aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h')
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h849
1 files changed, 849 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
new file mode 100644
index 000000000000..688ca755d0b5
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
@@ -0,0 +1,849 @@
+//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/bit.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+
+namespace llvm {
+
+/// AArch64_AM - AArch64 Addressing Mode Stuff
+namespace AArch64_AM {
+
+//===----------------------------------------------------------------------===//
+// Shifts
+//
+
+enum ShiftExtendType {
+ InvalidShiftExtend = -1,
+ LSL = 0,
+ LSR,
+ ASR,
+ ROR,
+ MSL,
+
+ UXTB,
+ UXTH,
+ UXTW,
+ UXTX,
+
+ SXTB,
+ SXTH,
+ SXTW,
+ SXTX,
+};
+
+/// getShiftName - Get the string encoding for the shift type.
+static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
+ switch (ST) {
+ default: llvm_unreachable("unhandled shift type!");
+ case AArch64_AM::LSL: return "lsl";
+ case AArch64_AM::LSR: return "lsr";
+ case AArch64_AM::ASR: return "asr";
+ case AArch64_AM::ROR: return "ror";
+ case AArch64_AM::MSL: return "msl";
+ case AArch64_AM::UXTB: return "uxtb";
+ case AArch64_AM::UXTH: return "uxth";
+ case AArch64_AM::UXTW: return "uxtw";
+ case AArch64_AM::UXTX: return "uxtx";
+ case AArch64_AM::SXTB: return "sxtb";
+ case AArch64_AM::SXTH: return "sxth";
+ case AArch64_AM::SXTW: return "sxtw";
+ case AArch64_AM::SXTX: return "sxtx";
+ }
+ return nullptr;
+}
+
+/// getShiftType - Extract the shift type.
+static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
+ switch ((Imm >> 6) & 0x7) {
+ default: return AArch64_AM::InvalidShiftExtend;
+ case 0: return AArch64_AM::LSL;
+ case 1: return AArch64_AM::LSR;
+ case 2: return AArch64_AM::ASR;
+ case 3: return AArch64_AM::ROR;
+ case 4: return AArch64_AM::MSL;
+ }
+}
+
+/// getShiftValue - Extract the shift value.
+static inline unsigned getShiftValue(unsigned Imm) {
+ return Imm & 0x3f;
+}
+
+/// getShifterImm - Encode the shift type and amount:
+/// imm: 6-bit shift amount
+/// shifter: 000 ==> lsl
+/// 001 ==> lsr
+/// 010 ==> asr
+/// 011 ==> ror
+/// 100 ==> msl
+/// {8-6} = shifter
+/// {5-0} = imm
+static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
+ unsigned Imm) {
+ assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
+ unsigned STEnc = 0;
+ switch (ST) {
+ default: llvm_unreachable("Invalid shift requested");
+ case AArch64_AM::LSL: STEnc = 0; break;
+ case AArch64_AM::LSR: STEnc = 1; break;
+ case AArch64_AM::ASR: STEnc = 2; break;
+ case AArch64_AM::ROR: STEnc = 3; break;
+ case AArch64_AM::MSL: STEnc = 4; break;
+ }
+ return (STEnc << 6) | (Imm & 0x3f);
+}
+
+//===----------------------------------------------------------------------===//
+// Extends
+//
+
+/// getArithShiftValue - get the arithmetic shift value.
+static inline unsigned getArithShiftValue(unsigned Imm) {
+ return Imm & 0x7;
+}
+
+/// getExtendType - Extract the extend type for operands of arithmetic ops.
+static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
+ assert((Imm & 0x7) == Imm && "invalid immediate!");
+ switch (Imm) {
+ default: llvm_unreachable("Compiler bug!");
+ case 0: return AArch64_AM::UXTB;
+ case 1: return AArch64_AM::UXTH;
+ case 2: return AArch64_AM::UXTW;
+ case 3: return AArch64_AM::UXTX;
+ case 4: return AArch64_AM::SXTB;
+ case 5: return AArch64_AM::SXTH;
+ case 6: return AArch64_AM::SXTW;
+ case 7: return AArch64_AM::SXTX;
+ }
+}
+
+static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
+ return getExtendType((Imm >> 3) & 0x7);
+}
+
+/// Mapping from extend bits to required operation:
+/// shifter: 000 ==> uxtb
+/// 001 ==> uxth
+/// 010 ==> uxtw
+/// 011 ==> uxtx
+/// 100 ==> sxtb
+/// 101 ==> sxth
+/// 110 ==> sxtw
+/// 111 ==> sxtx
+inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
+ switch (ET) {
+ default: llvm_unreachable("Invalid extend type requested");
+ case AArch64_AM::UXTB: return 0; break;
+ case AArch64_AM::UXTH: return 1; break;
+ case AArch64_AM::UXTW: return 2; break;
+ case AArch64_AM::UXTX: return 3; break;
+ case AArch64_AM::SXTB: return 4; break;
+ case AArch64_AM::SXTH: return 5; break;
+ case AArch64_AM::SXTW: return 6; break;
+ case AArch64_AM::SXTX: return 7; break;
+ }
+}
+
+/// getArithExtendImm - Encode the extend type and shift amount for an
+/// arithmetic instruction:
+/// imm: 3-bit extend amount
+/// {5-3} = shifter
+/// {2-0} = imm3
+static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
+ unsigned Imm) {
+ assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
+ return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
+}
+
+/// getMemDoShift - Extract the "do shift" flag value for load/store
+/// instructions.
+static inline bool getMemDoShift(unsigned Imm) {
+ return (Imm & 0x1) != 0;
+}
+
+/// getExtendType - Extract the extend type for the offset operand of
+/// loads/stores.
+static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
+ return getExtendType((Imm >> 1) & 0x7);
+}
+
+/// getExtendImm - Encode the extend type and amount for a load/store inst:
+/// doshift: should the offset be scaled by the access size
+/// shifter: 000 ==> uxtb
+/// 001 ==> uxth
+/// 010 ==> uxtw
+/// 011 ==> uxtx
+/// 100 ==> sxtb
+/// 101 ==> sxth
+/// 110 ==> sxtw
+/// 111 ==> sxtx
+/// {3-1} = shifter
+/// {0} = doshift
+static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
+ bool DoShift) {
+ return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
+}
+
+static inline uint64_t ror(uint64_t elt, unsigned size) {
+ return ((elt & 1) << (size-1)) | (elt >> 1);
+}
+
+/// processLogicalImmediate - Determine if an immediate value can be encoded
+/// as the immediate operand of a logical instruction for the given register
+/// size. If so, return true with "encoding" set to the encoded value in
+/// the form N:immr:imms.
+static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
+ uint64_t &Encoding) {
+ if (Imm == 0ULL || Imm == ~0ULL ||
+ (RegSize != 64 &&
+ (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
+ return false;
+
+ // First, determine the element size.
+ unsigned Size = RegSize;
+
+ do {
+ Size /= 2;
+ uint64_t Mask = (1ULL << Size) - 1;
+
+ if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
+ Size *= 2;
+ break;
+ }
+ } while (Size > 2);
+
+ // Second, determine the rotation to make the element be: 0^m 1^n.
+ uint32_t CTO, I;
+ uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
+ Imm &= Mask;
+
+ if (isShiftedMask_64(Imm)) {
+ I = countTrailingZeros(Imm);
+ assert(I < 64 && "undefined behavior");
+ CTO = countTrailingOnes(Imm >> I);
+ } else {
+ Imm |= ~Mask;
+ if (!isShiftedMask_64(~Imm))
+ return false;
+
+ unsigned CLO = countLeadingOnes(Imm);
+ I = 64 - CLO;
+ CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
+ }
+
+ // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
+ // to our target value, where I is the number of RORs to go the opposite
+ // direction.
+ assert(Size > I && "I should be smaller than element size");
+ unsigned Immr = (Size - I) & (Size - 1);
+
+ // If size has a 1 in the n'th bit, create a value that has zeroes in
+ // bits [0, n] and ones above that.
+ uint64_t NImms = ~(Size-1) << 1;
+
+ // Or the CTO value into the low bits, which must be below the Nth bit
+ // bit mentioned above.
+ NImms |= (CTO-1);
+
+ // Extract the seventh bit and toggle it to create the N field.
+ unsigned N = ((NImms >> 6) & 1) ^ 1;
+
+ Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
+ return true;
+}
+
+/// isLogicalImmediate - Return true if the immediate is valid for a logical
+/// immediate instruction of the given register size. Return false otherwise.
+static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
+ uint64_t encoding;
+ return processLogicalImmediate(imm, regSize, encoding);
+}
+
+/// encodeLogicalImmediate - Return the encoded immediate value for a logical
+/// immediate instruction of the given register size.
+static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
+ uint64_t encoding = 0;
+ bool res = processLogicalImmediate(imm, regSize, encoding);
+ assert(res && "invalid logical immediate");
+ (void)res;
+ return encoding;
+}
+
+/// decodeLogicalImmediate - Decode a logical immediate value in the form
+/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
+/// integer value it represents with regSize bits.
+static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
+ // Extract the N, imms, and immr fields.
+ unsigned N = (val >> 12) & 1;
+ unsigned immr = (val >> 6) & 0x3f;
+ unsigned imms = val & 0x3f;
+
+ assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
+ int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
+ assert(len >= 0 && "undefined logical immediate encoding");
+ unsigned size = (1 << len);
+ unsigned R = immr & (size - 1);
+ unsigned S = imms & (size - 1);
+ assert(S != size - 1 && "undefined logical immediate encoding");
+ uint64_t pattern = (1ULL << (S + 1)) - 1;
+ for (unsigned i = 0; i < R; ++i)
+ pattern = ror(pattern, size);
+
+ // Replicate the pattern to fill the regSize.
+ while (size != regSize) {
+ pattern |= (pattern << size);
+ size *= 2;
+ }
+ return pattern;
+}
+
+/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
+/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
+/// is a valid encoding for an integer value with regSize bits.
+static inline bool isValidDecodeLogicalImmediate(uint64_t val,
+ unsigned regSize) {
+ // Extract the N and imms fields needed for checking.
+ unsigned N = (val >> 12) & 1;
+ unsigned imms = val & 0x3f;
+
+ if (regSize == 32 && N != 0) // undefined logical immediate encoding
+ return false;
+ int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
+ if (len < 0) // undefined logical immediate encoding
+ return false;
+ unsigned size = (1 << len);
+ unsigned S = imms & (size - 1);
+ if (S == size - 1) // undefined logical immediate encoding
+ return false;
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating-point Immediates
+//
+static inline float getFPImmFloat(unsigned Imm) {
+ // We expect an 8-bit binary encoding of a floating-point number here.
+
+ uint8_t Sign = (Imm >> 7) & 0x1;
+ uint8_t Exp = (Imm >> 4) & 0x7;
+ uint8_t Mantissa = Imm & 0xf;
+
+ // 8-bit FP IEEE Float Encoding
+ // abcd efgh aBbbbbbc defgh000 00000000 00000000
+ //
+ // where B = NOT(b);
+
+ uint32_t I = 0;
+ I |= Sign << 31;
+ I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
+ I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
+ I |= (Exp & 0x3) << 23;
+ I |= Mantissa << 19;
+ return bit_cast<float>(I);
+}
+
+/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
+/// floating-point value. If the value cannot be represented as an 8-bit
+/// floating-point value, then return -1.
+static inline int getFP16Imm(const APInt &Imm) {
+ uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
+ int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
+ int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0x3f)
+ return -1;
+ Mantissa >>= 6;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+static inline int getFP16Imm(const APFloat &FPImm) {
+ return getFP16Imm(FPImm.bitcastToAPInt());
+}
+
+/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
+/// floating-point value. If the value cannot be represented as an 8-bit
+/// floating-point value, then return -1.
+static inline int getFP32Imm(const APInt &Imm) {
+ uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
+ int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
+ int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0x7ffff)
+ return -1;
+ Mantissa >>= 19;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+static inline int getFP32Imm(const APFloat &FPImm) {
+ return getFP32Imm(FPImm.bitcastToAPInt());
+}
+
+/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
+/// floating-point value. If the value cannot be represented as an 8-bit
+/// floating-point value, then return -1.
+static inline int getFP64Imm(const APInt &Imm) {
+ uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
+ int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
+ uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0xffffffffffffULL)
+ return -1;
+ Mantissa >>= 48;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+static inline int getFP64Imm(const APFloat &FPImm) {
+ return getFP64Imm(FPImm.bitcastToAPInt());
+}
+
+//===--------------------------------------------------------------------===//
+// AdvSIMD Modified Immediates
+//===--------------------------------------------------------------------===//
+
+// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
+static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffffff00ffffff00ULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 32) | EncVal;
+}
+
+// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
+static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8);
+}
+
+// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
+static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
+ return (Imm & 0xff0000ULL) >> 16;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16);
+}
+
+// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
+static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0x00ffffff00ffffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
+ return (Imm & 0xff000000ULL) >> 24;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 24);
+}
+
+// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
+static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
+ ((Imm & 0xff00ff00ff00ff00ULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
+}
+
+// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
+static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
+ ((Imm & 0x00ff00ff00ff00ffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
+}
+
+// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
+static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
+}
+
+// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
+static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
+}
+
+static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
+ return (Imm & 0x00ff0000ULL) >> 16;
+}
+
+// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
+static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
+ ((Imm >> 56) == (Imm & 0x000000ffULL));
+}
+
+static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
+ uint64_t EncVal = Imm;
+ EncVal |= (EncVal << 8);
+ EncVal |= (EncVal << 16);
+ EncVal |= (EncVal << 32);
+ return EncVal;
+}
+
+// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
+// cmode: 1110, op: 1
+static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
+ uint64_t ByteA = Imm & 0xff00000000000000ULL;
+ uint64_t ByteB = Imm & 0x00ff000000000000ULL;
+ uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
+ uint64_t ByteD = Imm & 0x000000ff00000000ULL;
+ uint64_t ByteE = Imm & 0x00000000ff000000ULL;
+ uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
+ uint64_t ByteG = Imm & 0x000000000000ff00ULL;
+ uint64_t ByteH = Imm & 0x00000000000000ffULL;
+
+ return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
+ (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
+ (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
+ (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
+ (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
+ (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
+ (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
+ (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
+ uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
+ uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
+ if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
+ if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
+ if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
+ if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
+ if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
+ if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
+ if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
+ return EncVal;
+}
+
+// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
+static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
+ uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (BString == 0x1f || BString == 0x20) &&
+ ((Imm & 0x0007ffff0007ffffULL) == 0);
+}
+
+static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0x80000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x20000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x01000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x00800000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00400000ULL) != 0;
+ uint8_t BitF = (Imm & 0x00200000ULL) != 0;
+ uint8_t BitG = (Imm & 0x00100000ULL) != 0;
+ uint8_t BitH = (Imm & 0x00080000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0x80000000ULL;
+ if (Imm & 0x40) EncVal |= 0x3e000000ULL;
+ else EncVal |= 0x40000000ULL;
+ if (Imm & 0x20) EncVal |= 0x01000000ULL;
+ if (Imm & 0x10) EncVal |= 0x00800000ULL;
+ if (Imm & 0x08) EncVal |= 0x00400000ULL;
+ if (Imm & 0x04) EncVal |= 0x00200000ULL;
+ if (Imm & 0x02) EncVal |= 0x00100000ULL;
+ if (Imm & 0x01) EncVal |= 0x00080000ULL;
+ return (EncVal << 32) | EncVal;
+}
+
+// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
+static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
+ uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
+ return ((BString == 0xff || BString == 0x100) &&
+ ((Imm & 0x0000ffffffffffffULL) == 0));
+}
+
+static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
+ uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
+ uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
+ uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+ return EncVal;
+}
+
+static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
+ uint64_t EncVal = 0;
+ if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
+ if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
+ else EncVal |= 0x4000000000000000ULL;
+ if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
+ if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
+ if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
+ if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
+ if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
+ if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
+ return (EncVal << 32) | EncVal;
+}
+
+/// Returns true if Imm is the concatenation of a repeating pattern of type T.
+template <typename T>
+static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
+ auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
+ return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
+}
+
+/// Returns true if Imm is valid for CPY/DUP.
+template <typename T>
+static inline bool isSVECpyImm(int64_t Imm) {
+ bool IsImm8 = int8_t(Imm) == Imm;
+ bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
+
+ if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
+ return IsImm8 || uint8_t(Imm) == Imm;
+
+ if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
+ return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
+
+ return IsImm8 || IsImm16;
+}
+
+/// Returns true if Imm is valid for ADD/SUB.
+template <typename T>
+static inline bool isSVEAddSubImm(int64_t Imm) {
+ bool IsInt8t =
+ std::is_same<int8_t, typename std::make_signed<T>::type>::value;
+ return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
+}
+
+/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
+static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
+ if (isSVECpyImm<int64_t>(Imm))
+ return false;
+
+ auto S = bit_cast<std::array<int32_t, 2>>(Imm);
+ auto H = bit_cast<std::array<int16_t, 4>>(Imm);
+ auto B = bit_cast<std::array<int8_t, 8>>(Imm);
+
+ if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
+ return false;
+ if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
+ return false;
+ if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
+ return false;
+ return isLogicalImmediate(Imm, 64);
+}
+
+inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
+ for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
+ if ((Value & ~(0xffffULL << Shift)) == 0)
+ return true;
+
+ return false;
+}
+
+inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
+ if (Value == 0 && Shift != 0)
+ return false;
+
+ return (Value & ~(0xffffULL << Shift)) == 0;
+}
+
+inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
+ // MOVZ takes precedence over MOVN.
+ if (isAnyMOVZMovAlias(Value, RegWidth))
+ return false;
+
+ Value = ~Value;
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ return isMOVZMovAlias(Value, Shift, RegWidth);
+}
+
+inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
+ if (isAnyMOVZMovAlias(Value, RegWidth))
+ return true;
+
+ // It's not a MOVZ, but it might be a MOVN.
+ Value = ~Value;
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ return isAnyMOVZMovAlias(Value, RegWidth);
+}
+
+} // end namespace AArch64_AM
+
+} // end namespace llvm
+
+#endif