aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp')
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp1010
1 files changed, 1010 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
new file mode 100644
index 000000000000..c3842785f2be
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
@@ -0,0 +1,1010 @@
+//===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that expands pseudo instructions into target
+// instructions to allow proper scheduling and other late optimizations. This
+// pass should be run after register allocation but before the post-regalloc
+// scheduling pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "Utils/AArch64BaseInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <utility>
+
+using namespace llvm;
+
+#define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
+
+namespace {
+
+class AArch64ExpandPseudo : public MachineFunctionPass {
+public:
+ const AArch64InstrInfo *TII;
+
+ static char ID;
+
+ AArch64ExpandPseudo() : MachineFunctionPass(ID) {
+ initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &Fn) override;
+
+ StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
+
+private:
+ bool expandMBB(MachineBasicBlock &MBB);
+ bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ MachineBasicBlock::iterator &NextMBBI);
+ bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ unsigned BitSize);
+
+ bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
+ unsigned ExtendImm, unsigned ZeroReg,
+ MachineBasicBlock::iterator &NextMBBI);
+ bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ MachineBasicBlock::iterator &NextMBBI);
+};
+
+} // end anonymous namespace
+
+char AArch64ExpandPseudo::ID = 0;
+
+INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
+ AARCH64_EXPAND_PSEUDO_NAME, false, false)
+
+/// \brief Transfer implicit operands on the pseudo instruction to the
+/// instructions created from the expansion.
+static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
+ MachineInstrBuilder &DefMI) {
+ const MCInstrDesc &Desc = OldMI.getDesc();
+ for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
+ ++i) {
+ const MachineOperand &MO = OldMI.getOperand(i);
+ assert(MO.isReg() && MO.getReg());
+ if (MO.isUse())
+ UseMI.add(MO);
+ else
+ DefMI.add(MO);
+ }
+}
+
+/// \brief Helper function which extracts the specified 16-bit chunk from a
+/// 64-bit value.
+static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
+ assert(ChunkIdx < 4 && "Out of range chunk index specified!");
+
+ return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
+}
+
+/// \brief Helper function which replicates a 16-bit chunk within a 64-bit
+/// value. Indices correspond to element numbers in a v4i16.
+static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
+ assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
+ const unsigned ShiftAmt = ToIdx * 16;
+
+ // Replicate the source chunk to the destination position.
+ const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
+ // Clear the destination chunk.
+ Imm &= ~(0xFFFFLL << ShiftAmt);
+ // Insert the replicated chunk.
+ return Imm | Chunk;
+}
+
+/// \brief Helper function which tries to materialize a 64-bit value with an
+/// ORR + MOVK instruction sequence.
+static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII, unsigned ChunkIdx) {
+ assert(ChunkIdx < 4 && "Out of range chunk index specified!");
+ const unsigned ShiftAmt = ChunkIdx * 16;
+
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
+ // Create the ORR-immediate instruction.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .add(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ // Create the MOVK instruction.
+ const unsigned Imm16 = getChunk(UImm, ChunkIdx);
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
+/// can be materialized with an ORR instruction.
+static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
+ Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
+
+ return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
+}
+
+/// \brief Check for identical 16-bit chunks within the constant and if so
+/// materialize them with a single ORR instruction. The remaining one or two
+/// 16-bit chunks will be materialized with MOVK instructions.
+///
+/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
+/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
+/// an ORR instruction.
+static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII) {
+ using CountMap = DenseMap<uint64_t, unsigned>;
+
+ CountMap Counts;
+
+ // Scan the constant and count how often every chunk occurs.
+ for (unsigned Idx = 0; Idx < 4; ++Idx)
+ ++Counts[getChunk(UImm, Idx)];
+
+ // Traverse the chunks to find one which occurs more than once.
+ for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
+ Chunk != End; ++Chunk) {
+ const uint64_t ChunkVal = Chunk->first;
+ const unsigned Count = Chunk->second;
+
+ uint64_t Encoding = 0;
+
+ // We are looking for chunks which have two or three instances and can be
+ // materialized with an ORR instruction.
+ if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
+ continue;
+
+ const bool CountThree = Count == 3;
+ // Create the ORR-immediate instruction.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .add(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+
+ unsigned ShiftAmt = 0;
+ uint64_t Imm16 = 0;
+ // Find the first chunk not materialized with the ORR instruction.
+ for (; ShiftAmt < 64; ShiftAmt += 16) {
+ Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+ if (Imm16 != ChunkVal)
+ break;
+ }
+
+ // Create the first MOVK instruction.
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg,
+ RegState::Define | getDeadRegState(DstIsDead && CountThree))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ // In case we have three instances the whole constant is now materialized
+ // and we can exit.
+ if (CountThree) {
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Find the remaining chunk which needs to be materialized.
+ for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
+ Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+ if (Imm16 != ChunkVal)
+ break;
+ }
+
+ // Create the second MOVK instruction.
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
+
+ transferImpOps(MI, MIB, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
+/// starts a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isStartChunk(uint64_t Chunk) {
+ if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
+ return false;
+
+ return isMask_64(~Chunk);
+}
+
+/// \brief Check whether this chunk matches the pattern '0...1...' This pattern
+/// ends a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isEndChunk(uint64_t Chunk) {
+ if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
+ return false;
+
+ return isMask_64(Chunk);
+}
+
+/// \brief Clear or set all bits in the chunk at the given index.
+static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
+ const uint64_t Mask = 0xFFFF;
+
+ if (Clear)
+ // Clear chunk in the immediate.
+ Imm &= ~(Mask << (Idx * 16));
+ else
+ // Set all bits in the immediate for the particular chunk.
+ Imm |= Mask << (Idx * 16);
+
+ return Imm;
+}
+
+/// \brief Check whether the constant contains a sequence of contiguous ones,
+/// which might be interrupted by one or two chunks. If so, materialize the
+/// sequence of contiguous ones with an ORR instruction.
+/// Materialize the chunks which are either interrupting the sequence or outside
+/// of the sequence with a MOVK instruction.
+///
+/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
+/// which ends the sequence (0...1...). Then we are looking for constants which
+/// contain at least one S and E chunk.
+/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
+///
+/// We are also looking for constants like |S|A|B|E| where the contiguous
+/// sequence of ones wraps around the MSB into the LSB.
+static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const AArch64InstrInfo *TII) {
+ const int NotSet = -1;
+ const uint64_t Mask = 0xFFFF;
+
+ int StartIdx = NotSet;
+ int EndIdx = NotSet;
+ // Try to find the chunks which start/end a contiguous sequence of ones.
+ for (int Idx = 0; Idx < 4; ++Idx) {
+ int64_t Chunk = getChunk(UImm, Idx);
+ // Sign extend the 16-bit chunk to 64-bit.
+ Chunk = (Chunk << 48) >> 48;
+
+ if (isStartChunk(Chunk))
+ StartIdx = Idx;
+ else if (isEndChunk(Chunk))
+ EndIdx = Idx;
+ }
+
+ // Early exit in case we can't find a start/end chunk.
+ if (StartIdx == NotSet || EndIdx == NotSet)
+ return false;
+
+ // Outside of the contiguous sequence of ones everything needs to be zero.
+ uint64_t Outside = 0;
+ // Chunks between the start and end chunk need to have all their bits set.
+ uint64_t Inside = Mask;
+
+ // If our contiguous sequence of ones wraps around from the MSB into the LSB,
+ // just swap indices and pretend we are materializing a contiguous sequence
+ // of zeros surrounded by a contiguous sequence of ones.
+ if (StartIdx > EndIdx) {
+ std::swap(StartIdx, EndIdx);
+ std::swap(Outside, Inside);
+ }
+
+ uint64_t OrrImm = UImm;
+ int FirstMovkIdx = NotSet;
+ int SecondMovkIdx = NotSet;
+
+ // Find out which chunks we need to patch up to obtain a contiguous sequence
+ // of ones.
+ for (int Idx = 0; Idx < 4; ++Idx) {
+ const uint64_t Chunk = getChunk(UImm, Idx);
+
+ // Check whether we are looking at a chunk which is not part of the
+ // contiguous sequence of ones.
+ if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
+ OrrImm = updateImm(OrrImm, Idx, Outside == 0);
+
+ // Remember the index we need to patch.
+ if (FirstMovkIdx == NotSet)
+ FirstMovkIdx = Idx;
+ else
+ SecondMovkIdx = Idx;
+
+ // Check whether we are looking a chunk which is part of the contiguous
+ // sequence of ones.
+ } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
+ OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
+
+ // Remember the index we need to patch.
+ if (FirstMovkIdx == NotSet)
+ FirstMovkIdx = Idx;
+ else
+ SecondMovkIdx = Idx;
+ }
+ }
+ assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
+
+ // Create the ORR-immediate instruction.
+ uint64_t Encoding = 0;
+ AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
+ .add(MI.getOperand(0))
+ .addReg(AArch64::XZR)
+ .addImm(Encoding);
+
+ const unsigned DstReg = MI.getOperand(0).getReg();
+ const bool DstIsDead = MI.getOperand(0).isDead();
+
+ const bool SingleMovk = SecondMovkIdx == NotSet;
+ // Create the first MOVK instruction.
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg,
+ RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
+ .addReg(DstReg)
+ .addImm(getChunk(UImm, FirstMovkIdx))
+ .addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
+
+ // Early exit in case we only need to emit a single MOVK instruction.
+ if (SingleMovk) {
+ transferImpOps(MI, MIB, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Create the second MOVK instruction.
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
+ .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
+ .addReg(DstReg)
+ .addImm(getChunk(UImm, SecondMovkIdx))
+ .addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
+
+ transferImpOps(MI, MIB, MIB2);
+ MI.eraseFromParent();
+ return true;
+}
+
+/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
+/// real move-immediate instructions to synthesize the immediate.
+bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned BitSize) {
+ MachineInstr &MI = *MBBI;
+ unsigned DstReg = MI.getOperand(0).getReg();
+ uint64_t Imm = MI.getOperand(1).getImm();
+ const unsigned Mask = 0xFFFF;
+
+ if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
+ // Useless def, and we don't want to risk creating an invalid ORR (which
+ // would really write to sp).
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Try a MOVI instruction (aka ORR-immediate with the zero register).
+ uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
+ .add(MI.getOperand(0))
+ .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
+ .addImm(Encoding);
+ transferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ // Scan the immediate and count the number of 16-bit chunks which are either
+ // all ones or all zeros.
+ unsigned OneChunks = 0;
+ unsigned ZeroChunks = 0;
+ for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
+ const unsigned Chunk = (Imm >> Shift) & Mask;
+ if (Chunk == Mask)
+ OneChunks++;
+ else if (Chunk == 0)
+ ZeroChunks++;
+ }
+
+ // Since we can't materialize the constant with a single ORR instruction,
+ // let's see whether we can materialize 3/4 of the constant with an ORR
+ // instruction and use an additional MOVK instruction to materialize the
+ // remaining 1/4.
+ //
+ // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
+ //
+ // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
+ // we would create the following instruction sequence:
+ //
+ // ORR x0, xzr, |A|X|A|X|
+ // MOVK x0, |B|, LSL #16
+ //
+ // Only look at 64-bit constants which can't be materialized with a single
+ // instruction e.g. which have less than either three all zero or all one
+ // chunks.
+ //
+ // Ignore 32-bit constants here, they always can be materialized with a
+ // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
+ // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
+ // Thus we fall back to the default code below which in the best case creates
+ // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
+ //
+ if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
+ // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
+ // identical?
+ if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 3 into element 1.
+ uint64_t OrrImm = replicateChunk(UImm, 3, 1);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
+ return true;
+
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 1 into element 3.
+ OrrImm = replicateChunk(UImm, 1, 3);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
+ return true;
+
+ // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
+ // identical?
+ } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 2 into element 0.
+ uint64_t OrrImm = replicateChunk(UImm, 2, 0);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
+ return true;
+
+ // See if we can come up with a constant which can be materialized with
+ // ORR-immediate by replicating element 1 into element 3.
+ OrrImm = replicateChunk(UImm, 0, 2);
+ if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
+ return true;
+ }
+ }
+
+ // Check for identical 16-bit chunks within the constant and if so materialize
+ // them with a single ORR instruction. The remaining one or two 16-bit chunks
+ // will be materialized with MOVK instructions.
+ if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
+ return true;
+
+ // Check whether the constant contains a sequence of contiguous ones, which
+ // might be interrupted by one or two chunks. If so, materialize the sequence
+ // of contiguous ones with an ORR instruction. Materialize the chunks which
+ // are either interrupting the sequence or outside of the sequence with a
+ // MOVK instruction.
+ if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
+ return true;
+
+ // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
+ // more MOVK instructions to insert additional 16-bit portions into the
+ // lower bits.
+ bool isNeg = false;
+
+ // Use MOVN to materialize the high bits if we have more all one chunks
+ // than all zero chunks.
+ if (OneChunks > ZeroChunks) {
+ isNeg = true;
+ Imm = ~Imm;
+ }
+
+ unsigned FirstOpc;
+ if (BitSize == 32) {
+ Imm &= (1LL << 32) - 1;
+ FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
+ } else {
+ FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
+ }
+ unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
+ unsigned LastShift = 0; // LSL amount for last MOVK
+ if (Imm != 0) {
+ unsigned LZ = countLeadingZeros(Imm);
+ unsigned TZ = countTrailingZeros(Imm);
+ Shift = (TZ / 16) * 16;
+ LastShift = ((63 - LZ) / 16) * 16;
+ }
+ unsigned Imm16 = (Imm >> Shift) & Mask;
+ bool DstIsDead = MI.getOperand(0).isDead();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
+ .addReg(DstReg, RegState::Define |
+ getDeadRegState(DstIsDead && Shift == LastShift))
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
+
+ // If a MOVN was used for the high bits of a negative value, flip the rest
+ // of the bits back for use with MOVK.
+ if (isNeg)
+ Imm = ~Imm;
+
+ if (Shift == LastShift) {
+ transferImpOps(MI, MIB1, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ MachineInstrBuilder MIB2;
+ unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
+ while (Shift < LastShift) {
+ Shift += 16;
+ Imm16 = (Imm >> Shift) & Mask;
+ if (Imm16 == (isNeg ? Mask : 0))
+ continue; // This 16-bit portion is already set correctly.
+ MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(DstIsDead && Shift == LastShift))
+ .addReg(DstReg)
+ .addImm(Imm16)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
+ }
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+}
+
+bool AArch64ExpandPseudo::expandCMP_SWAP(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
+ unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
+ MachineBasicBlock::iterator &NextMBBI) {
+ MachineInstr &MI = *MBBI;
+ DebugLoc DL = MI.getDebugLoc();
+ const MachineOperand &Dest = MI.getOperand(0);
+ unsigned StatusReg = MI.getOperand(1).getReg();
+ bool StatusDead = MI.getOperand(1).isDead();
+ // Duplicating undef operands into 2 instructions does not guarantee the same
+ // value on both; However undef should be replaced by xzr anyway.
+ assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
+ unsigned AddrReg = MI.getOperand(2).getReg();
+ unsigned DesiredReg = MI.getOperand(3).getReg();
+ unsigned NewReg = MI.getOperand(4).getReg();
+
+ MachineFunction *MF = MBB.getParent();
+ auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+ auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+ auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+
+ MF->insert(++MBB.getIterator(), LoadCmpBB);
+ MF->insert(++LoadCmpBB->getIterator(), StoreBB);
+ MF->insert(++StoreBB->getIterator(), DoneBB);
+
+ // .Lloadcmp:
+ // mov wStatus, 0
+ // ldaxr xDest, [xAddr]
+ // cmp xDest, xDesired
+ // b.ne .Ldone
+ if (!StatusDead)
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
+ .addImm(0).addImm(0);
+ BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
+ .addReg(AddrReg);
+ BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
+ .addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
+ .addReg(DesiredReg)
+ .addImm(ExtendImm);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
+ .addImm(AArch64CC::NE)
+ .addMBB(DoneBB)
+ .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
+ LoadCmpBB->addSuccessor(DoneBB);
+ LoadCmpBB->addSuccessor(StoreBB);
+
+ // .Lstore:
+ // stlxr wStatus, xNew, [xAddr]
+ // cbnz wStatus, .Lloadcmp
+ BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
+ .addReg(NewReg)
+ .addReg(AddrReg);
+ BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
+ .addReg(StatusReg, getKillRegState(StatusDead))
+ .addMBB(LoadCmpBB);
+ StoreBB->addSuccessor(LoadCmpBB);
+ StoreBB->addSuccessor(DoneBB);
+
+ DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
+ DoneBB->transferSuccessors(&MBB);
+
+ MBB.addSuccessor(LoadCmpBB);
+
+ NextMBBI = MBB.end();
+ MI.eraseFromParent();
+
+ // Recompute livein lists.
+ LivePhysRegs LiveRegs;
+ computeAndAddLiveIns(LiveRegs, *DoneBB);
+ computeAndAddLiveIns(LiveRegs, *StoreBB);
+ computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
+ // Do an extra pass around the loop to get loop carried registers right.
+ StoreBB->clearLiveIns();
+ computeAndAddLiveIns(LiveRegs, *StoreBB);
+ LoadCmpBB->clearLiveIns();
+ computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
+
+ return true;
+}
+
+bool AArch64ExpandPseudo::expandCMP_SWAP_128(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ MachineBasicBlock::iterator &NextMBBI) {
+ MachineInstr &MI = *MBBI;
+ DebugLoc DL = MI.getDebugLoc();
+ MachineOperand &DestLo = MI.getOperand(0);
+ MachineOperand &DestHi = MI.getOperand(1);
+ unsigned StatusReg = MI.getOperand(2).getReg();
+ bool StatusDead = MI.getOperand(2).isDead();
+ // Duplicating undef operands into 2 instructions does not guarantee the same
+ // value on both; However undef should be replaced by xzr anyway.
+ assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
+ unsigned AddrReg = MI.getOperand(3).getReg();
+ unsigned DesiredLoReg = MI.getOperand(4).getReg();
+ unsigned DesiredHiReg = MI.getOperand(5).getReg();
+ unsigned NewLoReg = MI.getOperand(6).getReg();
+ unsigned NewHiReg = MI.getOperand(7).getReg();
+
+ MachineFunction *MF = MBB.getParent();
+ auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+ auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+ auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
+
+ MF->insert(++MBB.getIterator(), LoadCmpBB);
+ MF->insert(++LoadCmpBB->getIterator(), StoreBB);
+ MF->insert(++StoreBB->getIterator(), DoneBB);
+
+ // .Lloadcmp:
+ // ldaxp xDestLo, xDestHi, [xAddr]
+ // cmp xDestLo, xDesiredLo
+ // sbcs xDestHi, xDesiredHi
+ // b.ne .Ldone
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
+ .addReg(DestLo.getReg(), RegState::Define)
+ .addReg(DestHi.getReg(), RegState::Define)
+ .addReg(AddrReg);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
+ .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
+ .addReg(DesiredLoReg)
+ .addImm(0);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
+ .addUse(AArch64::WZR)
+ .addUse(AArch64::WZR)
+ .addImm(AArch64CC::EQ);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
+ .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
+ .addReg(DesiredHiReg)
+ .addImm(0);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
+ .addUse(StatusReg, RegState::Kill)
+ .addUse(StatusReg, RegState::Kill)
+ .addImm(AArch64CC::EQ);
+ BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
+ .addUse(StatusReg, getKillRegState(StatusDead))
+ .addMBB(DoneBB);
+ LoadCmpBB->addSuccessor(DoneBB);
+ LoadCmpBB->addSuccessor(StoreBB);
+
+ // .Lstore:
+ // stlxp wStatus, xNewLo, xNewHi, [xAddr]
+ // cbnz wStatus, .Lloadcmp
+ BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
+ .addReg(NewLoReg)
+ .addReg(NewHiReg)
+ .addReg(AddrReg);
+ BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
+ .addReg(StatusReg, getKillRegState(StatusDead))
+ .addMBB(LoadCmpBB);
+ StoreBB->addSuccessor(LoadCmpBB);
+ StoreBB->addSuccessor(DoneBB);
+
+ DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
+ DoneBB->transferSuccessors(&MBB);
+
+ MBB.addSuccessor(LoadCmpBB);
+
+ NextMBBI = MBB.end();
+ MI.eraseFromParent();
+
+ // Recompute liveness bottom up.
+ LivePhysRegs LiveRegs;
+ computeAndAddLiveIns(LiveRegs, *DoneBB);
+ computeAndAddLiveIns(LiveRegs, *StoreBB);
+ computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
+ // Do an extra pass in the loop to get the loop carried dependencies right.
+ StoreBB->clearLiveIns();
+ computeAndAddLiveIns(LiveRegs, *StoreBB);
+ LoadCmpBB->clearLiveIns();
+ computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
+
+ return true;
+}
+
+/// \brief If MBBI references a pseudo instruction that should be expanded here,
+/// do the expansion and return true. Otherwise return false.
+bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ MachineBasicBlock::iterator &NextMBBI) {
+ MachineInstr &MI = *MBBI;
+ unsigned Opcode = MI.getOpcode();
+ switch (Opcode) {
+ default:
+ break;
+
+ case AArch64::ADDWrr:
+ case AArch64::SUBWrr:
+ case AArch64::ADDXrr:
+ case AArch64::SUBXrr:
+ case AArch64::ADDSWrr:
+ case AArch64::SUBSWrr:
+ case AArch64::ADDSXrr:
+ case AArch64::SUBSXrr:
+ case AArch64::ANDWrr:
+ case AArch64::ANDXrr:
+ case AArch64::BICWrr:
+ case AArch64::BICXrr:
+ case AArch64::ANDSWrr:
+ case AArch64::ANDSXrr:
+ case AArch64::BICSWrr:
+ case AArch64::BICSXrr:
+ case AArch64::EONWrr:
+ case AArch64::EONXrr:
+ case AArch64::EORWrr:
+ case AArch64::EORXrr:
+ case AArch64::ORNWrr:
+ case AArch64::ORNXrr:
+ case AArch64::ORRWrr:
+ case AArch64::ORRXrr: {
+ unsigned Opcode;
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
+ case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
+ case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
+ case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
+ case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
+ case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
+ case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
+ case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
+ case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
+ case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
+ case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
+ case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
+ case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
+ case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
+ case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
+ case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
+ case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
+ case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
+ case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
+ case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
+ case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
+ case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
+ case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
+ case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
+ }
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
+ MI.getOperand(0).getReg())
+ .add(MI.getOperand(1))
+ .add(MI.getOperand(2))
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ transferImpOps(MI, MIB1, MIB1);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::LOADgot: {
+ // Expand into ADRP + LDR.
+ unsigned DstReg = MI.getOperand(0).getReg();
+ const MachineOperand &MO1 = MI.getOperand(1);
+ unsigned Flags = MO1.getTargetFlags();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
+ .add(MI.getOperand(0))
+ .addReg(DstReg);
+
+ if (MO1.isGlobal()) {
+ MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
+ MIB2.addGlobalAddress(MO1.getGlobal(), 0,
+ Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ } else if (MO1.isSymbol()) {
+ MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
+ MIB2.addExternalSymbol(MO1.getSymbolName(),
+ Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ } else {
+ assert(MO1.isCPI() &&
+ "Only expect globals, externalsymbols, or constant pools");
+ MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
+ Flags | AArch64II::MO_PAGE);
+ MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
+ Flags | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ }
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::MOVaddr:
+ case AArch64::MOVaddrJT:
+ case AArch64::MOVaddrCP:
+ case AArch64::MOVaddrBA:
+ case AArch64::MOVaddrTLS:
+ case AArch64::MOVaddrEXT: {
+ // Expand into ADRP + ADD.
+ unsigned DstReg = MI.getOperand(0).getReg();
+ MachineInstrBuilder MIB1 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
+ .add(MI.getOperand(1));
+
+ MachineInstrBuilder MIB2 =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
+ .add(MI.getOperand(0))
+ .addReg(DstReg)
+ .add(MI.getOperand(2))
+ .addImm(0);
+
+ transferImpOps(MI, MIB1, MIB2);
+ MI.eraseFromParent();
+ return true;
+ }
+ case AArch64::MOVbaseTLS: {
+ unsigned DstReg = MI.getOperand(0).getReg();
+ auto SysReg = AArch64SysReg::TPIDR_EL0;
+ MachineFunction *MF = MBB.getParent();
+ if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
+ MF->getTarget().getCodeModel() == CodeModel::Kernel)
+ SysReg = AArch64SysReg::TPIDR_EL1;
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
+ .addImm(SysReg);
+ MI.eraseFromParent();
+ return true;
+ }
+
+ case AArch64::MOVi32imm:
+ return expandMOVImm(MBB, MBBI, 32);
+ case AArch64::MOVi64imm:
+ return expandMOVImm(MBB, MBBI, 64);
+ case AArch64::RET_ReallyLR: {
+ // Hiding the LR use with RET_ReallyLR may lead to extra kills in the
+ // function and missing live-ins. We are fine in practice because callee
+ // saved register handling ensures the register value is restored before
+ // RET, but we need the undef flag here to appease the MachineVerifier
+ // liveness checks.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
+ .addReg(AArch64::LR, RegState::Undef);
+ transferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+ case AArch64::CMP_SWAP_8:
+ return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
+ AArch64::SUBSWrx,
+ AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
+ AArch64::WZR, NextMBBI);
+ case AArch64::CMP_SWAP_16:
+ return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
+ AArch64::SUBSWrx,
+ AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
+ AArch64::WZR, NextMBBI);
+ case AArch64::CMP_SWAP_32:
+ return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
+ AArch64::SUBSWrs,
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
+ AArch64::WZR, NextMBBI);
+ case AArch64::CMP_SWAP_64:
+ return expandCMP_SWAP(MBB, MBBI,
+ AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
+ AArch64::XZR, NextMBBI);
+ case AArch64::CMP_SWAP_128:
+ return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
+
+ case AArch64::AESMCrrTied:
+ case AArch64::AESIMCrrTied: {
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, MI.getDebugLoc(),
+ TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
+ AArch64::AESIMCrr))
+ .add(MI.getOperand(0))
+ .add(MI.getOperand(1));
+ transferImpOps(MI, MIB, MIB);
+ MI.eraseFromParent();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// \brief Iterate over the instructions in basic block MBB and expand any
+/// pseudo instructions. Return true if anything was modified.
+bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ MachineBasicBlock::iterator NMBBI = std::next(MBBI);
+ Modified |= expandMI(MBB, MBBI, NMBBI);
+ MBBI = NMBBI;
+ }
+
+ return Modified;
+}
+
+bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
+ TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
+
+ bool Modified = false;
+ for (auto &MBB : MF)
+ Modified |= expandMBB(MBB);
+ return Modified;
+}
+
+/// \brief Returns an instance of the pseudo instruction expansion pass.
+FunctionPass *llvm::createAArch64ExpandPseudoPass() {
+ return new AArch64ExpandPseudo();
+}