aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp4164
1 files changed, 4164 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp b/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
new file mode 100644
index 000000000000..21192a2c1cc8
--- /dev/null
+++ b/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp
@@ -0,0 +1,4164 @@
+//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This is the parent TargetLowering class for hardware code gen
+/// targets.
+//
+//===----------------------------------------------------------------------===//
+
+#define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
+#define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
+#define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
+
+#include "AMDGPUISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUCallLowering.h"
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "R600MachineFunctionInfo.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/Support/KnownBits.h"
+using namespace llvm;
+
+static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ MachineFunction &MF = State.getMachineFunction();
+ AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
+
+ uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
+ ArgFlags.getOrigAlign());
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State,
+ const TargetRegisterClass *RC,
+ unsigned NumRegs) {
+ ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
+ unsigned RegResult = State.AllocateReg(RegList);
+ if (RegResult == AMDGPU::NoRegister)
+ return false;
+
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
+ return true;
+}
+
+static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ switch (LocVT.SimpleTy) {
+ case MVT::i64:
+ case MVT::f64:
+ case MVT::v2i32:
+ case MVT::v2f32: {
+ // Up to SGPR0-SGPR39
+ return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
+ &AMDGPU::SGPR_64RegClass, 20);
+ }
+ default:
+ return false;
+ }
+}
+
+// Allocate up to VGPR31.
+//
+// TODO: Since there are no VGPR alignent requirements would it be better to
+// split into individual scalar registers?
+static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ switch (LocVT.SimpleTy) {
+ case MVT::i64:
+ case MVT::f64:
+ case MVT::v2i32:
+ case MVT::v2f32: {
+ return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
+ &AMDGPU::VReg_64RegClass, 31);
+ }
+ case MVT::v4i32:
+ case MVT::v4f32:
+ case MVT::v2i64:
+ case MVT::v2f64: {
+ return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
+ &AMDGPU::VReg_128RegClass, 29);
+ }
+ case MVT::v8i32:
+ case MVT::v8f32: {
+ return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
+ &AMDGPU::VReg_256RegClass, 25);
+
+ }
+ case MVT::v16i32:
+ case MVT::v16f32: {
+ return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
+ &AMDGPU::VReg_512RegClass, 17);
+
+ }
+ default:
+ return false;
+ }
+}
+
+#include "AMDGPUGenCallingConv.inc"
+
+// Find a larger type to do a load / store of a vector with.
+EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
+ unsigned StoreSize = VT.getStoreSizeInBits();
+ if (StoreSize <= 32)
+ return EVT::getIntegerVT(Ctx, StoreSize);
+
+ assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
+ return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
+}
+
+unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
+ KnownBits Known;
+ EVT VT = Op.getValueType();
+ DAG.computeKnownBits(Op, Known);
+
+ return VT.getSizeInBits() - Known.countMinLeadingZeros();
+}
+
+unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+
+ // In order for this to be a signed 24-bit value, bit 23, must
+ // be a sign bit.
+ return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
+}
+
+AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
+ const AMDGPUSubtarget &STI)
+ : TargetLowering(TM), Subtarget(&STI) {
+ AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
+ // Lower floating point store/load to integer store/load to reduce the number
+ // of patterns in tablegen.
+ setOperationAction(ISD::LOAD, MVT::f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::LOAD, MVT::i64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
+
+ setOperationAction(ISD::LOAD, MVT::f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
+
+ // There are no 64-bit extloads. These should be done as a 32-bit extload and
+ // an extension to 64-bit.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
+ }
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ if (VT == MVT::i64)
+ continue;
+
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
+
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
+ }
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
+
+ setOperationAction(ISD::STORE, MVT::f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::STORE, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::STORE, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::STORE, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::STORE, MVT::i64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v2i64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
+
+ setOperationAction(ISD::STORE, MVT::f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
+
+ setTruncStoreAction(MVT::i64, MVT::i1, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+
+ setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
+
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
+ setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
+ setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
+ setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
+
+ setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
+ setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
+
+ setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
+ setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
+
+
+ setOperationAction(ISD::Constant, MVT::i32, Legal);
+ setOperationAction(ISD::Constant, MVT::i64, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+
+ // This is totally unsupported, just custom lower to produce an error.
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+
+ // Library functions. These default to Expand, but we have instructions
+ // for them.
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FEXP2, MVT::f32, Legal);
+ setOperationAction(ISD::FPOW, MVT::f32, Legal);
+ setOperationAction(ISD::FLOG2, MVT::f32, Legal);
+ setOperationAction(ISD::FABS, MVT::f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
+
+ setOperationAction(ISD::FROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FROUND, MVT::f64, Custom);
+
+ setOperationAction(ISD::FLOG, MVT::f32, Custom);
+ setOperationAction(ISD::FLOG10, MVT::f32, Custom);
+
+ if (Subtarget->has16BitInsts()) {
+ setOperationAction(ISD::FLOG, MVT::f16, Custom);
+ setOperationAction(ISD::FLOG10, MVT::f16, Custom);
+ }
+
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
+
+ setOperationAction(ISD::FREM, MVT::f32, Custom);
+ setOperationAction(ISD::FREM, MVT::f64, Custom);
+
+ // v_mad_f32 does not support denormals according to some sources.
+ if (!Subtarget->hasFP32Denormals())
+ setOperationAction(ISD::FMAD, MVT::f32, Legal);
+
+ // Expand to fneg + fadd.
+ setOperationAction(ISD::FSUB, MVT::f64, Expand);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
+
+ if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
+ setOperationAction(ISD::FCEIL, MVT::f64, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
+ setOperationAction(ISD::FRINT, MVT::f64, Custom);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
+ }
+
+ if (!Subtarget->hasBFI()) {
+ // fcopysign can be done in a single instruction with BFI.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ }
+
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
+
+ const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
+ for (MVT VT : ScalarIntVTs) {
+ // These should use [SU]DIVREM, so set them to expand
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+
+ // GPU does not have divrem function for signed or unsigned.
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+
+ // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ }
+
+ if (!Subtarget->hasBCNT(32))
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+
+ if (!Subtarget->hasBCNT(64))
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ // The hardware supports 32-bit ROTR, but not ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+
+ setOperationAction(ISD::SMIN, MVT::i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::i32, Legal);
+ setOperationAction(ISD::SMAX, MVT::i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::i32, Legal);
+
+ if (Subtarget->hasFFBH())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
+
+ if (Subtarget->hasFFBL())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
+
+ setOperationAction(ISD::CTTZ, MVT::i64, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
+ setOperationAction(ISD::CTLZ, MVT::i64, Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
+
+ // We only really have 32-bit BFE instructions (and 16-bit on VI).
+ //
+ // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
+ // effort to match them now. We want this to be false for i64 cases when the
+ // extraction isn't restricted to the upper or lower half. Ideally we would
+ // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
+ // span the midpoint are probably relatively rare, so don't worry about them
+ // for now.
+ if (Subtarget->hasBFE())
+ setHasExtractBitsInsn(true);
+
+ static const MVT::SimpleValueType VectorIntTypes[] = {
+ MVT::v2i32, MVT::v4i32
+ };
+
+ for (MVT VT : VectorIntTypes) {
+ // Expand the following operations for the current type by default.
+ setOperationAction(ISD::ADD, VT, Expand);
+ setOperationAction(ISD::AND, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::MUL, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::OR, VT, Expand);
+ setOperationAction(ISD::SHL, VT, Expand);
+ setOperationAction(ISD::SRA, VT, Expand);
+ setOperationAction(ISD::SRL, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::SUB, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::ADDC, VT, Expand);
+ setOperationAction(ISD::SUBC, VT, Expand);
+ setOperationAction(ISD::ADDE, VT, Expand);
+ setOperationAction(ISD::SUBE, VT, Expand);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::XOR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ setOperationAction(ISD::SETCC, VT, Expand);
+ }
+
+ static const MVT::SimpleValueType FloatVectorTypes[] = {
+ MVT::v2f32, MVT::v4f32
+ };
+
+ for (MVT VT : FloatVectorTypes) {
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
+ setOperationAction(ISD::FADD, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FMUL, VT, Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSUB, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ setOperationAction(ISD::SETCC, VT, Expand);
+ }
+
+ // This causes using an unrolled select operation rather than expansion with
+ // bit operations. This is in general better, but the alternative using BFI
+ // instructions may be better if the select sources are SGPRs.
+ setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
+
+ // There are no libcalls of any kind.
+ for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
+ setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
+
+ setBooleanContents(ZeroOrNegativeOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ setSchedulingPreference(Sched::RegPressure);
+ setJumpIsExpensive(true);
+
+ // FIXME: This is only partially true. If we have to do vector compares, any
+ // SGPR pair can be a condition register. If we have a uniform condition, we
+ // are better off doing SALU operations, where there is only one SCC. For now,
+ // we don't have a way of knowing during instruction selection if a condition
+ // will be uniform and we always use vector compares. Assume we are using
+ // vector compares until that is fixed.
+ setHasMultipleConditionRegisters(true);
+
+ // SI at least has hardware support for floating point exceptions, but no way
+ // of using or handling them is implemented. They are also optional in OpenCL
+ // (Section 7.3)
+ setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
+
+ PredictableSelectIsExpensive = false;
+
+ // We want to find all load dependencies for long chains of stores to enable
+ // merging into very wide vectors. The problem is with vectors with > 4
+ // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
+ // vectors are a legal type, even though we have to split the loads
+ // usually. When we can more precisely specify load legality per address
+ // space, we should be able to make FindBetterChain/MergeConsecutiveStores
+ // smarter so that they can figure out what to do in 2 iterations without all
+ // N > 4 stores on the same chain.
+ GatherAllAliasesMaxDepth = 16;
+
+ // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
+ // about these during lowering.
+ MaxStoresPerMemcpy = 0xffffffff;
+ MaxStoresPerMemmove = 0xffffffff;
+ MaxStoresPerMemset = 0xffffffff;
+
+ setTargetDAGCombine(ISD::BITCAST);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::MULHU);
+ setTargetDAGCombine(ISD::MULHS);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FNEG);
+ setTargetDAGCombine(ISD::FABS);
+ setTargetDAGCombine(ISD::AssertZext);
+ setTargetDAGCombine(ISD::AssertSext);
+}
+
+//===----------------------------------------------------------------------===//
+// Target Information
+//===----------------------------------------------------------------------===//
+
+LLVM_READNONE
+static bool fnegFoldsIntoOp(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FMA:
+ case ISD::FMAD:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ case ISD::FSIN:
+ case ISD::FTRUNC:
+ case ISD::FRINT:
+ case ISD::FNEARBYINT:
+ case AMDGPUISD::RCP:
+ case AMDGPUISD::RCP_LEGACY:
+ case AMDGPUISD::SIN_HW:
+ case AMDGPUISD::FMUL_LEGACY:
+ case AMDGPUISD::FMIN_LEGACY:
+ case AMDGPUISD::FMAX_LEGACY:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// \p returns true if the operation will definitely need to use a 64-bit
+/// encoding, and thus will use a VOP3 encoding regardless of the source
+/// modifiers.
+LLVM_READONLY
+static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
+ return N->getNumOperands() > 2 || VT == MVT::f64;
+}
+
+// Most FP instructions support source modifiers, but this could be refined
+// slightly.
+LLVM_READONLY
+static bool hasSourceMods(const SDNode *N) {
+ if (isa<MemSDNode>(N))
+ return false;
+
+ switch (N->getOpcode()) {
+ case ISD::CopyToReg:
+ case ISD::SELECT:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::INLINEASM:
+ case AMDGPUISD::INTERP_P1:
+ case AMDGPUISD::INTERP_P2:
+ case AMDGPUISD::DIV_SCALE:
+
+ // TODO: Should really be looking at the users of the bitcast. These are
+ // problematic because bitcasts are used to legalize all stores to integer
+ // types.
+ case ISD::BITCAST:
+ return false;
+ default:
+ return true;
+ }
+}
+
+bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
+ unsigned CostThreshold) {
+ // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
+ // it is truly free to use a source modifier in all cases. If there are
+ // multiple users but for each one will necessitate using VOP3, there will be
+ // a code size increase. Try to avoid increasing code size unless we know it
+ // will save on the instruction count.
+ unsigned NumMayIncreaseSize = 0;
+ MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
+
+ // XXX - Should this limit number of uses to check?
+ for (const SDNode *U : N->uses()) {
+ if (!hasSourceMods(U))
+ return false;
+
+ if (!opMustUseVOP3Encoding(U, VT)) {
+ if (++NumMayIncreaseSize > CostThreshold)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
+ return MVT::i32;
+}
+
+bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
+ return true;
+}
+
+// The backend supports 32 and 64 bit floating point immediates.
+// FIXME: Why are we reporting vectors of FP immediates as legal?
+bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
+ (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
+}
+
+// We don't want to shrink f64 / f32 constants.
+bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
+}
+
+bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
+ ISD::LoadExtType,
+ EVT NewVT) const {
+
+ unsigned NewSize = NewVT.getStoreSizeInBits();
+
+ // If we are reducing to a 32-bit load, this is always better.
+ if (NewSize == 32)
+ return true;
+
+ EVT OldVT = N->getValueType(0);
+ unsigned OldSize = OldVT.getStoreSizeInBits();
+
+ // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
+ // extloads, so doing one requires using a buffer_load. In cases where we
+ // still couldn't use a scalar load, using the wider load shouldn't really
+ // hurt anything.
+
+ // If the old size already had to be an extload, there's no harm in continuing
+ // to reduce the width.
+ return (OldSize < 32);
+}
+
+bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
+ EVT CastTy) const {
+
+ assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
+
+ if (LoadTy.getScalarType() == MVT::i32)
+ return false;
+
+ unsigned LScalarSize = LoadTy.getScalarSizeInBits();
+ unsigned CastScalarSize = CastTy.getScalarSizeInBits();
+
+ return (LScalarSize < CastScalarSize) ||
+ (CastScalarSize >= 32);
+}
+
+// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
+// profitable with the expansion for 64-bit since it's generally good to
+// speculate things.
+// FIXME: These should really have the size as a parameter.
+bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
+ return true;
+}
+
+bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
+ return true;
+}
+
+//===---------------------------------------------------------------------===//
+// Target Properties
+//===---------------------------------------------------------------------===//
+
+bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+
+ // Packed operations do not have a fabs modifier.
+ return VT == MVT::f32 || VT == MVT::f64 ||
+ (Subtarget->has16BitInsts() && VT == MVT::f16);
+}
+
+bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return VT == MVT::f32 || VT == MVT::f64 ||
+ (Subtarget->has16BitInsts() && VT == MVT::f16) ||
+ (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
+}
+
+bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
+ unsigned NumElem,
+ unsigned AS) const {
+ return true;
+}
+
+bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
+ // There are few operations which truly have vector input operands. Any vector
+ // operation is going to involve operations on each component, and a
+ // build_vector will be a copy per element, so it always makes sense to use a
+ // build_vector input in place of the extracted element to avoid a copy into a
+ // super register.
+ //
+ // We should probably only do this if all users are extracts only, but this
+ // should be the common case.
+ return true;
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
+ // Truncate is just accessing a subregister.
+
+ unsigned SrcSize = Source.getSizeInBits();
+ unsigned DestSize = Dest.getSizeInBits();
+
+ return DestSize < SrcSize && DestSize % 32 == 0 ;
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
+ // Truncate is just accessing a subregister.
+
+ unsigned SrcSize = Source->getScalarSizeInBits();
+ unsigned DestSize = Dest->getScalarSizeInBits();
+
+ if (DestSize== 16 && Subtarget->has16BitInsts())
+ return SrcSize >= 32;
+
+ return DestSize < SrcSize && DestSize % 32 == 0;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
+ unsigned SrcSize = Src->getScalarSizeInBits();
+ unsigned DestSize = Dest->getScalarSizeInBits();
+
+ if (SrcSize == 16 && Subtarget->has16BitInsts())
+ return DestSize >= 32;
+
+ return SrcSize == 32 && DestSize == 64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
+ // Any register load of a 64-bit value really requires 2 32-bit moves. For all
+ // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
+ // this will enable reducing 64-bit operations the 32-bit, which is always
+ // good.
+
+ if (Src == MVT::i16)
+ return Dest == MVT::i32 ||Dest == MVT::i64 ;
+
+ return Src == MVT::i32 && Dest == MVT::i64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ return isZExtFree(Val.getValueType(), VT2);
+}
+
+// v_mad_mix* support a conversion from f16 to f32.
+//
+// There is only one special case when denormals are enabled we don't currently,
+// where this is OK to use.
+bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode,
+ EVT DestVT, EVT SrcVT) const {
+ return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() &&
+ DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
+ SrcVT.getScalarType() == MVT::f16;
+}
+
+bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
+ // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
+ // limited number of native 64-bit operations. Shrinking an operation to fit
+ // in a single 32-bit register should always be helpful. As currently used,
+ // this is much less general than the name suggests, and is only used in
+ // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
+ // not profitable, and may actually be harmful.
+ return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
+}
+
+//===---------------------------------------------------------------------===//
+// TargetLowering Callbacks
+//===---------------------------------------------------------------------===//
+
+CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
+ bool IsVarArg) {
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ return CC_AMDGPU_Kernel;
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_LS:
+ return CC_AMDGPU;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ case CallingConv::Cold:
+ return CC_AMDGPU_Func;
+ default:
+ report_fatal_error("Unsupported calling convention.");
+ }
+}
+
+CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
+ bool IsVarArg) {
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ return CC_AMDGPU_Kernel;
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_LS:
+ return RetCC_SI_Shader;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ case CallingConv::Cold:
+ return RetCC_AMDGPU_Func;
+ default:
+ report_fatal_error("Unsupported calling convention.");
+ }
+}
+
+/// The SelectionDAGBuilder will automatically promote function arguments
+/// with illegal types. However, this does not work for the AMDGPU targets
+/// since the function arguments are stored in memory as these illegal types.
+/// In order to handle this properly we need to get the original types sizes
+/// from the LLVM IR Function and fixup the ISD:InputArg values before
+/// passing them to AnalyzeFormalArguments()
+
+/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
+/// input values across multiple registers. Each item in the Ins array
+/// represents a single value that will be stored in registers. Ins[x].VT is
+/// the value type of the value that will be stored in the register, so
+/// whatever SDNode we lower the argument to needs to be this type.
+///
+/// In order to correctly lower the arguments we need to know the size of each
+/// argument. Since Ins[x].VT gives us the size of the register that will
+/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
+/// for the orignal function argument so that we can deduce the correct memory
+/// type to use for Ins[x]. In most cases the correct memory type will be
+/// Ins[x].ArgVT. However, this will not always be the case. If, for example,
+/// we have a kernel argument of type v8i8, this argument will be split into
+/// 8 parts and each part will be represented by its own item in the Ins array.
+/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
+/// the argument before it was split. From this, we deduce that the memory type
+/// for each individual part is i8. We pass the memory type as LocVT to the
+/// calling convention analysis function and the register type (Ins[x].VT) as
+/// the ValVT.
+void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) const {
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ const ISD::InputArg &In = Ins[i];
+ EVT MemVT;
+
+ unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
+
+ if (!Subtarget->isAmdHsaOS() &&
+ (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
+ // The ABI says the caller will extend these values to 32-bits.
+ MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
+ } else if (NumRegs == 1) {
+ // This argument is not split, so the IR type is the memory type.
+ assert(!In.Flags.isSplit());
+ if (In.ArgVT.isExtended()) {
+ // We have an extended type, like i24, so we should just use the register type
+ MemVT = In.VT;
+ } else {
+ MemVT = In.ArgVT;
+ }
+ } else if (In.ArgVT.isVector() && In.VT.isVector() &&
+ In.ArgVT.getScalarType() == In.VT.getScalarType()) {
+ assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
+ // We have a vector value which has been split into a vector with
+ // the same scalar type, but fewer elements. This should handle
+ // all the floating-point vector types.
+ MemVT = In.VT;
+ } else if (In.ArgVT.isVector() &&
+ In.ArgVT.getVectorNumElements() == NumRegs) {
+ // This arg has been split so that each element is stored in a separate
+ // register.
+ MemVT = In.ArgVT.getScalarType();
+ } else if (In.ArgVT.isExtended()) {
+ // We have an extended type, like i65.
+ MemVT = In.VT;
+ } else {
+ unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
+ assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
+ if (In.VT.isInteger()) {
+ MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
+ } else if (In.VT.isVector()) {
+ assert(!In.VT.getScalarType().isFloatingPoint());
+ unsigned NumElements = In.VT.getVectorNumElements();
+ assert(MemoryBits % NumElements == 0);
+ // This vector type has been split into another vector type with
+ // a different elements size.
+ EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
+ MemoryBits / NumElements);
+ MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
+ } else {
+ llvm_unreachable("cannot deduce memory type.");
+ }
+ }
+
+ // Convert one element vectors to scalar.
+ if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
+ MemVT = MemVT.getScalarType();
+
+ if (MemVT.isExtended()) {
+ // This should really only happen if we have vec3 arguments
+ assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
+ MemVT = MemVT.getPow2VectorType(State.getContext());
+ }
+
+ assert(MemVT.isSimple());
+ allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
+ State);
+ }
+}
+
+SDValue AMDGPUTargetLowering::LowerReturn(
+ SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ // FIXME: Fails for r600 tests
+ //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
+ // "wave terminate should not have return values");
+ return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
+}
+
+//===---------------------------------------------------------------------===//
+// Target specific lowering
+//===---------------------------------------------------------------------===//
+
+/// Selects the correct CCAssignFn for a given CallingConvention value.
+CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
+ bool IsVarArg) {
+ return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
+}
+
+CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
+ bool IsVarArg) {
+ return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
+}
+
+SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
+ SelectionDAG &DAG,
+ MachineFrameInfo &MFI,
+ int ClobberedFI) const {
+ SmallVector<SDValue, 8> ArgChains;
+ int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
+ int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument corresponding
+ for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
+ UE = DAG.getEntryNode().getNode()->use_end();
+ U != UE; ++U) {
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
+ if (FI->getIndex() < 0) {
+ int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
+ int64_t InLastByte = InFirstByte;
+ InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
+
+ if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
+ (FirstByte <= InFirstByte && InFirstByte <= LastByte))
+ ArgChains.push_back(SDValue(L, 1));
+ }
+ }
+ }
+ }
+
+ // Build a tokenfactor for all the chains.
+ return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
+}
+
+SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals,
+ StringRef Reason) const {
+ SDValue Callee = CLI.Callee;
+ SelectionDAG &DAG = CLI.DAG;
+
+ const Function &Fn = DAG.getMachineFunction().getFunction();
+
+ StringRef FuncName("<unknown>");
+
+ if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
+ FuncName = G->getSymbol();
+ else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ FuncName = G->getGlobal()->getName();
+
+ DiagnosticInfoUnsupported NoCalls(
+ Fn, Reason + FuncName, CLI.DL.getDebugLoc());
+ DAG.getContext()->diagnose(NoCalls);
+
+ if (!CLI.IsTailCall) {
+ for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
+ InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
+ }
+
+ return DAG.getEntryNode();
+}
+
+SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
+}
+
+SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ const Function &Fn = DAG.getMachineFunction().getFunction();
+
+ DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
+ SDLoc(Op).getDebugLoc());
+ DAG.getContext()->diagnose(NoDynamicAlloca);
+ auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
+ return DAG.getMergeValues(Ops, SDLoc());
+}
+
+SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ Op->print(errs(), &DAG);
+ llvm_unreachable("Custom lowering code for this"
+ "instruction is not implemented yet!");
+ break;
+ case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
+ case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
+ case ISD::FREM: return LowerFREM(Op, DAG);
+ case ISD::FCEIL: return LowerFCEIL(Op, DAG);
+ case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
+ case ISD::FRINT: return LowerFRINT(Op, DAG);
+ case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
+ case ISD::FROUND: return LowerFROUND(Op, DAG);
+ case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
+ case ISD::FLOG:
+ return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
+ case ISD::FLOG10:
+ return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ return LowerCTLZ_CTTZ(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ }
+ return Op;
+}
+
+void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ case ISD::SIGN_EXTEND_INREG:
+ // Different parts of legalization seem to interpret which type of
+ // sign_extend_inreg is the one to check for custom lowering. The extended
+ // from type is what really matters, but some places check for custom
+ // lowering of the result type. This results in trying to use
+ // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
+ // nothing here and let the illegal result integer be handled normally.
+ return;
+ default:
+ return;
+ }
+}
+
+static bool hasDefinedInitializer(const GlobalValue *GV) {
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar || !GVar->hasInitializer())
+ return false;
+
+ return !isa<UndefValue>(GVar->getInitializer());
+}
+
+SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+
+ const DataLayout &DL = DAG.getDataLayout();
+ GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = G->getGlobal();
+
+ if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) {
+ // XXX: What does the value of G->getOffset() mean?
+ assert(G->getOffset() == 0 &&
+ "Do not know what to do with an non-zero offset");
+
+ // TODO: We could emit code to handle the initialization somewhere.
+ if (!hasDefinedInitializer(GV)) {
+ unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
+ return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
+ }
+ }
+
+ const Function &Fn = DAG.getMachineFunction().getFunction();
+ DiagnosticInfoUnsupported BadInit(
+ Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
+ DAG.getContext()->diagnose(BadInit);
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SmallVector<SDValue, 8> Args;
+
+ for (const SDUse &U : Op->ops())
+ DAG.ExtractVectorElements(U.get(), Args);
+
+ return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
+}
+
+SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ SmallVector<SDValue, 8> Args;
+ unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ EVT VT = Op.getValueType();
+ DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
+ VT.getVectorNumElements());
+
+ return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
+}
+
+/// \brief Generate Min/Max node
+SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
+ SDValue LHS, SDValue RHS,
+ SDValue True, SDValue False,
+ SDValue CC,
+ DAGCombinerInfo &DCI) const {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ switch (CCOpcode) {
+ case ISD::SETOEQ:
+ case ISD::SETONE:
+ case ISD::SETUNE:
+ case ISD::SETNE:
+ case ISD::SETUEQ:
+ case ISD::SETEQ:
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2:
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2:
+ case ISD::SETUO:
+ case ISD::SETO:
+ break;
+ case ISD::SETULE:
+ case ISD::SETULT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ }
+ case ISD::SETOLE:
+ case ISD::SETOLT:
+ case ISD::SETLE:
+ case ISD::SETLT: {
+ // Ordered. Assume ordered for undefined.
+
+ // Only do this after legalization to avoid interfering with other combines
+ // which might occur.
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ // We need to permute the operands to get the correct NaN behavior. The
+ // selected operand is the second one based on the failing compare with NaN,
+ // so permute it based on the compare type the hardware uses.
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ }
+ case ISD::SETUGE:
+ case ISD::SETUGT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
+ }
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ case ISD::SETOGT: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
+ }
+ case ISD::SETCC_INVALID:
+ llvm_unreachable("Invalid setcc condcode!");
+ }
+ return SDValue();
+}
+
+std::pair<SDValue, SDValue>
+AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+
+ SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
+
+ return std::make_pair(Lo, Hi);
+}
+
+SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+
+ SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
+}
+
+SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+
+ SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
+ SelectionDAG &DAG) const {
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ EVT VT = Op.getValueType();
+
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return scalarizeVectorLoad(Load, DAG);
+
+ SDValue BasePtr = Load->getBasePtr();
+ EVT MemVT = Load->getMemoryVT();
+ SDLoc SL(Op);
+
+ const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
+
+ unsigned Size = LoMemVT.getStoreSize();
+ unsigned BaseAlign = Load->getAlignment();
+ unsigned HiAlign = MinAlign(BaseAlign, Size);
+
+ SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
+ Load->getChain(), BasePtr, SrcValue, LoMemVT,
+ BaseAlign, Load->getMemOperand()->getFlags());
+ SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
+ SDValue HiLoad =
+ DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
+ HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
+ HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
+ DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
+ LoLoad.getValue(1), HiLoad.getValue(1))
+ };
+
+ return DAG.getMergeValues(Ops, SL);
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ SDValue Val = Store->getValue();
+ EVT VT = Val.getValueType();
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return scalarizeVectorStore(Store, DAG);
+
+ EVT MemVT = Store->getMemoryVT();
+ SDValue Chain = Store->getChain();
+ SDValue BasePtr = Store->getBasePtr();
+ SDLoc SL(Op);
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
+
+ SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
+
+ const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
+ unsigned BaseAlign = Store->getAlignment();
+ unsigned Size = LoMemVT.getStoreSize();
+ unsigned HiAlign = MinAlign(BaseAlign, Size);
+
+ SDValue LoStore =
+ DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
+ Store->getMemOperand()->getFlags());
+ SDValue HiStore =
+ DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
+ HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
+}
+
+// This is a shortcut for integer division because we have fast i32<->f32
+// conversions, and fast f32 reciprocal instructions. The fractional part of a
+// float is enough to accurately represent up to a 24-bit signed integer.
+SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
+ bool Sign) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ MVT IntVT = MVT::i32;
+ MVT FltVT = MVT::f32;
+
+ unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
+ if (LHSSignBits < 9)
+ return SDValue();
+
+ unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
+ if (RHSSignBits < 9)
+ return SDValue();
+
+ unsigned BitSize = VT.getSizeInBits();
+ unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
+ unsigned DivBits = BitSize - SignBits;
+ if (Sign)
+ ++DivBits;
+
+ ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
+ ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
+
+ SDValue jq = DAG.getConstant(1, DL, IntVT);
+
+ if (Sign) {
+ // char|short jq = ia ^ ib;
+ jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
+
+ // jq = jq >> (bitsize - 2)
+ jq = DAG.getNode(ISD::SRA, DL, VT, jq,
+ DAG.getConstant(BitSize - 2, DL, VT));
+
+ // jq = jq | 0x1
+ jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
+ }
+
+ // int ia = (int)LHS;
+ SDValue ia = LHS;
+
+ // int ib, (int)RHS;
+ SDValue ib = RHS;
+
+ // float fa = (float)ia;
+ SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
+
+ // float fb = (float)ib;
+ SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
+
+ SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
+ fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
+
+ // fq = trunc(fq);
+ fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
+
+ // float fqneg = -fq;
+ SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
+
+ // float fr = mad(fqneg, fb, fa);
+ unsigned OpCode = Subtarget->hasFP32Denormals() ?
+ (unsigned)AMDGPUISD::FMAD_FTZ :
+ (unsigned)ISD::FMAD;
+ SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
+
+ // int iq = (int)fq;
+ SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
+
+ // fr = fabs(fr);
+ fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
+
+ // fb = fabs(fb);
+ fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
+
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ // int cv = fr >= fb;
+ SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
+
+ // jq = (cv ? jq : 0);
+ jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
+
+ // dst = iq + jq;
+ SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
+
+ // Rem needs compensation, it's easier to recompute it
+ SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
+
+ // Truncate to number of bits this divide really is.
+ if (Sign) {
+ SDValue InRegSize
+ = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
+ Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
+ Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
+ } else {
+ SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
+ Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
+ Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
+ }
+
+ return DAG.getMergeValues({ Div, Rem }, DL);
+}
+
+void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &Results) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
+
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
+
+ SDValue One = DAG.getConstant(1, DL, HalfVT);
+ SDValue Zero = DAG.getConstant(0, DL, HalfVT);
+
+ //HiLo split
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
+ SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
+
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
+ SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
+
+ if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
+ DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
+
+ SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
+ LHS_Lo, RHS_Lo);
+
+ SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
+ SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
+
+ Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
+ Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
+ return;
+ }
+
+ if (isTypeLegal(MVT::i64)) {
+ // Compute denominator reciprocal.
+ unsigned FMAD = Subtarget->hasFP32Denormals() ?
+ (unsigned)AMDGPUISD::FMAD_FTZ :
+ (unsigned)ISD::FMAD;
+
+ SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
+ SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
+ SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
+ DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
+ Cvt_Lo);
+ SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
+ SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
+ DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
+ SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
+ DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
+ SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
+ DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
+ Mul1);
+ SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
+ SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
+ SDValue Rcp64 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
+
+ SDValue Zero64 = DAG.getConstant(0, DL, VT);
+ SDValue One64 = DAG.getConstant(1, DL, VT);
+ SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
+ SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
+
+ SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
+ SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
+ SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
+ SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
+ Zero);
+ SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
+ One);
+
+ SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
+ Mulhi1_Lo, Zero1);
+ SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
+ Mulhi1_Hi, Add1_Lo.getValue(1));
+ SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
+ SDValue Add1 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
+
+ SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
+ SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
+ SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
+ Zero);
+ SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
+ One);
+
+ SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
+ Mulhi2_Lo, Zero1);
+ SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
+ Mulhi2_Hi, Add1_Lo.getValue(1));
+ SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
+ Zero, Add2_Lo.getValue(1));
+ SDValue Add2 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
+ SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
+
+ SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
+
+ SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
+ SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
+ SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
+ Mul3_Lo, Zero1);
+ SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
+ Mul3_Hi, Sub1_Lo.getValue(1));
+ SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
+ SDValue Sub1 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
+
+ SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
+ SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
+ ISD::SETUGE);
+ SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
+ ISD::SETUGE);
+ SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
+
+ // TODO: Here and below portions of the code can be enclosed into if/endif.
+ // Currently control flow is unconditional and we have 4 selects after
+ // potential endif to substitute PHIs.
+
+ // if C3 != 0 ...
+ SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
+ RHS_Lo, Zero1);
+ SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
+ RHS_Hi, Sub1_Lo.getValue(1));
+ SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
+ Zero, Sub2_Lo.getValue(1));
+ SDValue Sub2 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
+
+ SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
+
+ SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
+ ISD::SETUGE);
+ SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
+ ISD::SETUGE);
+ SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
+
+ // if (C6 != 0)
+ SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
+
+ SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
+ RHS_Lo, Zero1);
+ SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
+ RHS_Hi, Sub2_Lo.getValue(1));
+ SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
+ Zero, Sub3_Lo.getValue(1));
+ SDValue Sub3 = DAG.getBitcast(VT,
+ DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
+
+ // endif C6
+ // endif C3
+
+ SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
+ SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
+
+ SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
+ SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
+
+ Results.push_back(Div);
+ Results.push_back(Rem);
+
+ return;
+ }
+
+ // r600 expandion.
+ // Get Speculative values
+ SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
+ SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
+
+ SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
+ SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
+ REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
+
+ SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
+ SDValue DIV_Lo = Zero;
+
+ const unsigned halfBitWidth = HalfVT.getSizeInBits();
+
+ for (unsigned i = 0; i < halfBitWidth; ++i) {
+ const unsigned bitPos = halfBitWidth - i - 1;
+ SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
+ // Get value of high bit
+ SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
+ HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
+ HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
+
+ // Shift
+ REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
+ // Add LHS high bit
+ REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
+
+ SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
+ SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
+
+ DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
+
+ // Update REM
+ SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
+ REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
+ }
+
+ SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
+ DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
+ Results.push_back(DIV);
+ Results.push_back(REM);
+}
+
+SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::i64) {
+ SmallVector<SDValue, 2> Results;
+ LowerUDIVREM64(Op, DAG, Results);
+ return DAG.getMergeValues(Results, DL);
+ }
+
+ if (VT == MVT::i32) {
+ if (SDValue Res = LowerDIVREM24(Op, DAG, false))
+ return Res;
+ }
+
+ SDValue Num = Op.getOperand(0);
+ SDValue Den = Op.getOperand(1);
+
+ // RCP = URECIP(Den) = 2^32 / Den + e
+ // e is rounding error.
+ SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
+
+ // RCP_LO = mul(RCP, Den) */
+ SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
+
+ // RCP_HI = mulhu (RCP, Den) */
+ SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
+
+ // NEG_RCP_LO = -RCP_LO
+ SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
+ RCP_LO);
+
+ // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
+ SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
+ NEG_RCP_LO, RCP_LO,
+ ISD::SETEQ);
+ // Calculate the rounding error from the URECIP instruction
+ // E = mulhu(ABS_RCP_LO, RCP)
+ SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
+
+ // RCP_A_E = RCP + E
+ SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
+
+ // RCP_S_E = RCP - E
+ SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
+
+ // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
+ SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
+ RCP_A_E, RCP_S_E,
+ ISD::SETEQ);
+ // Quotient = mulhu(Tmp0, Num)
+ SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
+
+ // Num_S_Remainder = Quotient * Den
+ SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
+
+ // Remainder = Num - Num_S_Remainder
+ SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
+
+ // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
+ SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
+ DAG.getConstant(-1, DL, VT),
+ DAG.getConstant(0, DL, VT),
+ ISD::SETUGE);
+ // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
+ SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
+ Num_S_Remainder,
+ DAG.getConstant(-1, DL, VT),
+ DAG.getConstant(0, DL, VT),
+ ISD::SETUGE);
+ // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
+ SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
+ Remainder_GE_Zero);
+
+ // Calculate Division result:
+
+ // Quotient_A_One = Quotient + 1
+ SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
+ DAG.getConstant(1, DL, VT));
+
+ // Quotient_S_One = Quotient - 1
+ SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
+ DAG.getConstant(1, DL, VT));
+
+ // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
+ SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
+ Quotient, Quotient_A_One, ISD::SETEQ);
+
+ // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
+ Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
+ Quotient_S_One, Div, ISD::SETEQ);
+
+ // Calculate Rem result:
+
+ // Remainder_S_Den = Remainder - Den
+ SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
+
+ // Remainder_A_Den = Remainder + Den
+ SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
+
+ // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
+ SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
+ Remainder, Remainder_S_Den, ISD::SETEQ);
+
+ // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
+ Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
+ Remainder_A_Den, Rem, ISD::SETEQ);
+ SDValue Ops[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue NegOne = DAG.getConstant(-1, DL, VT);
+
+ if (VT == MVT::i32) {
+ if (SDValue Res = LowerDIVREM24(Op, DAG, true))
+ return Res;
+ }
+
+ if (VT == MVT::i64 &&
+ DAG.ComputeNumSignBits(LHS) > 32 &&
+ DAG.ComputeNumSignBits(RHS) > 32) {
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
+
+ //HiLo split
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
+ SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
+ LHS_Lo, RHS_Lo);
+ SDValue Res[2] = {
+ DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
+ DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
+ };
+ return DAG.getMergeValues(Res, DL);
+ }
+
+ SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
+ SDValue RSign = LHSign; // Remainder sign is the same as LHS
+
+ LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
+
+ LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
+
+ SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
+ SDValue Rem = Div.getValue(1);
+
+ Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
+
+ Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
+
+ SDValue Res[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Res, DL);
+}
+
+// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
+SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ EVT VT = Op.getValueType();
+ SDValue X = Op.getOperand(0);
+ SDValue Y = Op.getOperand(1);
+
+ // TODO: Should this propagate fast-math-flags?
+
+ SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
+ SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
+
+ return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
+}
+
+SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src)
+ // if (src > 0.0 && src != result)
+ // result += 1.0
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
+ // TODO: Should this propagate fast-math-flags?
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
+ SelectionDAG &DAG) {
+ const unsigned FractBits = 52;
+ const unsigned ExpBits = 11;
+
+ SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
+ Hi,
+ DAG.getConstant(FractBits - 32, SL, MVT::i32),
+ DAG.getConstant(ExpBits, SL, MVT::i32));
+ SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
+ DAG.getConstant(1023, SL, MVT::i32));
+
+ return Exp;
+}
+
+SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+
+ SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ // Extract the upper half, since this is where we will find the sign and
+ // exponent.
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
+
+ SDValue Exp = extractF64Exponent(Hi, SL, DAG);
+
+ const unsigned FractBits = 52;
+
+ // Extract the sign bit.
+ const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
+ SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
+
+ // Extend back to to 64-bits.
+ SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
+ SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
+
+ SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
+ const SDValue FractMask
+ = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
+
+ SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
+ SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
+ SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
+
+ const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
+
+ SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
+ SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
+
+ SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
+ SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
+ SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
+ SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
+
+ // TODO: Should this propagate fast-math-flags?
+
+ SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
+ SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
+
+ SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
+
+ APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
+ SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
+ SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
+
+ return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
+ // FNEARBYINT and FRINT are the same, except in their handling of FP
+ // exceptions. Those aren't really meaningful for us, and OpenCL only has
+ // rint, so just treat them as equivalent.
+ return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
+}
+
+// XXX - May require not supporting f32 denormals?
+
+// Don't handle v2f16. The extra instructions to scalarize and repack around the
+// compare and vselect end up producing worse code than scalarizing the whole
+// operation.
+SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+ EVT VT = Op.getValueType();
+
+ SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
+
+ // TODO: Should this propagate fast-math-flags?
+
+ SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
+
+ SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
+ const SDValue One = DAG.getConstantFP(1.0, SL, VT);
+ const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
+
+ SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
+
+ SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
+
+ return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
+}
+
+SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+
+ SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+ const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
+ const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
+
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
+
+ SDValue Exp = extractF64Exponent(Hi, SL, DAG);
+
+ const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
+ MVT::i64);
+
+ SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
+ SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
+ DAG.getConstant(INT64_C(0x0008000000000000), SL,
+ MVT::i64),
+ Exp);
+
+ SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
+ SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
+ DAG.getConstant(0, SL, MVT::i64), Tmp0,
+ ISD::SETNE);
+
+ SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
+ D, DAG.getConstant(0, SL, MVT::i64));
+ SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
+
+ K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
+ K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
+
+ SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
+ SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
+ SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
+
+ SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
+ ExpEqNegOne,
+ DAG.getConstantFP(1.0, SL, MVT::f64),
+ DAG.getConstantFP(0.0, SL, MVT::f64));
+
+ SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
+
+ K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
+ K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
+
+ return K;
+}
+
+SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::f32 || VT == MVT::f16)
+ return LowerFROUND32_16(Op, DAG);
+
+ if (VT == MVT::f64)
+ return LowerFROUND64(Op, DAG);
+
+ llvm_unreachable("unhandled type");
+}
+
+SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src);
+ // if (src < 0.0 && src != result)
+ // result += -1.0.
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
+ const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
+ // TODO: Should this propagate fast-math-flags?
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
+ double Log2BaseInverted) const {
+ EVT VT = Op.getValueType();
+
+ SDLoc SL(Op);
+ SDValue Operand = Op.getOperand(0);
+ SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
+ SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
+
+ return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
+}
+
+static bool isCtlzOpc(unsigned Opc) {
+ return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
+}
+
+static bool isCttzOpc(unsigned Opc) {
+ return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
+}
+
+SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+ bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
+ Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
+
+ unsigned ISDOpc, NewOpc;
+ if (isCtlzOpc(Op.getOpcode())) {
+ ISDOpc = ISD::CTLZ_ZERO_UNDEF;
+ NewOpc = AMDGPUISD::FFBH_U32;
+ } else if (isCttzOpc(Op.getOpcode())) {
+ ISDOpc = ISD::CTTZ_ZERO_UNDEF;
+ NewOpc = AMDGPUISD::FFBL_B32;
+ } else
+ llvm_unreachable("Unexpected OPCode!!!");
+
+
+ if (ZeroUndef && Src.getValueType() == MVT::i32)
+ return DAG.getNode(NewOpc, SL, MVT::i32, Src);
+
+ SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
+
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), MVT::i32);
+
+ SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
+ SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
+
+ SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
+ SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
+
+ const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
+ SDValue Add, NewOpr;
+ if (isCtlzOpc(Op.getOpcode())) {
+ Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
+ // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
+ NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
+ } else {
+ Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
+ // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
+ NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
+ }
+
+ if (!ZeroUndef) {
+ // Test if the full 64-bit input is zero.
+
+ // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
+ // which we probably don't want.
+ SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
+ SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
+ SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
+
+ // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
+ // with the same cycles, otherwise it is slower.
+ // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
+ // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
+
+ const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
+
+ // The instruction returns -1 for 0 input, but the defined intrinsic
+ // behavior is to return the number of bits.
+ NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
+ SrcIsZero, Bits32, NewOpr);
+ }
+
+ return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
+}
+
+SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ // Unsigned
+ // cul2f(ulong u)
+ //{
+ // uint lz = clz(u);
+ // uint e = (u != 0) ? 127U + 63U - lz : 0;
+ // u = (u << lz) & 0x7fffffffffffffffUL;
+ // ulong t = u & 0xffffffffffUL;
+ // uint v = (e << 23) | (uint)(u >> 40);
+ // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
+ // return as_float(v + r);
+ //}
+ // Signed
+ // cl2f(long l)
+ //{
+ // long s = l >> 63;
+ // float r = cul2f((l + s) ^ s);
+ // return s ? -r : r;
+ //}
+
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+ SDValue L = Src;
+
+ SDValue S;
+ if (Signed) {
+ const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
+ S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
+
+ SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
+ L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
+ }
+
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), MVT::f32);
+
+
+ SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
+ SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
+ SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
+ LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
+
+ SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
+ SDValue E = DAG.getSelect(SL, MVT::i32,
+ DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
+ DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
+ ZeroI32);
+
+ SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
+ DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
+ DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
+
+ SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
+ DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
+
+ SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
+ U, DAG.getConstant(40, SL, MVT::i64));
+
+ SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
+ DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
+ DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
+
+ SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
+ SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
+ SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
+
+ SDValue One = DAG.getConstant(1, SL, MVT::i32);
+
+ SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
+
+ SDValue R = DAG.getSelect(SL, MVT::i32,
+ RCmp,
+ One,
+ DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
+ R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
+ R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
+
+ if (!Signed)
+ return R;
+
+ SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
+ return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
+}
+
+SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(0, SL, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(1, SL, MVT::i32));
+
+ SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
+ SL, MVT::f64, Hi);
+
+ SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
+
+ SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
+ DAG.getConstant(32, SL, MVT::i32));
+ // TODO: Should this propagate fast-math-flags?
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
+}
+
+SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOperand(0).getValueType() == MVT::i64 &&
+ "operation should be legal");
+
+ // TODO: Factor out code common with LowerSINT_TO_FP.
+
+ EVT DestVT = Op.getValueType();
+ if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
+ SDLoc DL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
+ SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
+ SDValue FPRound =
+ DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
+
+ return FPRound;
+ }
+
+ if (DestVT == MVT::f32)
+ return LowerINT_TO_FP32(Op, DAG, false);
+
+ assert(DestVT == MVT::f64);
+ return LowerINT_TO_FP64(Op, DAG, false);
+}
+
+SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOperand(0).getValueType() == MVT::i64 &&
+ "operation should be legal");
+
+ // TODO: Factor out code common with LowerUINT_TO_FP.
+
+ EVT DestVT = Op.getValueType();
+ if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
+ SDLoc DL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
+ SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
+ SDValue FPRound =
+ DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
+
+ return FPRound;
+ }
+
+ if (DestVT == MVT::f32)
+ return LowerINT_TO_FP32(Op, DAG, true);
+
+ assert(DestVT == MVT::f64);
+ return LowerINT_TO_FP64(Op, DAG, true);
+}
+
+SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+
+ SDValue Src = Op.getOperand(0);
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
+ MVT::f64);
+ SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
+ MVT::f64);
+ // TODO: Should this propagate fast-math-flags?
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
+
+ SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
+
+
+ SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
+
+ SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
+ MVT::i32, FloorMul);
+ SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
+
+ SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue N0 = Op.getOperand(0);
+
+ // Convert to target node to get known bits
+ if (N0.getValueType() == MVT::f32)
+ return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
+
+ if (getTargetMachine().Options.UnsafeFPMath) {
+ // There is a generic expand for FP_TO_FP16 with unsafe fast math.
+ return SDValue();
+ }
+
+ assert(N0.getSimpleValueType() == MVT::f64);
+
+ // f64 -> f16 conversion using round-to-nearest-even rounding mode.
+ const unsigned ExpMask = 0x7ff;
+ const unsigned ExpBiasf64 = 1023;
+ const unsigned ExpBiasf16 = 15;
+ SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
+ SDValue One = DAG.getConstant(1, DL, MVT::i32);
+ SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
+ SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
+ DAG.getConstant(32, DL, MVT::i64));
+ UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
+ U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
+ SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
+ DAG.getConstant(20, DL, MVT::i64));
+ E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
+ DAG.getConstant(ExpMask, DL, MVT::i32));
+ // Subtract the fp64 exponent bias (1023) to get the real exponent and
+ // add the f16 bias (15) to get the biased exponent for the f16 format.
+ E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
+ DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
+
+ SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
+ DAG.getConstant(8, DL, MVT::i32));
+ M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
+ DAG.getConstant(0xffe, DL, MVT::i32));
+
+ SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
+ DAG.getConstant(0x1ff, DL, MVT::i32));
+ MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
+
+ SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
+ M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
+
+ // (M != 0 ? 0x0200 : 0) | 0x7c00;
+ SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
+ DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
+ Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
+
+ // N = M | (E << 12);
+ SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
+ DAG.getNode(ISD::SHL, DL, MVT::i32, E,
+ DAG.getConstant(12, DL, MVT::i32)));
+
+ // B = clamp(1-E, 0, 13);
+ SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
+ One, E);
+ SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
+ B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
+ DAG.getConstant(13, DL, MVT::i32));
+
+ SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
+ DAG.getConstant(0x1000, DL, MVT::i32));
+
+ SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
+ SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
+ SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
+ D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
+
+ SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
+ SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
+ DAG.getConstant(0x7, DL, MVT::i32));
+ V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
+ DAG.getConstant(2, DL, MVT::i32));
+ SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
+ One, Zero, ISD::SETEQ);
+ SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
+ One, Zero, ISD::SETGT);
+ V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
+ V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
+
+ V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
+ DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
+ V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
+ I, V, ISD::SETEQ);
+
+ // Extract the sign bit.
+ SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
+ DAG.getConstant(16, DL, MVT::i32));
+ Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
+ DAG.getConstant(0x8000, DL, MVT::i32));
+
+ V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
+ return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ // TODO: Factor out code common with LowerFP_TO_UINT.
+
+ EVT SrcVT = Src.getValueType();
+ if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
+ SDLoc DL(Op);
+
+ SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
+ SDValue FpToInt32 =
+ DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
+
+ return FpToInt32;
+ }
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, true);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ // TODO: Factor out code common with LowerFP_TO_SINT.
+
+ EVT SrcVT = Src.getValueType();
+ if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
+ SDLoc DL(Op);
+
+ SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
+ SDValue FpToInt32 =
+ DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
+
+ return FpToInt32;
+ }
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, false);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ MVT VT = Op.getSimpleValueType();
+ MVT ScalarVT = VT.getScalarType();
+
+ assert(VT.isVector());
+
+ SDValue Src = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ // TODO: Don't scalarize on Evergreen?
+ unsigned NElts = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> Args;
+ DAG.ExtractVectorElements(Src, Args, 0, NElts);
+
+ SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
+ for (unsigned I = 0; I < NElts; ++I)
+ Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
+
+ return DAG.getBuildVector(VT, DL, Args);
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+static bool isU24(SDValue Op, SelectionDAG &DAG) {
+ return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
+}
+
+static bool isI24(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
+ // as unsigned 24-bit values.
+ AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
+}
+
+static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
+ TargetLowering::DAGCombinerInfo &DCI) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Op = Node24->getOperand(OpIdx);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = Op.getValueType();
+
+ APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
+ if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
+ return true;
+
+ return false;
+}
+
+template <typename IntTy>
+static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
+ uint32_t Width, const SDLoc &DL) {
+ if (Width + Offset < 32) {
+ uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
+ IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
+ return DAG.getConstant(Result, DL, MVT::i32);
+ }
+
+ return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
+}
+
+static bool hasVolatileUser(SDNode *Val) {
+ for (SDNode *U : Val->uses()) {
+ if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
+ if (M->isVolatile())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
+ // i32 vectors are the canonical memory type.
+ if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
+ return false;
+
+ if (!VT.isByteSized())
+ return false;
+
+ unsigned Size = VT.getStoreSize();
+
+ if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
+ return false;
+
+ if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
+ return false;
+
+ return true;
+}
+
+// Replace load of an illegal type with a store of a bitcast to a friendlier
+// type.
+SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ LoadSDNode *LN = cast<LoadSDNode>(N);
+ if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
+ return SDValue();
+
+ SDLoc SL(N);
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = LN->getMemoryVT();
+
+ unsigned Size = VT.getStoreSize();
+ unsigned Align = LN->getAlignment();
+ if (Align < Size && isTypeLegal(VT)) {
+ bool IsFast;
+ unsigned AS = LN->getAddressSpace();
+
+ // Expand unaligned loads earlier than legalization. Due to visitation order
+ // problems during legalization, the emitted instructions to pack and unpack
+ // the bytes again are not eliminated in the case of an unaligned copy.
+ if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
+ if (VT.isVector())
+ return scalarizeVectorLoad(LN, DAG);
+
+ SDValue Ops[2];
+ std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
+ return DAG.getMergeValues(Ops, SDLoc(N));
+ }
+
+ if (!IsFast)
+ return SDValue();
+ }
+
+ if (!shouldCombineMemoryType(VT))
+ return SDValue();
+
+ EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
+
+ SDValue NewLoad
+ = DAG.getLoad(NewVT, SL, LN->getChain(),
+ LN->getBasePtr(), LN->getMemOperand());
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
+ DCI.CombineTo(N, BC, NewLoad.getValue(1));
+ return SDValue(N, 0);
+}
+
+// Replace store of an illegal type with a store of a bitcast to a friendlier
+// type.
+SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ StoreSDNode *SN = cast<StoreSDNode>(N);
+ if (SN->isVolatile() || !ISD::isNormalStore(SN))
+ return SDValue();
+
+ EVT VT = SN->getMemoryVT();
+ unsigned Size = VT.getStoreSize();
+
+ SDLoc SL(N);
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned Align = SN->getAlignment();
+ if (Align < Size && isTypeLegal(VT)) {
+ bool IsFast;
+ unsigned AS = SN->getAddressSpace();
+
+ // Expand unaligned stores earlier than legalization. Due to visitation
+ // order problems during legalization, the emitted instructions to pack and
+ // unpack the bytes again are not eliminated in the case of an unaligned
+ // copy.
+ if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
+ if (VT.isVector())
+ return scalarizeVectorStore(SN, DAG);
+
+ return expandUnalignedStore(SN, DAG);
+ }
+
+ if (!IsFast)
+ return SDValue();
+ }
+
+ if (!shouldCombineMemoryType(VT))
+ return SDValue();
+
+ EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
+ SDValue Val = SN->getValue();
+
+ //DCI.AddToWorklist(Val.getNode());
+
+ bool OtherUses = !Val.hasOneUse();
+ SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
+ if (OtherUses) {
+ SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
+ DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
+ }
+
+ return DAG.getStore(SN->getChain(), SL, CastVal,
+ SN->getBasePtr(), SN->getMemOperand());
+}
+
+SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
+ if (!CSrc)
+ return SDValue();
+
+ const APFloat &F = CSrc->getValueAPF();
+ APFloat Zero = APFloat::getZero(F.getSemantics());
+ APFloat::cmpResult Cmp0 = F.compare(Zero);
+ if (Cmp0 == APFloat::cmpLessThan ||
+ (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
+ return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
+ }
+
+ APFloat One(F.getSemantics(), "1.0");
+ APFloat::cmpResult Cmp1 = F.compare(One);
+ if (Cmp1 == APFloat::cmpGreaterThan)
+ return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
+
+ return SDValue(CSrc, 0);
+}
+
+// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
+// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
+// issues.
+SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+
+ // (vt2 (assertzext (truncate vt0:x), vt1)) ->
+ // (vt2 (truncate (assertzext vt0:x, vt1)))
+ if (N0.getOpcode() == ISD::TRUNCATE) {
+ SDValue N1 = N->getOperand(1);
+ EVT ExtVT = cast<VTSDNode>(N1)->getVT();
+ SDLoc SL(N);
+
+ SDValue Src = N0.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ if (SrcVT.bitsGE(ExtVT)) {
+ SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
+ return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
+ }
+ }
+
+ return SDValue();
+}
+/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
+/// binary operation \p Opc to it with the corresponding constant operands.
+SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
+ DAGCombinerInfo &DCI, const SDLoc &SL,
+ unsigned Opc, SDValue LHS,
+ uint32_t ValLo, uint32_t ValHi) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Lo, Hi;
+ std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
+
+ SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
+ SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
+
+ SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
+ SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
+
+ // Re-visit the ands. It's possible we eliminated one of them and it could
+ // simplify the vector.
+ DCI.AddToWorklist(Lo.getNode());
+ DCI.AddToWorklist(Hi.getNode());
+
+ SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
+}
+
+SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!RHS)
+ return SDValue();
+
+ SDValue LHS = N->getOperand(0);
+ unsigned RHSVal = RHS->getZExtValue();
+ if (!RHSVal)
+ return LHS;
+
+ SDLoc SL(N);
+ SelectionDAG &DAG = DCI.DAG;
+
+ switch (LHS->getOpcode()) {
+ default:
+ break;
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::ANY_EXTEND: {
+ SDValue X = LHS->getOperand(0);
+
+ if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
+ isTypeLegal(MVT::v2i16)) {
+ // Prefer build_vector as the canonical form if packed types are legal.
+ // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
+ SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
+ { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
+ }
+
+ // shl (ext x) => zext (shl x), if shift does not overflow int
+ if (VT != MVT::i64)
+ break;
+ KnownBits Known;
+ DAG.computeKnownBits(X, Known);
+ unsigned LZ = Known.countMinLeadingZeros();
+ if (LZ < RHSVal)
+ break;
+ EVT XVT = X.getValueType();
+ SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
+ return DAG.getZExtOrTrunc(Shl, SL, VT);
+ }
+ }
+
+ if (VT != MVT::i64)
+ return SDValue();
+
+ // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
+
+ // On some subtargets, 64-bit shift is a quarter rate instruction. In the
+ // common case, splitting this into a move and a 32-bit shift is faster and
+ // the same code size.
+ if (RHSVal < 32)
+ return SDValue();
+
+ SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
+
+ SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
+ SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+
+ SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
+}
+
+SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (N->getValueType(0) != MVT::i64)
+ return SDValue();
+
+ const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!RHS)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ unsigned RHSVal = RHS->getZExtValue();
+
+ // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
+ if (RHSVal == 32) {
+ SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
+ SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
+ DAG.getConstant(31, SL, MVT::i32));
+
+ SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
+ }
+
+ // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
+ if (RHSVal == 63) {
+ SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
+ SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
+ DAG.getConstant(31, SL, MVT::i32));
+ SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
+ }
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (N->getValueType(0) != MVT::i64)
+ return SDValue();
+
+ const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!RHS)
+ return SDValue();
+
+ unsigned ShiftAmt = RHS->getZExtValue();
+ if (ShiftAmt < 32)
+ return SDValue();
+
+ // srl i64:x, C for C >= 32
+ // =>
+ // build_pair (srl hi_32(x), C - 32), 0
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ SDValue One = DAG.getConstant(1, SL, MVT::i32);
+ SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+
+ SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
+ VecOp, One);
+
+ SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
+ SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
+
+ SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
+}
+
+// We need to specifically handle i64 mul here to avoid unnecessary conversion
+// instructions. If we only match on the legalized i64 mul expansion,
+// SimplifyDemandedBits will be unable to remove them because there will be
+// multiple uses due to the separate mul + mulh[su].
+static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
+ SDValue N0, SDValue N1, unsigned Size, bool Signed) {
+ if (Size <= 32) {
+ unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
+ return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
+ }
+
+ // Because we want to eliminate extension instructions before the
+ // operation, we need to create a single user here (i.e. not the separate
+ // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
+
+ unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
+
+ SDValue Mul = DAG.getNode(MulOpc, SL,
+ DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
+
+ return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
+ Mul.getValue(0), Mul.getValue(1));
+}
+
+SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ unsigned Size = VT.getSizeInBits();
+ if (VT.isVector() || Size > 64)
+ return SDValue();
+
+ // There are i16 integer mul/mad.
+ if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue Mul;
+
+ if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
+ N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
+ Mul = getMul24(DAG, DL, N0, N1, Size, false);
+ } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
+ N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
+ Mul = getMul24(DAG, DL, N0, N1, Size, true);
+ } else {
+ return SDValue();
+ }
+
+ // We need to use sext even for MUL_U24, because MUL_U24 is used
+ // for signed multiply of 8 and 16-bit types.
+ return DAG.getSExtOrTrunc(Mul, DL, VT);
+}
+
+SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ if (!Subtarget->hasMulI24() || VT.isVector())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ if (!isI24(N0, DAG) || !isI24(N1, DAG))
+ return SDValue();
+
+ N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
+
+ SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
+ DCI.AddToWorklist(Mulhi.getNode());
+ return DAG.getSExtOrTrunc(Mulhi, DL, VT);
+}
+
+SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ if (!isU24(N0, DAG) || !isU24(N1, DAG))
+ return SDValue();
+
+ N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
+
+ SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
+ DCI.AddToWorklist(Mulhi.getNode());
+ return DAG.getZExtOrTrunc(Mulhi, DL, VT);
+}
+
+SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
+ SDNode *N, DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ // Simplify demanded bits before splitting into multiple users.
+ if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
+
+ unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
+ unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
+
+ SDLoc SL(N);
+
+ SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
+ SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
+ return DAG.getMergeValues({ MulLo, MulHi }, SL);
+}
+
+static bool isNegativeOne(SDValue Val) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
+ return C->isAllOnesValue();
+ return false;
+}
+
+SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
+ SDValue Op,
+ const SDLoc &DL,
+ unsigned Opc) const {
+ EVT VT = Op.getValueType();
+ EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
+ if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
+ LegalVT != MVT::i16))
+ return SDValue();
+
+ if (VT != MVT::i32)
+ Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
+
+ SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
+ if (VT != MVT::i32)
+ FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
+
+ return FFBX;
+}
+
+// The native instructions return -1 on 0 input. Optimize out a select that
+// produces -1 on 0.
+//
+// TODO: If zero is not undef, we could also do this if the output is compared
+// against the bitwidth.
+//
+// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
+SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
+ SDValue LHS, SDValue RHS,
+ DAGCombinerInfo &DCI) const {
+ ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+ if (!CmpRhs || !CmpRhs->isNullValue())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+ SDValue CmpLHS = Cond.getOperand(0);
+
+ unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
+ AMDGPUISD::FFBH_U32;
+
+ // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
+ // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
+ if (CCOpcode == ISD::SETEQ &&
+ (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
+ RHS.getOperand(0) == CmpLHS &&
+ isNegativeOne(LHS)) {
+ return getFFBX_U32(DAG, CmpLHS, SL, Opc);
+ }
+
+ // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
+ // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
+ if (CCOpcode == ISD::SETNE &&
+ (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
+ LHS.getOperand(0) == CmpLHS &&
+ isNegativeOne(RHS)) {
+ return getFFBX_U32(DAG, CmpLHS, SL, Opc);
+ }
+
+ return SDValue();
+}
+
+static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
+ unsigned Op,
+ const SDLoc &SL,
+ SDValue Cond,
+ SDValue N1,
+ SDValue N2) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N1.getValueType();
+
+ SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
+ N1.getOperand(0), N2.getOperand(0));
+ DCI.AddToWorklist(NewSelect.getNode());
+ return DAG.getNode(Op, SL, VT, NewSelect);
+}
+
+// Pull a free FP operation out of a select so it may fold into uses.
+//
+// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
+// select c, (fneg x), k -> fneg (select c, x, (fneg k))
+//
+// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
+// select c, (fabs x), +k -> fabs (select c, x, k)
+static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
+ SDValue N) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Cond = N.getOperand(0);
+ SDValue LHS = N.getOperand(1);
+ SDValue RHS = N.getOperand(2);
+
+ EVT VT = N.getValueType();
+ if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
+ (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
+ return distributeOpThroughSelect(DCI, LHS.getOpcode(),
+ SDLoc(N), Cond, LHS, RHS);
+ }
+
+ bool Inv = false;
+ if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
+ std::swap(LHS, RHS);
+ Inv = true;
+ }
+
+ // TODO: Support vector constants.
+ ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
+ if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
+ SDLoc SL(N);
+ // If one side is an fneg/fabs and the other is a constant, we can push the
+ // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
+ SDValue NewLHS = LHS.getOperand(0);
+ SDValue NewRHS = RHS;
+
+ // Careful: if the neg can be folded up, don't try to pull it back down.
+ bool ShouldFoldNeg = true;
+
+ if (NewLHS.hasOneUse()) {
+ unsigned Opc = NewLHS.getOpcode();
+ if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
+ ShouldFoldNeg = false;
+ if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
+ ShouldFoldNeg = false;
+ }
+
+ if (ShouldFoldNeg) {
+ if (LHS.getOpcode() == ISD::FNEG)
+ NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+ else if (CRHS->isNegative())
+ return SDValue();
+
+ if (Inv)
+ std::swap(NewLHS, NewRHS);
+
+ SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
+ Cond, NewLHS, NewRHS);
+ DCI.AddToWorklist(NewSelect.getNode());
+ return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
+ }
+ }
+
+ return SDValue();
+}
+
+
+SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
+ return Folded;
+
+ SDValue Cond = N->getOperand(0);
+ if (Cond.getOpcode() != ISD::SETCC)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ SDValue CC = Cond.getOperand(2);
+
+ SDValue True = N->getOperand(1);
+ SDValue False = N->getOperand(2);
+
+ if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
+ SelectionDAG &DAG = DCI.DAG;
+ if ((DAG.isConstantValueOfAnyType(True) ||
+ DAG.isConstantValueOfAnyType(True)) &&
+ (!DAG.isConstantValueOfAnyType(False) &&
+ !DAG.isConstantValueOfAnyType(False))) {
+ // Swap cmp + select pair to move constant to false input.
+ // This will allow using VOPC cndmasks more often.
+ // select (setcc x, y), k, x -> select (setcc y, x) x, x
+
+ SDLoc SL(N);
+ ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ LHS.getValueType().isInteger());
+
+ SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
+ return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
+ }
+
+ if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
+ SDValue MinMax
+ = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
+ // Revisit this node so we can catch min3/max3/med3 patterns.
+ //DCI.AddToWorklist(MinMax.getNode());
+ return MinMax;
+ }
+ }
+
+ // There's no reason to not do this if the condition has other uses.
+ return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
+}
+
+static bool isConstantFPZero(SDValue N) {
+ if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
+ return C->isZero() && !C->isNegative();
+ return false;
+}
+
+static unsigned inverseMinMax(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FMAXNUM:
+ return ISD::FMINNUM;
+ case ISD::FMINNUM:
+ return ISD::FMAXNUM;
+ case AMDGPUISD::FMAX_LEGACY:
+ return AMDGPUISD::FMIN_LEGACY;
+ case AMDGPUISD::FMIN_LEGACY:
+ return AMDGPUISD::FMAX_LEGACY;
+ default:
+ llvm_unreachable("invalid min/max opcode");
+ }
+}
+
+SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ unsigned Opc = N0.getOpcode();
+
+ // If the input has multiple uses and we can either fold the negate down, or
+ // the other uses cannot, give up. This both prevents unprofitable
+ // transformations and infinite loops: we won't repeatedly try to fold around
+ // a negate that has no 'good' form.
+ if (N0.hasOneUse()) {
+ // This may be able to fold into the source, but at a code size cost. Don't
+ // fold if the fold into the user is free.
+ if (allUsesHaveSourceMods(N, 0))
+ return SDValue();
+ } else {
+ if (fnegFoldsIntoOp(Opc) &&
+ (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
+ return SDValue();
+ }
+
+ SDLoc SL(N);
+ switch (Opc) {
+ case ISD::FADD: {
+ if (!mayIgnoreSignedZero(N0))
+ return SDValue();
+
+ // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
+ SDValue LHS = N0.getOperand(0);
+ SDValue RHS = N0.getOperand(1);
+
+ if (LHS.getOpcode() != ISD::FNEG)
+ LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
+ else
+ LHS = LHS.getOperand(0);
+
+ if (RHS.getOpcode() != ISD::FNEG)
+ RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+ else
+ RHS = RHS.getOperand(0);
+
+ SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
+ if (!N0.hasOneUse())
+ DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
+ return Res;
+ }
+ case ISD::FMUL:
+ case AMDGPUISD::FMUL_LEGACY: {
+ // (fneg (fmul x, y)) -> (fmul x, (fneg y))
+ // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
+ SDValue LHS = N0.getOperand(0);
+ SDValue RHS = N0.getOperand(1);
+
+ if (LHS.getOpcode() == ISD::FNEG)
+ LHS = LHS.getOperand(0);
+ else if (RHS.getOpcode() == ISD::FNEG)
+ RHS = RHS.getOperand(0);
+ else
+ RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+
+ SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
+ if (!N0.hasOneUse())
+ DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
+ return Res;
+ }
+ case ISD::FMA:
+ case ISD::FMAD: {
+ if (!mayIgnoreSignedZero(N0))
+ return SDValue();
+
+ // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
+ SDValue LHS = N0.getOperand(0);
+ SDValue MHS = N0.getOperand(1);
+ SDValue RHS = N0.getOperand(2);
+
+ if (LHS.getOpcode() == ISD::FNEG)
+ LHS = LHS.getOperand(0);
+ else if (MHS.getOpcode() == ISD::FNEG)
+ MHS = MHS.getOperand(0);
+ else
+ MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
+
+ if (RHS.getOpcode() != ISD::FNEG)
+ RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+ else
+ RHS = RHS.getOperand(0);
+
+ SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
+ if (!N0.hasOneUse())
+ DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
+ return Res;
+ }
+ case ISD::FMAXNUM:
+ case ISD::FMINNUM:
+ case AMDGPUISD::FMAX_LEGACY:
+ case AMDGPUISD::FMIN_LEGACY: {
+ // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
+ // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
+ // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
+ // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
+
+ SDValue LHS = N0.getOperand(0);
+ SDValue RHS = N0.getOperand(1);
+
+ // 0 doesn't have a negated inline immediate.
+ // TODO: Shouldn't fold 1/2pi either, and should be generalized to other
+ // operations.
+ if (isConstantFPZero(RHS))
+ return SDValue();
+
+ SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
+ SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
+ unsigned Opposite = inverseMinMax(Opc);
+
+ SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
+ if (!N0.hasOneUse())
+ DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
+ return Res;
+ }
+ case ISD::FP_EXTEND:
+ case ISD::FTRUNC:
+ case ISD::FRINT:
+ case ISD::FNEARBYINT: // XXX - Should fround be handled?
+ case ISD::FSIN:
+ case AMDGPUISD::RCP:
+ case AMDGPUISD::RCP_LEGACY:
+ case AMDGPUISD::SIN_HW: {
+ SDValue CvtSrc = N0.getOperand(0);
+ if (CvtSrc.getOpcode() == ISD::FNEG) {
+ // (fneg (fp_extend (fneg x))) -> (fp_extend x)
+ // (fneg (rcp (fneg x))) -> (rcp x)
+ return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
+ }
+
+ if (!N0.hasOneUse())
+ return SDValue();
+
+ // (fneg (fp_extend x)) -> (fp_extend (fneg x))
+ // (fneg (rcp x)) -> (rcp (fneg x))
+ SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
+ return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
+ }
+ case ISD::FP_ROUND: {
+ SDValue CvtSrc = N0.getOperand(0);
+
+ if (CvtSrc.getOpcode() == ISD::FNEG) {
+ // (fneg (fp_round (fneg x))) -> (fp_round x)
+ return DAG.getNode(ISD::FP_ROUND, SL, VT,
+ CvtSrc.getOperand(0), N0.getOperand(1));
+ }
+
+ if (!N0.hasOneUse())
+ return SDValue();
+
+ // (fneg (fp_round x)) -> (fp_round (fneg x))
+ SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
+ return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
+ }
+ case ISD::FP16_TO_FP: {
+ // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
+ // f16, but legalization of f16 fneg ends up pulling it out of the source.
+ // Put the fneg back as a legal source operation that can be matched later.
+ SDLoc SL(N);
+
+ SDValue Src = N0.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
+ SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
+ DAG.getConstant(0x8000, SL, SrcVT));
+ return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+
+ if (!N0.hasOneUse())
+ return SDValue();
+
+ switch (N0.getOpcode()) {
+ case ISD::FP16_TO_FP: {
+ assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
+ SDLoc SL(N);
+ SDValue Src = N0.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
+ SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
+ DAG.getConstant(0x7fff, SL, SrcVT));
+ return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ switch(N->getOpcode()) {
+ default:
+ break;
+ case ISD::BITCAST: {
+ EVT DestVT = N->getValueType(0);
+
+ // Push casts through vector builds. This helps avoid emitting a large
+ // number of copies when materializing floating point vector constants.
+ //
+ // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
+ // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
+ if (DestVT.isVector()) {
+ SDValue Src = N->getOperand(0);
+ if (Src.getOpcode() == ISD::BUILD_VECTOR) {
+ EVT SrcVT = Src.getValueType();
+ unsigned NElts = DestVT.getVectorNumElements();
+
+ if (SrcVT.getVectorNumElements() == NElts) {
+ EVT DestEltVT = DestVT.getVectorElementType();
+
+ SmallVector<SDValue, 8> CastedElts;
+ SDLoc SL(N);
+ for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
+ SDValue Elt = Src.getOperand(I);
+ CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
+ }
+
+ return DAG.getBuildVector(DestVT, SL, CastedElts);
+ }
+ }
+ }
+
+ if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
+ break;
+
+ // Fold bitcasts of constants.
+ //
+ // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
+ // TODO: Generalize and move to DAGCombiner
+ SDValue Src = N->getOperand(0);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
+ assert(Src.getValueType() == MVT::i64);
+ SDLoc SL(N);
+ uint64_t CVal = C->getZExtValue();
+ return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
+ DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
+ DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
+ }
+
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
+ const APInt &Val = C->getValueAPF().bitcastToAPInt();
+ SDLoc SL(N);
+ uint64_t CVal = Val.getZExtValue();
+ SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
+ DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
+ DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
+
+ return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
+ }
+
+ break;
+ }
+ case ISD::SHL: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ return performShlCombine(N, DCI);
+ }
+ case ISD::SRL: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ return performSrlCombine(N, DCI);
+ }
+ case ISD::SRA: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ return performSraCombine(N, DCI);
+ }
+ case ISD::MUL:
+ return performMulCombine(N, DCI);
+ case ISD::MULHS:
+ return performMulhsCombine(N, DCI);
+ case ISD::MULHU:
+ return performMulhuCombine(N, DCI);
+ case AMDGPUISD::MUL_I24:
+ case AMDGPUISD::MUL_U24:
+ case AMDGPUISD::MULHI_I24:
+ case AMDGPUISD::MULHI_U24: {
+ // If the first call to simplify is successfull, then N may end up being
+ // deleted, so we shouldn't call simplifyI24 again.
+ simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
+ return SDValue();
+ }
+ case AMDGPUISD::MUL_LOHI_I24:
+ case AMDGPUISD::MUL_LOHI_U24:
+ return performMulLoHi24Combine(N, DCI);
+ case ISD::SELECT:
+ return performSelectCombine(N, DCI);
+ case ISD::FNEG:
+ return performFNegCombine(N, DCI);
+ case ISD::FABS:
+ return performFAbsCombine(N, DCI);
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ assert(!N->getValueType(0).isVector() &&
+ "Vector handling of BFE not implemented");
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
+ if (!Width)
+ break;
+
+ uint32_t WidthVal = Width->getZExtValue() & 0x1f;
+ if (WidthVal == 0)
+ return DAG.getConstant(0, DL, MVT::i32);
+
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!Offset)
+ break;
+
+ SDValue BitsFrom = N->getOperand(0);
+ uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
+
+ bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
+
+ if (OffsetVal == 0) {
+ // This is already sign / zero extended, so try to fold away extra BFEs.
+ unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
+
+ unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
+ if (OpSignBits >= SignBits)
+ return BitsFrom;
+
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
+ if (Signed) {
+ // This is a sign_extend_inreg. Replace it to take advantage of existing
+ // DAG Combines. If not eliminated, we will match back to BFE during
+ // selection.
+
+ // TODO: The sext_inreg of extended types ends, although we can could
+ // handle them in a single BFE.
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
+ DAG.getValueType(SmallVT));
+ }
+
+ return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
+ }
+
+ if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
+ if (Signed) {
+ return constantFoldBFE<int32_t>(DAG,
+ CVal->getSExtValue(),
+ OffsetVal,
+ WidthVal,
+ DL);
+ }
+
+ return constantFoldBFE<uint32_t>(DAG,
+ CVal->getZExtValue(),
+ OffsetVal,
+ WidthVal,
+ DL);
+ }
+
+ if ((OffsetVal + WidthVal) >= 32 &&
+ !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
+ SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
+ return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
+ BitsFrom, ShiftVal);
+ }
+
+ if (BitsFrom.hasOneUse()) {
+ APInt Demanded = APInt::getBitsSet(32,
+ OffsetVal,
+ OffsetVal + WidthVal);
+
+ KnownBits Known;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
+ TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ }
+
+ break;
+ }
+ case ISD::LOAD:
+ return performLoadCombine(N, DCI);
+ case ISD::STORE:
+ return performStoreCombine(N, DCI);
+ case AMDGPUISD::CLAMP:
+ return performClampCombine(N, DCI);
+ case AMDGPUISD::RCP: {
+ if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
+ // XXX - Should this flush denormals?
+ const APFloat &Val = CFP->getValueAPF();
+ APFloat One(Val.getSemantics(), "1.0");
+ return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
+ }
+
+ break;
+ }
+ case ISD::AssertZext:
+ case ISD::AssertSext:
+ return performAssertSZExtCombine(N, DCI);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+
+SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT,
+ const SDLoc &SL,
+ bool RawReg) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned VReg;
+
+ if (!MRI.isLiveIn(Reg)) {
+ VReg = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(Reg, VReg);
+ } else {
+ VReg = MRI.getLiveInVirtReg(Reg);
+ }
+
+ if (RawReg)
+ return DAG.getRegister(VReg, VT);
+
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
+}
+
+SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
+ EVT VT,
+ const SDLoc &SL,
+ int64_t Offset) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
+ auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
+ SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
+
+ return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant);
+}
+
+SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
+ const SDLoc &SL,
+ SDValue Chain,
+ SDValue StackPtr,
+ SDValue ArgVal,
+ int64_t Offset) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
+
+ SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
+ SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
+ MachineMemOperand::MODereferenceable);
+ return Store;
+}
+
+SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ EVT VT, const SDLoc &SL,
+ const ArgDescriptor &Arg) const {
+ assert(Arg && "Attempting to load missing argument");
+
+ if (Arg.isRegister())
+ return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
+ return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
+}
+
+uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
+ const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
+ unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
+ uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
+ switch (Param) {
+ case GRID_DIM:
+ return ArgOffset;
+ case GRID_OFFSET:
+ return ArgOffset + 4;
+ }
+ llvm_unreachable("unexpected implicit parameter type");
+}
+
+#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
+
+const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((AMDGPUISD::NodeType)Opcode) {
+ case AMDGPUISD::FIRST_NUMBER: break;
+ // AMDIL DAG nodes
+ NODE_NAME_CASE(UMUL);
+ NODE_NAME_CASE(BRANCH_COND);
+
+ // AMDGPU DAG nodes
+ NODE_NAME_CASE(IF)
+ NODE_NAME_CASE(ELSE)
+ NODE_NAME_CASE(LOOP)
+ NODE_NAME_CASE(CALL)
+ NODE_NAME_CASE(TC_RETURN)
+ NODE_NAME_CASE(TRAP)
+ NODE_NAME_CASE(RET_FLAG)
+ NODE_NAME_CASE(RETURN_TO_EPILOG)
+ NODE_NAME_CASE(ENDPGM)
+ NODE_NAME_CASE(DWORDADDR)
+ NODE_NAME_CASE(FRACT)
+ NODE_NAME_CASE(SETCC)
+ NODE_NAME_CASE(SETREG)
+ NODE_NAME_CASE(FMA_W_CHAIN)
+ NODE_NAME_CASE(FMUL_W_CHAIN)
+ NODE_NAME_CASE(CLAMP)
+ NODE_NAME_CASE(COS_HW)
+ NODE_NAME_CASE(SIN_HW)
+ NODE_NAME_CASE(FMAX_LEGACY)
+ NODE_NAME_CASE(FMIN_LEGACY)
+ NODE_NAME_CASE(FMAX3)
+ NODE_NAME_CASE(SMAX3)
+ NODE_NAME_CASE(UMAX3)
+ NODE_NAME_CASE(FMIN3)
+ NODE_NAME_CASE(SMIN3)
+ NODE_NAME_CASE(UMIN3)
+ NODE_NAME_CASE(FMED3)
+ NODE_NAME_CASE(SMED3)
+ NODE_NAME_CASE(UMED3)
+ NODE_NAME_CASE(URECIP)
+ NODE_NAME_CASE(DIV_SCALE)
+ NODE_NAME_CASE(DIV_FMAS)
+ NODE_NAME_CASE(DIV_FIXUP)
+ NODE_NAME_CASE(FMAD_FTZ)
+ NODE_NAME_CASE(TRIG_PREOP)
+ NODE_NAME_CASE(RCP)
+ NODE_NAME_CASE(RSQ)
+ NODE_NAME_CASE(RCP_LEGACY)
+ NODE_NAME_CASE(RSQ_LEGACY)
+ NODE_NAME_CASE(FMUL_LEGACY)
+ NODE_NAME_CASE(RSQ_CLAMP)
+ NODE_NAME_CASE(LDEXP)
+ NODE_NAME_CASE(FP_CLASS)
+ NODE_NAME_CASE(DOT4)
+ NODE_NAME_CASE(CARRY)
+ NODE_NAME_CASE(BORROW)
+ NODE_NAME_CASE(BFE_U32)
+ NODE_NAME_CASE(BFE_I32)
+ NODE_NAME_CASE(BFI)
+ NODE_NAME_CASE(BFM)
+ NODE_NAME_CASE(FFBH_U32)
+ NODE_NAME_CASE(FFBH_I32)
+ NODE_NAME_CASE(FFBL_B32)
+ NODE_NAME_CASE(MUL_U24)
+ NODE_NAME_CASE(MUL_I24)
+ NODE_NAME_CASE(MULHI_U24)
+ NODE_NAME_CASE(MULHI_I24)
+ NODE_NAME_CASE(MUL_LOHI_U24)
+ NODE_NAME_CASE(MUL_LOHI_I24)
+ NODE_NAME_CASE(MAD_U24)
+ NODE_NAME_CASE(MAD_I24)
+ NODE_NAME_CASE(MAD_I64_I32)
+ NODE_NAME_CASE(MAD_U64_U32)
+ NODE_NAME_CASE(TEXTURE_FETCH)
+ NODE_NAME_CASE(EXPORT)
+ NODE_NAME_CASE(EXPORT_DONE)
+ NODE_NAME_CASE(R600_EXPORT)
+ NODE_NAME_CASE(CONST_ADDRESS)
+ NODE_NAME_CASE(REGISTER_LOAD)
+ NODE_NAME_CASE(REGISTER_STORE)
+ NODE_NAME_CASE(SAMPLE)
+ NODE_NAME_CASE(SAMPLEB)
+ NODE_NAME_CASE(SAMPLED)
+ NODE_NAME_CASE(SAMPLEL)
+ NODE_NAME_CASE(CVT_F32_UBYTE0)
+ NODE_NAME_CASE(CVT_F32_UBYTE1)
+ NODE_NAME_CASE(CVT_F32_UBYTE2)
+ NODE_NAME_CASE(CVT_F32_UBYTE3)
+ NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
+ NODE_NAME_CASE(CVT_PKNORM_I16_F32)
+ NODE_NAME_CASE(CVT_PKNORM_U16_F32)
+ NODE_NAME_CASE(CVT_PK_I16_I32)
+ NODE_NAME_CASE(CVT_PK_U16_U32)
+ NODE_NAME_CASE(FP_TO_FP16)
+ NODE_NAME_CASE(FP16_ZEXT)
+ NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
+ NODE_NAME_CASE(CONST_DATA_PTR)
+ NODE_NAME_CASE(PC_ADD_REL_OFFSET)
+ NODE_NAME_CASE(KILL)
+ NODE_NAME_CASE(DUMMY_CHAIN)
+ case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
+ NODE_NAME_CASE(INIT_EXEC)
+ NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
+ NODE_NAME_CASE(SENDMSG)
+ NODE_NAME_CASE(SENDMSGHALT)
+ NODE_NAME_CASE(INTERP_MOV)
+ NODE_NAME_CASE(INTERP_P1)
+ NODE_NAME_CASE(INTERP_P2)
+ NODE_NAME_CASE(STORE_MSKOR)
+ NODE_NAME_CASE(LOAD_CONSTANT)
+ NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
+ NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
+ NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
+ NODE_NAME_CASE(ATOMIC_CMP_SWAP)
+ NODE_NAME_CASE(ATOMIC_INC)
+ NODE_NAME_CASE(ATOMIC_DEC)
+ NODE_NAME_CASE(BUFFER_LOAD)
+ NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
+ NODE_NAME_CASE(BUFFER_STORE)
+ NODE_NAME_CASE(BUFFER_STORE_FORMAT)
+ NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
+ NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
+ NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
+ NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
+ NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
+ NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
+ NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
+ NODE_NAME_CASE(BUFFER_ATOMIC_AND)
+ NODE_NAME_CASE(BUFFER_ATOMIC_OR)
+ NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
+ NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
+ case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
+ }
+ return nullptr;
+}
+
+SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
+ SelectionDAG &DAG, int Enabled,
+ int &RefinementSteps,
+ bool &UseOneConstNR,
+ bool Reciprocal) const {
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rsq instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
+ SelectionDAG &DAG, int Enabled,
+ int &RefinementSteps) const {
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ // Reciprocal, < 1 ulp error.
+ //
+ // This reciprocal approximation converges to < 0.5 ulp error with one
+ // newton rhapson performed with two fused multiple adds (FMAs).
+
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rcp instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
+void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
+ const SDValue Op, KnownBits &Known,
+ const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
+
+ Known.resetAll(); // Don't know anything.
+
+ unsigned Opc = Op.getOpcode();
+
+ switch (Opc) {
+ default:
+ break;
+ case AMDGPUISD::CARRY:
+ case AMDGPUISD::BORROW: {
+ Known.Zero = APInt::getHighBitsSet(32, 31);
+ break;
+ }
+
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!CWidth)
+ return;
+
+ uint32_t Width = CWidth->getZExtValue() & 0x1f;
+
+ if (Opc == AMDGPUISD::BFE_U32)
+ Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
+
+ break;
+ }
+ case AMDGPUISD::FP_TO_FP16:
+ case AMDGPUISD::FP16_ZEXT: {
+ unsigned BitWidth = Known.getBitWidth();
+
+ // High bits are zero.
+ Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
+ break;
+ }
+ case AMDGPUISD::MUL_U24:
+ case AMDGPUISD::MUL_I24: {
+ KnownBits LHSKnown, RHSKnown;
+ DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
+ DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
+
+ unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
+ RHSKnown.countMinTrailingZeros();
+ Known.Zero.setLowBits(std::min(TrailZ, 32u));
+
+ unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
+ unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
+ unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
+ if (MaxValBits >= 32)
+ break;
+ bool Negative = false;
+ if (Opc == AMDGPUISD::MUL_I24) {
+ bool LHSNegative = !!(LHSKnown.One & (1 << 23));
+ bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
+ bool RHSNegative = !!(RHSKnown.One & (1 << 23));
+ bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
+ if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
+ break;
+ Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
+ }
+ if (Negative)
+ Known.One.setHighBits(32 - MaxValBits);
+ else
+ Known.Zero.setHighBits(32 - MaxValBits);
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IID) {
+ case Intrinsic::amdgcn_mbcnt_lo:
+ case Intrinsic::amdgcn_mbcnt_hi: {
+ // These return at most the wavefront size - 1.
+ unsigned Size = Op.getValueType().getSizeInBits();
+ Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2());
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ }
+}
+
+unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
+ unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ case AMDGPUISD::BFE_I32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!Width)
+ return 1;
+
+ unsigned SignBits = 32 - Width->getZExtValue() + 1;
+ if (!isNullConstant(Op.getOperand(1)))
+ return SignBits;
+
+ // TODO: Could probably figure something out with non-0 offsets.
+ unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ return std::max(SignBits, Op0SignBits);
+ }
+
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
+ }
+
+ case AMDGPUISD::CARRY:
+ case AMDGPUISD::BORROW:
+ return 31;
+ case AMDGPUISD::FP_TO_FP16:
+ case AMDGPUISD::FP16_ZEXT:
+ return 16;
+ default:
+ return 1;
+ }
+}