diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp | 733 |
1 files changed, 733 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp b/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp new file mode 100644 index 000000000000..0aa597bcdc56 --- /dev/null +++ b/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp @@ -0,0 +1,733 @@ +//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// For best-case performance on Cortex-A57, we should try to use a balanced +// mix of odd and even D-registers when performing a critical sequence of +// independent, non-quadword FP/ASIMD floating-point multiply or +// multiply-accumulate operations. +// +// This pass attempts to detect situations where the register allocation may +// adversely affect this load balancing and to change the registers used so as +// to better utilize the CPU. +// +// Ideally we'd just take each multiply or multiply-accumulate in turn and +// allocate it alternating even or odd registers. However, multiply-accumulates +// are most efficiently performed in the same functional unit as their +// accumulation operand. Therefore this pass tries to find maximal sequences +// ("Chains") of multiply-accumulates linked via their accumulation operand, +// and assign them all the same "color" (oddness/evenness). +// +// This optimization affects S-register and D-register floating point +// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and +// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are +// not affected. +//===----------------------------------------------------------------------===// + +#include "AArch64.h" +#include "AArch64InstrInfo.h" +#include "AArch64Subtarget.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +#define DEBUG_TYPE "aarch64-a57-fp-load-balancing" + +// Enforce the algorithm to use the scavenged register even when the original +// destination register is the correct color. Used for testing. +static cl::opt<bool> +TransformAll("aarch64-a57-fp-load-balancing-force-all", + cl::desc("Always modify dest registers regardless of color"), + cl::init(false), cl::Hidden); + +// Never use the balance information obtained from chains - return a specific +// color always. Used for testing. +static cl::opt<unsigned> +OverrideBalance("aarch64-a57-fp-load-balancing-override", + cl::desc("Ignore balance information, always return " + "(1: Even, 2: Odd)."), + cl::init(0), cl::Hidden); + +//===----------------------------------------------------------------------===// +// Helper functions + +// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? +static bool isMul(MachineInstr *MI) { + switch (MI->getOpcode()) { + case AArch64::FMULSrr: + case AArch64::FNMULSrr: + case AArch64::FMULDrr: + case AArch64::FNMULDrr: + return true; + default: + return false; + } +} + +// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? +static bool isMla(MachineInstr *MI) { + switch (MI->getOpcode()) { + case AArch64::FMSUBSrrr: + case AArch64::FMADDSrrr: + case AArch64::FNMSUBSrrr: + case AArch64::FNMADDSrrr: + case AArch64::FMSUBDrrr: + case AArch64::FMADDDrrr: + case AArch64::FNMSUBDrrr: + case AArch64::FNMADDDrrr: + return true; + default: + return false; + } +} + +//===----------------------------------------------------------------------===// + +namespace { +/// A "color", which is either even or odd. Yes, these aren't really colors +/// but the algorithm is conceptually doing two-color graph coloring. +enum class Color { Even, Odd }; +#ifndef NDEBUG +static const char *ColorNames[2] = { "Even", "Odd" }; +#endif + +class Chain; + +class AArch64A57FPLoadBalancing : public MachineFunctionPass { + MachineRegisterInfo *MRI; + const TargetRegisterInfo *TRI; + RegisterClassInfo RCI; + +public: + static char ID; + explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) { + initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &F) override; + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + + StringRef getPassName() const override { + return "A57 FP Anti-dependency breaker"; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + +private: + bool runOnBasicBlock(MachineBasicBlock &MBB); + bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, + int &Balance); + bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); + int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); + void scanInstruction(MachineInstr *MI, unsigned Idx, + std::map<unsigned, Chain*> &Active, + std::vector<std::unique_ptr<Chain>> &AllChains); + void maybeKillChain(MachineOperand &MO, unsigned Idx, + std::map<unsigned, Chain*> &RegChains); + Color getColor(unsigned Register); + Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); +}; +} + +char AArch64A57FPLoadBalancing::ID = 0; + +INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE, + "AArch64 A57 FP Load-Balancing", false, false) +INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE, + "AArch64 A57 FP Load-Balancing", false, false) + +namespace { +/// A Chain is a sequence of instructions that are linked together by +/// an accumulation operand. For example: +/// +/// fmul d0<def>, ? +/// fmla d1<def>, ?, ?, d0<kill> +/// fmla d2<def>, ?, ?, d1<kill> +/// +/// There may be other instructions interleaved in the sequence that +/// do not belong to the chain. These other instructions must not use +/// the "chain" register at any point. +/// +/// We currently only support chains where the "chain" operand is killed +/// at each link in the chain for simplicity. +/// A chain has three important instructions - Start, Last and Kill. +/// * The start instruction is the first instruction in the chain. +/// * Last is the final instruction in the chain. +/// * Kill may or may not be defined. If defined, Kill is the instruction +/// where the outgoing value of the Last instruction is killed. +/// This information is important as if we know the outgoing value is +/// killed with no intervening uses, we can safely change its register. +/// +/// Without a kill instruction, we must assume the outgoing value escapes +/// beyond our model and either must not change its register or must +/// create a fixup FMOV to keep the old register value consistent. +/// +class Chain { +public: + /// The important (marker) instructions. + MachineInstr *StartInst, *LastInst, *KillInst; + /// The index, from the start of the basic block, that each marker + /// appears. These are stored so we can do quick interval tests. + unsigned StartInstIdx, LastInstIdx, KillInstIdx; + /// All instructions in the chain. + std::set<MachineInstr*> Insts; + /// True if KillInst cannot be modified. If this is true, + /// we cannot change LastInst's outgoing register. + /// This will be true for tied values and regmasks. + bool KillIsImmutable; + /// The "color" of LastInst. This will be the preferred chain color, + /// as changing intermediate nodes is easy but changing the last + /// instruction can be more tricky. + Color LastColor; + + Chain(MachineInstr *MI, unsigned Idx, Color C) + : StartInst(MI), LastInst(MI), KillInst(nullptr), + StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), + LastColor(C) { + Insts.insert(MI); + } + + /// Add a new instruction into the chain. The instruction's dest operand + /// has the given color. + void add(MachineInstr *MI, unsigned Idx, Color C) { + LastInst = MI; + LastInstIdx = Idx; + LastColor = C; + assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && + "Chain: broken invariant. A Chain can only be killed after its last " + "def"); + + Insts.insert(MI); + } + + /// Return true if MI is a member of the chain. + bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; } + + /// Return the number of instructions in the chain. + unsigned size() const { + return Insts.size(); + } + + /// Inform the chain that its last active register (the dest register of + /// LastInst) is killed by MI with no intervening uses or defs. + void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { + KillInst = MI; + KillInstIdx = Idx; + KillIsImmutable = Immutable; + assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && + "Chain: broken invariant. A Chain can only be killed after its last " + "def"); + } + + /// Return the first instruction in the chain. + MachineInstr *getStart() const { return StartInst; } + /// Return the last instruction in the chain. + MachineInstr *getLast() const { return LastInst; } + /// Return the "kill" instruction (as set with setKill()) or NULL. + MachineInstr *getKill() const { return KillInst; } + /// Return an instruction that can be used as an iterator for the end + /// of the chain. This is the maximum of KillInst (if set) and LastInst. + MachineBasicBlock::iterator end() const { + return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); + } + MachineBasicBlock::iterator begin() const { return getStart(); } + + /// Can the Kill instruction (assuming one exists) be modified? + bool isKillImmutable() const { return KillIsImmutable; } + + /// Return the preferred color of this chain. + Color getPreferredColor() { + if (OverrideBalance != 0) + return OverrideBalance == 1 ? Color::Even : Color::Odd; + return LastColor; + } + + /// Return true if this chain (StartInst..KillInst) overlaps with Other. + bool rangeOverlapsWith(const Chain &Other) const { + unsigned End = KillInst ? KillInstIdx : LastInstIdx; + unsigned OtherEnd = Other.KillInst ? + Other.KillInstIdx : Other.LastInstIdx; + + return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End; + } + + /// Return true if this chain starts before Other. + bool startsBefore(const Chain *Other) const { + return StartInstIdx < Other->StartInstIdx; + } + + /// Return true if the group will require a fixup MOV at the end. + bool requiresFixup() const { + return (getKill() && isKillImmutable()) || !getKill(); + } + + /// Return a simple string representation of the chain. + std::string str() const { + std::string S; + raw_string_ostream OS(S); + + OS << "{"; + StartInst->print(OS, /* SkipOpers= */true); + OS << " -> "; + LastInst->print(OS, /* SkipOpers= */true); + if (KillInst) { + OS << " (kill @ "; + KillInst->print(OS, /* SkipOpers= */true); + OS << ")"; + } + OS << "}"; + + return OS.str(); + } + +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// + +bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { + if (skipFunction(*F.getFunction())) + return false; + + if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps()) + return false; + + bool Changed = false; + DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); + + MRI = &F.getRegInfo(); + TRI = F.getRegInfo().getTargetRegisterInfo(); + RCI.runOnMachineFunction(F); + + for (auto &MBB : F) { + Changed |= runOnBasicBlock(MBB); + } + + return Changed; +} + +bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { + bool Changed = false; + DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); + + // First, scan the basic block producing a set of chains. + + // The currently "active" chains - chains that can be added to and haven't + // been killed yet. This is keyed by register - all chains can only have one + // "link" register between each inst in the chain. + std::map<unsigned, Chain*> ActiveChains; + std::vector<std::unique_ptr<Chain>> AllChains; + unsigned Idx = 0; + for (auto &MI : MBB) + scanInstruction(&MI, Idx++, ActiveChains, AllChains); + + DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n"); + + // Group the chains into disjoint sets based on their liveness range. This is + // a poor-man's version of graph coloring. Ideally we'd create an interference + // graph and perform full-on graph coloring on that, but; + // (a) That's rather heavyweight for only two colors. + // (b) We expect multiple disjoint interference regions - in practice the live + // range of chains is quite small and they are clustered between loads + // and stores. + EquivalenceClasses<Chain*> EC; + for (auto &I : AllChains) + EC.insert(I.get()); + + for (auto &I : AllChains) + for (auto &J : AllChains) + if (I != J && I->rangeOverlapsWith(*J)) + EC.unionSets(I.get(), J.get()); + DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); + + // Now we assume that every member of an equivalence class interferes + // with every other member of that class, and with no members of other classes. + + // Convert the EquivalenceClasses to a simpler set of sets. + std::vector<std::vector<Chain*> > V; + for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { + std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); + if (Cs.empty()) continue; + V.push_back(std::move(Cs)); + } + + // Now we have a set of sets, order them by start address so + // we can iterate over them sequentially. + std::sort(V.begin(), V.end(), + [](const std::vector<Chain*> &A, + const std::vector<Chain*> &B) { + return A.front()->startsBefore(B.front()); + }); + + // As we only have two colors, we can track the global (BB-level) balance of + // odds versus evens. We aim to keep this near zero to keep both execution + // units fed. + // Positive means we're even-heavy, negative we're odd-heavy. + // + // FIXME: If chains have interdependencies, for example: + // mul r0, r1, r2 + // mul r3, r0, r1 + // We do not model this and may color each one differently, assuming we'll + // get ILP when we obviously can't. This hasn't been seen to be a problem + // in practice so far, so we simplify the algorithm by ignoring it. + int Parity = 0; + + for (auto &I : V) + Changed |= colorChainSet(std::move(I), MBB, Parity); + + return Changed; +} + +Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, + std::vector<Chain*> &L) { + if (L.empty()) + return nullptr; + + // We try and get the best candidate from L to color next, given that our + // preferred color is "PreferredColor". L is ordered from larger to smaller + // chains. It is beneficial to color the large chains before the small chains, + // but if we can't find a chain of the maximum length with the preferred color, + // we fuzz the size and look for slightly smaller chains before giving up and + // returning a chain that must be recolored. + + // FIXME: Does this need to be configurable? + const unsigned SizeFuzz = 1; + unsigned MinSize = L.front()->size() - SizeFuzz; + for (auto I = L.begin(), E = L.end(); I != E; ++I) { + if ((*I)->size() <= MinSize) { + // We've gone past the size limit. Return the previous item. + Chain *Ch = *--I; + L.erase(I); + return Ch; + } + + if ((*I)->getPreferredColor() == PreferredColor) { + Chain *Ch = *I; + L.erase(I); + return Ch; + } + } + + // Bailout case - just return the first item. + Chain *Ch = L.front(); + L.erase(L.begin()); + return Ch; +} + +bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, + MachineBasicBlock &MBB, + int &Parity) { + bool Changed = false; + DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); + + // Sort by descending size order so that we allocate the most important + // sets first. + // Tie-break equivalent sizes by sorting chains requiring fixups before + // those without fixups. The logic here is that we should look at the + // chains that we cannot change before we look at those we can, + // so the parity counter is updated and we know what color we should + // change them to! + // Final tie-break with instruction order so pass output is stable (i.e. not + // dependent on malloc'd pointer values). + std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) { + if (G1->size() != G2->size()) + return G1->size() > G2->size(); + if (G1->requiresFixup() != G2->requiresFixup()) + return G1->requiresFixup() > G2->requiresFixup(); + // Make sure startsBefore() produces a stable final order. + assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) && + "Starts before not total order!"); + return G1->startsBefore(G2); + }); + + Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; + while (Chain *G = getAndEraseNext(PreferredColor, GV)) { + // Start off by assuming we'll color to our own preferred color. + Color C = PreferredColor; + if (Parity == 0) + // But if we really don't care, use the chain's preferred color. + C = G->getPreferredColor(); + + DEBUG(dbgs() << " - Parity=" << Parity << ", Color=" + << ColorNames[(int)C] << "\n"); + + // If we'll need a fixup FMOV, don't bother. Testing has shown that this + // happens infrequently and when it does it has at least a 50% chance of + // slowing code down instead of speeding it up. + if (G->requiresFixup() && C != G->getPreferredColor()) { + C = G->getPreferredColor(); + DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; " + "color remains " << ColorNames[(int)C] << "\n"); + } + + Changed |= colorChain(G, C, MBB); + + Parity += (C == Color::Even) ? G->size() : -G->size(); + PreferredColor = Parity < 0 ? Color::Even : Color::Odd; + } + + return Changed; +} + +int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, + MachineBasicBlock &MBB) { + RegScavenger RS; + RS.enterBasicBlock(MBB); + RS.forward(MachineBasicBlock::iterator(G->getStart())); + + // Can we find an appropriate register that is available throughout the life + // of the chain? + unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass; + BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID)); + for (MachineBasicBlock::iterator I = G->begin(), E = G->end(); I != E; ++I) { + RS.forward(I); + AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID)); + + // Remove any registers clobbered by a regmask or any def register that is + // immediately dead. + for (auto J : I->operands()) { + if (J.isRegMask()) + AvailableRegs.clearBitsNotInMask(J.getRegMask()); + + if (J.isReg() && J.isDef()) { + MCRegAliasIterator AI(J.getReg(), TRI, /*IncludeSelf=*/true); + if (J.isDead()) + for (; AI.isValid(); ++AI) + AvailableRegs.reset(*AI); +#ifndef NDEBUG + else + for (; AI.isValid(); ++AI) + assert(!AvailableRegs[*AI] && + "Non-dead def should have been removed by now!"); +#endif + } + } + } + + // Make sure we allocate in-order, to get the cheapest registers first. + auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); + for (auto Reg : Ord) { + if (!AvailableRegs[Reg]) + continue; + if (C == getColor(Reg)) + return Reg; + } + + return -1; +} + +bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, + MachineBasicBlock &MBB) { + bool Changed = false; + DEBUG(dbgs() << " - colorChain(" << G->str() << ", " + << ColorNames[(int)C] << ")\n"); + + // Try and obtain a free register of the right class. Without a register + // to play with we cannot continue. + int Reg = scavengeRegister(G, C, MBB); + if (Reg == -1) { + DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); + return false; + } + DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n"); + + std::map<unsigned, unsigned> Substs; + for (MachineInstr &I : *G) { + if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable())) + continue; + + // I is a member of G, or I is a mutable instruction that kills G. + + std::vector<unsigned> ToErase; + for (auto &U : I.operands()) { + if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { + unsigned OrigReg = U.getReg(); + U.setReg(Substs[OrigReg]); + if (U.isKill()) + // Don't erase straight away, because there may be other operands + // that also reference this substitution! + ToErase.push_back(OrigReg); + } else if (U.isRegMask()) { + for (auto J : Substs) { + if (U.clobbersPhysReg(J.first)) + ToErase.push_back(J.first); + } + } + } + // Now it's safe to remove the substs identified earlier. + for (auto J : ToErase) + Substs.erase(J); + + // Only change the def if this isn't the last instruction. + if (&I != G->getKill()) { + MachineOperand &MO = I.getOperand(0); + + bool Change = TransformAll || getColor(MO.getReg()) != C; + if (G->requiresFixup() && &I == G->getLast()) + Change = false; + + if (Change) { + Substs[MO.getReg()] = Reg; + MO.setReg(Reg); + + Changed = true; + } + } + } + assert(Substs.size() == 0 && "No substitutions should be left active!"); + + if (G->getKill()) { + DEBUG(dbgs() << " - Kill instruction seen.\n"); + } else { + // We didn't have a kill instruction, but we didn't seem to need to change + // the destination register anyway. + DEBUG(dbgs() << " - Destination register not changed.\n"); + } + return Changed; +} + +void AArch64A57FPLoadBalancing::scanInstruction( + MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains, + std::vector<std::unique_ptr<Chain>> &AllChains) { + // Inspect "MI", updating ActiveChains and AllChains. + + if (isMul(MI)) { + + for (auto &I : MI->uses()) + maybeKillChain(I, Idx, ActiveChains); + for (auto &I : MI->defs()) + maybeKillChain(I, Idx, ActiveChains); + + // Create a new chain. Multiplies don't require forwarding so can go on any + // unit. + unsigned DestReg = MI->getOperand(0).getReg(); + + DEBUG(dbgs() << "New chain started for register " + << TRI->getName(DestReg) << " at " << *MI); + + auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg)); + ActiveChains[DestReg] = G.get(); + AllChains.push_back(std::move(G)); + + } else if (isMla(MI)) { + + // It is beneficial to keep MLAs on the same functional unit as their + // accumulator operand. + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned AccumReg = MI->getOperand(3).getReg(); + + maybeKillChain(MI->getOperand(1), Idx, ActiveChains); + maybeKillChain(MI->getOperand(2), Idx, ActiveChains); + if (DestReg != AccumReg) + maybeKillChain(MI->getOperand(0), Idx, ActiveChains); + + if (ActiveChains.find(AccumReg) != ActiveChains.end()) { + DEBUG(dbgs() << "Chain found for accumulator register " + << TRI->getName(AccumReg) << " in MI " << *MI); + + // For simplicity we only chain together sequences of MULs/MLAs where the + // accumulator register is killed on each instruction. This means we don't + // need to track other uses of the registers we want to rewrite. + // + // FIXME: We could extend to handle the non-kill cases for more coverage. + if (MI->getOperand(3).isKill()) { + // Add to chain. + DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); + ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); + // Handle cases where the destination is not the same as the accumulator. + if (DestReg != AccumReg) { + ActiveChains[DestReg] = ActiveChains[AccumReg]; + ActiveChains.erase(AccumReg); + } + return; + } + + DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't " + << "marked <kill>!\n"); + maybeKillChain(MI->getOperand(3), Idx, ActiveChains); + } + + DEBUG(dbgs() << "Creating new chain for dest register " + << TRI->getName(DestReg) << "\n"); + auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg)); + ActiveChains[DestReg] = G.get(); + AllChains.push_back(std::move(G)); + + } else { + + // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs + // lists. + for (auto &I : MI->uses()) + maybeKillChain(I, Idx, ActiveChains); + for (auto &I : MI->defs()) + maybeKillChain(I, Idx, ActiveChains); + + } +} + +void AArch64A57FPLoadBalancing:: +maybeKillChain(MachineOperand &MO, unsigned Idx, + std::map<unsigned, Chain*> &ActiveChains) { + // Given an operand and the set of active chains (keyed by register), + // determine if a chain should be ended and remove from ActiveChains. + MachineInstr *MI = MO.getParent(); + + if (MO.isReg()) { + + // If this is a KILL of a current chain, record it. + if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { + DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg()) + << "\n"); + ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); + } + ActiveChains.erase(MO.getReg()); + + } else if (MO.isRegMask()) { + + for (auto I = ActiveChains.begin(), E = ActiveChains.end(); + I != E;) { + if (MO.clobbersPhysReg(I->first)) { + DEBUG(dbgs() << "Kill (regmask) seen for chain " + << TRI->getName(I->first) << "\n"); + I->second->setKill(MI, Idx, /*Immutable=*/true); + ActiveChains.erase(I++); + } else + ++I; + } + + } +} + +Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { + if ((TRI->getEncodingValue(Reg) % 2) == 0) + return Color::Even; + else + return Color::Odd; +} + +// Factory function used by AArch64TargetMachine to add the pass to the passmanager. +FunctionPass *llvm::createAArch64A57FPLoadBalancing() { + return new AArch64A57FPLoadBalancing(); +} |