diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp | 2058 |
1 files changed, 2058 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp b/contrib/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp new file mode 100644 index 000000000000..6b67b76652ed --- /dev/null +++ b/contrib/llvm/lib/Target/AMDGPU/SIMachineScheduler.cpp @@ -0,0 +1,2058 @@ +//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// \brief SI Machine Scheduler interface +// +//===----------------------------------------------------------------------===// + +#include "SIMachineScheduler.h" +#include "AMDGPU.h" +#include "SIInstrInfo.h" +#include "SIRegisterInfo.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <map> +#include <set> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "machine-scheduler" + +// This scheduler implements a different scheduling algorithm than +// GenericScheduler. +// +// There are several specific architecture behaviours that can't be modelled +// for GenericScheduler: +// . When accessing the result of an SGPR load instruction, you have to wait +// for all the SGPR load instructions before your current instruction to +// have finished. +// . When accessing the result of an VGPR load instruction, you have to wait +// for all the VGPR load instructions previous to the VGPR load instruction +// you are interested in to finish. +// . The less the register pressure, the best load latencies are hidden +// +// Moreover some specifities (like the fact a lot of instructions in the shader +// have few dependencies) makes the generic scheduler have some unpredictable +// behaviours. For example when register pressure becomes high, it can either +// manage to prevent register pressure from going too high, or it can +// increase register pressure even more than if it hadn't taken register +// pressure into account. +// +// Also some other bad behaviours are generated, like loading at the beginning +// of the shader a constant in VGPR you won't need until the end of the shader. +// +// The scheduling problem for SI can distinguish three main parts: +// . Hiding high latencies (texture sampling, etc) +// . Hiding low latencies (SGPR constant loading, etc) +// . Keeping register usage low for better latency hiding and general +// performance +// +// Some other things can also affect performance, but are hard to predict +// (cache usage, the fact the HW can issue several instructions from different +// wavefronts if different types, etc) +// +// This scheduler tries to solve the scheduling problem by dividing it into +// simpler sub-problems. It divides the instructions into blocks, schedules +// locally inside the blocks where it takes care of low latencies, and then +// chooses the order of the blocks by taking care of high latencies. +// Dividing the instructions into blocks helps control keeping register +// usage low. +// +// First the instructions are put into blocks. +// We want the blocks help control register usage and hide high latencies +// later. To help control register usage, we typically want all local +// computations, when for example you create a result that can be comsummed +// right away, to be contained in a block. Block inputs and outputs would +// typically be important results that are needed in several locations of +// the shader. Since we do want blocks to help hide high latencies, we want +// the instructions inside the block to have a minimal set of dependencies +// on high latencies. It will make it easy to pick blocks to hide specific +// high latencies. +// The block creation algorithm is divided into several steps, and several +// variants can be tried during the scheduling process. +// +// Second the order of the instructions inside the blocks is chosen. +// At that step we do take into account only register usage and hiding +// low latency instructions +// +// Third the block order is chosen, there we try to hide high latencies +// and keep register usage low. +// +// After the third step, a pass is done to improve the hiding of low +// latencies. +// +// Actually when talking about 'low latency' or 'high latency' it includes +// both the latency to get the cache (or global mem) data go to the register, +// and the bandwidth limitations. +// Increasing the number of active wavefronts helps hide the former, but it +// doesn't solve the latter, thus why even if wavefront count is high, we have +// to try have as many instructions hiding high latencies as possible. +// The OpenCL doc says for example latency of 400 cycles for a global mem access, +// which is hidden by 10 instructions if the wavefront count is 10. + +// Some figures taken from AMD docs: +// Both texture and constant L1 caches are 4-way associative with 64 bytes +// lines. +// Constant cache is shared with 4 CUs. +// For texture sampling, the address generation unit receives 4 texture +// addresses per cycle, thus we could expect texture sampling latency to be +// equivalent to 4 instructions in the very best case (a VGPR is 64 work items, +// instructions in a wavefront group are executed every 4 cycles), +// or 16 instructions if the other wavefronts associated to the 3 other VALUs +// of the CU do texture sampling too. (Don't take these figures too seriously, +// as I'm not 100% sure of the computation) +// Data exports should get similar latency. +// For constant loading, the cache is shader with 4 CUs. +// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit" +// I guess if the other CU don't read the cache, it can go up to 64B/cycle. +// It means a simple s_buffer_load should take one instruction to hide, as +// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same +// cache line. +// +// As of today the driver doesn't preload the constants in cache, thus the +// first loads get extra latency. The doc says global memory access can be +// 300-600 cycles. We do not specially take that into account when scheduling +// As we expect the driver to be able to preload the constants soon. + +// common code // + +#ifndef NDEBUG + +static const char *getReasonStr(SIScheduleCandReason Reason) { + switch (Reason) { + case NoCand: return "NOCAND"; + case RegUsage: return "REGUSAGE"; + case Latency: return "LATENCY"; + case Successor: return "SUCCESSOR"; + case Depth: return "DEPTH"; + case NodeOrder: return "ORDER"; + } + llvm_unreachable("Unknown reason!"); +} + +#endif + +static bool tryLess(int TryVal, int CandVal, + SISchedulerCandidate &TryCand, + SISchedulerCandidate &Cand, + SIScheduleCandReason Reason) { + if (TryVal < CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal > CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + Cand.setRepeat(Reason); + return false; +} + +static bool tryGreater(int TryVal, int CandVal, + SISchedulerCandidate &TryCand, + SISchedulerCandidate &Cand, + SIScheduleCandReason Reason) { + if (TryVal > CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal < CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + Cand.setRepeat(Reason); + return false; +} + +// SIScheduleBlock // + +void SIScheduleBlock::addUnit(SUnit *SU) { + NodeNum2Index[SU->NodeNum] = SUnits.size(); + SUnits.push_back(SU); +} + +#ifndef NDEBUG +void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) { + + dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); + dbgs() << '\n'; +} +#endif + +void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand, + SISchedCandidate &TryCand) { + // Initialize the candidate if needed. + if (!Cand.isValid()) { + TryCand.Reason = NodeOrder; + return; + } + + if (Cand.SGPRUsage > 60 && + tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, TryCand, Cand, RegUsage)) + return; + + // Schedule low latency instructions as top as possible. + // Order of priority is: + // . Low latency instructions which do not depend on other low latency + // instructions we haven't waited for + // . Other instructions which do not depend on low latency instructions + // we haven't waited for + // . Low latencies + // . All other instructions + // Goal is to get: low latency instructions - independent instructions + // - (eventually some more low latency instructions) + // - instructions that depend on the first low latency instructions. + // If in the block there is a lot of constant loads, the SGPR usage + // could go quite high, thus above the arbitrary limit of 60 will encourage + // use the already loaded constants (in order to release some SGPRs) before + // loading more. + if (tryLess(TryCand.HasLowLatencyNonWaitedParent, + Cand.HasLowLatencyNonWaitedParent, + TryCand, Cand, SIScheduleCandReason::Depth)) + return; + + if (tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency, + TryCand, Cand, SIScheduleCandReason::Depth)) + return; + + if (TryCand.IsLowLatency && + tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset, + TryCand, Cand, SIScheduleCandReason::Depth)) + return; + + if (tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, TryCand, Cand, RegUsage)) + return; + + // Fall through to original instruction order. + if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { + TryCand.Reason = NodeOrder; + } +} + +SUnit* SIScheduleBlock::pickNode() { + SISchedCandidate TopCand; + + for (SUnit* SU : TopReadySUs) { + SISchedCandidate TryCand; + std::vector<unsigned> pressure; + std::vector<unsigned> MaxPressure; + // Predict register usage after this instruction. + TryCand.SU = SU; + TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure); + TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()]; + TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()]; + TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum]; + TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum]; + TryCand.HasLowLatencyNonWaitedParent = + HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]; + tryCandidateTopDown(TopCand, TryCand); + if (TryCand.Reason != NoCand) + TopCand.setBest(TryCand); + } + + return TopCand.SU; +} + + +// Schedule something valid. +void SIScheduleBlock::fastSchedule() { + TopReadySUs.clear(); + if (Scheduled) + undoSchedule(); + + for (SUnit* SU : SUnits) { + if (!SU->NumPredsLeft) + TopReadySUs.push_back(SU); + } + + while (!TopReadySUs.empty()) { + SUnit *SU = TopReadySUs[0]; + ScheduledSUnits.push_back(SU); + nodeScheduled(SU); + } + + Scheduled = true; +} + +// Returns if the register was set between first and last. +static bool isDefBetween(unsigned Reg, + SlotIndex First, SlotIndex Last, + const MachineRegisterInfo *MRI, + const LiveIntervals *LIS) { + for (MachineRegisterInfo::def_instr_iterator + UI = MRI->def_instr_begin(Reg), + UE = MRI->def_instr_end(); UI != UE; ++UI) { + const MachineInstr* MI = &*UI; + if (MI->isDebugValue()) + continue; + SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot(); + if (InstSlot >= First && InstSlot <= Last) + return true; + } + return false; +} + +void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock, + MachineBasicBlock::iterator EndBlock) { + IntervalPressure Pressure, BotPressure; + RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure); + LiveIntervals *LIS = DAG->getLIS(); + MachineRegisterInfo *MRI = DAG->getMRI(); + DAG->initRPTracker(TopRPTracker); + DAG->initRPTracker(BotRPTracker); + DAG->initRPTracker(RPTracker); + + // Goes though all SU. RPTracker captures what had to be alive for the SUs + // to execute, and what is still alive at the end. + for (SUnit* SU : ScheduledSUnits) { + RPTracker.setPos(SU->getInstr()); + RPTracker.advance(); + } + + // Close the RPTracker to finalize live ins/outs. + RPTracker.closeRegion(); + + // Initialize the live ins and live outs. + TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); + BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); + + // Do not Track Physical Registers, because it messes up. + for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) { + if (TargetRegisterInfo::isVirtualRegister(RegMaskPair.RegUnit)) + LiveInRegs.insert(RegMaskPair.RegUnit); + } + LiveOutRegs.clear(); + // There is several possibilities to distinguish: + // 1) Reg is not input to any instruction in the block, but is output of one + // 2) 1) + read in the block and not needed after it + // 3) 1) + read in the block but needed in another block + // 4) Reg is input of an instruction but another block will read it too + // 5) Reg is input of an instruction and then rewritten in the block. + // result is not read in the block (implies used in another block) + // 6) Reg is input of an instruction and then rewritten in the block. + // result is read in the block and not needed in another block + // 7) Reg is input of an instruction and then rewritten in the block. + // result is read in the block but also needed in another block + // LiveInRegs will contains all the regs in situation 4, 5, 6, 7 + // We want LiveOutRegs to contain only Regs whose content will be read after + // in another block, and whose content was written in the current block, + // that is we want it to get 1, 3, 5, 7 + // Since we made the MIs of a block to be packed all together before + // scheduling, then the LiveIntervals were correct, and the RPTracker was + // able to correctly handle 5 vs 6, 2 vs 3. + // (Note: This is not sufficient for RPTracker to not do mistakes for case 4) + // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7 + // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7 + // The use of findDefBetween removes the case 4. + for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) { + unsigned Reg = RegMaskPair.RegUnit; + if (TargetRegisterInfo::isVirtualRegister(Reg) && + isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(), + LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI, + LIS)) { + LiveOutRegs.insert(Reg); + } + } + + // Pressure = sum_alive_registers register size + // Internally llvm will represent some registers as big 128 bits registers + // for example, but they actually correspond to 4 actual 32 bits registers. + // Thus Pressure is not equal to num_alive_registers * constant. + LiveInPressure = TopPressure.MaxSetPressure; + LiveOutPressure = BotPressure.MaxSetPressure; + + // Prepares TopRPTracker for top down scheduling. + TopRPTracker.closeTop(); +} + +void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock, + MachineBasicBlock::iterator EndBlock) { + if (!Scheduled) + fastSchedule(); + + // PreScheduling phase to set LiveIn and LiveOut. + initRegPressure(BeginBlock, EndBlock); + undoSchedule(); + + // Schedule for real now. + + TopReadySUs.clear(); + + for (SUnit* SU : SUnits) { + if (!SU->NumPredsLeft) + TopReadySUs.push_back(SU); + } + + while (!TopReadySUs.empty()) { + SUnit *SU = pickNode(); + ScheduledSUnits.push_back(SU); + TopRPTracker.setPos(SU->getInstr()); + TopRPTracker.advance(); + nodeScheduled(SU); + } + + // TODO: compute InternalAdditionnalPressure. + InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size()); + + // Check everything is right. +#ifndef NDEBUG + assert(SUnits.size() == ScheduledSUnits.size() && + TopReadySUs.empty()); + for (SUnit* SU : SUnits) { + assert(SU->isScheduled && + SU->NumPredsLeft == 0); + } +#endif + + Scheduled = true; +} + +void SIScheduleBlock::undoSchedule() { + for (SUnit* SU : SUnits) { + SU->isScheduled = false; + for (SDep& Succ : SU->Succs) { + if (BC->isSUInBlock(Succ.getSUnit(), ID)) + undoReleaseSucc(SU, &Succ); + } + } + HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); + ScheduledSUnits.clear(); + Scheduled = false; +} + +void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) { + SUnit *SuccSU = SuccEdge->getSUnit(); + + if (SuccEdge->isWeak()) { + ++SuccSU->WeakPredsLeft; + return; + } + ++SuccSU->NumPredsLeft; +} + +void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) { + SUnit *SuccSU = SuccEdge->getSUnit(); + + if (SuccEdge->isWeak()) { + --SuccSU->WeakPredsLeft; + return; + } +#ifndef NDEBUG + if (SuccSU->NumPredsLeft == 0) { + dbgs() << "*** Scheduling failed! ***\n"; + SuccSU->dump(DAG); + dbgs() << " has been released too many times!\n"; + llvm_unreachable(nullptr); + } +#endif + + --SuccSU->NumPredsLeft; +} + +/// Release Successors of the SU that are in the block or not. +void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) { + for (SDep& Succ : SU->Succs) { + SUnit *SuccSU = Succ.getSUnit(); + + if (SuccSU->NodeNum >= DAG->SUnits.size()) + continue; + + if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock) + continue; + + releaseSucc(SU, &Succ); + if (SuccSU->NumPredsLeft == 0 && InOrOutBlock) + TopReadySUs.push_back(SuccSU); + } +} + +void SIScheduleBlock::nodeScheduled(SUnit *SU) { + // Is in TopReadySUs + assert (!SU->NumPredsLeft); + std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU); + if (I == TopReadySUs.end()) { + dbgs() << "Data Structure Bug in SI Scheduler\n"; + llvm_unreachable(nullptr); + } + TopReadySUs.erase(I); + + releaseSuccessors(SU, true); + // Scheduling this node will trigger a wait, + // thus propagate to other instructions that they do not need to wait either. + if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]) + HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); + + if (DAG->IsLowLatencySU[SU->NodeNum]) { + for (SDep& Succ : SU->Succs) { + std::map<unsigned, unsigned>::iterator I = + NodeNum2Index.find(Succ.getSUnit()->NodeNum); + if (I != NodeNum2Index.end()) + HasLowLatencyNonWaitedParent[I->second] = 1; + } + } + SU->isScheduled = true; +} + +void SIScheduleBlock::finalizeUnits() { + // We remove links from outside blocks to enable scheduling inside the block. + for (SUnit* SU : SUnits) { + releaseSuccessors(SU, false); + if (DAG->IsHighLatencySU[SU->NodeNum]) + HighLatencyBlock = true; + } + HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0); +} + +// we maintain ascending order of IDs +void SIScheduleBlock::addPred(SIScheduleBlock *Pred) { + unsigned PredID = Pred->getID(); + + // Check if not already predecessor. + for (SIScheduleBlock* P : Preds) { + if (PredID == P->getID()) + return; + } + Preds.push_back(Pred); + + assert(none_of(Succs, + [=](std::pair<SIScheduleBlock*, + SIScheduleBlockLinkKind> S) { + return PredID == S.first->getID(); + }) && + "Loop in the Block Graph!"); +} + +void SIScheduleBlock::addSucc(SIScheduleBlock *Succ, + SIScheduleBlockLinkKind Kind) { + unsigned SuccID = Succ->getID(); + + // Check if not already predecessor. + for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) { + if (SuccID == S.first->getID()) { + if (S.second == SIScheduleBlockLinkKind::NoData && + Kind == SIScheduleBlockLinkKind::Data) + S.second = Kind; + return; + } + } + if (Succ->isHighLatencyBlock()) + ++NumHighLatencySuccessors; + Succs.push_back(std::make_pair(Succ, Kind)); + + assert(none_of(Preds, + [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) && + "Loop in the Block Graph!"); +} + +#ifndef NDEBUG +void SIScheduleBlock::printDebug(bool full) { + dbgs() << "Block (" << ID << ")\n"; + if (!full) + return; + + dbgs() << "\nContains High Latency Instruction: " + << HighLatencyBlock << '\n'; + dbgs() << "\nDepends On:\n"; + for (SIScheduleBlock* P : Preds) { + P->printDebug(false); + } + + dbgs() << "\nSuccessors:\n"; + for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) { + if (S.second == SIScheduleBlockLinkKind::Data) + dbgs() << "(Data Dep) "; + S.first->printDebug(false); + } + + if (Scheduled) { + dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' ' + << LiveInPressure[DAG->getVGPRSetID()] << '\n'; + dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' ' + << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n"; + dbgs() << "LiveIns:\n"; + for (unsigned Reg : LiveInRegs) + dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; + + dbgs() << "\nLiveOuts:\n"; + for (unsigned Reg : LiveOutRegs) + dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; + } + + dbgs() << "\nInstructions:\n"; + if (!Scheduled) { + for (SUnit* SU : SUnits) { + SU->dump(DAG); + } + } else { + for (SUnit* SU : SUnits) { + SU->dump(DAG); + } + } + + dbgs() << "///////////////////////\n"; +} +#endif + +// SIScheduleBlockCreator // + +SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) : +DAG(DAG) { +} + +SIScheduleBlockCreator::~SIScheduleBlockCreator() = default; + +SIScheduleBlocks +SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) { + std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B = + Blocks.find(BlockVariant); + if (B == Blocks.end()) { + SIScheduleBlocks Res; + createBlocksForVariant(BlockVariant); + topologicalSort(); + scheduleInsideBlocks(); + fillStats(); + Res.Blocks = CurrentBlocks; + Res.TopDownIndex2Block = TopDownIndex2Block; + Res.TopDownBlock2Index = TopDownBlock2Index; + Blocks[BlockVariant] = Res; + return Res; + } else { + return B->second; + } +} + +bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) { + if (SU->NodeNum >= DAG->SUnits.size()) + return false; + return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID; +} + +void SIScheduleBlockCreator::colorHighLatenciesAlone() { + unsigned DAGSize = DAG->SUnits.size(); + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + if (DAG->IsHighLatencySU[SU->NodeNum]) { + CurrentColoring[SU->NodeNum] = NextReservedID++; + } + } +} + +static bool +hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) { + for (const auto &PredDep : SU.Preds) { + if (PredDep.getSUnit() == &FromSU && + PredDep.getKind() == llvm::SDep::Data) + return true; + } + return false; +} + +void SIScheduleBlockCreator::colorHighLatenciesGroups() { + unsigned DAGSize = DAG->SUnits.size(); + unsigned NumHighLatencies = 0; + unsigned GroupSize; + int Color = NextReservedID; + unsigned Count = 0; + std::set<unsigned> FormingGroup; + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + if (DAG->IsHighLatencySU[SU->NodeNum]) + ++NumHighLatencies; + } + + if (NumHighLatencies == 0) + return; + + if (NumHighLatencies <= 6) + GroupSize = 2; + else if (NumHighLatencies <= 12) + GroupSize = 3; + else + GroupSize = 4; + + for (unsigned SUNum : DAG->TopDownIndex2SU) { + const SUnit &SU = DAG->SUnits[SUNum]; + if (DAG->IsHighLatencySU[SU.NodeNum]) { + unsigned CompatibleGroup = true; + int ProposedColor = Color; + std::vector<int> AdditionalElements; + + // We don't want to put in the same block + // two high latency instructions that depend + // on each other. + // One way would be to check canAddEdge + // in both directions, but that currently is not + // enough because there the high latency order is + // enforced (via links). + // Instead, look at the dependencies between the + // high latency instructions and deduce if it is + // a data dependency or not. + for (unsigned j : FormingGroup) { + bool HasSubGraph; + std::vector<int> SubGraph; + // By construction (topological order), if SU and + // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary + // in the parent graph of SU. +#ifndef NDEBUG + SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], + HasSubGraph); + assert(!HasSubGraph); +#endif + SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, + HasSubGraph); + if (!HasSubGraph) + continue; // No dependencies between each other + else if (SubGraph.size() > 5) { + // Too many elements would be required to be added to the block. + CompatibleGroup = false; + break; + } + else { + // Check the type of dependency + for (unsigned k : SubGraph) { + // If in the path to join the two instructions, + // there is another high latency instruction, + // or instructions colored for another block + // abort the merge. + if (DAG->IsHighLatencySU[k] || + (CurrentColoring[k] != ProposedColor && + CurrentColoring[k] != 0)) { + CompatibleGroup = false; + break; + } + // If one of the SU in the subgraph depends on the result of SU j, + // there'll be a data dependency. + if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) { + CompatibleGroup = false; + break; + } + } + if (!CompatibleGroup) + break; + // Same check for the SU + if (hasDataDependencyPred(SU, DAG->SUnits[j])) { + CompatibleGroup = false; + break; + } + // Add all the required instructions to the block + // These cannot live in another block (because they + // depend (order dependency) on one of the + // instruction in the block, and are required for the + // high latency instruction we add. + AdditionalElements.insert(AdditionalElements.end(), + SubGraph.begin(), SubGraph.end()); + } + } + if (CompatibleGroup) { + FormingGroup.insert(SU.NodeNum); + for (unsigned j : AdditionalElements) + CurrentColoring[j] = ProposedColor; + CurrentColoring[SU.NodeNum] = ProposedColor; + ++Count; + } + // Found one incompatible instruction, + // or has filled a big enough group. + // -> start a new one. + if (!CompatibleGroup) { + FormingGroup.clear(); + Color = ++NextReservedID; + ProposedColor = Color; + FormingGroup.insert(SU.NodeNum); + CurrentColoring[SU.NodeNum] = ProposedColor; + Count = 0; + } else if (Count == GroupSize) { + FormingGroup.clear(); + Color = ++NextReservedID; + ProposedColor = Color; + Count = 0; + } + } + } +} + +void SIScheduleBlockCreator::colorComputeReservedDependencies() { + unsigned DAGSize = DAG->SUnits.size(); + std::map<std::set<unsigned>, unsigned> ColorCombinations; + + CurrentTopDownReservedDependencyColoring.clear(); + CurrentBottomUpReservedDependencyColoring.clear(); + + CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0); + CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0); + + // Traverse TopDown, and give different colors to SUs depending + // on which combination of High Latencies they depend on. + + for (unsigned SUNum : DAG->TopDownIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + + // Already given. + if (CurrentColoring[SU->NodeNum]) { + CurrentTopDownReservedDependencyColoring[SU->NodeNum] = + CurrentColoring[SU->NodeNum]; + continue; + } + + for (SDep& PredDep : SU->Preds) { + SUnit *Pred = PredDep.getSUnit(); + if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) + continue; + if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0) + SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]); + } + // Color 0 by default. + if (SUColors.empty()) + continue; + // Same color than parents. + if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) + CurrentTopDownReservedDependencyColoring[SU->NodeNum] = + *SUColors.begin(); + else { + std::map<std::set<unsigned>, unsigned>::iterator Pos = + ColorCombinations.find(SUColors); + if (Pos != ColorCombinations.end()) { + CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second; + } else { + CurrentTopDownReservedDependencyColoring[SU->NodeNum] = + NextNonReservedID; + ColorCombinations[SUColors] = NextNonReservedID++; + } + } + } + + ColorCombinations.clear(); + + // Same as before, but BottomUp. + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + + // Already given. + if (CurrentColoring[SU->NodeNum]) { + CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = + CurrentColoring[SU->NodeNum]; + continue; + } + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0) + SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]); + } + // Keep color 0. + if (SUColors.empty()) + continue; + // Same color than parents. + if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) + CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = + *SUColors.begin(); + else { + std::map<std::set<unsigned>, unsigned>::iterator Pos = + ColorCombinations.find(SUColors); + if (Pos != ColorCombinations.end()) { + CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second; + } else { + CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = + NextNonReservedID; + ColorCombinations[SUColors] = NextNonReservedID++; + } + } + } +} + +void SIScheduleBlockCreator::colorAccordingToReservedDependencies() { + unsigned DAGSize = DAG->SUnits.size(); + std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations; + + // Every combination of colors given by the top down + // and bottom up Reserved node dependency + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + std::pair<unsigned, unsigned> SUColors; + + // High latency instructions: already given. + if (CurrentColoring[SU->NodeNum]) + continue; + + SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum]; + SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum]; + + std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos = + ColorCombinations.find(SUColors); + if (Pos != ColorCombinations.end()) { + CurrentColoring[SU->NodeNum] = Pos->second; + } else { + CurrentColoring[SU->NodeNum] = NextNonReservedID; + ColorCombinations[SUColors] = NextNonReservedID++; + } + } +} + +void SIScheduleBlockCreator::colorEndsAccordingToDependencies() { + unsigned DAGSize = DAG->SUnits.size(); + std::vector<int> PendingColoring = CurrentColoring; + + assert(DAGSize >= 1 && + CurrentBottomUpReservedDependencyColoring.size() == DAGSize && + CurrentTopDownReservedDependencyColoring.size() == DAGSize); + // If there is no reserved block at all, do nothing. We don't want + // everything in one block. + if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(), + CurrentBottomUpReservedDependencyColoring.end()) == 0 && + *std::max_element(CurrentTopDownReservedDependencyColoring.begin(), + CurrentTopDownReservedDependencyColoring.end()) == 0) + return; + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + std::set<unsigned> SUColorsPending; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 || + CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 || + CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0) + SUColors.insert(CurrentColoring[Succ->NodeNum]); + SUColorsPending.insert(PendingColoring[Succ->NodeNum]); + } + // If there is only one child/parent block, and that block + // is not among the ones we are removing in this path, then + // merge the instruction to that block + if (SUColors.size() == 1 && SUColorsPending.size() == 1) + PendingColoring[SU->NodeNum] = *SUColors.begin(); + else // TODO: Attribute new colors depending on color + // combination of children. + PendingColoring[SU->NodeNum] = NextNonReservedID++; + } + CurrentColoring = PendingColoring; +} + + +void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() { + unsigned DAGSize = DAG->SUnits.size(); + unsigned PreviousColor; + std::set<unsigned> SeenColors; + + if (DAGSize <= 1) + return; + + PreviousColor = CurrentColoring[0]; + + for (unsigned i = 1, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + unsigned CurrentColor = CurrentColoring[i]; + unsigned PreviousColorSave = PreviousColor; + assert(i == SU->NodeNum); + + if (CurrentColor != PreviousColor) + SeenColors.insert(PreviousColor); + PreviousColor = CurrentColor; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + if (SeenColors.find(CurrentColor) == SeenColors.end()) + continue; + + if (PreviousColorSave != CurrentColor) + CurrentColoring[i] = NextNonReservedID++; + else + CurrentColoring[i] = CurrentColoring[i-1]; + } +} + +void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() { + unsigned DAGSize = DAG->SUnits.size(); + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + // No predecessor: Vgpr constant loading. + // Low latency instructions usually have a predecessor (the address) + if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum]) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + SUColors.insert(CurrentColoring[Succ->NodeNum]); + } + if (SUColors.size() == 1) + CurrentColoring[SU->NodeNum] = *SUColors.begin(); + } +} + +void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() { + unsigned DAGSize = DAG->SUnits.size(); + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + SUColors.insert(CurrentColoring[Succ->NodeNum]); + } + if (SUColors.size() == 1) + CurrentColoring[SU->NodeNum] = *SUColors.begin(); + } +} + +void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() { + unsigned DAGSize = DAG->SUnits.size(); + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + std::set<unsigned> SUColors; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + SUColors.insert(CurrentColoring[Succ->NodeNum]); + } + if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize) + CurrentColoring[SU->NodeNum] = *SUColors.begin(); + } +} + +void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() { + unsigned DAGSize = DAG->SUnits.size(); + std::map<unsigned, unsigned> ColorCount; + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + unsigned color = CurrentColoring[SU->NodeNum]; + ++ColorCount[color]; + } + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + unsigned color = CurrentColoring[SU->NodeNum]; + std::set<unsigned> SUColors; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + if (ColorCount[color] > 1) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + SUColors.insert(CurrentColoring[Succ->NodeNum]); + } + if (SUColors.size() == 1 && *SUColors.begin() != color) { + --ColorCount[color]; + CurrentColoring[SU->NodeNum] = *SUColors.begin(); + ++ColorCount[*SUColors.begin()]; + } + } +} + +void SIScheduleBlockCreator::cutHugeBlocks() { + // TODO +} + +void SIScheduleBlockCreator::regroupNoUserInstructions() { + unsigned DAGSize = DAG->SUnits.size(); + int GroupID = NextNonReservedID++; + + for (unsigned SUNum : DAG->BottomUpIndex2SU) { + SUnit *SU = &DAG->SUnits[SUNum]; + bool hasSuccessor = false; + + if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) + continue; + + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + hasSuccessor = true; + } + if (!hasSuccessor) + CurrentColoring[SU->NodeNum] = GroupID; + } +} + +void SIScheduleBlockCreator::colorExports() { + unsigned ExportColor = NextNonReservedID++; + SmallVector<unsigned, 8> ExpGroup; + + // Put all exports together in a block. + // The block will naturally end up being scheduled last, + // thus putting exports at the end of the schedule, which + // is better for performance. + // However we must ensure, for safety, the exports can be put + // together in the same block without any other instruction. + // This could happen, for example, when scheduling after regalloc + // if reloading a spilled register from memory using the same + // register than used in a previous export. + // If that happens, do not regroup the exports. + for (unsigned SUNum : DAG->TopDownIndex2SU) { + const SUnit &SU = DAG->SUnits[SUNum]; + if (SIInstrInfo::isEXP(*SU.getInstr())) { + // Check the EXP can be added to the group safely, + // ie without needing any other instruction. + // The EXP is allowed to depend on other EXP + // (they will be in the same group). + for (unsigned j : ExpGroup) { + bool HasSubGraph; + std::vector<int> SubGraph; + // By construction (topological order), if SU and + // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary + // in the parent graph of SU. +#ifndef NDEBUG + SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], + HasSubGraph); + assert(!HasSubGraph); +#endif + SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, + HasSubGraph); + if (!HasSubGraph) + continue; // No dependencies between each other + + // SubGraph contains all the instructions required + // between EXP SUnits[j] and EXP SU. + for (unsigned k : SubGraph) { + if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr())) + // Other instructions than EXP would be required in the group. + // Abort the groupping. + return; + } + } + + ExpGroup.push_back(SUNum); + } + } + + // The group can be formed. Give the color. + for (unsigned j : ExpGroup) + CurrentColoring[j] = ExportColor; +} + +void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) { + unsigned DAGSize = DAG->SUnits.size(); + std::map<unsigned,unsigned> RealID; + + CurrentBlocks.clear(); + CurrentColoring.clear(); + CurrentColoring.resize(DAGSize, 0); + Node2CurrentBlock.clear(); + + // Restore links previous scheduling variant has overridden. + DAG->restoreSULinksLeft(); + + NextReservedID = 1; + NextNonReservedID = DAGSize + 1; + + DEBUG(dbgs() << "Coloring the graph\n"); + + if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped) + colorHighLatenciesGroups(); + else + colorHighLatenciesAlone(); + colorComputeReservedDependencies(); + colorAccordingToReservedDependencies(); + colorEndsAccordingToDependencies(); + if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive) + colorForceConsecutiveOrderInGroup(); + regroupNoUserInstructions(); + colorMergeConstantLoadsNextGroup(); + colorMergeIfPossibleNextGroupOnlyForReserved(); + colorExports(); + + // Put SUs of same color into same block + Node2CurrentBlock.resize(DAGSize, -1); + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + unsigned Color = CurrentColoring[SU->NodeNum]; + if (RealID.find(Color) == RealID.end()) { + int ID = CurrentBlocks.size(); + BlockPtrs.push_back(llvm::make_unique<SIScheduleBlock>(DAG, this, ID)); + CurrentBlocks.push_back(BlockPtrs.rbegin()->get()); + RealID[Color] = ID; + } + CurrentBlocks[RealID[Color]]->addUnit(SU); + Node2CurrentBlock[SU->NodeNum] = RealID[Color]; + } + + // Build dependencies between blocks. + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &DAG->SUnits[i]; + int SUID = Node2CurrentBlock[i]; + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) + continue; + if (Node2CurrentBlock[Succ->NodeNum] != SUID) + CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]], + SuccDep.isCtrl() ? NoData : Data); + } + for (SDep& PredDep : SU->Preds) { + SUnit *Pred = PredDep.getSUnit(); + if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) + continue; + if (Node2CurrentBlock[Pred->NodeNum] != SUID) + CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]); + } + } + + // Free root and leafs of all blocks to enable scheduling inside them. + for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + Block->finalizeUnits(); + } + DEBUG( + dbgs() << "Blocks created:\n\n"; + for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + Block->printDebug(true); + } + ); +} + +// Two functions taken from Codegen/MachineScheduler.cpp + +/// Non-const version. +static MachineBasicBlock::iterator +nextIfDebug(MachineBasicBlock::iterator I, + MachineBasicBlock::const_iterator End) { + for (; I != End; ++I) { + if (!I->isDebugValue()) + break; + } + return I; +} + +void SIScheduleBlockCreator::topologicalSort() { + unsigned DAGSize = CurrentBlocks.size(); + std::vector<int> WorkList; + + DEBUG(dbgs() << "Topological Sort\n"); + + WorkList.reserve(DAGSize); + TopDownIndex2Block.resize(DAGSize); + TopDownBlock2Index.resize(DAGSize); + BottomUpIndex2Block.resize(DAGSize); + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + unsigned Degree = Block->getSuccs().size(); + TopDownBlock2Index[i] = Degree; + if (Degree == 0) { + WorkList.push_back(i); + } + } + + int Id = DAGSize; + while (!WorkList.empty()) { + int i = WorkList.back(); + SIScheduleBlock *Block = CurrentBlocks[i]; + WorkList.pop_back(); + TopDownBlock2Index[i] = --Id; + TopDownIndex2Block[Id] = i; + for (SIScheduleBlock* Pred : Block->getPreds()) { + if (!--TopDownBlock2Index[Pred->getID()]) + WorkList.push_back(Pred->getID()); + } + } + +#ifndef NDEBUG + // Check correctness of the ordering. + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + for (SIScheduleBlock* Pred : Block->getPreds()) { + assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] && + "Wrong Top Down topological sorting"); + } + } +#endif + + BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(), + TopDownIndex2Block.rend()); +} + +void SIScheduleBlockCreator::scheduleInsideBlocks() { + unsigned DAGSize = CurrentBlocks.size(); + + DEBUG(dbgs() << "\nScheduling Blocks\n\n"); + + // We do schedule a valid scheduling such that a Block corresponds + // to a range of instructions. + DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n"); + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + Block->fastSchedule(); + } + + // Note: the following code, and the part restoring previous position + // is by far the most expensive operation of the Scheduler. + + // Do not update CurrentTop. + MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop(); + std::vector<MachineBasicBlock::iterator> PosOld; + std::vector<MachineBasicBlock::iterator> PosNew; + PosOld.reserve(DAG->SUnits.size()); + PosNew.reserve(DAG->SUnits.size()); + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + int BlockIndice = TopDownIndex2Block[i]; + SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; + std::vector<SUnit*> SUs = Block->getScheduledUnits(); + + for (SUnit* SU : SUs) { + MachineInstr *MI = SU->getInstr(); + MachineBasicBlock::iterator Pos = MI; + PosOld.push_back(Pos); + if (&*CurrentTopFastSched == MI) { + PosNew.push_back(Pos); + CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched, + DAG->getCurrentBottom()); + } else { + // Update the instruction stream. + DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI); + + // Update LiveIntervals. + // Note: Moving all instructions and calling handleMove every time + // is the most cpu intensive operation of the scheduler. + // It would gain a lot if there was a way to recompute the + // LiveIntervals for the entire scheduling region. + DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true); + PosNew.push_back(CurrentTopFastSched); + } + } + } + + // Now we have Block of SUs == Block of MI. + // We do the final schedule for the instructions inside the block. + // The property that all the SUs of the Block are grouped together as MI + // is used for correct reg usage tracking. + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + std::vector<SUnit*> SUs = Block->getScheduledUnits(); + Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr()); + } + + DEBUG(dbgs() << "Restoring MI Pos\n"); + // Restore old ordering (which prevents a LIS->handleMove bug). + for (unsigned i = PosOld.size(), e = 0; i != e; --i) { + MachineBasicBlock::iterator POld = PosOld[i-1]; + MachineBasicBlock::iterator PNew = PosNew[i-1]; + if (PNew != POld) { + // Update the instruction stream. + DAG->getBB()->splice(POld, DAG->getBB(), PNew); + + // Update LiveIntervals. + DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true); + } + } + + DEBUG( + for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { + SIScheduleBlock *Block = CurrentBlocks[i]; + Block->printDebug(true); + } + ); +} + +void SIScheduleBlockCreator::fillStats() { + unsigned DAGSize = CurrentBlocks.size(); + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + int BlockIndice = TopDownIndex2Block[i]; + SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; + if (Block->getPreds().empty()) + Block->Depth = 0; + else { + unsigned Depth = 0; + for (SIScheduleBlock *Pred : Block->getPreds()) { + if (Depth < Pred->Depth + Pred->getCost()) + Depth = Pred->Depth + Pred->getCost(); + } + Block->Depth = Depth; + } + } + + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + int BlockIndice = BottomUpIndex2Block[i]; + SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; + if (Block->getSuccs().empty()) + Block->Height = 0; + else { + unsigned Height = 0; + for (const auto &Succ : Block->getSuccs()) + Height = std::max(Height, Succ.first->Height + Succ.first->getCost()); + Block->Height = Height; + } + } +} + +// SIScheduleBlockScheduler // + +SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG, + SISchedulerBlockSchedulerVariant Variant, + SIScheduleBlocks BlocksStruct) : + DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks), + LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0), + SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) { + + // Fill the usage of every output + // Warning: while by construction we always have a link between two blocks + // when one needs a result from the other, the number of users of an output + // is not the sum of child blocks having as input the same virtual register. + // Here is an example. A produces x and y. B eats x and produces x'. + // C eats x' and y. The register coalescer may have attributed the same + // virtual register to x and x'. + // To count accurately, we do a topological sort. In case the register is + // found for several parents, we increment the usage of the one with the + // highest topological index. + LiveOutRegsNumUsages.resize(Blocks.size()); + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + SIScheduleBlock *Block = Blocks[i]; + for (unsigned Reg : Block->getInRegs()) { + bool Found = false; + int topoInd = -1; + for (SIScheduleBlock* Pred: Block->getPreds()) { + std::set<unsigned> PredOutRegs = Pred->getOutRegs(); + std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); + + if (RegPos != PredOutRegs.end()) { + Found = true; + if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) { + topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()]; + } + } + } + + if (!Found) + continue; + + int PredID = BlocksStruct.TopDownIndex2Block[topoInd]; + ++LiveOutRegsNumUsages[PredID][Reg]; + } + } + + LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0); + BlockNumPredsLeft.resize(Blocks.size()); + BlockNumSuccsLeft.resize(Blocks.size()); + + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + SIScheduleBlock *Block = Blocks[i]; + BlockNumPredsLeft[i] = Block->getPreds().size(); + BlockNumSuccsLeft[i] = Block->getSuccs().size(); + } + +#ifndef NDEBUG + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + SIScheduleBlock *Block = Blocks[i]; + assert(Block->getID() == i); + } +#endif + + std::set<unsigned> InRegs = DAG->getInRegs(); + addLiveRegs(InRegs); + + // Increase LiveOutRegsNumUsages for blocks + // producing registers consumed in another + // scheduling region. + for (unsigned Reg : DAG->getOutRegs()) { + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + // Do reverse traversal + int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i]; + SIScheduleBlock *Block = Blocks[ID]; + const std::set<unsigned> &OutRegs = Block->getOutRegs(); + + if (OutRegs.find(Reg) == OutRegs.end()) + continue; + + ++LiveOutRegsNumUsages[ID][Reg]; + break; + } + } + + // Fill LiveRegsConsumers for regs that were already + // defined before scheduling. + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + SIScheduleBlock *Block = Blocks[i]; + for (unsigned Reg : Block->getInRegs()) { + bool Found = false; + for (SIScheduleBlock* Pred: Block->getPreds()) { + std::set<unsigned> PredOutRegs = Pred->getOutRegs(); + std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); + + if (RegPos != PredOutRegs.end()) { + Found = true; + break; + } + } + + if (!Found) + ++LiveRegsConsumers[Reg]; + } + } + + for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { + SIScheduleBlock *Block = Blocks[i]; + if (BlockNumPredsLeft[i] == 0) { + ReadyBlocks.push_back(Block); + } + } + + while (SIScheduleBlock *Block = pickBlock()) { + BlocksScheduled.push_back(Block); + blockScheduled(Block); + } + + DEBUG( + dbgs() << "Block Order:"; + for (SIScheduleBlock* Block : BlocksScheduled) { + dbgs() << ' ' << Block->getID(); + } + dbgs() << '\n'; + ); +} + +bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand, + SIBlockSchedCandidate &TryCand) { + if (!Cand.isValid()) { + TryCand.Reason = NodeOrder; + return true; + } + + // Try to hide high latencies. + if (tryLess(TryCand.LastPosHighLatParentScheduled, + Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency)) + return true; + // Schedule high latencies early so you can hide them better. + if (tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency, + TryCand, Cand, Latency)) + return true; + if (TryCand.IsHighLatency && tryGreater(TryCand.Height, Cand.Height, + TryCand, Cand, Depth)) + return true; + if (tryGreater(TryCand.NumHighLatencySuccessors, + Cand.NumHighLatencySuccessors, + TryCand, Cand, Successor)) + return true; + return false; +} + +bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand, + SIBlockSchedCandidate &TryCand) { + if (!Cand.isValid()) { + TryCand.Reason = NodeOrder; + return true; + } + + if (tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0, + TryCand, Cand, RegUsage)) + return true; + if (tryGreater(TryCand.NumSuccessors > 0, + Cand.NumSuccessors > 0, + TryCand, Cand, Successor)) + return true; + if (tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth)) + return true; + if (tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff, + TryCand, Cand, RegUsage)) + return true; + return false; +} + +SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() { + SIBlockSchedCandidate Cand; + std::vector<SIScheduleBlock*>::iterator Best; + SIScheduleBlock *Block; + if (ReadyBlocks.empty()) + return nullptr; + + DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(), + VregCurrentUsage, SregCurrentUsage); + if (VregCurrentUsage > maxVregUsage) + maxVregUsage = VregCurrentUsage; + if (SregCurrentUsage > maxSregUsage) + maxSregUsage = SregCurrentUsage; + DEBUG( + dbgs() << "Picking New Blocks\n"; + dbgs() << "Available: "; + for (SIScheduleBlock* Block : ReadyBlocks) + dbgs() << Block->getID() << ' '; + dbgs() << "\nCurrent Live:\n"; + for (unsigned Reg : LiveRegs) + dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; + dbgs() << '\n'; + dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n'; + dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n'; + ); + + Cand.Block = nullptr; + for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(), + E = ReadyBlocks.end(); I != E; ++I) { + SIBlockSchedCandidate TryCand; + TryCand.Block = *I; + TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock(); + TryCand.VGPRUsageDiff = + checkRegUsageImpact(TryCand.Block->getInRegs(), + TryCand.Block->getOutRegs())[DAG->getVGPRSetID()]; + TryCand.NumSuccessors = TryCand.Block->getSuccs().size(); + TryCand.NumHighLatencySuccessors = + TryCand.Block->getNumHighLatencySuccessors(); + TryCand.LastPosHighLatParentScheduled = + (unsigned int) std::max<int> (0, + LastPosHighLatencyParentScheduled[TryCand.Block->getID()] - + LastPosWaitedHighLatency); + TryCand.Height = TryCand.Block->Height; + // Try not to increase VGPR usage too much, else we may spill. + if (VregCurrentUsage > 120 || + Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) { + if (!tryCandidateRegUsage(Cand, TryCand) && + Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage) + tryCandidateLatency(Cand, TryCand); + } else { + if (!tryCandidateLatency(Cand, TryCand)) + tryCandidateRegUsage(Cand, TryCand); + } + if (TryCand.Reason != NoCand) { + Cand.setBest(TryCand); + Best = I; + DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' ' + << getReasonStr(Cand.Reason) << '\n'); + } + } + + DEBUG( + dbgs() << "Picking: " << Cand.Block->getID() << '\n'; + dbgs() << "Is a block with high latency instruction: " + << (Cand.IsHighLatency ? "yes\n" : "no\n"); + dbgs() << "Position of last high latency dependency: " + << Cand.LastPosHighLatParentScheduled << '\n'; + dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n'; + dbgs() << '\n'; + ); + + Block = Cand.Block; + ReadyBlocks.erase(Best); + return Block; +} + +// Tracking of currently alive registers to determine VGPR Usage. + +void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) { + for (unsigned Reg : Regs) { + // For now only track virtual registers. + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + // If not already in the live set, then add it. + (void) LiveRegs.insert(Reg); + } +} + +void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block, + std::set<unsigned> &Regs) { + for (unsigned Reg : Regs) { + // For now only track virtual registers. + std::set<unsigned>::iterator Pos = LiveRegs.find(Reg); + assert (Pos != LiveRegs.end() && // Reg must be live. + LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() && + LiveRegsConsumers[Reg] >= 1); + --LiveRegsConsumers[Reg]; + if (LiveRegsConsumers[Reg] == 0) + LiveRegs.erase(Pos); + } +} + +void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) { + for (const auto &Block : Parent->getSuccs()) { + if (--BlockNumPredsLeft[Block.first->getID()] == 0) + ReadyBlocks.push_back(Block.first); + + if (Parent->isHighLatencyBlock() && + Block.second == SIScheduleBlockLinkKind::Data) + LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled; + } +} + +void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) { + decreaseLiveRegs(Block, Block->getInRegs()); + addLiveRegs(Block->getOutRegs()); + releaseBlockSuccs(Block); + for (std::map<unsigned, unsigned>::iterator RegI = + LiveOutRegsNumUsages[Block->getID()].begin(), + E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) { + std::pair<unsigned, unsigned> RegP = *RegI; + // We produce this register, thus it must not be previously alive. + assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() || + LiveRegsConsumers[RegP.first] == 0); + LiveRegsConsumers[RegP.first] += RegP.second; + } + if (LastPosHighLatencyParentScheduled[Block->getID()] > + (unsigned)LastPosWaitedHighLatency) + LastPosWaitedHighLatency = + LastPosHighLatencyParentScheduled[Block->getID()]; + ++NumBlockScheduled; +} + +std::vector<int> +SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs, + std::set<unsigned> &OutRegs) { + std::vector<int> DiffSetPressure; + DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0); + + for (unsigned Reg : InRegs) { + // For now only track virtual registers. + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + if (LiveRegsConsumers[Reg] > 1) + continue; + PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); + for (; PSetI.isValid(); ++PSetI) { + DiffSetPressure[*PSetI] -= PSetI.getWeight(); + } + } + + for (unsigned Reg : OutRegs) { + // For now only track virtual registers. + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); + for (; PSetI.isValid(); ++PSetI) { + DiffSetPressure[*PSetI] += PSetI.getWeight(); + } + } + + return DiffSetPressure; +} + +// SIScheduler // + +struct SIScheduleBlockResult +SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant, + SISchedulerBlockSchedulerVariant ScheduleVariant) { + SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant); + SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks); + std::vector<SIScheduleBlock*> ScheduledBlocks; + struct SIScheduleBlockResult Res; + + ScheduledBlocks = Scheduler.getBlocks(); + + for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) { + SIScheduleBlock *Block = ScheduledBlocks[b]; + std::vector<SUnit*> SUs = Block->getScheduledUnits(); + + for (SUnit* SU : SUs) + Res.SUs.push_back(SU->NodeNum); + } + + Res.MaxSGPRUsage = Scheduler.getSGPRUsage(); + Res.MaxVGPRUsage = Scheduler.getVGPRUsage(); + return Res; +} + +// SIScheduleDAGMI // + +SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) : + ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)) { + SITII = static_cast<const SIInstrInfo*>(TII); + SITRI = static_cast<const SIRegisterInfo*>(TRI); + + VGPRSetID = SITRI->getVGPRPressureSet(); + SGPRSetID = SITRI->getSGPRPressureSet(); +} + +SIScheduleDAGMI::~SIScheduleDAGMI() = default; + +// Code adapted from scheduleDAG.cpp +// Does a topological sort over the SUs. +// Both TopDown and BottomUp +void SIScheduleDAGMI::topologicalSort() { + Topo.InitDAGTopologicalSorting(); + + TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end()); + BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend()); +} + +// Move low latencies further from their user without +// increasing SGPR usage (in general) +// This is to be replaced by a better pass that would +// take into account SGPR usage (based on VGPR Usage +// and the corresponding wavefront count), that would +// try to merge groups of loads if it make sense, etc +void SIScheduleDAGMI::moveLowLatencies() { + unsigned DAGSize = SUnits.size(); + int LastLowLatencyUser = -1; + int LastLowLatencyPos = -1; + + for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) { + SUnit *SU = &SUnits[ScheduledSUnits[i]]; + bool IsLowLatencyUser = false; + unsigned MinPos = 0; + + for (SDep& PredDep : SU->Preds) { + SUnit *Pred = PredDep.getSUnit(); + if (SITII->isLowLatencyInstruction(*Pred->getInstr())) { + IsLowLatencyUser = true; + } + if (Pred->NodeNum >= DAGSize) + continue; + unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum]; + if (PredPos >= MinPos) + MinPos = PredPos + 1; + } + + if (SITII->isLowLatencyInstruction(*SU->getInstr())) { + unsigned BestPos = LastLowLatencyUser + 1; + if ((int)BestPos <= LastLowLatencyPos) + BestPos = LastLowLatencyPos + 1; + if (BestPos < MinPos) + BestPos = MinPos; + if (BestPos < i) { + for (unsigned u = i; u > BestPos; --u) { + ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; + ScheduledSUnits[u] = ScheduledSUnits[u-1]; + } + ScheduledSUnits[BestPos] = SU->NodeNum; + ScheduledSUnitsInv[SU->NodeNum] = BestPos; + } + LastLowLatencyPos = BestPos; + if (IsLowLatencyUser) + LastLowLatencyUser = BestPos; + } else if (IsLowLatencyUser) { + LastLowLatencyUser = i; + // Moves COPY instructions on which depends + // the low latency instructions too. + } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) { + bool CopyForLowLat = false; + for (SDep& SuccDep : SU->Succs) { + SUnit *Succ = SuccDep.getSUnit(); + if (SITII->isLowLatencyInstruction(*Succ->getInstr())) { + CopyForLowLat = true; + } + } + if (!CopyForLowLat) + continue; + if (MinPos < i) { + for (unsigned u = i; u > MinPos; --u) { + ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; + ScheduledSUnits[u] = ScheduledSUnits[u-1]; + } + ScheduledSUnits[MinPos] = SU->NodeNum; + ScheduledSUnitsInv[SU->NodeNum] = MinPos; + } + } + } +} + +void SIScheduleDAGMI::restoreSULinksLeft() { + for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { + SUnits[i].isScheduled = false; + SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft; + SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft; + SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft; + SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft; + } +} + +// Return the Vgpr and Sgpr usage corresponding to some virtual registers. +template<typename _Iterator> void +SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End, + unsigned &VgprUsage, unsigned &SgprUsage) { + VgprUsage = 0; + SgprUsage = 0; + for (_Iterator RegI = First; RegI != End; ++RegI) { + unsigned Reg = *RegI; + // For now only track virtual registers + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + PSetIterator PSetI = MRI.getPressureSets(Reg); + for (; PSetI.isValid(); ++PSetI) { + if (*PSetI == VGPRSetID) + VgprUsage += PSetI.getWeight(); + else if (*PSetI == SGPRSetID) + SgprUsage += PSetI.getWeight(); + } + } +} + +void SIScheduleDAGMI::schedule() +{ + SmallVector<SUnit*, 8> TopRoots, BotRoots; + SIScheduleBlockResult Best, Temp; + DEBUG(dbgs() << "Preparing Scheduling\n"); + + buildDAGWithRegPressure(); + DEBUG( + for(SUnit& SU : SUnits) + SU.dumpAll(this) + ); + + topologicalSort(); + findRootsAndBiasEdges(TopRoots, BotRoots); + // We reuse several ScheduleDAGMI and ScheduleDAGMILive + // functions, but to make them happy we must initialize + // the default Scheduler implementation (even if we do not + // run it) + SchedImpl->initialize(this); + initQueues(TopRoots, BotRoots); + + // Fill some stats to help scheduling. + + SUnitsLinksBackup = SUnits; + IsLowLatencySU.clear(); + LowLatencyOffset.clear(); + IsHighLatencySU.clear(); + + IsLowLatencySU.resize(SUnits.size(), 0); + LowLatencyOffset.resize(SUnits.size(), 0); + IsHighLatencySU.resize(SUnits.size(), 0); + + for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { + SUnit *SU = &SUnits[i]; + unsigned BaseLatReg; + int64_t OffLatReg; + if (SITII->isLowLatencyInstruction(*SU->getInstr())) { + IsLowLatencySU[i] = 1; + if (SITII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseLatReg, OffLatReg, + TRI)) + LowLatencyOffset[i] = OffLatReg; + } else if (SITII->isHighLatencyInstruction(*SU->getInstr())) + IsHighLatencySU[i] = 1; + } + + SIScheduler Scheduler(this); + Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone, + SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage); + + // if VGPR usage is extremely high, try other good performing variants + // which could lead to lower VGPR usage + if (Best.MaxVGPRUsage > 180) { + static const std::pair<SISchedulerBlockCreatorVariant, + SISchedulerBlockSchedulerVariant> + Variants[] = { + { LatenciesAlone, BlockRegUsageLatency }, +// { LatenciesAlone, BlockRegUsage }, + { LatenciesGrouped, BlockLatencyRegUsage }, +// { LatenciesGrouped, BlockRegUsageLatency }, +// { LatenciesGrouped, BlockRegUsage }, + { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, +// { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, +// { LatenciesAlonePlusConsecutive, BlockRegUsage } + }; + for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { + Temp = Scheduler.scheduleVariant(v.first, v.second); + if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) + Best = Temp; + } + } + // if VGPR usage is still extremely high, we may spill. Try other variants + // which are less performing, but that could lead to lower VGPR usage. + if (Best.MaxVGPRUsage > 200) { + static const std::pair<SISchedulerBlockCreatorVariant, + SISchedulerBlockSchedulerVariant> + Variants[] = { +// { LatenciesAlone, BlockRegUsageLatency }, + { LatenciesAlone, BlockRegUsage }, +// { LatenciesGrouped, BlockLatencyRegUsage }, + { LatenciesGrouped, BlockRegUsageLatency }, + { LatenciesGrouped, BlockRegUsage }, +// { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, + { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, + { LatenciesAlonePlusConsecutive, BlockRegUsage } + }; + for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { + Temp = Scheduler.scheduleVariant(v.first, v.second); + if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) + Best = Temp; + } + } + + ScheduledSUnits = Best.SUs; + ScheduledSUnitsInv.resize(SUnits.size()); + + for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { + ScheduledSUnitsInv[ScheduledSUnits[i]] = i; + } + + moveLowLatencies(); + + // Tell the outside world about the result of the scheduling. + + assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); + TopRPTracker.setPos(CurrentTop); + + for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(), + E = ScheduledSUnits.end(); I != E; ++I) { + SUnit *SU = &SUnits[*I]; + + scheduleMI(SU, true); + + DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " + << *SU->getInstr()); + } + + assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + + placeDebugValues(); + + DEBUG({ + dbgs() << "*** Final schedule for " + << printMBBReference(*begin()->getParent()) << " ***\n"; + dumpSchedule(); + dbgs() << '\n'; + }); +} |