM::tTBB_JT:
+ case ARM::t2TBB_JT:
+ JTOpcode = ARM::JUMPTABLE_TBB;
+ break;
+ case ARM::tTBH_JT:
+ case ARM::t2TBH_JT:
+ JTOpcode = ARM::JUMPTABLE_TBH;
+ break;
+ }
+
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ MachineOperand JTOp =
+ MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
+ unsigned JTI = JTOp.getIndex();
+ unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
+ MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
+ MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
+ MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
+ DebugLoc(), TII->get(JTOpcode))
+ .addImm(i++)
+ .addJumpTableIndex(JTI)
+ .addImm(Size);
+ CPEMIs.push_back(CPEMI);
+ CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
+ JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
+ if (!LastCorrectlyNumberedBB)
+ LastCorrectlyNumberedBB = &MBB;
+ }
+
+ // If we did anything then we need to renumber the subsequent blocks.
+ if (LastCorrectlyNumberedBB)
+ MF->RenumberBlocks(LastCorrectlyNumberedBB);
+}
+
+/// BBHasFallthrough - Return true if the specified basic block can fallthrough
+/// into the block immediately after it.
+bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
+ // Get the next machine basic block in the function.
+ MachineFunction::iterator MBBI = MBB->getIterator();
+ // Can't fall off end of function.
+ if (std::next(MBBI) == MBB->getParent()->end())
+ return false;
+
+ MachineBasicBlock *NextBB = &*std::next(MBBI);
+ if (!MBB->isSuccessor(NextBB))
+ return false;
+
+ // Try to analyze the end of the block. A potential fallthrough may already
+ // have an unconditional branch for whatever reason.
+ MachineBasicBlock *TBB, *FBB;
+ SmallVector<MachineOperand, 4> Cond;
+ bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
+ return TooDifficult || FBB == nullptr;
+}
+
+/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
+/// look up the corresponding CPEntry.
+ARMConstantIslands::CPEntry
+*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
+ const MachineInstr *CPEMI) {
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ // Number of entries per constpool index should be small, just do a
+ // linear search.
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ if (CPEs[i].CPEMI == CPEMI)
+ return &CPEs[i];
+ }
+ return nullptr;
+}
+
+/// getCPELogAlign - Returns the required alignment of the constant pool entry
+/// represented by CPEMI. Alignment is measured in log2(bytes) units.
+unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
+ switch (CPEMI->getOpcode()) {
+ case ARM::CONSTPOOL_ENTRY:
+ break;
+ case ARM::JUMPTABLE_TBB:
+ return isThumb1 ? 2 : 0;
+ case ARM::JUMPTABLE_TBH:
+ return isThumb1 ? 2 : 1;
+ case ARM::JUMPTABLE_INSTS:
+ return 1;
+ case ARM::JUMPTABLE_ADDRS:
+ return 2;
+ default:
+ llvm_unreachable("unknown constpool entry kind");
+ }
+
+ unsigned CPI = getCombinedIndex(CPEMI);
+ assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
+ unsigned Align = MCP->getConstants()[CPI].getAlignment();
+ assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
+ return Log2_32(Align);
+}
+
+/// scanFunctionJumpTables - Do a scan of the function, building up
+/// information about the sizes of each block and the locations of all
+/// the jump tables.
+void ARMConstantIslands::scanFunctionJumpTables() {
+ for (MachineBasicBlock &MBB : *MF) {
+ for (MachineInstr &I : MBB)
+ if (I.isBranch() &&
+ (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
+ T2JumpTables.push_back(&I);
+ }
+}
+
+/// initializeFunctionInfo - Do the initial scan of the function, building up
+/// information about the sizes of each block, the location of all the water,
+/// and finding all of the constant pool users.
+void ARMConstantIslands::
+initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
+
+ BBInfo = computeAllBlockSizes(MF);
+
+ // The known bits of the entry block offset are determined by the function
+ // alignment.
+ BBInfo.front().KnownBits = MF->getAlignment();
+
+ // Compute block offsets and known bits.
+ adjustBBOffsetsAfter(&MF->front());
+
+ // Now go back through the instructions and build up our data structures.
+ for (MachineBasicBlock &MBB : *MF) {
+ // If this block doesn't fall through into the next MBB, then this is
+ // 'water' that a constant pool island could be placed.
+ if (!BBHasFallthrough(&MBB))
+ WaterList.push_back(&MBB);
+
+ for (MachineInstr &I : MBB) {
+ if (I.isDebugValue())
+ continue;
+
+ unsigned Opc = I.getOpcode();
+ if (I.isBranch()) {
+ bool isCond = false;
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ int UOpc = Opc;
+ switch (Opc) {
+ default:
+ continue; // Ignore other JT branches
+ case ARM::t2BR_JT:
+ case ARM::tBR_JTr:
+ T2JumpTables.push_back(&I);
+ continue; // Does not get an entry in ImmBranches
+ case ARM::Bcc:
+ isCond = true;
+ UOpc = ARM::B;
+ LLVM_FALLTHROUGH;
+ case ARM::B:
+ Bits = 24;
+ Scale = 4;
+ break;
+ case ARM::tBcc:
+ isCond = true;
+ UOpc = ARM::tB;
+ Bits = 8;
+ Scale = 2;
+ break;
+ case ARM::tB:
+ Bits = 11;
+ Scale = 2;
+ break;
+ case ARM::t2Bcc:
+ isCond = true;
+ UOpc = ARM::t2B;
+ Bits = 20;
+ Scale = 2;
+ break;
+ case ARM::t2B:
+ Bits = 24;
+ Scale = 2;
+ break;
+ }
+
+ // Record this immediate branch.
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
+ }
+
+ if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
+ PushPopMIs.push_back(&I);
+
+ if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
+ Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
+ Opc == ARM::JUMPTABLE_TBH)
+ continue;
+
+ // Scan the instructions for constant pool operands.
+ for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
+ if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
+ // We found one. The addressing mode tells us the max displacement
+ // from the PC that this instruction permits.
+
+ // Basic size info comes from the TSFlags field.
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ bool NegOk = false;
+ bool IsSoImm = false;
+
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown addressing mode for CP reference!");
+
+ // Taking the address of a CP entry.
+ case ARM::LEApcrel:
+ case ARM::LEApcrelJT:
+ // This takes a SoImm, which is 8 bit immediate rotated. We'll
+ // pretend the maximum offset is 255 * 4. Since each instruction
+ // 4 byte wide, this is always correct. We'll check for other
+ // displacements that fits in a SoImm as well.
+ Bits = 8;
+ Scale = 4;
+ NegOk = true;
+ IsSoImm = true;
+ break;
+ case ARM::t2LEApcrel:
+ case ARM::t2LEApcrelJT:
+ Bits = 12;
+ NegOk = true;
+ break;
+ case ARM::tLEApcrel:
+ case ARM::tLEApcrelJT:
+ Bits = 8;
+ Scale = 4;
+ break;
+
+ case ARM::LDRBi12:
+ case ARM::LDRi12:
+ case ARM::LDRcp:
+ case ARM::t2LDRpci:
+ case ARM::t2LDRHpci:
+ Bits = 12; // +-offset_12
+ NegOk = true;
+ break;
+
+ case ARM::tLDRpci:
+ Bits = 8;
+ Scale = 4; // +(offset_8*4)
+ break;
+
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ Bits = 8;
+ Scale = 4; // +-(offset_8*4)
+ NegOk = true;
+ break;
+
+ case ARM::tLDRHi:
+ Bits = 5;
+ Scale = 2; // +(offset_5*2)
+ break;
+ }
+
+ // Remember that this is a user of a CP entry.
+ unsigned CPI = I.getOperand(op).getIndex();
+ if (I.getOperand(op).isJTI()) {
+ JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
+ CPI = JumpTableEntryIndices[CPI];
+ }
+
+ MachineInstr *CPEMI = CPEMIs[CPI];
+ unsigned MaxOffs = ((1 << Bits)-1) * Scale;
+ CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
+
+ // Increment corresponding CPEntry reference count.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Cannot find a corresponding CPEntry!");
+ CPE->RefCount++;
+
+ // Instructions can only use one CP entry, don't bother scanning the
+ // rest of the operands.
+ break;
+ }
+ }
+ }
+}
+
+/// getOffsetOf - Return the current offset of the specified machine instruction
+/// from the start of the function. This offset changes as stuff is moved
+/// around inside the function.
+unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BBInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->getInstSizeInBytes(*I);
+ }
+ return Offset;
+}
+
+/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
+/// ID.
+static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
+ const MachineBasicBlock *RHS) {
+ return LHS->getNumber() < RHS->getNumber();
+}
+
+/// updateForInsertedWaterBlock - When a block is newly inserted into the
+/// machine function, it upsets all of the block numbers. Renumber the blocks
+/// and update the arrays that parallel this numbering.
+void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
+ // Renumber the MBB's to keep them consecutive.
+ NewBB->getParent()->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add NewMBB as having
+ // available water after it.
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
+ CompareMBBNumbers);
+ WaterList.insert(IP, NewBB);
+}
+
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
+ MachineBasicBlock *OrigBB = MI->getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MachineFunction::iterator MBBI = ++OrigBB->getIterator();
+ MF->insert(MBBI, NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+ unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
+ if (!isThumb)
+ BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
+ else
+ BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
+ .addImm(ARMCC::AL).addReg(0);
+ ++NumSplit;
+
+ // Update the CFG. All succs of OrigBB are now succs of NewBB.
+ NewBB->transferSuccessors(OrigBB);
+
+ // OrigBB branches to NewBB.
+ OrigBB->addSuccessor(NewBB);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ // This is almost the same as updateForInsertedWaterBlock, except that
+ // the Water goes after OrigBB, not NewBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add OrigMBB as having
+ // available water after it (but not if it's already there, which happens
+ // when splitting before a conditional branch that is followed by an
+ // unconditional branch - in that case we want to insert NewBB).
+ water_iterator IP =
+ std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
+ CompareMBBNumbers);
+ MachineBasicBlock* WaterBB = *IP;
+ if (WaterBB == OrigBB)
+ WaterList.insert(std::next(IP), NewBB);
+ else
+ WaterList.insert(IP, OrigBB);
+ NewWaterList.insert(OrigBB);
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBBOffsetsAfter(OrigBB);
+
+ return NewBB;
+}
+
+/// getUserOffset - Compute the offset of U.MI as seen by the hardware
+/// displacement computation. Update U.KnownAlignment to match its current
+/// basic block location.
+unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
+ unsigned UserOffset = getOffsetOf(U.MI);
+ const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
+ unsigned KnownBits = BBI.internalKnownBits();
+
+ // The value read from PC is offset from the actual instruction address.
+ UserOffset += (isThumb ? 4 : 8);
+
+ // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
+ // Make sure U.getMaxDisp() returns a constrained range.
+ U.KnownAlignment = (KnownBits >= 2);
+
+ // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
+ // purposes of the displacement computation; compensate for that here.
+ // For unknown alignments, getMaxDisp() constrains the range instead.
+ if (isThumb && U.KnownAlignment)
+ UserOffset &= ~3u;
+
+ return UserOffset;
+}
+
+/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
+/// reference) is within MaxDisp of TrialOffset (a proposed location of a
+/// constant pool entry).
+/// UserOffset is computed by getUserOffset above to include PC adjustments. If
+/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
+/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
+bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
+ unsigned TrialOffset, unsigned MaxDisp,
+ bool NegativeOK, bool IsSoImm) {
+ if (UserOffset <= TrialOffset) {
+ // User before the Trial.
+ if (TrialOffset - UserOffset <= MaxDisp)
+ return true;
+ // FIXME: Make use full range of soimm values.
+ } else if (NegativeOK) {
+ if (UserOffset - TrialOffset <= MaxDisp)
+ return true;
+ // FIXME: Make use full range of soimm values.
+ }
+ return false;
+}
+
+/// isWaterInRange - Returns true if a CPE placed after the specified
+/// Water (a basic block) will be in range for the specific MI.
+///
+/// Compute how much the function will grow by inserting a CPE after Water.
+bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
+ MachineBasicBlock* Water, CPUser &U,
+ unsigned &Growth) {
+ unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
+ unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
+ unsigned NextBlockOffset, NextBlockAlignment;
+ MachineFunction::const_iterator NextBlock = Water->getIterator();
+ if (++NextBlock == MF->end()) {
+ NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
+ NextBlockAlignment = 0;
+ } else {
+ NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
+ NextBlockAlignment = NextBlock->getAlignment();
+ }
+ unsigned Size = U.CPEMI->getOperand(2).getImm();
+ unsigned CPEEnd = CPEOffset + Size;
+
+ // The CPE may be able to hide in the alignment padding before the next
+ // block. It may also cause more padding to be required if it is more aligned
+ // that the next block.
+ if (CPEEnd > NextBlockOffset) {
+ Growth = CPEEnd - NextBlockOffset;
+ // Compute the padding that would go at the end of the CPE to align the next
+ // block.
+ Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
+
+ // If the CPE is to be inserted before the instruction, that will raise
+ // the offset of the instruction. Also account for unknown alignment padding
+ // in blocks between CPE and the user.
+ if (CPEOffset < UserOffset)
+ UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
+ } else
+ // CPE fits in existing padding.
+ Growth = 0;
+
+ return isOffsetInRange(UserOffset, CPEOffset, U);
+}
+
+/// isCPEntryInRange - Returns true if the distance between specific MI and
+/// specific ConstPool entry instruction can fit in MI's displacement field.
+bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned MaxDisp,
+ bool NegOk, bool DoDump) {
+ unsigned CPEOffset = getOffsetOf(CPEMI);
+
+ if (DoDump) {
+ DEBUG({
+ unsigned Block = MI->getParent()->getNumber();
+ const BasicBlockInfo &BBI = BBInfo[Block];
+ dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
+ << " max delta=" << MaxDisp
+ << format(" insn address=%#x", UserOffset)
+ << " in BB#" << Block << ": "
+ << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
+ << format("CPE address=%#x offset=%+d: ", CPEOffset,
+ int(CPEOffset-UserOffset));
+ });
+ }
+
+ return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
+}
+
+#ifndef NDEBUG
+/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
+/// unconditionally branches to its only successor.
+static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
+ if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
+ return false;
+
+ MachineBasicBlock *Succ = *MBB->succ_begin();
+ MachineBasicBlock *Pred = *MBB->pred_begin();
+ MachineInstr *PredMI = &Pred->back();
+ if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
+ || PredMI->getOpcode() == ARM::t2B)
+ return PredMI->getOperand(0).getMBB() == Succ;
+ return false;
+}
+#endif // NDEBUG
+
+void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
+ unsigned BBNum = BB->getNumber();
+ for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
+ unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
+ unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
+
+ // This is where block i begins. Stop if the offset is already correct,
+ // and we have updated 2 blocks. This is the maximum number of blocks
+ // changed before calling this function.
+ if (i > BBNum + 2 &&
+ BBInfo[i].Offset == Offset &&
+ BBInfo[i].KnownBits == KnownBits)
+ break;
+
+ BBInfo[i].Offset = Offset;
+ BBInfo[i].KnownBits = KnownBits;
+ }
+}
+
+/// decrementCPEReferenceCount - find the constant pool entry with index CPI
+/// and instruction CPEMI, and decrement its refcount. If the refcount
+/// becomes 0 remove the entry and instruction. Returns true if we removed
+/// the entry, false if we didn't.
+
+bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
+ MachineInstr *CPEMI) {
+ // Find the old entry. Eliminate it if it is no longer used.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Unexpected!");
+ if (--CPE->RefCount == 0) {
+ removeDeadCPEMI(CPEMI);
+ CPE->CPEMI = nullptr;
+ --NumCPEs;
+ return true;
+ }
+ return false;
+}
+
+unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
+ if (CPEMI->getOperand(1).isCPI())
+ return CPEMI->getOperand(1).getIndex();
+
+ return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
+}
+
+/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
+/// if not, see if an in-range clone of the CPE is in range, and if so,
+/// change the data structures so the user references the clone. Returns:
+/// 0 = no existing entry found
+/// 1 = entry found, and there were no code insertions or deletions
+/// 2 = entry found, and there were code insertions or deletions
+int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
+{
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+
+ // Check to see if the CPE is already in-range.
+ if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
+ true)) {
+ DEBUG(dbgs() << "In range\n");
+ return 1;
+ }
+
+ // No. Look for previously created clones of the CPE that are in range.
+ unsigned CPI = getCombinedIndex(CPEMI);
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
+ // We already tried this one
+ if (CPEs[i].CPEMI == CPEMI)
+ continue;
+ // Removing CPEs can leave empty entries, skip
+ if (CPEs[i].CPEMI == nullptr)
+ continue;
+ if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
+ U.NegOk)) {
+ DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[i].CPI << "\n");
+ // Point the CPUser node to the replacement
+ U.CPEMI = CPEs[i].CPEMI;
+ // Change the CPI in the instruction operand to refer to the clone.
+ for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
+ if (UserMI->getOperand(j).isCPI()) {
+ UserMI->getOperand(j).setIndex(CPEs[i].CPI);
+ break;
+ }
+ // Adjust the refcount of the clone...
+ CPEs[i].RefCount++;
+ // ...and the original. If we didn't remove the old entry, none of the
+ // addresses changed, so we don't need another pass.
+ return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
+ }
+ }
+ return 0;
+}
+
+/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
+/// the specific unconditional branch instruction.
+static inline unsigned getUnconditionalBrDisp(int Opc) {
+ switch (Opc) {
+ case ARM::tB:
+ return ((1<<10)-1)*2;
+ case ARM::t2B:
+ return ((1<<23)-1)*2;
+ default:
+ break;
+ }
+
+ return ((1<<23)-1)*4;
+}
+
+/// findAvailableWater - Look for an existing entry in the WaterList in which
+/// we can place the CPE referenced from U so it's within range of U's MI.
+/// Returns true if found, false if not. If it returns true, WaterIter
+/// is set to the WaterList entry. For Thumb, prefer water that will not
+/// introduce padding to water that will. To ensure that this pass
+/// terminates, the CPE location for a particular CPUser is only allowed to
+/// move to a lower address, so search backward from the end of the list and
+/// prefer the first water that is in range.
+bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
+ water_iterator &WaterIter,
+ bool CloserWater) {
+ if (WaterList.empty())
+ return false;
+
+ unsigned BestGrowth = ~0u;
+ // The nearest water without splitting the UserBB is right after it.
+ // If the distance is still large (we have a big BB), then we need to split it
+ // if we don't converge after certain iterations. This helps the following
+ // situation to converge:
+ // BB0:
+ // Big BB
+ // BB1:
+ // Constant Pool
+ // When a CP access is out of range, BB0 may be used as water. However,
+ // inserting islands between BB0 and BB1 makes other accesses out of range.
+ MachineBasicBlock *UserBB = U.MI->getParent();
+ unsigned MinNoSplitDisp =
+ BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
+ if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
+ return false;
+ for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
+ --IP) {
+ MachineBasicBlock* WaterBB = *IP;
+ // Check if water is in range and is either at a lower address than the
+ // current "high water mark" or a new water block that was created since
+ // the previous iteration by inserting an unconditional branch. In the
+ // latter case, we want to allow resetting the high water mark back to
+ // this new water since we haven't seen it before. Inserting branches
+ // should be relatively uncommon and when it does happen, we want to be
+ // sure to take advantage of it for all the CPEs near that block, so that
+ // we don't insert more branches than necessary.
+ // When CloserWater is true, we try to find the lowest address after (or
+ // equal to) user MI's BB no matter of padding growth.
+ unsigned Growth;
+ if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
+ (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
+ NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
+ Growth < BestGrowth) {
+ // This is the least amount of required padding seen so far.
+ BestGrowth = Growth;
+ WaterIter = IP;
+ DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
+ << " Growth=" << Growth << '\n');
+
+ if (CloserWater && WaterBB == U.MI->getParent())
+ return true;
+ // Keep looking unless it is perfect and we're not looking for the lowest
+ // possible address.
+ if (!CloserWater && BestGrowth == 0)
+ return true;
+ }
+ if (IP == B)
+ break;
+ }
+ return BestGrowth != ~0u;
+}
+
+/// createNewWater - No existing WaterList entry will work for
+/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
+/// block is used if in range, and the conditional branch munged so control
+/// flow is correct. Otherwise the block is split to create a hole with an
+/// unconditional branch around it. In either case NewMBB is set to a
+/// block following which the new island can be inserted (the WaterList
+/// is not adjusted).
+void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
+ unsigned UserOffset,
+ MachineBasicBlock *&NewMBB) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPELogAlign = getCPELogAlign(CPEMI);
+ MachineBasicBlock *UserMBB = UserMI->getParent();
+ const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
+
+ // If the block does not end in an unconditional branch already, and if the
+ // end of the block is within range, make new water there. (The addition
+ // below is for the unconditional branch we will be adding: 4 bytes on ARM +
+ // Thumb2, 2 on Thumb1.
+ if (BBHasFallthrough(UserMBB)) {
+ // Size of branch to insert.
+ unsigned Delta = isThumb1 ? 2 : 4;
+ // Compute the offset where the CPE will begin.
+ unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
+
+ if (isOffsetInRange(UserOffset, CPEOffset, U)) {
+ DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
+ << format(", expected CPE offset %#x\n", CPEOffset));
+ NewMBB = &*++UserMBB->getIterator();
+ // Add an unconditional branch from UserMBB to fallthrough block. Record
+ // it for branch lengthening; this new branch will not get out of range,
+ // but if the preceding conditional branch is out of range, the targets
+ // will be exchanged, and the altered branch may be out of range, so the
+ // machinery has to know about it.
+ int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
+ if (!isThumb)
+ BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
+ else
+ BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
+ .addImm(ARMCC::AL).addReg(0);
+ unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
+ ImmBranches.push_back(ImmBranch(&UserMBB->back(),
+ MaxDisp, false, UncondBr));
+ computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]);
+ adjustBBOffsetsAfter(UserMBB);
+ return;
+ }
+ }
+
+ // What a big block. Find a place within the block to split it. This is a
+ // little tricky on Thumb1 since instructions are 2 bytes and constant pool
+ // entries are 4 bytes: if instruction I references island CPE, and
+ // instruction I+1 references CPE', it will not work well to put CPE as far
+ // forward as possible, since then CPE' cannot immediately follow it (that
+ // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
+ // need to create a new island. So, we make a first guess, then walk through
+ // the instructions between the one currently being looked at and the
+ // possible insertion point, and make sure any other instructions that
+ // reference CPEs will be able to use the same island area; if not, we back
+ // up the insertion point.
+
+ // Try to split the block so it's fully aligned. Compute the latest split
+ // point where we can add a 4-byte branch instruction, and then align to
+ // LogAlign which is the largest possible alignment in the function.
+ unsigned LogAlign = MF->getAlignment();
+ assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
+ unsigned KnownBits = UserBBI.internalKnownBits();
+ unsigned UPad = UnknownPadding(LogAlign, KnownBits);
+ unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
+ DEBUG(dbgs() << format("Split in middle of big block before %#x",
+ BaseInsertOffset));
+
+ // The 4 in the following is for the unconditional branch we'll be inserting
+ // (allows for long branch on Thumb1). Alignment of the island is handled
+ // inside isOffsetInRange.
+ BaseInsertOffset -= 4;
+
+ DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
+ << " la=" << LogAlign
+ << " kb=" << KnownBits
+ << " up=" << UPad << '\n');
+
+ // This could point off the end of the block if we've already got constant
+ // pool entries following this block; only the last one is in the water list.
+ // Back past any possible branches (allow for a conditional and a maximally
+ // long unconditional).
+ if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
+ // Ensure BaseInsertOffset is larger than the offset of the instruction
+ // following UserMI so that the loop which searches for the split point
+ // iterates at least once.
+ BaseInsertOffset =
+ std::max(UserBBI.postOffset() - UPad - 8,
+ UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
+ DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
+ }
+ unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
+ CPEMI->getOperand(2).getImm();
+ MachineBasicBlock::iterator MI = UserMI;
+ ++MI;
+ unsigned CPUIndex = CPUserIndex+1;
+ unsigned NumCPUsers = CPUsers.size();
+ MachineInstr *LastIT = nullptr;
+ for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
+ Offset < BaseInsertOffset;
+ Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
+ assert(MI != UserMBB->end() && "Fell off end of block");
+ if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
+ CPUser &U = CPUsers[CPUIndex];
+ if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
+ // Shift intertion point by one unit of alignment so it is within reach.
+ BaseInsertOffset -= 1u << LogAlign;
+ EndInsertOffset -= 1u << LogAlign;
+ }
+ // This is overly conservative, as we don't account for CPEMIs being
+ // reused within the block, but it doesn't matter much. Also assume CPEs
+ // are added in order with alignment padding. We may eventually be able
+ // to pack the aligned CPEs better.
+ EndInsertOffset += U.CPEMI->getOperand(2).getImm();
+ CPUIndex++;
+ }
+
+ // Remember the last IT instruction.
+ if (MI->getOpcode() == ARM::t2IT)
+ LastIT = &*MI;
+ }
+
+ --MI;
+
+ // Avoid splitting an IT block.
+ if (LastIT) {
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
+ if (CC != ARMCC::AL)
+ MI = LastIT;
+ }
+
+ // We really must not split an IT block.
+ DEBUG(unsigned PredReg;
+ assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
+
+ NewMBB = splitBlockBeforeInstr(&*MI);
+}
+
+/// handleConstantPoolUser - Analyze the specified user, checking to see if it
+/// is out-of-range. If so, pick up the constant pool value and move it some
+/// place in-range. Return true if we changed any addresses (thus must run
+/// another pass of branch lengthening), false otherwise.
+bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
+ bool CloserWater) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPI = getCombinedIndex(CPEMI);
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ // Compute this only once, it's expensive.
+ unsigned UserOffset = getUserOffset(U);
+
+ // See if the current entry is within range, or there is a clone of it
+ // in range.
+ int result = findInRangeCPEntry(U, UserOffset);
+ if (result==1) return false;
+ else if (result==2) return true;
+
+ // No existing clone of this CPE is within range.
+ // We will be generating a new clone. Get a UID for it.
+ unsigned ID = AFI->createPICLabelUId();
+
+ // Look for water where we can place this CPE.
+ MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
+ MachineBasicBlock *NewMBB;
+ water_iterator IP;
+ if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
+ DEBUG(dbgs() << "Found water in range\n");
+ MachineBasicBlock *WaterBB = *IP;
+
+ // If the original WaterList entry was "new water" on this iteration,
+ // propagate that to the new island. This is just keeping NewWaterList
+ // updated to match the WaterList, which will be updated below.
+ if (NewWaterList.erase(WaterBB))
+ NewWaterList.insert(NewIsland);
+
+ // The new CPE goes before the following block (NewMBB).
+ NewMBB = &*++WaterBB->getIterator();
+ } else {
+ // No water found.
+ DEBUG(dbgs() << "No water found\n");
+ createNewWater(CPUserIndex, UserOffset, NewMBB);
+
+ // splitBlockBeforeInstr adds to WaterList, which is important when it is
+ // called while handling branches so that the water will be seen on the
+ // next iteration for constant pools, but in this context, we don't want
+ // it. Check for this so it will be removed from the WaterList.
+ // Also remove any entry from NewWaterList.
+ MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
+ IP = find(WaterList, WaterBB);
+ if (IP != WaterList.end())
+ NewWaterList.erase(WaterBB);
+
+ // We are adding new water. Update NewWaterList.
+ NewWaterList.insert(NewIsland);
+ }
+
+ // Remove the original WaterList entry; we want subsequent insertions in
+ // this vicinity to go after the one we're about to insert. This
+ // considerably reduces the number of times we have to move the same CPE
+ // more than once and is also important to ensure the algorithm terminates.
+ if (IP != WaterList.end())
+ WaterList.erase(IP);
+
+ // Okay, we know we can put an island before NewMBB now, do it!
+ MF->insert(NewMBB->getIterator(), NewIsland);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ updateForInsertedWaterBlock(NewIsland);
+
+ // Now that we have an island to add the CPE to, clone the original CPE and
+ // add it to the island.
+ U.HighWaterMark = NewIsland;
+ U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
+ .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size);
+ CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
+ ++NumCPEs;
+
+ // Decrement the old entry, and remove it if refcount becomes 0.
+ decrementCPEReferenceCount(CPI, CPEMI);
+
+ // Mark the basic block as aligned as required by the const-pool entry.
+ NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
+
+ // Increase the size of the island block to account for the new entry.
+ BBInfo[NewIsland->getNumber()].Size += Size;
+ adjustBBOffsetsAfter(&*--NewIsland->getIterator());
+
+ // Finally, change the CPI in the instruction operand to be ID.
+ for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
+ if (UserMI->getOperand(i).isCPI()) {
+ UserMI->getOperand(i).setIndex(ID);
+ break;
+ }
+
+ DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
+ << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
+
+ return true;
+}
+
+/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
+/// sizes and offsets of impacted basic blocks.
+void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
+ MachineBasicBlock *CPEBB = CPEMI->getParent();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ CPEMI->eraseFromParent();
+ BBInfo[CPEBB->getNumber()].Size -= Size;
+ // All succeeding offsets have the current size value added in, fix this.
+ if (CPEBB->empty()) {
+ BBInfo[CPEBB->getNumber()].Size = 0;
+
+ // This block no longer needs to be aligned.
+ CPEBB->setAlignment(0);
+ } else
+ // Entries are sorted by descending alignment, so realign from the front.
+ CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
+
+ adjustBBOffsetsAfter(CPEBB);
+ // An island has only one predecessor BB and one successor BB. Check if
+ // this BB's predecessor jumps directly to this BB's successor. This
+ // shouldn't happen currently.
+ assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
+ // FIXME: remove the empty blocks after all the work is done?
+}
+
+/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
+/// are zero.
+bool ARMConstantIslands::removeUnusedCPEntries() {
+ unsigned MadeChange = false;
+ for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
+ std::vector<CPEntry> &CPEs = CPEntries[i];
+ for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
+ if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
+ removeDeadCPEMI(CPEs[j].CPEMI);
+ CPEs[j].CPEMI = nullptr;
+ MadeChange = true;
+ }
+ }
+ }
+ return MadeChange;
+}
+
+/// isBBInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
+ unsigned MaxDisp) {
+ unsigned PCAdj = isThumb ? 4 : 8;
+ unsigned BrOffset = getOffsetOf(MI) + PCAdj;
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+
+ DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
+ << " from BB#" << MI->getParent()->getNumber()
+ << " max delta=" << MaxDisp
+ << " from " << getOffsetOf(MI) << " to " << DestOffset
+ << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
+
+ if (BrOffset <= DestOffset) {
+ // Branch before the Dest.
+ if (DestOffset-BrOffset <= MaxDisp)
+ return true;
+ } else {
+ if (BrOffset-DestOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
+/// away to fit in its displacement field.
+bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
+
+ // Check to see if the DestBB is already in-range.
+ if (isBBInRange(MI, DestBB, Br.MaxDisp))
+ return false;
+
+ if (!Br.isCond)
+ return fixupUnconditionalBr(Br);
+ return fixupConditionalBr(Br);
+}
+
+/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
+/// too far away to fit in its displacement field. If the LR register has been
+/// spilled in the epilogue, then we can use BL to implement a far jump.
+/// Otherwise, add an intermediate branch instruction to a branch.
+bool
+ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *MBB = MI->getParent();
+ if (!isThumb1)
+ llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
+
+ // Use BL to implement far jump.
+ Br.MaxDisp = (1 << 21) * 2;
+ MI->setDesc(TII->get(ARM::tBfar));
+ BBInfo[MBB->getNumber()].Size += 2;
+ adjustBBOffsetsAfter(MBB);
+ HasFarJump = true;
+ ++NumUBrFixed;
+
+ DEBUG(dbgs() << " Changed B to long jump " << *MI);
+
+ return true;
+}
+
+/// fixupConditionalBr - Fix up a conditional branch whose destination is too
+/// far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool
+ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // blt L1
+ // =>
+ // bge L2
+ // b L1
+ // L2:
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
+ CC = ARMCC::getOppositeCondition(CC);
+ unsigned CCReg = MI->getOperand(2).getReg();
+
+ // If the branch is at the end of its MBB and that has a fall-through block,
+ // direct the updated conditional branch to the fall-through block. Otherwise,
+ // split the MBB before the next instruction.
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *BMI = &MBB->back();
+ bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
+
+ ++NumCBrFixed;
+ if (BMI != MI) {
+ if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
+ BMI->getOpcode() == Br.UncondBr) {
+ // Last MI in the BB is an unconditional branch. Can we simply invert the
+ // condition and swap destinations:
+ // beq L1
+ // b L2
+ // =>
+ // bne L2
+ // b L1
+ MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
+ if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
+ DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
+ << *BMI);
+ BMI->getOperand(0).setMBB(DestBB);
+ MI->getOperand(0).setMBB(NewDest);
+ MI->getOperand(1).setImm(CC);
+ return true;
+ }
+ }
+ }
+
+ if (NeedSplit) {
+ splitBlockBeforeInstr(MI);
+ // No need for the branch to the next block. We're adding an unconditional
+ // branch to the destination.
+ int delta = TII->getInstSizeInBytes(MBB->back());
+ BBInfo[MBB->getNumber()].Size -= delta;
+ MBB->back().eraseFromParent();
+ // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
+ }
+ MachineBasicBlock *NextBB = &*++MBB->getIterator();
+
+ DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
+ << " also invert condition and change dest. to BB#"
+ << NextBB->getNumber() << "\n");
+
+ // Insert a new conditional branch and a new unconditional branch.
+ // Also update the ImmBranch as well as adding a new entry for the new branch.
+ BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
+ .addMBB(NextBB).addImm(CC).addReg(CCReg);
+ Br.MI = &MBB->back();
+ BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
+ if (isThumb)
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
+ .addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
+ BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
+ unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
+ ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
+
+ // Remove the old conditional branch. It may or may not still be in MBB.
+ BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
+ MI->eraseFromParent();
+ adjustBBOffsetsAfter(MBB);
+ return true;
+}
+
+/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
+/// LR / restores LR to pc. FIXME: This is done here because it's only possible
+/// to do this if tBfar is not used.
+bool ARMConstantIslands::undoLRSpillRestore() {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
+ MachineInstr *MI = PushPopMIs[i];
+ // First two operands are predicates.
+ if (MI->getOpcode() == ARM::tPOP_RET &&
+ MI->getOperand(2).getReg() == ARM::PC &&
+ MI->getNumExplicitOperands() == 3) {
+ // Create the new insn and copy the predicate from the old.
+ BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(1));
+ MI->eraseFromParent();
+ MadeChange = true;
+ }
+ }
+ return MadeChange;
+}
+
+bool ARMConstantIslands::optimizeThumb2Instructions() {
+ bool MadeChange = false;
+
+ // Shrink ADR and LDR from constantpool.
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
+ CPUser &U = CPUsers[i];
+ unsigned Opcode = U.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2LEApcrel:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLEApcrel;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ case ARM::t2LDRpci:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLDRpci;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ }
+
+ if (!NewOpc)
+ continue;
+
+ unsigned UserOffset = getUserOffset(U);
+ unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
+
+ // Be conservative with inline asm.
+ if (!U.KnownAlignment)
+ MaxOffs -= 2;
+
+ // FIXME: Check if offset is multiple of scale if scale is not 4.
+ if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
+ DEBUG(dbgs() << "Shrink: " << *U.MI);
+ U.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = U.MI->getParent();
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumT2CPShrunk;
+ MadeChange = true;
+ }
+ }
+
+ return MadeChange;
+}
+
+bool ARMConstantIslands::optimizeThumb2Branches() {
+ bool MadeChange = false;
+
+ // The order in which branches appear in ImmBranches is approximately their
+ // order within the function body. By visiting later branches first, we reduce
+ // the distance between earlier forward branches and their targets, making it
+ // more likely that the cbn?z optimization, which can only apply to forward
+ // branches, will succeed.
+ for (unsigned i = ImmBranches.size(); i != 0; --i) {
+ ImmBranch &Br = ImmBranches[i-1];
+ unsigned Opcode = Br.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2B:
+ NewOpc = ARM::tB;
+ Bits = 11;
+ Scale = 2;
+ break;
+ case ARM::t2Bcc: {
+ NewOpc = ARM::tBcc;
+ Bits = 8;
+ Scale = 2;
+ break;
+ }
+ }
+ if (NewOpc) {
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
+ if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
+ DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
+ Br.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = Br.MI->getParent();
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumT2BrShrunk;
+ MadeChange = true;
+ }
+ }
+
+ Opcode = Br.MI->getOpcode();
+ if (Opcode != ARM::tBcc)
+ continue;
+
+ // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
+ // so this transformation is not safe.
+ if (!Br.MI->killsRegister(ARM::CPSR))
+ continue;
+
+ NewOpc = 0;
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
+ if (Pred == ARMCC::EQ)
+ NewOpc = ARM::tCBZ;
+ else if (Pred == ARMCC::NE)
+ NewOpc = ARM::tCBNZ;
+ if (!NewOpc)
+ continue;
+ MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
+ // Check if the distance is within 126. Subtract starting offset by 2
+ // because the cmp will be eliminated.
+ unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+ if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
+ MachineBasicBlock::iterator CmpMI = Br.MI;
+ if (CmpMI != Br.MI->getParent()->begin()) {
+ --CmpMI;
+ if (CmpMI->getOpcode() == ARM::tCMPi8) {
+ unsigned Reg = CmpMI->getOperand(0).getReg();
+ Pred = getInstrPredicate(*CmpMI, PredReg);
+ if (Pred == ARMCC::AL &&
+ CmpMI->getOperand(1).getImm() == 0 &&
+ isARMLowRegister(Reg)) {
+ MachineBasicBlock *MBB = Br.MI->getParent();
+ DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
+ MachineInstr *NewBR =
+ BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
+ .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
+ CmpMI->eraseFromParent();
+ Br.MI->eraseFromParent();
+ Br.MI = NewBR;
+ BBInfo[MBB->getNumber()].Size -= 2;
+ adjustBBOffsetsAfter(MBB);
+ ++NumCBZ;
+ MadeChange = true;
+ }
+ }
+ }
+ }
+ }
+
+ return MadeChange;
+}
+
+static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
+ unsigned BaseReg) {
+ if (I.getOpcode() != ARM::t2ADDrs)
+ return false;
+
+ if (I.getOperand(0).getReg() != EntryReg)
+ return false;
+
+ if (I.getOperand(1).getReg() != BaseReg)
+ return false;
+
+ // FIXME: what about CC and IdxReg?
+ return true;
+}
+
+/// \brief While trying to form a TBB/TBH instruction, we may (if the table
+/// doesn't immediately follow the BR_JT) need access to the start of the
+/// jump-table. We know one instruction that produces such a register; this
+/// function works out whether that definition can be preserved to the BR_JT,
+/// possibly by removing an intervening addition (which is usually needed to
+/// calculate the actual entry to jump to).
+bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
+ MachineInstr *LEAMI,
+ unsigned &DeadSize,
+ bool &CanDeleteLEA,
+ bool &BaseRegKill) {
+ if (JumpMI->getParent() != LEAMI->getParent())
+ return false;
+
+ // Now we hope that we have at least these instructions in the basic block:
+ // BaseReg = t2LEA ...
+ // [...]
+ // EntryReg = t2ADDrs BaseReg, ...
+ // [...]
+ // t2BR_JT EntryReg
+ //
+ // We have to be very conservative about what we recognise here though. The
+ // main perturbing factors to watch out for are:
+ // + Spills at any point in the chain: not direct problems but we would
+ // expect a blocking Def of the spilled register so in practice what we
+ // can do is limited.
+ // + EntryReg == BaseReg: this is the one situation we should allow a Def
+ // of BaseReg, but only if the t2ADDrs can be removed.
+ // + Some instruction other than t2ADDrs computing the entry. Not seen in
+ // the wild, but we should be careful.
+ unsigned EntryReg = JumpMI->getOperand(0).getReg();
+ unsigned BaseReg = LEAMI->getOperand(0).getReg();
+
+ CanDeleteLEA = true;
+ BaseRegKill = false;
+ MachineInstr *RemovableAdd = nullptr;
+ MachineBasicBlock::iterator I(LEAMI);
+ for (++I; &*I != JumpMI; ++I) {
+ if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
+ RemovableAdd = &*I;
+ break;
+ }
+
+ for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
+ const MachineOperand &MO = I->getOperand(K);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && MO.getReg() == BaseReg)
+ return false;
+ if (MO.isUse() && MO.getReg() == BaseReg) {
+ BaseRegKill = BaseRegKill || MO.isKill();
+ CanDeleteLEA = false;
+ }
+ }
+ }
+
+ if (!RemovableAdd)
+ return true;
+
+ // Check the add really is removable, and that nothing else in the block
+ // clobbers BaseReg.
+ for (++I; &*I != JumpMI; ++I) {
+ for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
+ const MachineOperand &MO = I->getOperand(K);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && MO.getReg() == BaseReg)
+ return false;
+ if (MO.isUse() && MO.getReg() == EntryReg)
+ RemovableAdd = nullptr;
+ }
+ }
+
+ if (RemovableAdd) {
+ RemovableAdd->eraseFromParent();
+ DeadSize += isThumb2 ? 4 : 2;
+ } else if (BaseReg == EntryReg) {
+ // The add wasn't removable, but clobbered the base for the TBB. So we can't
+ // preserve it.
+ return false;
+ }
+
+ // We reached the end of the block without seeing another definition of
+ // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
+ // used in the TBB/TBH if necessary.
+ return true;
+}
+
+/// \brief Returns whether CPEMI is the first instruction in the block
+/// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
+/// we can switch the first register to PC and usually remove the address
+/// calculation that preceded it.
+static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
+ MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
+ MachineFunction *MF = MBB->getParent();
+ ++MBB;
+
+ return MBB != MF->end() && MBB->begin() != MBB->end() &&
+ &*MBB->begin() == CPEMI;
+}
+
+/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
+/// jumptables when it's possible.
+bool ARMConstantIslands::optimizeThumb2JumpTables() {
+ bool MadeChange = false;
+
+ // FIXME: After the tables are shrunk, can we get rid some of the
+ // constantpool tables?
+ MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ if (!MJTI) return false;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
+ MachineInstr *MI = T2JumpTables[i];
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
+ MachineOperand JTOP = MI->getOperand(JTOpIdx);
+ unsigned JTI = JTOP.getIndex();
+ assert(JTI < JT.size());
+
+ bool ByteOk = true;
+ bool HalfWordOk = true;
+ unsigned JTOffset = getOffsetOf(MI) + 4;
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
+ MachineBasicBlock *MBB = JTBBs[j];
+ unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
+ // Negative offset is not ok. FIXME: We should change BB layout to make
+ // sure all the branches are forward.
+ if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
+ ByteOk = false;
+ unsigned TBHLimit = ((1<<16)-1)*2;
+ if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
+ HalfWordOk = false;
+ if (!ByteOk && !HalfWordOk)
+ break;
+ }
+
+ if (!ByteOk && !HalfWordOk)
+ continue;
+
+ CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
+ MachineBasicBlock *MBB = MI->getParent();
+ if (!MI->getOperand(0).isKill()) // FIXME: needed now?
+ continue;
+
+ unsigned DeadSize = 0;
+ bool CanDeleteLEA = false;
+ bool BaseRegKill = false;
+
+ unsigned IdxReg = ~0U;
+ bool IdxRegKill = true;
+ if (isThumb2) {
+ IdxReg = MI->getOperand(1).getReg();
+ IdxRegKill = MI->getOperand(1).isKill();
+
+ bool PreservedBaseReg =
+ preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
+ if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
+ continue;
+ } else {
+ // We're in thumb-1 mode, so we must have something like:
+ // %idx = tLSLri %idx, 2
+ // %base = tLEApcrelJT
+ // %t = tLDRr %idx, %base
+ unsigned BaseReg = User.MI->getOperand(0).getReg();
+
+ if (User.MI->getIterator() == User.MI->getParent()->begin())
+ continue;
+ MachineInstr *Shift = User.MI->getPrevNode();
+ if (Shift->getOpcode() != ARM::tLSLri ||
+ Shift->getOperand(3).getImm() != 2 ||
+ !Shift->getOperand(2).isKill())
+ continue;
+ IdxReg = Shift->getOperand(2).getReg();
+ unsigned ShiftedIdxReg = Shift->getOperand(0).getReg();
+
+ MachineInstr *Load = User.MI->getNextNode();
+ if (Load->getOpcode() != ARM::tLDRr)
+ continue;
+ if (Load->getOperand(1).getReg() != ShiftedIdxReg ||
+ Load->getOperand(2).getReg() != BaseReg ||
+ !Load->getOperand(1).isKill())
+ continue;
+
+ // If we're in PIC mode, there should be another ADD following.
+ if (isPositionIndependentOrROPI) {
+ MachineInstr *Add = Load->getNextNode();
+ if (Add->getOpcode() != ARM::tADDrr ||
+ Add->getOperand(2).getReg() != Load->getOperand(0).getReg() ||
+ Add->getOperand(3).getReg() != BaseReg ||
+ !Add->getOperand(2).isKill())
+ continue;
+ if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
+ continue;
+
+ Add->eraseFromParent();
+ DeadSize += 2;
+ } else {
+ if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
+ continue;
+ }
+
+
+ // Now safe to delete the load and lsl. The LEA will be removed later.
+ CanDeleteLEA = true;
+ Shift->eraseFromParent();
+ Load->eraseFromParent();
+ DeadSize += 4;
+ }
+
+ DEBUG(dbgs() << "Shrink JT: " << *MI);
+ MachineInstr *CPEMI = User.CPEMI;
+ unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
+ if (!isThumb2)
+ Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
+
+ MachineBasicBlock::iterator MI_JT = MI;
+ MachineInstr *NewJTMI =
+ BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
+ .addReg(User.MI->getOperand(0).getReg(),
+ getKillRegState(BaseRegKill))
+ .addReg(IdxReg, getKillRegState(IdxRegKill))
+ .addJumpTableIndex(JTI, JTOP.getTargetFlags())
+ .addImm(CPEMI->getOperand(0).getImm());
+ DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
+
+ unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
+ CPEMI->setDesc(TII->get(JTOpc));
+
+ if (jumpTableFollowsTB(MI, User.CPEMI)) {
+ NewJTMI->getOperand(0).setReg(ARM::PC);
+ NewJTMI->getOperand(0).setIsKill(false);
+
+ if (CanDeleteLEA) {
+ User.MI->eraseFromParent();
+ DeadSize += isThumb2 ? 4 : 2;
+
+ // The LEA was eliminated, the TBB instruction becomes the only new user
+ // of the jump table.
+ User.MI = NewJTMI;
+ User.MaxDisp = 4;
+ User.NegOk = false;
+ User.IsSoImm = false;
+ User.KnownAlignment = false;
+ } else {
+ // The LEA couldn't be eliminated, so we must add another CPUser to
+ // record the TBB or TBH use.
+ int CPEntryIdx = JumpTableEntryIndices[JTI];
+ auto &CPEs = CPEntries[CPEntryIdx];
+ auto Entry =
+ find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
+ ++Entry->RefCount;
+ CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
+ }
+ }
+
+ unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
+ unsigned OrigSize = TII->getInstSizeInBytes(*MI);
+ MI->eraseFromParent();
+
+ int Delta = OrigSize - NewSize + DeadSize;
+ BBInfo[MBB->getNumber()].Size -= Delta;
+ adjustBBOffsetsAfter(MBB);
+
+ ++NumTBs;
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
+/// jump tables always branch forwards, since that's what tbb and tbh need.
+bool ARMConstantIslands::reorderThumb2JumpTables() {
+ bool MadeChange = false;
+
+ MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ if (!MJTI) return false;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
+ MachineInstr *MI = T2JumpTables[i];
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
+ MachineOperand JTOP = MI->getOperand(JTOpIdx);
+ unsigned JTI = JTOP.getIndex();
+ assert(JTI < JT.size());
+
+ // We prefer if target blocks for the jump table come after the jump
+ // instruction so we can use TB[BH]. Loop through the target blocks
+ // and try to adjust them such that that's true.
+ int JTNumber = MI->getParent()->getNumber();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
+ MachineBasicBlock *MBB = JTBBs[j];
+ int DTNumber = MBB->getNumber();
+
+ if (DTNumber < JTNumber) {
+ // The destination precedes the switch. Try to move the block forward
+ // so we have a positive offset.
+ MachineBasicBlock *NewBB =
+ adjustJTTargetBlockForward(MBB, MI->getParent());
+ if (NewBB)
+ MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
+ MadeChange = true;
+ }
+ }
+ }
+
+ return MadeChange;
+}
+
+MachineBasicBlock *ARMConstantIslands::
+adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
+ // If the destination block is terminated by an unconditional branch,
+ // try to move it; otherwise, create a new block following the jump
+ // table that branches back to the actual target. This is a very simple
+ // heuristic. FIXME: We can definitely improve it.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ SmallVector<MachineOperand, 4> CondPrior;
+ MachineFunction::iterator BBi = BB->getIterator();
+ MachineFunction::iterator OldPrior = std::prev(BBi);
+
+ // If the block terminator isn't analyzable, don't try to move the block
+ bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
+
+ // If the block ends in an unconditional branch, move it. The prior block
+ // has to have an analyzable terminator for us to move this one. Be paranoid
+ // and make sure we're not trying to move the entry block of the function.
+ if (!B && Cond.empty() && BB != &MF->front() &&
+ !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
+ BB->moveAfter(JTBB);
+ OldPrior->updateTerminator();
+ BB->updateTerminator();
+ // Update numbering to account for the block being moved.
+ MF->RenumberBlocks();
+ ++NumJTMoved;
+ return nullptr;
+ }
+
+ // Create a new MBB for the code after the jump BB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
+ MachineFunction::iterator MBBI = ++JTBB->getIterator();
+ MF->insert(MBBI, NewBB);
+
+ // Add an unconditional branch from NewBB to BB.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond directly to anything in the source.
+ if (isThumb2)
+ BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
+ .addMBB(BB)
+ .addImm(ARMCC::AL)
+ .addReg(0);
+ else
+ BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
+ .addMBB(BB)
+ .addImm(ARMCC::AL)
+ .addReg(0);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Update the CFG.
+ NewBB->addSuccessor(BB);
+ JTBB->replaceSuccessor(BB, NewBB);
+
+ ++NumJTInserted;
+ return NewBB;
+}